Network Working Group                                        Y. Hiwasaki
Request for Comments: 5686                                     H. Ohmuro
Category: Standards Track                                NTT Corporation
                                                           October 2009


    RTP Payload Format for mU-law EMbedded Codec for Low-delay IP
                 Communication (UEMCLIP) Speech Codec

Abstract

  This document describes the RTP payload format of a mU-law EMbedded
  Coder for Low-delay IP communication (UEMCLIP), an enhanced speech
  codec of ITU-T G.711.  The bitstream has a scalable structure with an
  embedded u-law bitstream, also known as PCMU, thus providing a handy
  transcoding operation between narrowband and wideband speech.

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may



Hiwasaki & Ohmuro           Standards Track                     [Page 1]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1. Introduction ....................................................2
     1.1. Terminology ................................................3
  2. Media Format Background .........................................3
  3. Payload Format ..................................................5
     3.1. RTP Header Usage ...........................................6
     3.2. Multiple Frames in an RTP Packet ...........................6
     3.3. Payload Data ...............................................7
          3.3.1. Main Header .........................................7
          3.3.2. Sub-Layer ..........................................10
  4. Transcoding between UEMCLIP and G.711 ..........................11
  5. Congestion Control Considerations ..............................12
  6. Payload Format Parameters ......................................13
     6.1. Media Type Registration ...................................13
     6.2. Mapping to SDP Parameters .................................14
          6.2.1. Mode Specification .................................15
     6.3. Offer-Answer Model Considerations .........................16
          6.3.1. Offer-Answer Guidelines ............................16
          6.3.2. Examples ...........................................17
  7. Security Considerations ........................................19
  8. IANA Considerations ............................................19
  9. References .....................................................19
     9.1. Normative References ......................................19
     9.2. Informative References ....................................20

1.  Introduction

  This document specifies the payload format for sending UEMCLIP-
  encoded (mU-law EMbedded Coder for Low-delay IP communication) speech
  using the Real-time Transport Protocol (RTP) [RFC3550].  UEMCLIP is a
  proprietary codec that enhances u-law ITU-T G.711 [ITU-T-G.711] and
  that is designed to help the market for smooth transition towards the
  forthcoming wideband communication environment while achieving a very
  small media transcoding load with the existing terminals, in which
  the implementation of G.711 is mandatory.

  It should be noted that, generally speaking, codecs are negotiated
  and changed using an SDP exchange.  Also, [RFC3550] defines general
  RTP mixer and translator models, where media transcoding may not take
  place at the node.  For those cases, the design concept of the
  embedded structure is not useful.  However, there are other cases
  when costly transcoding is unavoidable in commonly deployed types of
  Multi-point Control Units (MCUs), which terminate media and RTCP



Hiwasaki & Ohmuro           Standards Track                     [Page 2]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  packets [RFC5117], and when narrowband and wideband terminals
  coexist.  This embedded bitstream structure can reduce the media
  transcoding to a simple bitstream truncation.

  The background and the basic idea of the media format is described in
  Section 2.  The details of the payload format are given in Section 3.
  The transcoding issues with G.711 are discussed in Section 4, and the
  considerations for congestion control are in Section 5.  In
  Section 6, the payload format parameters for a media type
  registration for UEMCLIP RTP payload format and Session Description
  Protocol (SDP) mappings are provided.  The security considerations
  and IANA considerations are dealt with in Section 7 and Section 8,
  respectively.

1.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  Media Format Background

  UEMCLIP is an enhanced version of u-law ITU-T G.711, otherwise known
  as PCMU [RFC4856].  It is targeted at Voice over Internet Protocol
  (VoIP) applications, and its main goal is to provide a wideband
  communication platform that is highly interoperable with existing
  terminals equipped with G.711 and to stimulate the market to
  gradually shift to using wideband communication.  In widely deployed
  multi-point conferencing systems, the packets usually go through
  RTCP-terminating (RTP Control Protocol) MCUs, "Topo-RTCP-terminating-
  MCU" as defined in [RFC5117].  Because the G.711 bitstream is
  embedded in the bitstream, costly media transcoding can be avoided in
  this case.

  This document does not discuss the implementation details of the
  encoder and decoder, but only describes the bitstream format.

  Because of its scalable nature, there are a number of sub-bitstreams
  (sub-layer) in a UEMCLIP bitstream.  By choosing appropriate sub-
  layers, the codec can adapt to the following requirements:

  o  Sampling frequency,

  o  Number of channels,

  o  Speech quality, and

  o  Bit-rate.



Hiwasaki & Ohmuro           Standards Track                     [Page 3]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  The UEMCLIP codec operates at a 20-ms frame, and includes three sub-
  coders as shown in Table 1.  The core layer is u-law G.711 at 64
  kbit/s, and other two are quality and bandwidth enhancement layers
  with bit-rate of 16 kbit/s each.

  +-------+---------------------+----------+--------------------------+
  | Layer | Description         | Bit-rate | Coding algorithm         |
  +-------+---------------------+----------+--------------------------+
  |   a   | G.711 core          |       64 | u-law PCM                |
  |       |                     |          |                          |
  |   b   | Lower-band          |       16 | Time domain block        |
  |       | enhancement         |          | quantization             |
  |       |                     |          |                          |
  |   c   | Higher-band         |       16 | MDCT block quantization  |
  +-------+---------------------+----------+--------------------------+

                     Table 1: Sub-Layer Description

  Based on these sub-layers, the UEMCLIP codec operates in four modes
  as shown in Table 2.  Here, "Ch" is the number of channels and "Fs"
  is the sampling frequency in kHz.  It should be noted that the
  current version only supports single-channel operation and there
  might be future extensions with multi-channel capabilities.  The
  absent Modes 2 and 5 are reserved for possible future extension to 32
  kHz sampling modes.  As the mode definition is expected to grow, any
  other modes not defined in this table MUST NOT be used for
  compatibility and interoperability reasons.

  +------+----+----+-------+-------+-------+-------------+------------+
  | Mode | Ch | Fs | Layer | Layer | Layer |    Bit-rate |      Total |
  |      |    |    |   a   |   b   |   c   | w/o headers |   bit-rate |
  |      |    |    |       |       |       |    [kbit/s] |   [kbit/s] |
  +------+----+----+-------+-------+-------+-------------+------------+
  |   0  |  1 |  8 |   x   |   -   |   -   |          64 |       67.2 |
  |      |    |    |       |       |       |             |            |
  |   1  |  1 | 16 |   x   |   -   |   x   |          80 |       84.0 |
  |      |    |    |       |       |       |             |            |
  |   2  |  - |  - |   -   |   -   |   -   |           - |          - |
  |      |    |    |       |       |       |             |            |
  |   3  |  1 |  8 |   x   |   x   |   -   |          80 |       84.0 |
  |      |    |    |       |       |       |             |            |
  |   4  |  1 | 16 |   x   |   x   |   x   |          96 |      100.8 |
  |      |    |    |       |       |       |             |            |
  |   5  |  - |  - |   -   |   -   |   -   |           - |          - |
  +------+----+----+-------+-------+-------+-------------+------------+

                        Table 2: Mode Description




Hiwasaki & Ohmuro           Standards Track                     [Page 4]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  The UEMCLIP bitstream contains internal headers and other side-
  information apart from the layer data.  This results in total bit-
  rate larger than the sum of the layers shown in the above table.  The
  detail of the internal headers and auxiliary information are
  described in Section 3.3.1.

  Defining the sampling frequency and the number of channels does not
  result in a singular mode, i.e., there can be multiple modes for the
  same sampling frequency or number of channels.  The supported modes
  would differ between implementations; thus, the sender and the
  receiver must negotiate what mode to use for transmission.

3.  Payload Format

  As an RTP payload, the UEMCLIP bitstream can contain one or more
  frames as shown in Figure 1.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      RTP Header                               |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   |                                                               |
   |                 one or more frames of UEMCLIP                 |
   |                                                               |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

                      Figure 1: RTP Payload Format

  The UEMCLIP bitstream has a scalable structure; thus, it is possible
  to reconstruct the signal by decoding a part of it.  A UEMCLIP frame
  is composed of a main header (MH) followed by one or more (up to
  three) sub-layers (SLs) as shown in Figure 2.

                           +--+-------+//-+
                           |MH| SL #1 |...|
                           +--+-------+//-+

              Figure 2: A UEMCLIP Frame (Bitstream Format)

  As a sub-layer, the core layer, i.e., "Layer a", MUST always be
  included.  It should be noted that the location of the core layer may
  or may not immediately follow MH field.  The decoder MUST always
  refer to the layer indices for proper decoding because the order of
  the sub-layers is arbitrary.






Hiwasaki & Ohmuro           Standards Track                     [Page 5]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  The UEMCLIP bitstream does not explicitly include the following
  information: mode and sampling frequency (Fs).  As described before,
  this information MUST be exchanged while establishing a connection,
  for example, by means of SDP.

3.1.  RTP Header Usage

  Each RTP packet starts with a fixed RTP header, as explained in
  [RFC3550].  The following fields of the RTP fixed header used
  specifically for UEMCLIP streams are emphasized:

  Payload type:  The assignment of an RTP payload type for this packet
     format is outside the scope of this document; however, it is
     expected that a payload type in the dynamic range shall be
     assigned.

  Timestamp:  This encodes the sampling instant of the first speech
     signal sample in the RTP data packet.  For UEMCLIP streams, the
     RTP timestamp MUST advance based on a clock either at 8000 or
     16000 (Hz).  In cases where the audio sampling rate can change
     during a session, the RTP timestamp rate MUST be equal to the
     maximum rate (in Hz) given in the mode range (see Section 6.2.1).
     This implies that the RTP timestamp rate for UEMCLIP payload type
     MUST NOT change during a session.  For example, for a UEMCLIP
     stream with 8-kHz audio sampling, where a transition to a 16-kHz
     audio sampling mode is allowed, the RTP time stamp must always
     advance using the 16-kHz clock rate.  For a fixed audio sampling
     mode, the RTP timestamp rate should be either 8 or 16 kHz,
     depending on the sampling rate.

  Marker bit:  If the codec is used for applications with discontinuous
     transmission (DTX, or silence compression), the first packet after
     a silence period during which packets have not been transmitted
     contiguously SHOULD have the marker bit in the RTP data header set
     to one.  The marker bit in all other packets MUST be zero.
     Applications without DTX MUST set the marker bit to zero.

3.2.  Multiple Frames in an RTP Packet

  More than one UEMCLIP frame may be included in a single RTP packet by
  a sender.  However, senders have the following additional
  restrictions:

  o  A single RTP packet SHOULD NOT include more UEMCLIP frames than
     will fit in the path MTU.

  o  All frames contained in a single RTP packet MUST be of the same
     mode.



Hiwasaki & Ohmuro           Standards Track                     [Page 6]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  o  Frames MUST NOT be split between RTP packets.

  It is RECOMMENDED that the number of frames contained within an RTP
  packet be consistent with the application.  Since UEMCLIP is designed
  for telephony applications where delay has a great impact on the
  quality, then fewer frames per packet for lower delay, is preferable.

3.3.  Payload Data

  In a UEMCLIP bitstream, all numbers are encoded in a network byte
  order.

3.3.1.  Main Header

  The main header (MH) is placed at the top of a frame and has a size
  of 6 bytes.  The content of the main header is shown in Figure 3.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      MX       |                      PC                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          PC(cont'd)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 3: UEMCLIP Main Header Format (MH)

  Mixing information (MX):  8 bits

     Mixing information field.  This field is only relevant when Topo-
     RTCP-terminating-MCUs are utilized to interpret these fields.  See
     Section 3.3.1.1 for details of the fields.

  Packet-loss Concealment information (PC):  40 bits

     Packet-loss concealment (PLC) information field.  See
     Section 3.3.1.2.

3.3.1.1.  Mixing Information Field

                           0 1 2 3 4 5 6 7
                          +-+-+-+-+-+-+-+-+
                          |C|R|V|   PW1   |
                          |1|1|1|         |
                          +-+-+-+-+-+-+-+-+

                 Figure 4: Mixing Information Field (MX)




Hiwasaki & Ohmuro           Standards Track                     [Page 7]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  Check bit #1 (C1):  1 bit

     Validity flag of V1 and PW1.  This bit being "1" indicates that
     both parameters are valid, and "0" indicates that the parameters
     should be ignored.  If any of these parameters is invalid, this
     bit should be set to "0".  This flag is mainly intended for a
     UEMCLIP-conscious Topo-RTCP-terminating-MCU.  This flag should be
     set to "0" in case of upward transcoding from G.711 (see
     Section 4).

  Reserved bit #1 (R1):  1 bit

     This bit should be ignored.  The default of this bit is 0.

  VAD flag #1 (V1):  1 bit

     Voice activity detection flag of the current frame, designed to be
     used for MCU operations.  This flag being "1" indicates that the
     frame is an active (voice) segment, and "0" indicates that it is
     an inactive (non-voice) or a silent segment.  This flag is
     specifically designed for mixing information.  DTX judgment based
     this flag is not recommended.

  Power #1 (PW1):  5 bits

     Signal power code of the current frame.  The code is obtained by
     calculating a root mean square (RMS) of "Layer a" and encoding
     this RMS using G.711 u-law [ITU-T-G.711].  Denoting the encoded
     RMS as R, then PW1 is obtained by PW1 = ((~R)>>2) & 0x1F, where
     "~", ">>", "&" are one's complement arithmetic, right SHIFT, and
     bitwise AND operators, respectively.

3.3.1.2.  PLC Information Field

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |C|R2 |V|   K   |U|     P1      |U|     P2      |      PW2      |
  |2|   |2|       |1|             |2|             |               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      R3       |
  |               |
  +-+-+-+-+-+-+-+-+

                  Figure 5: PLC Information Field (PC)






Hiwasaki & Ohmuro           Standards Track                     [Page 8]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  Check bit #2 (C2):  1 bit

     Validity flag of V2, K, U1, P1, U2, P2, and PW2.  If the flag is
     "1", it means that all these parameters are valid, and "0" means
     that the parameters should be ignored.  If any of these parameters
     is invalid, this bit should be set to "0".  Similarly to C1, this
     flag should be set to "0" in case of upward transcoding from G.711
     (see Section 4).

  Reserved bit #2 (R2):  2 bits

     These bits should be ignored.  The default of these bits are 0.

  VAD flag #2 (V2):  1 bit

     Voice activity detection flag of the current frame, designed to be
     used for packet-loss concealment.  This might not be the same as
     V1 in the mixing information, and might not be synchronous to the
     marker bit in the RTP header.  DTX judgment based this flag is not
     recommended.

  Frame indicator (K):  4 bits

     This value indicates the frame offset of U2, P2, and PW2.  Since
     it is a better idea to carry the speech feature parameters as PLC
     information in a different frame to maintain the speech quality,
     this frame offset value gives with which frame the parameters are
     to be associated.  The value ranges between "0" and "15".  If the
     current frame number is N, for example, the value K indicates that
     U2, P2, and PW2 are associated with the frame of N-K.  The frame
     indicator is equal to the difference in the RTP sequence number
     when one UEMCLIP frame is contained in a single RTP packet.

  V/UV flag #1 (U1):  1 bit

     Voiced/Unvoiced signal indicator of the current frame.  This flag
     being "0" indicates that the frame is a voiced signal segment, and
     "1" indicates that it is an unvoiced signal segment.

  Pitch lag #1 (P1):  7 bits

     Pitch code of the current frame.  The actual pitch lag is
     calculated as P1+20 samples in 8-kHz sampling rate.  Pitch lag
     must be 20 <= pitch length <= 120.  Codes ranging between "0x65"
     and "0x7F" are not used.  To obtain the pitch lag, any pitch
     estimation method can be used, such as the one used in G.711
     Appendix I [ITU-T-G.711Appendix1].




Hiwasaki & Ohmuro           Standards Track                     [Page 9]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  V/UV flag #2 (U2):  1 bit

     Voiced/Unvoiced signal indicator of the offset frame.  This flag
     being "0" indicates that the frame is a voiced signal segment, and
     "1" indicates that it is an unvoiced signal segment.  The offset
     value is defined as K.

  Pitch lag #2 (P2):  7 bits

     Pitch code of the offset frame.  The offset value is defined as K.
     The calculation method is identical to "P1", except that it is
     based on the signal of offset frame.

  Power #2 (PW2):  8 bits

     Signal power code of the offset frame.  The offset value is
     defined as K.

  Reserved bits #3 (R3):  8 bits

     These bits should be ignored.  The default of all bits are "0".

3.3.2.  Sub-Layer

  Sub-layer (SL) is a sub-header followed by layer bitstreams, as shown
  in Figure 6.  The sub-header indicates the layer location and the
  number of bytes.

    0                   1                   2
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7   . . .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+//-+-+-+
   |CI |FI |QI |R4 |      SB       |               LD         ...  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+//-+-+-+

                     Figure 6: Sub-Layer Format (SL)

  Channel index (CI):  2 bits

     Indicates the channel number.  For all modes given in Table 2,
     this should be "0".  The detail is given in Table 3.

  Frequency index (FI):  2 bits

     Indicates the frequency number. "0" means that the layer is in the
     base frequency band, higher number means that the layer is in
     respective frequency band.  The detail is given in Table 3.





Hiwasaki & Ohmuro           Standards Track                    [Page 10]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  Quality index (QI):  2 bits

     Indicates the quality layer number. "0" means that the layer is in
     the base layer, and higher number means that the layer is in
     respective quality layer.  The detail is given in Table 3.

  Reserved #4 (R4):  2 bits

     Not used (reserved).  The default value is "0".

  Sub-layer Size (SB):  8 bits

     Indicates the byte size of the following sub-layer data.

  Layer Data (LD):  SB*8 bits

     The actual sub-layer data.

  For all the layers shown in Table 1, the layer indices are shown in
  Table 3.

                        +-------+----+----+----+
                        | Layer | CI | FI | QI |
                        +-------+----+----+----+
                        |   a   |  0 |  0 |  0 |
                        |       |    |    |    |
                        |   b   |  0 |  0 |  1 |
                        |       |    |    |    |
                        |   c   |  0 |  1 |  0 |
                        +-------+----+----+----+

                         Table 3: Layer Indices

4.  Transcoding between UEMCLIP and G.711

  As given in Section 2, the u-law-encoded G.711 bitstream (Layer a) is
  the core layer of a UEMCLIP bitstream, and is always embedded.  This
  means that media transcoding from the UEMCLIP bitstream to G.711 does
  not have to undergo decoding and re-encoding procedures, but simple
  extraction would suffice.  However, this does not apply for the
  reverse procedure, i.e., transcoding from G.711 to UEMCLIP, because
  the auxiliary information in the main header (MH) must be assigned
  separately.  It should be noted that this media transcoding is useful
  for a Media Translator (Topo-Media-Translator) or a Point-to-
  Multipoint Using RTCP Terminating MCU (Topo-RTCP-terminating-MCU) in
  [RFC5117], and all the requirements apply.  This means that a
  transcoding device of this sort MUST rewrite RTCP packets, together
  with the RTP media packets.



Hiwasaki & Ohmuro           Standards Track                    [Page 11]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  The transcoding from UEMCLIP to u-law G.711 can be done easily by
  finding an appropriate sub-layer.  Within a frame, the transcoder
  should look for a sub-layer with a layer index of "0x00", and
  subsequent LD that has a size of SB*8 bits (UEMCLIP has a 20-ms frame
  thus, SB=160) are the actual G.711 bitstream data.  It should be
  noted that the transcoder should not always expect the core layer to
  be located right after the main header.

  On the other hand, the transcoding from G.711 to UEMCLIP is not
  entirely straightforward.  Since there are no means to generate
  enhancement sub-layers, a G.711 bitstream can only be converted to
  UEMCLIP Mode 0 bitstream.  If the original G.711 bitstream is encoded
  in A-law, it should first be converted to u-law to become the core
  layer.  Because a UEMCLIP frame size is 20 ms, a u-law-encoded G.711
  bitstream MUST be a 160-sample chunk to become a core layer.  For the
  main header contents, when the UEMCLIP encoder is not available, it
  should follow these guidelines:

  o  The check bits for mixing and PLC (C1 and C2) are set to 0.

  o  The reserved bits (R1 to R3) in MH are set to respective default
     values.

  For the core layer (i.e., u-law G.711 bitstream), it should have the
  following sub-layer header:

  o  All CI, FI, QI, and R4 MUST be 0.

  o  Sub-layer size (SB) MUST be 160 for a 20-ms frame.

5.  Congestion Control Considerations

  The general congestion control considerations for transporting RTP
  data also apply to UEMCLIP over RTP [RFC3550] as well as any
  applicable RTP profile like Audio-Visual Profile (AVP) [RFC3551].

  The bandwidth of a UEMCLIP bitstream can be reduced by changing to
  lower-bit-rate modes.  The embedded layer structure of UEMCLIP may
  help to control congestion, when dynamic mode changing (see
  Section 6.2.1) is available, and the range of modes is obtained by
  offer-answer negotiation as given in Section 6.3.  It should be noted
  that this involves proper RTCP handling when the bit-rate is modified
  in an RTP translator or a mixer [RFC3550].








Hiwasaki & Ohmuro           Standards Track                    [Page 12]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  Packing more frames in each RTP payload can reduce the number of
  packets sent, and hence the overhead from IP/UDP/RTP headers, at the
  expense of increased delay and reduced error robustness against
  packet losses.  It should be treated with care because increased
  delay means reduced quality.

6.  Payload Format Parameters

6.1.  Media Type Registration

  This registration is done using the template defined in [RFC4288] and
  following [RFC4855].

  Media type name:  audio

  Media subtype name:  UEMCLIP

  Required parameters:

     Rate:  Defines the sampling rate, and it MUST be either 8000 or
        16000.  See Section 6.2.1 "Mode specification" of RFC 5686
        (this RFC) for details.

  Optional parameters:

     ptime:  See RFC 4566 [RFC4566].

     maxptime:  See RFC 4566 [RFC4566].

     mode:  Indicates the range of dynamically changeable modes during
        a session.  Possible values are a comma-separated list of modes
        from the supported mode set: 0, 1, 3, and 4.  If only one mode
        is specified, it means that the mode must not be changed during
        the session.  When not specified, the mode transmission
        defaults to a singular mode as specified in Table 4.  See
        Section 6.2.1 "Mode specification" of RFC 5686 (this RFC) for
        details.

  Encoding considerations:  This media type is framed and contains
     binary data.  See Section 4.8 of RFC 4288.

  Security considerations:  See Section 7 "Security Considerations" of
     RFC 5686 (this RFC).

  Interoperability considerations:  This media may be readily
     transcoded to u-law-encoded ITU-T G.711.  See Section 4
     "Transcoding between UEMCLIP and G.711" of RFC 5686 (this RFC).




Hiwasaki & Ohmuro           Standards Track                    [Page 13]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  Published specification:  RFC 5686 (this RFC)

  Applications that use this media type:  Audio and video streaming and
     conferencing tools.

  Additional information:  None

  Intended usage:  COMMON

  Restrictions on usage:  This media type depends on RTP framing, and
     hence is only defined for transfer via RTP.

  Person & email address to contact for further information:
     Yusuke Hiwasaki <[email protected]>

  Author:  Yusuke Hiwasaki

  Change Controller:  IETF Audio/Video Transport Working Group
     delegated from the IESG

6.2.  Mapping to SDP Parameters

  The media types audio/UEMCLIP are mapped to fields in the Session
  Description Protocol (SDP) [RFC4566] as follows:

  Media name:  The "m=" line of SDP MUST be audio.

  Encoding name:  Registered media subtype name should be used for the
     "a=rtpmap" line.

  Sampling Frequency:  Depending on the mode, clock rate (sampling
     frequency) specified in "a=rtpmap" MUST be selected from the ones
     defined in Table 2.  See Section 6.2.1 for details.

  Encoding parameters:  Since this is an audio stream, the encoding
     parameters indicate the number of audio channels, and this SHOULD
     default to "1", as selected from the ones defined in Table 2.
     This is OPTIONAL.

  Packet time:  A frame length of any UEMCLIP is 20 ms, thus the
     argument of "a=ptime" SHOULD be a multiple of "20".  When not
     listed in SDP, it should also default to the minimum size: "20".

  UMECLIP specific:  Any description specific to UEMCLIP is defined in
     the Format Specification Parameters ("a=fmtp").  Each parameter
     MUST be separated with ";", and if any attribute (value) exists,
     it MUST be defined with "=".  For compatibility reasons, any
     application/terminal MUST ignore any parameters that it does not



Hiwasaki & Ohmuro           Standards Track                    [Page 14]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


     understand.  This is to ensure the upper-compatibility with
     parameters added in future enhancements.  The mode specification
     should be made here (see Section 6.2.1).

6.2.1.  Mode Specification

  Since UEMCLIP codec can operate in number of modes (bit-rates), it is
  desirable to specify the range of modes at which an encoder or a
  decoder can operate.  When exchanging SDP messages, an offerer should
  specify all possible combinations of mode numbers as arguments to
  "mode=" in "a=fmtp" line, delimited by commas ",".  In case of
  specifying multiple modes, those SHOULD appear in the descending
  priority order.

  Although UEMCLIP decoders SHOULD accept bitstreams in any modes, an
  implementation may fail to adapt to the dynamic mode changes during a
  session.  For this reason, an application may choose to operate
  either with one fixed mode or with multiple modes that can be
  dynamically changed.  If the mode is to be fixed and changes are not
  allowed, this can be indicated by specifying a single mode per
  payload type.

  The mode numbers that can be specified in a payload type as arguments
  to "mode" are restricted by a combination of a clock rate and a
  number of audio channels.  This is because SDP binds a payload type
  to a combination of a sampling frequency and a number of audio
  channels.  Table 4 gives selectable mode numbers that are attributed
  with clock rates.  When mode specifications are not given at all, a
  payload type MUST default to a single mode using the default value
  specified in this table.

       +------------+----------+------------------+--------------+
       | Clock rate | Channels | Selectable modes | Default mode |
       +------------+----------+------------------+--------------+
       |       8000 |     1    |        0,3       |       0      |
       |            |          |                  |              |
       |      16000 |     1    |      0,1,3,4     |       1      |
       +------------+----------+------------------+--------------+

                         Table 4: Default Modes

  It should be noted that a mode attributed with a larger sampling
  frequency (Fs) is not used in conjunction with smaller clock rates
  specified in "a=rtpmap".  This means that Modes 0 and 3 can be
  specified in a payload type having a clock rate of both 8000 and
  16000 in "a=rtpmap", but Modes 1 and 4 cannot be specified with one
  having a clock rate of 8000.




Hiwasaki & Ohmuro           Standards Track                    [Page 15]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


6.3.  Offer-Answer Model Considerations

6.3.1.  Offer-Answer Guidelines

  The procedures related to exchanging SDP messages MUST follow
  [RFC3264].  The following is a detailed list on the semantics of
  using the UEMCLIP payload format in an offer-answer exchange.

  o  An offerer SHOULD offer every possible combination of UEMCLIP
     payload type it can handle, i.e., sampling frequency, channel
     number, and fmtp parameters, in a preferred order.  When the
     transmission bandwidth is restricted, it MUST be offered in
     accordance to the restriction.

  o  When multiple UEMCLIP payload types are offered, it is RECOMMENDED
     that the answerer select a single UEMCLIP payload type and answer
     it back.

  o  In a UEMCLIP payload type, an answerer MUST answer back suitable
     mode number(s) as a subset of what has been offered.  This means
     that there is a symmetry assumption on sent and received streams,
     and the offerer MUST NOT send in modes that it does not offer.

  o  In an offering/answering SDP, any fmtp parameters that are not
     known MUST be ignored.  If any unknown/undefined parameters should
     be offered, an answerer MUST delete the entry from the answer
     message.

  o  A receiver of an SDP message MUST only use specified payload types
     and modes.  When a mode specification is missing, i.e., a mode is
     not specified at all, the session MUST default to one single mode
     without mode changes during a session.  For this case, the default
     mode values, as shown in Table 4, MUST be used based on the
     sampling frequency and number of channels.  This table must be
     looked up only when there are no mode specifications; thus, the
     offerer/answerer MUST NOT assume that the default modes are always
     available when it is not in the specified list of modes.

  o  When an offered condition does not fit an answerer's capabilities,
     it naturally MUST NOT answer any of the conditions, and the
     session MAY proceed to re-INVITE, if possible.  If a condition
     (mode) is decided upon, an offerer and an answerer MUST transmit
     on this condition.








Hiwasaki & Ohmuro           Standards Track                    [Page 16]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


6.3.2.  Examples

  When an offerer indicates that he/she wishes to dynamically switch
  between modes (0,1,3, and 4) during a session, an example of an
  offered SDP could be:

    v=0
    o=john 51050101 51050101 IN IP4 offhost.example.com
    s=-
    c=IN IP4 offhost.example.com
    t=0 0
    m=audio 5004 RTP/AVP 96
    a=rtpmap:96 UEMCLIP/16000/1
    a=fmtp:96 mode=4,1,3,0

  It should be noted that the listed modes appears in the offerer's
  preference.

  When an answerer can only operate in Modes 1 and 0 but can
  dynamically switch between those modes during a session, an answerer
  MUST delete the entries of Mode 3 and 4, and answer back as:

    v=0
    o=lena 549947322 549947322 IN IP4 anshost.example.org
    s=-
    c=IN IP4 anshost.example.org
    t=0 0
    m=audio 5004 RTP/AVP 96
    a=rtpmap:96 UEMCLIP/16000/1
    a=fmtp:96 mode=1,0

  As a result, both would start communicating in either Mode 1 or 0,
  and can dynamically switch between those modes during the session.

  On the other hand, when the answerer is capable of communicating
  either in Modes 1 or 0, and cannot switch between modes during a
  session, an example of such answer is as follows:

    v=0
    o=lena 549947322 549947322 IN IP4 anshost.example.org
    s=-
    c=IN IP4 anshost.example.org
    t=0 0
    m=audio 5004 RTP/AVP 96
    a=rtpmap:96 UEMCLIP/16000/1
    a=fmtp:96 mode=1





Hiwasaki & Ohmuro           Standards Track                    [Page 17]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  As a result, both will start communicating in Mode 1.  It should be
  noted that mode change during this session is not allowed because the
  answerer responded with a single mode, and answerer selected Mode 1
  above Mode 0 according to the offered order.

  If an offerer does not want a mode change during a session but is
  capable of receiving either Modes 4 or 1 bitstreams, the SDP should
  somewhat look like:

    v=0
    o=john 51050101 51050101 IN IP4 offhost.example.com
    s=-
    c=IN IP4 offhost.example.com
    t=0 0
    m=audio 5004 RTP/AVP 96 97
    a=rtpmap:96 UEMCLIP/16000/1
    a=fmtp:96 mode=4
    a=rtpmap:97 UEMCLIP/16000/1
    a=fmtp:97 mode=1

  and if the answerer prefers to communicate in Mode 1, an answer would
  be:

    v=0
    o=lena 549947322 549947322 IN IP4 anshost.example.org
    s=-
    c=IN IP4 anshost.example.org
    t=0 0
    m=audio 5004 RTP/AVP 97
    a=rtpmap:97 UEMCLIP/16000/1
    a=fmtp:97 mode=1

  Please note that it is RECOMMENDED to select a single UEMCLIP payload
  type for answers.

  The "ptime" attribute is used to denote the desired packetization
  interval.  When not specified, it SHOULD default to 20.  Since
  UEMCLIP uses 20-ms frames, ptime values of multiples of 20 imply
  multiple frames per packet.  In the example below, the ptime is set
  to 60, and this means that offerer wants to receive 3 frames in each
  packet.










Hiwasaki & Ohmuro           Standards Track                    [Page 18]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


    v=0
    o=kosuke 2890844730 2890844730 IN IP4 anotherhost.example.com
    s=-
    c=IN IP4 anotherhost.example.com
    t=0 0
    m=audio 5004 RTP/AVP 96
    a=ptime:60
    a=rtpmap:96 UEMCLIP/16000/1

  When mode specification is not present, it should default to a fixed
  mode, and in this case, Mode 1 (see Section 6.2.1).

7.  Security Considerations

  RTP packets using the payload format defined in this specification
  are subject to the security considerations discussed in the RTP
  specification [RFC3550] and any appropriate profiles.  This implies
  that confidentiality of the media streams is achieved by encryption
  unless the applicable profile specifies other means.

  A potential denial-of-service threat exists for data encoding using
  compression techniques that have non-uniform receiver-end
  computational load.  The attacker can inject pathological datagrams
  into the stream that are complex to decode and cause the receiver
  output to become overloaded.  However, the UEMCLIP covered in this
  document do not exhibit any significant non-uniformity.

  Another potential threat is memory attacks by illegal layer indices
  or byte numbers.  The implementor of the decoder should always be
  aware that the indicated numbers may be corrupted and not point to
  the right sub-layer, and they may force reading beyond the bitstream
  boundaries.  It is advised that a decoder implementation reject
  layers of such indices.

8.  IANA Considerations

  One new media subtype (audio/UEMCLIP) has been registered by IANA.
  For details, see Section 6.1.

9.  References

9.1.  Normative References

  [ITU-T-G.711]
             International Telecommunications Union, "Pulse code
             modulation (PCM) of voice frequencies", ITU-
             T Recommendation G.711, November 1988.




Hiwasaki & Ohmuro           Standards Track                    [Page 19]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3264]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
             with Session Description Protocol (SDP)", RFC 3264,
             June 2002.

  [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
             Jacobson, "RTP: A Transport Protocol for Real-Time
             Applications", STD 64, RFC 3550, July 2003.

  [RFC3551]  Schulzrinne, H. and S. Casner, "RTP Profile for Audio and
             Video Conferences with Minimal Control", STD 65, RFC 3551,
             July 2003.

  [RFC4288]  Freed, N. and J. Klensin, "Media Type Specifications and
             Registration Procedures", BCP 13, RFC 4288, December 2005.

  [RFC4566]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
             Description Protocol", RFC 4566, July 2006.

  [RFC4855]  Casner, S., "Media Type Registration of RTP Payload
             Formats", RFC 4855, February 2007.

  [RFC4856]  Casner, S., "Media Type Registration of Payload Formats in
             the RTP Profile for Audio and Video Conferences",
             RFC 4856, February 2007.

  [RFC5117]  Westerlund, M. and S. Wenger, "RTP Topologies", RFC 5117,
             January 2008.

9.2.  Informative References

  [ITU-T-G.711Appendix1]
             International Telecommunications Union, "Pulse code
             modulation (PCM) of voice frequencies, Appendix I: A high
             quality low-complexity algorithm for packet loss
             concealment with G.711", ITU-T Recommendation G.711
             Appendix I, September 1999.












Hiwasaki & Ohmuro           Standards Track                    [Page 20]

RFC 5686             RTP Payload Format for UEMCLIP         October 2009


Authors' Addresses

  Yusuke Hiwasaki
  NTT Corporation
  3-9-11 Midori-cho,
  Musashino-shi
  Tokyo  180-8585
  Japan

  Phone: +81(422)59-4815
  EMail: [email protected]


  Hitoshi Ohmuro
  NTT Corporation
  3-9-11 Midori-cho,
  Musashino-shi
  Tokyo  180-8585
  Japan

  Phone: +81(422)59-2151
  EMail: [email protected]





























Hiwasaki & Ohmuro           Standards Track                    [Page 21]