Network Working Group                                        B. Trammell
Request for Comments: 5655                                     E. Boschi
Category: Standards Track                                 Hitachi Europe
                                                                L. Mark
                                                        Fraunhofer IFAM
                                                               T. Zseby
                                                       Fraunhofer FOKUS
                                                              A. Wagner
                                                             ETH Zurich
                                                           October 2009


 Specification of the IP Flow Information Export (IPFIX) File Format

Abstract

  This document describes a file format for the storage of flow data
  based upon the IP Flow Information Export (IPFIX) protocol.  It
  proposes a set of requirements for flat-file, binary flow data file
  formats, then specifies the IPFIX File format to meet these
  requirements based upon IPFIX Messages.  This IPFIX File format is
  designed to facilitate interoperability and reusability among a wide
  variety of flow storage, processing, and analysis tools.

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the BSD License.





Trammell, et al.            Standards Track                     [Page 1]

RFC 5655                      IPFIX Files                   October 2009


Table of Contents

  1. Introduction ....................................................4
     1.1. IPFIX Documents Overview ...................................4
  2. Terminology .....................................................5
  3. Design Overview .................................................6
  4. Motivation ......................................................7
  5. Requirements ...................................................10
     5.1. Record Format Flexibility .................................10
     5.2. Self-Description ..........................................10
     5.3. Data Compression ..........................................11
     5.4. Indexing and Searching ....................................11
     5.5. Error Recovery ............................................12
     5.6. Authentication, Confidentiality, and Integrity ............12
     5.7. Anonymization and Obfuscation .............................13
     5.8. Session Auditability and Replayability ....................13
     5.9. Performance Characteristics ...............................14
  6. Applicability ..................................................14
     6.1. Storage of IPFIX-Collected Flow Data ......................14
     6.2. Storage of NetFlow-V9-Collected Flow Data .................15
     6.3. Testing IPFIX Collecting Processes ........................15
     6.4. IPFIX Device Diagnostics ..................................16
  7. Detailed File Format Specification .............................16
     7.1. File Reader Specification .................................16
     7.2. File Writer Specification .................................17
     7.3. Specific File Writer Use Cases ............................18
          7.3.1. Collocating a File Writer with a Collecting
                 Process ............................................18
          7.3.2. Collocating a File Writer with a Metering Process ..19
          7.3.3. Using IPFIX Files for Archival Storage .............20
          7.3.4. Using IPFIX Files as Documents .....................20
          7.3.5. Using IPFIX Files for Testing ......................21
          7.3.6. Writing IPFIX Files for Device Diagnostics .........22
          7.3.7. IPFIX File Manipulation ............................22
     7.4. Media Type of IPFIX Files .................................22
  8. File Format Metadata Specification .............................22
     8.1. Recommended Options Templates for IPFIX Files .............22
          8.1.1. Message Checksum Options Template ..................23
          8.1.2. File Time Window Options Template ..................23
          8.1.3. Export Session Details Options Template ............24
          8.1.4. Message Details Options Template ...................26
     8.2. Recommended Information Elements for IPFIX Files ..........29
          8.2.1. collectionTimeMilliseconds .........................29
          8.2.2. collectorCertificate ...............................29
          8.2.3. exporterCertificate ................................29
          8.2.4. exportSctpStreamId .................................30
          8.2.5. maxExportSeconds ...................................30
          8.2.6. maxFlowEndMicroseconds .............................30



Trammell, et al.            Standards Track                     [Page 2]

RFC 5655                      IPFIX Files                   October 2009


          8.2.7. maxFlowEndMilliseconds .............................31
          8.2.8. maxFlowEndNanoseconds ..............................31
          8.2.9. maxFlowEndSeconds ..................................32
          8.2.10. messageMD5Checksum ................................32
          8.2.11. messageScope ......................................32
          8.2.12. minExportSeconds ..................................33
          8.2.13. minFlowStartMicroseconds ..........................33
          8.2.14. minFlowStartMilliseconds ..........................34
          8.2.15. minFlowStartNanoseconds ...........................34
          8.2.16. minFlowStartSeconds ...............................34
          8.2.17. opaqueOctets ......................................35
          8.2.18. sessionScope ......................................35
  9. Signing and Encryption of IPFIX Files ..........................36
     9.1. CMS Detached Signatures ...................................36
          9.1.1. ContentInfo ........................................37
          9.1.2. SignedData .........................................38
          9.1.3. SignerInfo .........................................38
          9.1.4. EncapsulatedContentInfo ............................39
     9.2. Encryption Error Resilience ...............................39
  10. Compression of IPFIX Files ....................................39
     10.1. Supported Compression Formats ............................40
     10.2. Compression Recognition at the File Reader ...............40
     10.3. Compression Error Resilience .............................40
  11. Recommended File Integration Strategies .......................41
     11.1. Encapsulation of Non-IPFIX Data in IPFIX Files ...........41
     11.2. Encapsulation of IPFIX Files within Other File Formats ...42
  12. Security Considerations .......................................42
     12.1. Relationship between IPFIX File and Transport
           Encryption ...............................................43
     12.2. End-to-End Assertions for IPFIX Files ....................43
     12.3. Recommendations for Strength of Cryptography for
           IPFIX Files ..............................................44
  13. IANA Considerations ...........................................44
  14. Acknowledgements ..............................................46
  15. References ....................................................47
     15.1. Normative References .....................................47
     15.2. Informative References ...................................48
  Appendix A.  Example IPFIX File ...................................49
    A.1.  Example Options Templates .................................50
    A.2.  Example Supplemental Options Data .........................52
    A.3.  Example Message Checksum ..................................54
    A.4.  File Example Data Set .....................................55
    A.5.  Complete File Example .....................................55
  Appendix B.  Applicability of IPFIX Files to NetFlow V9 Flow
               Storage ..............................................57
    B.1.  Comparing NetFlow V9 to IPFIX .............................57
      B.1.1.  Message Header Format .................................57
      B.1.2.  Set Header Format .....................................58



Trammell, et al.            Standards Track                     [Page 3]

RFC 5655                      IPFIX Files                   October 2009


      B.1.3.  Template Format .......................................59
      B.1.4.  Information Model .....................................59
      B.1.5.  Template Management ...................................59
      B.1.6.  Transport .............................................59
    B.2.  A Method for Transforming NetFlow V9 Messages to IPFIX ....60
    B.3.  NetFlow V9 Transformation Example .........................61

1.  Introduction

  This document specifies a file format based upon IPFIX, designed to
  facilitate interoperability and reusability among a wide variety of
  flow storage, processing, and analysis tools.  It begins with an
  overview of the IPFIX File format, and a quick summary of how IPFIX
  Files work in Section 3.  The detailed specification of the IPFIX
  File format appears in Section 7; this section includes general
  specifications for IPFIX File Readers and IPFIX File Writers and
  specific recommendations for common situations in which they are
  used.  The format makes use of the IPFIX Options mechanism for
  additional file metadata, in order to avoid requiring any protocol
  extensions, and to minimize the effort required to adapt IPFIX
  implementations to use the file format; a detailed definition of the
  Options Templates used for storage metadata appears in Section 8.
  Appendix A contains a detailed example IPFIX File.

  An advantage of file-based storage is that files can be readily
  encapsulated within each other and other data storage and
  transmission formats.  The IPFIX File format leverages this to
  provide encryption, described in Section 9 and compression, described
  in Section 10.  Section 11 provides specific recommendations for
  integration of IPFIX File data with other formats.

  The IPFIX File format was designed to be applicable to a wide variety
  of flow storage situations; the motivation behind its creation is
  described in Section 4.  The document outlines of the set of
  requirements the format is designed to meet in Section 5, and
  explores the applicability of such a format to various specific
  application areas in Section 6.  These sections are intended to give
  background on the development of IPFIX Files.

1.1.  IPFIX Documents Overview

  "Specification of the IP Flow Information Export (IPFIX) Protocol for
  the Exchange of IP Traffic Flow Information" [RFC5101] and its
  associated documents define the IPFIX protocol, which provides
  network engineers and administrators with access to IP traffic flow
  information.





Trammell, et al.            Standards Track                     [Page 4]

RFC 5655                      IPFIX Files                   October 2009


  "Architecture for IP Flow Information Export" [RFC5470] defines the
  architecture for the export of measured IP flow information out of an
  IPFIX Exporting Process to an IPFIX Collecting Process, and the basic
  terminology used to describe the elements of this architecture, per
  the requirements defined in "Requirements for IP Flow Information
  Export" [RFC3917].  [RFC5101] then covers the details of the method
  for transporting IPFIX Data Records and Templates via a congestion-
  aware transport protocol from an IPFIX Exporting Process to an IPFIX

  Collecting Process.

  "Information Model for IP Flow Information Export" [RFC5102]
  describes the Information Elements used by IPFIX, including details
  on Information Element naming, numbering, and data type encoding.

  "IP Flow Information Export (IPFIX) Applicability" [RFC5472]
  describes the various applications of the IPFIX protocol and their
  use of information exported via IPFIX, and it relates the IPFIX
  architecture to other measurement architectures and frameworks.

  In addition, "Exporting Type Information for IP Flow Information
  Export (IPFIX) Information Elements" [RFC5610] specifies a method for
  encoding Information Model properties within an IPFIX Message stream.

  This document references [RFC5101] and [RFC5470] for terminology,
  defines IPFIX File Writer and IPFIX File Reader in terms of the IPFIX
  Exporting Process and IPFIX Collecting Process definitions from
  [RFC5101], and extends the IPFIX Information Model defined in
  [RFC5102] to provide new Information Elements for IPFIX File
  metadata.  It uses the method described in [RFC5610] to support the
  self-description of IPFIX Files containing enterprise-specific
  Information Elements.

2.  Terminology

  This section defines terminology related to the IPFIX File format.
  In addition, terms used in this document that are defined in the
  "Terminology" section of [RFC5101] are to be interpreted as defined
  there.

  IPFIX File:   An IPFIX File is a serialized stream of IPFIX Messages;
     this stream may be stored on a filesystem or transported using any
     technique customarily used for files.  Any IPFIX Message stream
     that would be considered valid when transported over one or more
     of the specified IPFIX transports (Stream Control Transmission
     Protocol (SCTP), TCP, or UDP) as defined in [RFC5101] is





Trammell, et al.            Standards Track                     [Page 5]

RFC 5655                      IPFIX Files                   October 2009


     considered an IPFIX File.  However, this document extends that
     definition with recommendations on the construction of IPFIX Files
     that meet the requirements identified in Section 5.

  IPFIX File Reader:   An IPFIX File Reader is a process that reads
     IPFIX Files from a filesystem.  An IPFIX File Reader operates as
     an IPFIX Collecting Process as specified in [RFC5101], except as
     modified by this document.

  IPFIX File Writer:   An IPFIX File Writer is a process that writes
     IPFIX Files to a filesystem.  An IPFIX File Writer operates as an
     IPFIX Exporting Process as specified in [RFC5101], except as
     modified by this document.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Design Overview

  An IPFIX File is simply a data stream containing one or more IPFIX
  Messages serialized to some filesystem.  Though any set of valid
  IPFIX Messages can be serialized into an IPFIX File, the
  specification includes guidelines designed to ease storage and
  retrieval of flow data using the IPFIX File format.

  IPFIX Files contain only IPFIX Messages; any file metadata such as
  checksums or export session details are stored using Options within
  the IPFIX Message.  This design is completely compatible with the
  IPFIX protocol on the wire.  A schematic of a typical IPFIX File is
  shown below:




















Trammell, et al.            Standards Track                     [Page 6]

RFC 5655                      IPFIX Files                   October 2009


            +=======================================+
            | IPFIX File                            |
            | +===================================+ |
            | | IPFIX Message                     | |
            | | +-------------------------------+ | |
            | | | IPFIX Message Header          | | |
            | | +-------------------------------+ | |
            | | +-------------------------------+ | |
            | | | Options Template Set          | | |
            | | |   Options Template Record     | | |
            | | |           . . .               | | |
            | | +-------------------------------+ | |
            | | +-------------------------------+ | |
            | | | Template Set                  | | |
            | | |   Template Record             | | |
            | | |            . . .              | | |
            | | +-------------------------------+ | |
            | +===================================+ |
            | | IPFIX Message                     | |
            | | +-------------------------------+ | |
            | | | IPFIX Message Header          | | |
            | | +-------------------------------+ | |
            | | +-------------------------------+ | |
            | | | Data Set                      | | |
            | | |   Data Record                 | | |
            | | |            . . .              | | |
            | | +-------------------------------+ | |
            | | +-------------------------------+ | |
            | | | Data Set                      | | |
            | | |   Data Record                 | | |
            | | |            . . .              | | |
            | | +-------------------------------+ | |
            | |              . . .                | |
            | +===================================+ |
            |                . . .                  |
            +=======================================+

                    Figure 1: Typical File Structure

4.  Motivation

  There is a wide variety of applications for the file-based storage of
  IP flow data, across a continuum of time scales.  Tools used in the
  analysis of flow data and creation of analysis products often use
  files as a convenient unit of work, with an ephemeral lifetime.  A
  set of flows relevant to a security investigation may be stored in a
  file for the duration of that investigation, and further exchanged
  among incident handlers via email or within an external incident



Trammell, et al.            Standards Track                     [Page 7]

RFC 5655                      IPFIX Files                   October 2009


  handling workflow application.  Sets of flow data relevant to
  Internet measurement research may be published as files, much as
  libpcap [pcap] packet trace files are, to provide common datasets for
  the repeatability of research efforts; these files would have
  lifetimes measured in months or years.  Operational flow measurement
  systems also have a need for long-term, archival storage of flow
  data, either as a primary flow data repository, or as a backing tier
  for online storage in a relational database management system
  (RDBMS).

  The variety of applications of flow data, and the variety of
  presently deployed storage approaches, indicates the need for a
  standard approach to flow storage with applicability across the
  continuum of time scales over which flow data is stored.  A storage
  format based around flat files would best address the variety of
  storage requirements.  While much work has been done on structured
  storage via RDBMS, relational database systems are not a good basis
  for format standardization owing to the fact that their internal data
  structures are generally private to a single implementation and
  subject to change for internal reasons.  Also, there are a wide
  variety of operations available on flat files, and external tools and
  standards can be leveraged to meet file-based flow storage
  requirements.  Further, flow data is often not very semantically
  complicated, and is managed in very high volume; therefore, an RDBMS-
  based flow storage system would not benefit much from the advantages
  of relational database technology.

  The simplest way to create a new file format is simply to serialize
  some internal data model to disk, with either textual or binary
  representation of data elements, and some framing strategy for
  delimiting fields and records.  "Ad hoc" file formats such as this
  have several important disadvantages.  They impose the semantics of
  the data model from which they are derived on the file format, and as
  such, they are difficult to extend, describe, and standardize.

  Indeed, one de facto standard for the storage of flow data is one of
  these ad hoc formats.  A common method of storing data collected via
  Cisco NetFlow is to serialize a stream of raw NetFlow datagrams into
  files.  These NetFlow PDU files consist of a collection of header-
  prefixed blocks (corresponding to the datagrams as received on the
  wire) containing fixed-length binary flow records.  NetFlow V5, V7,
  and V8 data may be mixed within a given file, as the header on each
  datagram defines the NetFlow version of the records following.  While
  this NetFlow PDU file format has all the disadvantages of an ad hoc
  format, and is not extensible to data models other than that defined
  by Cisco NetFlow, it is at least reasonably well understood due to
  its ubiquity.




Trammell, et al.            Standards Track                     [Page 8]

RFC 5655                      IPFIX Files                   October 2009


  Over the past decade, XML has emerged as a new "universal"
  representation format for structured data.  It is intended to be
  human readable; indeed, that is one reason for its rapid adoption.
  However, XML has limited usefulness for representing network flow
  data.  Network flow data has a simple, repetitive, non-hierarchical
  structure that does not benefit much from XML.  An XML representation
  of flow data would be an essentially flat list of the attributes and
  their values for each flow record.

  The XML approach to data encoding is very heavyweight when compared
  to binary flow encoding.  XML's use of start- and end-tags, and
  plaintext encoding of the actual values, leads to significant
  inefficiency in encoding size.  Typical network traffic datasets can
  contain millions or billions of flows per hour of traffic
  represented.  Any increase in storage size per record can have
  dramatic impact on flow data storage and transfer sizes.  While data
  compression algorithms can partially remove the redundancy introduced
  by XML encoding, they introduce additional overhead of their own.

  A further problem is that XML processing tools require a full XML
  parser.  XML parsers are fully general and therefore complex,
  resource-intensive, and relatively slow, introducing significant
  processing time overhead for large network-flow datasets.  In
  contrast, parsers for typical binary flow data encodings are simply
  structured, since they only need to parse a very small header and
  then have complete knowledge of all following fields for the
  particular flow.  These can then be read in a very efficient linear
  fashion.

  This leads us to propose the IPFIX Message format as the basis for a
  new flow data file format.  The IPFIX Working Group, in defining the
  IPFIX protocol, has already defined an information model and data
  formatting rules for representation of flow data.  Especially at
  shorter time scales, when a file is a unit of data interchange, the
  filesystem may be viewed as simply another IPFIX Message transport
  between processes.  This format is especially well suited to
  representing flow data, as it was designed specifically for flow data
  export; it is easily extensible, unlike ad hoc serialization, and
  compact, unlike XML.  In addition, IPFIX is an IETF Standards-Track
  protocol for the export and collection of flow data; using a common
  format for storage and analysis at the collection side allows
  implementors to use substantially the same information model and data
  formatting implementation for transport as well as storage.








Trammell, et al.            Standards Track                     [Page 9]

RFC 5655                      IPFIX Files                   October 2009


5.  Requirements

  In this section, we outline a proposed set of requirements
  [SAINT2007] for any persistent storage format for flow data.  First
  and foremost, a flow data file format should support storage across
  the continuum of time scales important to flow storage applications.
  Each of the requirements enumerated in the sections below is broadly
  applicable to flow storage applications, though each may be more
  important at certain time scales.  For each, we first identify the
  requirement, then explain how the IPFIX Message format addresses it,
  or briefly outline the changes that must be made in order for an
  IPFIX-based file format to meet the requirement.

5.1.  Record Format Flexibility

  Due to the wide variety of flow attributes collected by different
  network flow attribute measurement systems, the ideal flow storage
  format will not impose a single data model or a specific record type
  on the flows it stores.  The file format must be flexible and
  extensible; that is, it must support the definition of multiple
  record types within the file itself, and must be able to support new
  field types for data within the records in a graceful way.

  IPFIX provides record format flexibility through the use of Templates
  to describe each Data Record, through the use of an IANA Registry to
  define its Information Elements, and through the use of enterprise-
  specific Information Elements.

5.2.  Self-Description

  Archived data may be read at a time in the future when any external
  reference to the meaning of the data may be lost.  The ideal flow
  storage format should be self-describing; that is, a process reading
  flow data from storage should be able to properly interpret the
  stored flows without reference to anything other than standard
  sources (e.g., the standards document describing the file format) and
  the stored flow data itself.

  The IPFIX Message format is partially self-describing; that is, IPFIX
  Templates containing only IANA-assigned Information Elements can be
  completely interpreted according to the IPFIX Information Model
  without additional external data.

  However, Templates containing private information elements lack
  detailed type and semantic information; a Collecting Process
  receiving Data Records described by a Template containing enterprise-
  specific Information Elements it does not understand can only treat
  the data contained within those Information Elements as octet arrays.



Trammell, et al.            Standards Track                    [Page 10]

RFC 5655                      IPFIX Files                   October 2009


  To be fully self-describing, enterprise-specific Information Elements
  must be additionally described via IPFIX Options according to the
  Information Element Type Options Template defined in [RFC5610].

5.3.  Data Compression

  Regardless of the representation format, flow data describing traffic
  on real networks tends to be highly compressible.  Compression tends
  to improve the scalability of flow collection systems, by reducing
  the disk storage and I/O bandwidth requirement for a given workload.
  The ideal flow storage format should support applications that wish
  to leverage this fact by supporting compression of stored data.

  The IPFIX Message format has no support for data compression, as the
  IPFIX protocol was designed for speed and simplicity of export.  Of
  course, any flat file is readily compressible using a wide variety of
  external data compression tools, formats, and algorithms; therefore,
  this requirement can be met via encapsulation in one of these
  formats.  Section 10 specifies an encapsulation based on bzip2 or
  gzip, to maximize interoperability.

  A few simple optimizations can be made by File Writers to increase
  the integrity and usability of compressed IPFIX data; these are
  outlined in Section 10.3.

5.4.  Indexing and Searching

  Binary, record-stream-oriented file formats natively support only one
  form of searching: sequential scan in file order.  By choosing the
  order of records in a file carefully (e.g., by flow end time), a file
  can be indexed by a single key.

  Beyond this, properly addressing indexing is an application-specific
  problem, as it inherently involves trade-offs between storage
  complexity and retrieval speed, and requirements vary widely based on
  time scales and the types of queries used from site to site.
  However, a generic standard flow storage format may provide limited
  direct support for indexing and searching.

  The ideal flow storage format will support a limited table of
  contents facility noting that the records in a file contain data
  relating only to certain keys or values of keys, in order to keep
  multi-file search implementations from having to scan a file for data
  it does not contain.

  The IPFIX Message format has no direct support for indexing.
  However, the technique described in "Reducing Redundancy in IP Flow
  Information Export (IPFIX) and Packet Sampling (PSAMP) Reports"



Trammell, et al.            Standards Track                    [Page 11]

RFC 5655                      IPFIX Files                   October 2009


  [RFC5473] can be used to describe the contents of a file in a limited
  way.  Additionally, as flow data is often sorted and divided by time,
  the start and end time of the flows in a file may be declared using
  the File Time Window Options Template defined in Section 8.1.2.

5.5.  Error Recovery

  When storing flow data for archival purposes, it is important to
  ensure that hardware or software faults do not introduce errors into
  the data over time.  The ideal flow storage format will support the
  detection and correction of encoding-level errors in the data.

  Note that more advanced error correction is best handled at a layer
  below that addressed by this document.  Error correction is a topic
  well addressed by the storage industry in general (e.g., by Redundant
  Array of Independent Disks (RAID) and other technologies).  By
  specifying a flow storage format based upon files, we can leverage
  these features to meet this requirement.

  However, the ideal flow storage format will be resilient against
  errors, providing an internal facility for the detection of errors
  and the ability to isolate errors to as few data records as possible.

  Note that this requirement interacts with the choice of data
  compression or encryption algorithm.  For example, the use of block
  compression algorithms can serve to isolate errors to a single
  compression block, unlike stream compressors, which may fail to
  resynchronize after a single bit error, invalidating the entire
  message stream.

  The IPFIX Message format does not support data integrity assurance.
  It is assumed that advanced error correction will be provided
  externally.  Compression and encryption, if used, provide some
  allowance for detection, if not correction, of errors.  For simple
  error detection support in the absence of compression or encryption,
  checksums may be attached to messages via IPFIX Options according to
  the Message Checksum Options Template defined in Section 8.1.1.

5.6.  Authentication, Confidentiality, and Integrity

  Archival storage of flow data may also require assurance that no
  unauthorized entity can read or modify the stored data.  Cryptography
  can be applied to this problem to ensure integrity and
  confidentiality by signing and encryption.







Trammell, et al.            Standards Track                    [Page 12]

RFC 5655                      IPFIX Files                   October 2009


  As with error correction, this problem has been addressed well at a
  layer below that addressed by this document.  We can leverage the
  fact that existing cryptographic technologies work quite well on data
  stored in files to meet this requirement.

  Beyond support for the use of Transport Layer Security (TLS) for
  transport over TCP or Datagram Transport Layer Security (DTLS) for
  transport over SCTP or UDP, both of which provide transient
  authentication and confidentiality, the IPFIX protocol does not
  support this requirement directly.  The IETF has specified the
  Cryptographic Message Syntax (CMS) [RFC3852] for creating detached
  signatures for integrity and authentication; Section 9 specifies a
  CMS-based method for signing IPFIX Files.  Confidentiality protection
  is assumed to be met by methods external to this specification,
  leveraging one of the many such technologies for encrypting files to
  meet specific application and process requirements; however, notes on
  improving archival integrity of encrypted IPFIX Files are given in
  Section 9.2.

5.7.  Anonymization and Obfuscation

  To ensure the privacy of individuals and organizations at the
  endpoints of communications represented by flow records, it is often
  necessary to obfuscate or anonymize stored and exported flow data.
  The ideal flow storage format will provide for a notation that a
  given information element on a given record type represents
  anonymized, rather than real, data.

  The IPFIX protocol presently has no support for anonymization
  notation.  It should be noted that anonymization is one of the
  requirements given for IPFIX in [RFC3917].  The decision to qualify
  this requirement with 'MAY' and not 'MUST' in the requirements
  document, and its subsequent lack of specification in the current
  version of the IPFIX protocol, is due to the fact that anonymization
  algorithms are still an open area of research, and that there
  currently exist no standardized methods for anonymization.

  No support is presently defined in [RFC5101] or this IPFIX-based File
  format for anonymization, as anonymization notation is an area of
  open work for the IPFIX Working Group.

5.8.  Session Auditability and Replayability

  Certain use cases for archival flow storage require the storage of
  collection infrastructure details alongside the data itself.  These
  details include information about how and when data was received, and
  where it was received from.  They are useful for auditing as well as
  for the replaying received data for testing purposes.



Trammell, et al.            Standards Track                    [Page 13]

RFC 5655                      IPFIX Files                   October 2009


  The IPFIX protocol contains no direct support for auditability and
  replayability, though the IPFIX Information Model does define various
  Information Elements required to represent collection infrastructure
  details.  These details may be stored in IPFIX Files using the Export
  Session Details Options Template defined in Section 8.1.3, and the
  Message Details Options Template defined in Section 8.1.4.

5.9.  Performance Characteristics

  The ideal standard flow storage format will not have a significant
  negative impact on the performance of the application generating or
  processing flow data stored in the format.  This is a non-functional
  requirement, but it is important to note that a standard that implies
  a significant performance penalty is unlikely to be widely
  implemented and adopted.

  An examination of the IPFIX protocol would seem to suggest that
  implementations of it are not particularly prone to slowness; indeed,
  a template-based data representation is more easily subject to
  optimization for common cases than representations that embed
  structural information directly in the data stream (e.g., XML).
  However, a full analysis of the impact of using IPFIX Messages as a
  basis for flow data storage on read/write performance will require
  more implementation experience and performance measurement.

6.  Applicability

  This section describes the specific applicability of IPFIX Files to
  various use cases.  IPFIX Files are particularly useful in a flow
  collection and processing infrastructure using IPFIX for flow export.
  We explore the applicability and provide guidelines for using IPFIX
  Files for the storage of flow data collected by IPFIX Collecting
  Processes and NetFlow V9 collectors, the testing of IPFIX Collecting
  Processes, and diagnostics of IPFIX Devices.

6.1.  Storage of IPFIX-Collected Flow Data

  IPFIX Files can naturally be used to store flow data collected by an
  IPFIX Collecting Process; indeed, this was one of the primary initial
  motivations behind the file format described within this document.
  Using IPFIX Files as such provides a single, standard, well-
  understood encoding to be used for flow data on disk and on the wire,
  and allows IPFIX implementations to leverage substantially the same
  code for flow export and flow storage.  In addition, the storage of
  single Transport Sessions in IPFIX Files is particularly important
  for network measurement research, allowing repeatability of





Trammell, et al.            Standards Track                    [Page 14]

RFC 5655                      IPFIX Files                   October 2009


  experiments by providing a format for the storage and exchange of
  IPFIX flow trace data much as the libpcap [pcap] format is used for
  experiments on packet trace data.

6.2.  Storage of NetFlow-V9-Collected Flow Data

  Although the IPFIX protocol is based on the Cisco NetFlow Services,
  Version 9 (NetFlow V9) protocol [RFC3954], the two have diverged
  since work began on IPFIX.  However, since the NetFlow V9 information
  model is a compatible subset of the IPFIX Information Model, it is
  possible to use IPFIX Files to store collected NetFlow V9 flow data.
  This approach may be particularly useful in multi-vendor, multi-
  protocol collection infrastructures using both NetFlow V9 and IPFIX
  to export flow data.

  The applicability of IPFIX Files to this use case is outlined in
  Appendix B.

6.3.  Testing IPFIX Collecting Processes

  IPFIX Files can be used to store IPFIX Messages for the testing of
  IPFIX Collecting Processes.  A variety of test cases may be stored in
  IPFIX Files.  First, IPFIX data collected in real network
  environments and stored in an IPFIX File can be used as input to
  check the behavior of new or extended implementations of IPFIX
  Collectors.  Furthermore, IPFIX Files can be used to validate the
  operation of a given IPFIX Collecting Process in a new environment,
  i.e., to test with recorded IPFIX data from the target network before
  installing the Collecting Process in the network.

  The IPFIX File format can also be used to store artificial, non-
  compliant reference messages for specific Collecting Process test
  cases.  Examples for such test cases are sets of IPFIX records with
  undefined Information Elements, Data Records described by missing
  Templates, or incorrectly framed Messages or Data Sets.
  Representative error handling test cases are defined in [RFC5471].

  Furthermore, fast replay of IPFIX Messages stored in a file can be
  used for stress/load tests (e.g., high rate of incoming Data Records,
  large Templates with high Information Element counts), as described
  in [RFC5471].  The provisioning and use of a set of reference files
  for testing simplifies the performance of tests and increases the
  comparability of test results.








Trammell, et al.            Standards Track                    [Page 15]

RFC 5655                      IPFIX Files                   October 2009


6.4.  IPFIX Device Diagnostics

  As an IPFIX File can be used to store any collection of flows, the
  format may also be used for dumping and storing various types of flow
  data for IPFIX Device diagnostics (e.g., the open flow cache of a
  Metering Process or the flow backlog of an Exporting or Collecting
  Process at the time of a process reset or crash).  File-based storage
  is preferable to remote transmission in such error-recovery
  situations.

7.  Detailed File Format Specification

  Any valid serialized IPFIX Message stream MUST be accepted by a File
  Reader as a valid IPFIX File.  In this way, the filesystem is simply
  treated as another IPFIX transport alongside SCTP, TCP, and UDP,
  albeit a potentially high-latency transport, as the File Reader and
  File Writer do not necessarily run at the same time.

  This section specifies the detailed actions of File Readers and File
  Writers in handling IPFIX Files, and further specifies actions of
  File Writers in specific use cases.  Unless otherwise specified
  herein, IPFIX File Writers MUST behave as IPFIX Exporting Processes,
  and IPFIX File Readers MUST behave as IPFIX Collecting Processes,
  where appropriate.

7.1.  File Reader Specification

  An IPFIX File Reader MUST act as an IPFIX Collecting Process as
  specified in [RFC5101], except as modified by this document.

  An IPFIX File Reader MUST accept as valid any serialized IPFIX
  Message stream that would be considered valid by one or more of the
  other defined IPFIX transport layers.  Practically, this means that
  the union of IPFIX Template management features supported by SCTP,
  TCP, and UDP MUST be supported in IPFIX Files.  File Readers MUST:

  o  accept IPFIX Messages containing Template Sets, Options Template
     Sets, and Data Sets within the same message, as with IPFIX over
     TCP or UDP;

  o  accept Template Sets that define Templates already defined within
     the File, as may occur with retransmission of Templates when using
     IPFIX over UDP as described in Section 10.3.6 of [RFC5101];

  o  resolve any conflict between a resent definition and a previous
     definition by assuming that the new Template replaces the old, as
     consistent with Template expiration and ID reuse when using UDP at
     the IPFIX transport protocol; and



Trammell, et al.            Standards Track                    [Page 16]

RFC 5655                      IPFIX Files                   October 2009


  o  accept Template Withdrawals as described in Section 8 of
     [RFC5101], provided that the Template to be withdrawn is defined,
     as is the case with IPFIX over TCP and SCTP.

  Considering the filesystem-as-transport view, in the general case, an
  IPFIX File SHOULD be treated as containing a single Transport Session
  as defined by [RFC5101].  However, some applications may benefit from
  the ability to treat a collection of IPFIX Files as a single
  Transport Session; see especially Section 7.3.3 below.  A File Reader
  MAY be configurable to treat a collection of Files as a single
  Transport Session.  However, a File Reader MUST NOT treat a single
  IPFIX File as containing multiple Transport Sessions.

  If an IPFIX File uses the technique described in [RFC5473] AND all of
  the non-Options Templates in the File contain the commonPropertiesId
  Information Element, a File Reader MAY assume the set of
  commonPropertiesId definitions provides a complete table of contents
  for the File for searching purposes.

7.2.  File Writer Specification

  An IPFIX File Writer MUST act as an IPFIX Exporting Process as
  specified in [RFC5101], except as modified by this document.  This
  section contains specifications for IPFIX File Writers in all
  situations; specifications and recommendations for specific File
  Writer use cases are found in Section 7.3 below.

  File Writers SHOULD store the Templates and Options required to
  decode the data within the File itself, unless modified by the
  requirements of a specific use case in a subsection of Section 7.3.
  In this way, a single IPFIX File generally contains a single notional
  Transport Session as defined by [RFC5101].

  File Writers SHOULD emit each Template Set or Options Template Set to
  appear in the File before any Data Set described by the Templates
  within that Set, to ensure the File Reader can decode every Data Set
  without waiting to process subsequent Templates or Options Templates.

  File Writers SHOULD emit Data Records described by Options Templates
  to appear in the File before any Data Records that depend on the
  scopes defined by those options.

  File Writers SHOULD use Template Withdrawals to withdraw Templates if
  Template IDs need to be reused.  Template Withdrawals SHOULD NOT be
  used unless it is necessary to reuse Template IDs.

  File Writers SHOULD write IPFIX Messages within an IPFIX File in
  ascending Export Time order.



Trammell, et al.            Standards Track                    [Page 17]

RFC 5655                      IPFIX Files                   October 2009


  File Writers MAY write Data Records to an IPFIX File in any order.
  However, File Writers that write flow records to an IPFIX File in
  flowStartTime or flowEndTime order SHOULD be consistent in this
  ordering within each File.

7.3.  Specific File Writer Use Cases

  The specifications in this section apply to specific situations.
  Each section below extends or modifies the base File Writer
  specification in Section 7.2.  Considerations for collocation of a
  File Writer with IPFIX Collecting Processes and Metering Processes
  are given, as are specific guidelines for using IPFIX Files for
  archival storage, or as documents.  Also covered are the use of IPFIX
  Files in the testing and diagnostics of IPFIX Devices.

7.3.1.  Collocating a File Writer with a Collecting Process

  When collocating a File Writer with an IPFIX Collecting Process for
  archival storage of collected data in IPFIX Files as described in
  Section 6.1, the following recommendations may improve the usefulness
  of the stored data.

  The simplest way for a File Writer to store the data collected in a
  single Transport Session is to simply write the incoming IPFIX
  Messages to an IPFIX File as they are collected.  This approach has
  several drawbacks.  First, if the original Exporting Process did not
  conform to the recommendations in Section 7.2 with respect to
  Template and Data Record ordering, the written file can be difficult
  to use later; in this case, File Writers MAY reorder records as
  received in order to ensure that Templates appear before the Data
  Records they describe.

  A File Writer collocated with a Collecting Process that starts
  writing data from a running Transport Session SHOULD write all the
  Templates currently active within that Transport Session before
  writing any Data Records described by them.

  Also, the resulting IPFIX Files will lack information about the IPFIX
  Transport Session used to export them, such as the network addresses
  of the Exporting and Collecting Processes and the protocols used to
  transport them.  In this case, if information about the Transport
  Session is required, the File Writer SHOULD store a single IPFIX
  Transport Session in an IPFIX File and SHOULD record information
  about the Transport Session using the Export Session Details Options
  Template described in Section 8.1.3.






Trammell, et al.            Standards Track                    [Page 18]

RFC 5655                      IPFIX Files                   October 2009


  Additional per-Message information MAY be recorded by the File Writer
  using the Message Details Options Template described in
  Section 8.1.4.  Per-Message information includes the time at which
  each IPFIX Message was received at the Collecting Process, and can be
  used to resend IPFIX Messages while keeping the original measurement
  plane traffic profile.

  When collocating a File Writer with a Collecting Process, the Export
  Time of each Message SHOULD be the Export Time of the Message
  received by the Collecting Process containing the first Data Record
  in the Message.  Note that File Writers storing IPFIX data collected
  from an IPFIX Collecting Process using SCTP as the transport protocol
  SHOULD interleave messages from multiple streams in order to preserve
  Export Time order, and SHOULD reorder the written messages as
  necessary to ensure that each Template Set or Options Template Set
  appears in the File before any Data Set described by the Templates
  within that Set.  Template reordering MUST preserve the sequence of
  Template Sets with Template Withdrawals in order to ensure
  consistency of Templates.

  Note that when adding additional information to IPFIX Messages
  received from Collecting Processes (e.g., Message Checksum Options,
  Message Detail Options), the File Writer SHOULD extend the length of
  the Message for the additional data if possible; otherwise, the
  Message SHOULD be split into two approximately equal-size Messages
  aligned on a Data Set or Template Set boundary from the original
  Message if possible; otherwise, the Message SHOULD be split into two
  approximately equal-size Messages aligned on a Data Record boundary.
  Note that, since the Maximum Segment Size (MSS) or MTU of most
  network links (1500-9000 for common Ethernets) is smaller than the
  maximum IPFIX Message size (65536) within an IPFIX File, it is
  expected that message length extension will suffice in most
  circumstances.

  A File Writer collocated with a Collecting Process SHOULD NOT sign a
  File as specified in Section 9.1 unless the Transport Session over
  which the data was exported was protected via TLS or DTLS, and the
  Collecting Process positively identified the Exporting Process by its
  certificate.  See Section 12.2 for more information on this issue.

7.3.2.  Collocating a File Writer with a Metering Process

  Note that File Writers may also be collocated directly with IPFIX
  Metering Processes, for writing measured information directly to disk
  without intermediate IPFIX Exporting or Collecting Processes.  This
  arrangement may be particularly useful when providing data to an





Trammell, et al.            Standards Track                    [Page 19]

RFC 5655                      IPFIX Files                   October 2009


  analysis environment with an IPFIX-File-based workflow, when testing
  Metering Processes during development, or when the authentication of
  a Metering Process is important.

  When collocating a File Writer with a Metering Process, note that
  Information Elements associated with Exporting or Collecting
  Processes are meaningless, and SHOULD NOT appear in the Export
  Session Details Options Template described in Section 8.1.3 or the
  Message Details Options Template described in Section 8.1.4.

  When collocating a File Writer with a Metering Process, the Export
  Time of each Message SHOULD be the time at which the first Data
  Record in the Message was received from the Metering Process.

  Note that collocating a File Writer with a Metering Process is the
  only way to provide positive authentication of a Metering Process
  through signatures as in Section 9.1.  See Section 12.2 for more
  information on this issue.

7.3.3.  Using IPFIX Files for Archival Storage

  While in the general case File Writers should store one Transport
  Session per IPFIX File, some applications storing large collections
  of data over long periods of time may benefit from the ability to
  treat a collection of IPFIX Files as a single Transport Session.  A
  File Writer MAY be configurable to write data from a single Transport
  Session into multiple IPFIX Files; however, File Writers supporting
  such a configuration option MUST provide a configuration option to
  support one-file-per-session behavior for interoperability purposes.

  File Writers using IPFIX Files for archival storage SHOULD support
  compression as in Section 10.

7.3.4.  Using IPFIX Files as Documents

  When IPFIX Files are used as documents, to store a set of flows
  relevant to query, investigation, or other common context, or for the
  publication of traffic datasets relevant to network research, each
  File MUST be readable as a single Transport Session, self-contained
  aside from any detached signature as in Section 9.1, and making no
  reference to metadata stored in separate Files, in order to ensure
  interoperability.

  When writing Files to be used as documents, File Writers MAY emit the
  special Data Records described by Options Templates before any other
  Data Records in the File in the following order to ease the
  inspection and use of documents by File Readers:




Trammell, et al.            Standards Track                    [Page 20]

RFC 5655                      IPFIX Files                   October 2009


  o  Time Window records described by the File Time Window Options
     Template as defined in Section 8.1.2 below; followed by:

  o  Information Element Type Records as described in [RFC5610];
     followed by

  o  commonPropertiesId definitions as described in [RFC5473]; followed
     by

  o  Export Session details records described by the Export Session
     Details Options Template as defined in Section 8.1.3 below.

  The Export Time of each Message within a File used as a document
  SHOULD be the time at which the Message was written by the File
  Writer.

  If an IPFIX File used as a document uses the technique described in
  [RFC5473] AND all of the non-Options Templates in the File contain
  the commonPropertiesId Information Element, a File Reader MAY assume
  the set of commonPropertiesId definitions provides a complete table
  of contents for the File for searching purposes.

7.3.5.  Using IPFIX Files for Testing

  IPFIX Files can be used for testing IPFIX Collecting Processes in two
  ways.  First, IPFIX Files can be used to store specific flow data for
  regression and stress testing of Collectors; there are no special
  considerations for IPFIX Files used in this way.

  Second, IPFIX Files are useful for storing reference messages that do
  not comply to the IPFIX protocol in order to test the error handling
  and recovery behavior of Collectors.  Of course, IPFIX Files intended
  to be used in this application necessarily MAY violate any of the
  specifications in this document or in [RFC5101], and such Files MUST
  NOT be transmitted to Collecting Processes or given as input to File
  Readers not under test.

  Note that an extremely simple IPFIX Exporting Process may be crafted
  for testing purposes by simply reading an IPFIX File and transmitting
  it directly to a Collecting Process.  Similarly, an extremely simple
  Collecting Process may be crafted for testing purposes by simply
  accepting connections and/or IPFIX Messages from Exporting Processes
  and writing the session's message stream to an IPFIX File.








Trammell, et al.            Standards Track                    [Page 21]

RFC 5655                      IPFIX Files                   October 2009


7.3.6.  Writing IPFIX Files for Device Diagnostics

  IPFIX Files can be used in the debugging of devices that use flow
  data as internal state, as a common format for the representation of
  flow tables.  In such situations, the opaqueOctets information
  element can be used to store additional non-IPFIX encoded, non-flow
  information (e.g., stack backtraces, process state, etc.) within the
  IPFIX File as in Section 11.1; the IPFIX flow table information could
  also be embedded in a larger proprietary diagnostic format using
  delimiters as in Section 11.2

7.3.7.  IPFIX File Manipulation

  For many applications, it may prove useful for implementations to
  provide functionality for the manipulation of IPFIX Files; for
  example, to select data from a File, to change the Templates used
  within a File, or to split or join data in Files.  Any such utility
  should take special care to ensure that its output remains a valid
  IPFIX File, specifically with respect to Templates and Options, which
  are scoped to Transport Sessions.

  Any operation that splits one File into multiple Files SHOULD write
  all necessary Templates and Options to each resulting File, and
  ensure that written Options are valid for each resulting File (e.g.,
  the Time Window Options Template in Section 8.1.2).  Any operation
  that joins multiple Files into a single File should do the same,
  additionally ensuring that Template IDs do not collide, through the
  use of different Observation Domain IDs or Template ID rewriting.
  Combining operations may also want to ensure any desired ordering of
  flow records is maintained.

7.4.  Media Type of IPFIX Files

  The media type for IPFIX Files is application/ipfix.  The
  registration information [RFC4288] for this media type is given in
  the IANA Considerations section.

8.  File Format Metadata Specification

  This section defines the Options Templates used for IPFIX File
  metadata, and the Information Elements they require.

8.1.  Recommended Options Templates for IPFIX Files

  The following Options Templates allow IPFIX Message streams to meet
  the requirements outlined above without extension to the message
  format or protocol.  They are defined in terms of existing
  Information Elements defined in [RFC5102], the Information Elements



Trammell, et al.            Standards Track                    [Page 22]

RFC 5655                      IPFIX Files                   October 2009


  defined in [RFC5610], as well as Information Elements defined in
  Section 8.2.  IPFIX File Readers and Writers SHOULD support these
  Options Templates as defined below.

  In addition, IPFIX File Readers and Writers SHOULD support the
  Options Templates defined in [RFC5610] in order to support self-
  description of enterprise-specific Information Elements.

8.1.1.  Message Checksum Options Template

  The Message Checksum Options Template specifies the structure of a
  Data Record for attaching an MD5 message checksum to an IPFIX
  Message.  An MD5 message checksum as described MAY be used if data
  integrity is important to the application but file signing is not
  available or desired.  The described Data Record MUST appear only
  once per IPFIX Message, but MAY appear anywhere within the Message.

  This Options Template SHOULD contain the following Information
  Elements:

  +--------------------+----------------------------------------------+
  | IE                 | Description                                  |
  +--------------------+----------------------------------------------+
  | messageScope       | A marker denoting this Option applies to the |
  | [scope]            | whole IPFIX Message; content is ignored.     |
  |                    | This Information Element MUST be defined as  |
  |                    | a Scope Field.                               |
  | messageMD5Checksum | The MD5 checksum of the containing IPFIX     |
  |                    | Message.                                     |
  +--------------------+----------------------------------------------+

8.1.2.  File Time Window Options Template

  The File Time Window Options Template specifies the structure of a
  Data Record for attaching a time window to an IPFIX File; this Data
  Record is referred to as a time window record.  A time window record
  defines the earliest flow start time and the latest flow end time of
  the flow records within a File.  One and only one time window record
  MAY appear within an IPFIX File if the time window information is
  available; a File Writer MUST NOT write more than one time window
  record to an IPFIX File.  A File Writer that writes a time window
  record to a File MUST NOT write any Flow with a start time before the
  beginning of the window or an end time after the end of the window to
  that File.

  This Options Template SHOULD contain the following Information
  Elements:




Trammell, et al.            Standards Track                    [Page 23]

RFC 5655                      IPFIX Files                   October 2009


  +---------------+---------------------------------------------------+
  | IE            | Description                                       |
  +---------------+---------------------------------------------------+
  | sessionScope  | A marker denoting this Option applies to the      |
  | [scope]       | whole IPFIX Transport Session (i.e., the IPFIX    |
  |               | File in the common case); content is ignored.     |
  |               | This Information Element MUST be defined as a     |
  |               | Scope Field.                                      |
  | minFlowStart* | Exactly one of minFlowStartSeconds,               |
  |               | minFlowStartMilliseconds,                         |
  |               | minFlowStartMicroseconds, or                      |
  |               | minFlowStartNanoseconds SHOULD match the          |
  |               | precision of the accompanying maxFlowEnd*         |
  |               | Information Element.  The start time of the       |
  |               | earliest flow in the Transport Session (i.e.,     |
  |               | File).                                            |
  | maxFlowEnd*   | Exactly one of maxFlowEndSeconds,                 |
  |               | maxFlowEndMilliseconds, maxFlowEndMicroseconds,   |
  |               | or maxFlowEndNanoseconds SHOULD match the         |
  |               | precision of the accompanying minFlowStart*       |
  |               | Information Element.  The end time of the latest  |
  |               | flow in the Transport Session (i.e., File).       |
  +---------------+---------------------------------------------------+

8.1.3.  Export Session Details Options Template

  The Export Session Details Options Template specifies the structure
  of a Data Record for recording the details of an IPFIX Transport
  Session in an IPFIX File.  It is intended for use in storing a single
  complete IPFIX Transport Session in a single IPFIX File.  The
  described Data Record SHOULD appear only once in a given IPFIX File.

  This Options Template SHOULD contain at least the following
  Information Elements, subject to applicability as noted on each
  Information Element:
















Trammell, et al.            Standards Track                    [Page 24]

RFC 5655                      IPFIX Files                   October 2009


  +----------------------------+--------------------------------------+
  | IE                         | Description                          |
  +----------------------------+--------------------------------------+
  | sessionScope [scope]       | A marker denoting this Option        |
  |                            | applies to the whole IPFIX Transport |
  |                            | Session (i.e., the IPFIX File in the |
  |                            | common case); content is ignored.    |
  |                            | This Information Element MUST be     |
  |                            | defined as a Scope Field.            |
  | exporterIPv4Address        | IPv4 address of the IPFIX Exporting  |
  |                            | Process from which the Messages in   |
  |                            | this Transport Session were          |
  |                            | received.  Present only for          |
  |                            | Exporting Processes with an IPv4     |
  |                            | interface.  For multi-homed SCTP     |
  |                            | associations, this SHOULD be the     |
  |                            | primary path endpoint address of the |
  |                            | Exporting Process.                   |
  | exporterIPv6Address        | IPv6 address of the IPFIX Exporting  |
  |                            | Process from which the Messages in   |
  |                            | this Transport Session were          |
  |                            | received.  Present only for          |
  |                            | Exporting Processes with an IPv6     |
  |                            | interface.  For multi-homed SCTP     |
  |                            | associations, this SHOULD be the     |
  |                            | primary path endpoint address of the |
  |                            | Exporting Process.                   |
  | exporterTransportPort      | The source port from which the       |
  |                            | Messages in this Transport Session   |
  |                            | were received.                       |
  | exporterCertificate        | The certificate used by the IPFIX    |
  |                            | Exporting Process from which the     |
  |                            | Messages in this Transport Session   |
  |                            | were received.  Present only for     |
  |                            | Transport Sessions protected by TLS  |
  |                            | or DTLS.                             |
  | collectorIPv4Address       | IPv4 address of the IPFIX Collecting |
  |                            | Process that received the Messages   |
  |                            | in this Transport Session.  Present  |
  |                            | only for Collecting Processes with   |
  |                            | an IPv4 interface.  For multi-homed  |
  |                            | SCTP associations, this SHOULD be    |
  |                            | the primary path endpoint address of |
  |                            | the Collecting Process.              |
  | collectorIPv6Address       | IPv6 address of the IPFIX Collecting |
  |                            | Process that received the Messages   |
  |                            | in this Transport Session.  Present  |
  |                            | only for Collecting Processes with   |



Trammell, et al.            Standards Track                    [Page 25]

RFC 5655                      IPFIX Files                   October 2009


  |                            | an IPv6 interface.  For multi-homed  |
  |                            | SCTP associations, this SHOULD be    |
  |                            | the primary path endpoint address of |
  |                            | the Collecting Process.              |
  | collectorTransportPort     | The destination port on which the    |
  |                            | Messages in this Transport Session   |
  |                            | were received.                       |
  | collectorTransportProtocol | The IP Protocol Identifier of the    |
  |                            | transport protocol used to transport |
  |                            | Messages within this Transport       |
  |                            | Session.                             |
  | collectorProtocolVersion   | The version of the export protocol   |
  |                            | used to transport Messages within    |
  |                            | this Transport Session.  Applicable  |
  |                            | only in mixed NetFlow V9-IPFIX       |
  |                            | collection environments when storing |
  |                            | NetFlow V9 data in IPFIX Messages,   |
  |                            | as in Appendix B.                    |
  | collectorCertificate       | The certificate used by the IPFIX    |
  |                            | Collecting Process that received the |
  |                            | Messages in this Transport Session.  |
  |                            | Present only for Transport Sessions  |
  |                            | protected by TLS or DTLS.            |
  | minExportSeconds           | The Export Time of the first Message |
  |                            | in the Transport Session.            |
  | maxExportSeconds           | The Export Time of the last Message  |
  |                            | in the Transport Session.            |
  +----------------------------+--------------------------------------+

8.1.4.  Message Details Options Template

  The Message Details Options Template specifies the structure of a
  Data Record for attaching additional export details to an IPFIX
  Message.  These details include the time at which a message was
  received and information about the export and collection
  infrastructure used to transport the Message.  This Options Template
  also allows the storage of the export session metadata provided the
  Export Session Details Options Template, for storing information from
  multiple Transport Sessions in the same IPFIX File.

  This Options Template SHOULD contain at least the following
  Information Elements, subject to applicability as noted for each
  Information Element.  Note that when used in conjunction with the
  Export Session Details Options Template, when storing a single
  complete IPFIX Transport Session in an IPFIX File, this Options
  Template SHOULD contain only the messageScope and





Trammell, et al.            Standards Track                    [Page 26]

RFC 5655                      IPFIX Files                   October 2009


  collectionTimeMilliseconds Information Elements, and the
  exportSctpStreamId Information Element for Messages transported via
  SCTP.

  +----------------------------+--------------------------------------+
  | IE                         | Description                          |
  +----------------------------+--------------------------------------+
  | messageScope [scope]       | A marker denoting this Option        |
  |                            | applies to the whole IPFIX message;  |
  |                            | content is ignored.  This            |
  |                            | Information Element MUST be defined  |
  |                            | as a Scope Field.                    |
  | collectionTimeMilliseconds | The absolute time at which this      |
  |                            | Message was received by the IPFIX    |
  |                            | Collecting Process.                  |
  | exporterIPv4Address        | IPv4 address of the IPFIX Exporting  |
  |                            | Process from which this Message was  |
  |                            | received.  Present only for          |
  |                            | Exporting Processes with an IPv4     |
  |                            | interface, and if this information   |
  |                            | is not available via the Export      |
  |                            | Session Details Options Template.    |
  |                            | For multi-homed SCTP associations,   |
  |                            | this SHOULD be the primary path      |
  |                            | endpoint address of the Exporting    |
  |                            | Process.                             |
  | exporterIPv6Address        | IPv6 address of the IPFIX Exporting  |
  |                            | Process from which this Message was  |
  |                            | received.  Present only for          |
  |                            | Exporting Processes with an IPv6     |
  |                            | interface and if this information is |
  |                            | not available via the Export Session |
  |                            | Details Options Template.  For       |
  |                            | multi-homed SCTP associations, this  |
  |                            | SHOULD be the primary path endpoint  |
  |                            | address of the Exporting Process.    |
  | exporterTransportPort      | The source port from which this      |
  |                            | Message was received.  Present only  |
  |                            | if this information is not available |
  |                            | via the Export Session Details       |
  |                            | Options Template.                    |
  | exporterCertificate        | The certificate used by the IPFIX    |
  |                            | Exporting Process from which this    |
  |                            | Message was received.  Present only  |
  |                            | for Transport Sessions protected by  |
  |                            | TLS or DTLS.                         |
  | collectorIPv4Address       | IPv4 address of the IPFIX Collecting |
  |                            | Process that received this Message.  |



Trammell, et al.            Standards Track                    [Page 27]

RFC 5655                      IPFIX Files                   October 2009


  |                            | Present only for Collecting          |
  |                            | Processes with an IPv4 interface,    |
  |                            | and if this information is not       |
  |                            | available via the Export Session     |
  |                            | Details Options Template.  For       |
  |                            | multi-homed SCTP associations, this  |
  |                            | SHOULD be the primary path endpoint  |
  |                            | address of the Collecting Process.   |
  | collectorIPv6Address       | IPv6 address of the IPFIX Collecting |
  |                            | Process that received this Message.  |
  |                            | Present only for Collecting          |
  |                            | Processes with an IPv6 interface,    |
  |                            | and if this information is not       |
  |                            | available via the Export Session     |
  |                            | Details Options Template.  For       |
  |                            | multi-homed SCTP associations, this  |
  |                            | SHOULD be the primary path endpoint  |
  |                            | address of the Collecting Process.   |
  | collectorTransportPort     | The destination port on which this   |
  |                            | Message was received.  Present only  |
  |                            | if this information is not available |
  |                            | via the Export Session Details       |
  |                            | Options Template.                    |
  | collectorTransportProtocol | The IP Protocol Identifier of the    |
  |                            | transport protocol used to transport |
  |                            | this Message.  Present only if this  |
  |                            | information is not available via the |
  |                            | Export Session Details Options       |
  |                            | Template.                            |
  | collectorProtocolVersion   | The version of the export protocol   |
  |                            | used to transport this Message.      |
  |                            | Present only if necessary and if     |
  |                            | this information is not available    |
  |                            | via the Export Session Details       |
  |                            | Options Template.                    |
  | collectorCertificate       | The certificate used by the IPFIX    |
  |                            | Collecting Process that received     |
  |                            | this Message.  Present only for      |
  |                            | Transport Sessions protected by TLS  |
  |                            | or DTLS.                             |
  | exportSctpStreamId         | The SCTP stream used to transport    |
  |                            | this Message.  Present only if the   |
  |                            | Message was transported via SCTP.    |
  +----------------------------+--------------------------------------+







Trammell, et al.            Standards Track                    [Page 28]

RFC 5655                      IPFIX Files                   October 2009


8.2.  Recommended Information Elements for IPFIX Files

  The following Information Elements are used by the Options Templates
  in Section 8.1 to allow IPFIX Message streams to meet the
  requirements outlined above without extension of the protocol.  IPFIX
  File Readers and Writers SHOULD support these Information Elements as
  defined below.

  In addition, IPFIX File Readers and Writers SHOULD support the
  Information Elements defined in [RFC5610] in order to support full
  self-description of Information Elements.

8.2.1.  collectionTimeMilliseconds

  Description:   The absolute timestamp at which the data within the
     scope containing this Information Element was received by a
     Collecting Process.  This Information Element SHOULD be bound to
     its containing IPFIX Message via IPFIX Options and the
     messageScope Information Element, as defined below.

  Abstract Data Type:   dateTimeMilliseconds

  ElementId:   258

  Status:   current

8.2.2.  collectorCertificate

  Description:   The full X.509 certificate, encoded in ASN.1 DER
     format, used by the Collector when IPFIX Messages were transmitted
     using TLS or DTLS.  This Information Element SHOULD be bound to
     its containing IPFIX Transport Session via an options record and
     the sessionScope Information Element, or to its containing IPFIX
     Message via an options record and the messageScope Information
     Element.

  Abstract Data Type:   octetArray

  ElementId:   274

  Status:   current

8.2.3.  exporterCertificate

  Description:   The full X.509 certificate, encoded in ASN.1 DER
     format, used by the Collector when IPFIX Messages were transmitted
     using TLS or DTLS.  This Information Element SHOULD be bound to
     its containing IPFIX Transport Session via an options record and



Trammell, et al.            Standards Track                    [Page 29]

RFC 5655                      IPFIX Files                   October 2009


     the sessionScope Information Element, or to its containing IPFIX
     Message via an options record and the messageScope Information
     Element.

  Abstract Data Type:   octetArray

  ElementId:   275

  Status:   current

8.2.4.  exportSctpStreamId

  Description:   The value of the SCTP Stream Identifier used by the
     Exporting Process for exporting IPFIX Message data.  This is
     carried in the Stream Identifier field of the header of the SCTP
     DATA chunk containing the IPFIX Message(s).

  Abstract Data Type:   unsigned16

  Data Type Semantics:   identifier

  ElementId:   259

  Status:   current

8.2.5.  maxExportSeconds

  Description:   The absolute Export Time of the latest IPFIX Message
     within the scope containing this Information Element.  This
     Information Element SHOULD be bound to its containing IPFIX
     Transport Session via IPFIX Options and the sessionScope
     Information Element.

  Abstract Data Type:   dateTimeSeconds

  ElementId:   260

  Status:   current

  Units:   seconds

8.2.6.  maxFlowEndMicroseconds

  Description:   The latest absolute timestamp of the last packet
     within any Flow within the scope containing this Information
     Element, rounded up to the microsecond if necessary.  This
     Information Element SHOULD be bound to its containing IPFIX
     Transport Session via IPFIX Options and the sessionScope



Trammell, et al.            Standards Track                    [Page 30]

RFC 5655                      IPFIX Files                   October 2009


     Information Element.  This Information Element SHOULD be used only
     in Transport Sessions containing Flow Records with microsecond-
     precision (or better) timestamp Information Elements.

  Abstract Data Type:   dateTimeMicroseconds

  ElementId:   268

  Status:   current

  Units:   microseconds

8.2.7.  maxFlowEndMilliseconds

  Description:   The latest absolute timestamp of the last packet
     within any Flow within the scope containing this Information
     Element, rounded up to the millisecond if necessary.  This
     Information Element SHOULD be bound to its containing IPFIX
     Transport Session via IPFIX Options and the sessionScope
     Information Element.  This Information Element SHOULD be used only
     in Transport Sessions containing Flow Records with millisecond-
     precision (or better) timestamp Information Elements.

  Abstract Data Type:   dateTimeMilliseconds

  ElementId:   269

  Status:   current

  Units:   milliseconds

8.2.8.  maxFlowEndNanoseconds

  Description:   The latest absolute timestamp of the last packet
     within any Flow within the scope containing this Information
     Element.  This Information Element SHOULD be bound to its
     containing IPFIX Transport Session via IPFIX Options and the
     sessionScope Information Element.  This Information Element SHOULD
     be used only in Transport Sessions containing Flow Records with
     nanosecond-precision timestamp Information Elements.

  Abstract Data Type:   dateTimeNanoseconds

  ElementId:   270

  Status:   current

  Units:   nanoseconds



Trammell, et al.            Standards Track                    [Page 31]

RFC 5655                      IPFIX Files                   October 2009


8.2.9.  maxFlowEndSeconds

  Description:   The latest absolute timestamp of the last packet
     within any Flow within the scope containing this Information
     Element, rounded up to the second if necessary.  This Information
     Element SHOULD be bound to its containing IPFIX Transport Session
     via IPFIX Options and the sessionScope Information Element.

  Abstract Data Type:   dateTimeSeconds

  ElementId:   261

  Status:   current

  Units:   seconds

8.2.10.  messageMD5Checksum

  Description:   The MD5 checksum of the IPFIX Message containing this
     record.  This Information Element SHOULD be bound to its
     containing IPFIX Message via an options record and the
     messageScope Information Element, as defined below, and SHOULD
     appear only once in a given IPFIX Message.  To calculate the value
     of this Information Element, first buffer the containing IPFIX
     Message, setting the value of this Information Element to all
     zeroes.  Then calculate the MD5 checksum of the resulting buffer
     as defined in [RFC1321], place the resulting value in this
     Information Element, and export the buffered message.  This
     Information Element is intended as a simple checksum only;
     therefore collision resistance and algorithm agility are not
     required, and MD5 is an appropriate message digest.

  Abstract Data Type:   octetArray (16 bytes)

  ElementId:   262

  Status:   current

  Reference:   RFC 1321, The MD5 Message-Digest Algorithm [RFC1321]

8.2.11.  messageScope

  Description:   The presence of this Information Element as scope in
     an Options Template signifies that the options described by the
     Template apply to the IPFIX Message that contains them.  It is
     defined for general purpose message scoping of options, and
     proposed specifically to allow the attachment of checksum and
     collection information to a message via IPFIX Options.  The value



Trammell, et al.            Standards Track                    [Page 32]

RFC 5655                      IPFIX Files                   October 2009


     of this Information Element MUST be written as 0 by the File
     Writer or Exporting Process.  The value of this Information
     Element MUST be ignored by the File Reader or the Collecting
     Process.

  Abstract Data Type:   unsigned8

  ElementId:   263

  Status:   current

8.2.12.  minExportSeconds

  Description:   The absolute Export Time of the earliest IPFIX Message
     within the scope containing this Information Element.  This
     Information Element SHOULD be bound to its containing IPFIX
     Transport Session via an options record and the sessionScope
     Information Element.

  Abstract Data Type:   dateTimeSeconds

  ElementId:   264

  Status:   current

  Units:   seconds

8.2.13.  minFlowStartMicroseconds

  Description:   The earliest absolute timestamp of the first packet
     within any Flow within the scope containing this Information
     Element, rounded down to the microsecond if necessary.  This
     Information Element SHOULD be bound to its containing IPFIX
     Transport Session via an options record and the sessionScope
     Information Element.  This Information Element SHOULD be used only
     in Transport Sessions containing Flow Records with microsecond-
     precision (or better) timestamp Information Elements.

  Abstract Data Type:   dateTimeMicroseconds

  ElementId:   271

  Status:   current

  Units:   microseconds






Trammell, et al.            Standards Track                    [Page 33]

RFC 5655                      IPFIX Files                   October 2009


8.2.14.  minFlowStartMilliseconds

  Description:   The earliest absolute timestamp of the first packet
     within any Flow within the scope containing this Information
     Element, rounded down to the millisecond if necessary.  This
     Information Element SHOULD be bound to its containing IPFIX
     Transport Session via an options record and the sessionScope
     Information Element.  This Information Element SHOULD be used only
     in Transport Sessions containing Flow Records with millisecond-
     precision (or better) timestamp Information Elements.

  Abstract Data Type:   dateTimeMilliseconds

  ElementId:   272

  Status:   current

  Units:   milliseconds

8.2.15.  minFlowStartNanoseconds

  Description:   The earliest absolute timestamp of the first packet
     within any Flow within the scope containing this Information
     Element.  This Information Element SHOULD be bound to its
     containing IPFIX Transport Session via an options record and the
     sessionScope Information Element.  This Information Element SHOULD
     be used only in Transport Sessions containing Flow Records with
     nanosecond-precision timestamp Information Elements.

  Abstract Data Type:   dateTimeNanoseconds

  ElementId:   273

  Status:   current

  Units:   nanoseconds

8.2.16.  minFlowStartSeconds

  Description:   The earliest absolute timestamp of the first packet
     within any Flow within the scope containing this Information
     Element, rounded down to the second if necessary.  This
     Information Element SHOULD be bound to its containing IPFIX
     Transport Session via an options record and the sessionScope
     Information Element.

  Abstract Data Type:   dateTimeSeconds




Trammell, et al.            Standards Track                    [Page 34]

RFC 5655                      IPFIX Files                   October 2009


  ElementId:   265

  Status:   current

  Units:   seconds

8.2.17.  opaqueOctets

  Description:   This Information Element is used to encapsulate non-
     IPFIX data into an IPFIX Message stream, for the purpose of
     allowing a non-IPFIX data processor to store a data stream inline
     within an IPFIX File.  A Collecting Process or File Writer MUST
     NOT try to interpret this binary data.  This Information Element
     differs from paddingOctets as its contents are meaningful in some
     non-IPFIX context, while the contents of paddingOctets MUST be
     0x00 and are intended only for Information Element alignment.

  Abstract Data Type:   octetArray

  ElementId:   266

  Status:   current

8.2.18.  sessionScope

  Description:   The presence of this Information Element as scope in
     an Options Template signifies that the options described by the
     Template apply to the IPFIX Transport Session that contains them.
     Note that as all options are implicitly scoped to Transport
     Session and Observation Domain, this Information Element is
     equivalent to a "null" scope.  It is defined for general purpose
     session scoping of options, and proposed specifically to allow the
     attachment of time window and collection information to an IPFIX
     File via IPFIX Options.  The value of this Information Element
     MUST be written as 0 by the File Writer or Exporting Process.  The
     value of this Information Element MUST be ignored by the File
     Reader or the Collecting Process.

  Abstract Data Type:   unsigned8

  ElementId:   267

  Status:   current








Trammell, et al.            Standards Track                    [Page 35]

RFC 5655                      IPFIX Files                   October 2009


9.  Signing and Encryption of IPFIX Files

  In order to ensure the integrity of IPFIX Files and the identity of
  IPFIX File Writers, File Writers and File Readers SHOULD provide for
  an interoperable and easily implemented method for signing IPFIX
  Files, and verifying those signatures.  This section specifies method
  via CMS detached signatures.

  Note that while CMS specifies an encapsulation format that can be
  used for encryption as well as signing, no method is specified for
  encapsulation for confidentiality protection.  It is assumed that
  application-specific or process-specific requirements outweigh the
  need for interoperability for encrypted files.

9.1.  CMS Detached Signatures

  The Cryptographic Message Syntax (CMS) [RFC3852] defines an
  encapsulation syntax for data protection, used to digitally sign,
  authenticate, or encrypt arbitrary message content.  CMS can also be
  used to create detached signatures, in which the signature is stored
  in a separate file.  This arrangement maximizes interoperability, as
  File Readers that are not aware of CMS detached signatures and have
  no requirement for them can simply ignore them; the content of the
  IPFIX File itself is unchanged by the signature.

  The detached signature file for an IPFIX File SHOULD be stored,
  transported, or otherwise made available (e.g., by FTP or HTTP)
  alongside the signed IPFIX File, with the same filename as the IPFIX
  File, except that the file extension ".p7s" is added to the end,
  conforming to the naming convention in [RFC3851].

  Within the detached signature, the CMS ContentInfo type MUST always
  be present, and it MUST encapsulate the CMS SignedData content type,
  which in turn MUST NOT encapsulate the signed IPFIX File content.
  The CMS detached signature is summarized as follows:
















Trammell, et al.            Standards Track                    [Page 36]

RFC 5655                      IPFIX Files                   October 2009


  ContentInfo {
    contentType          id-signedData, -- (1.2.840.113549.1.7.2)
    content              SignedData
  }

  SignedData {
    version              CMSVersion, -- Always set to 3
    digestAlgorithms     DigestAlgorithmIdentifiers,
    encapContentInfo     EncapsulatedContentInfo,
    certificates         CertificateSet, -- File Writer certificate(s)
    crls                 CertificateRevocationLists, -- Optional
    signerInfos          SET OF SignerInfo -- Only one signer
  }

  SignerInfo {
    version              CMSVersion, -- Always set to 3
    sid                  SignerIdentifier,
    digestAlgorithm      DigestAlgorithmIdentifier,
    signedAttrs          SignedAttributes,
    signatureAlgorithm   SignatureAlgorithmIdentifier,
    signature            SignatureValue,
    unsignedAttrs        UnsignedAttributes
  }

  EncapsulatedContentInfo {
    eContentType         id-data, -- (1.2.840.113549.1.7.1)
    eContent             OCTET STRING  -- Always absent
  }

  The details of the contents of each CMS encapsulation are detailed in
  the subsections below.

9.1.1.  ContentInfo

  [RFC3852] requires the outer-most encapsulation to be ContentInfo;
  the fields of ContentInfo are as follows:

  contentType:  the type of the associated content.  For the detached
     signature file, the encapsulated type is always SignedData, so the
     id-signedData (1.2.840.113549.1.7.2) object identifier MUST be
     present in this field.

  content:  a SignedData content, detailed in Section 9.1.2.








Trammell, et al.            Standards Track                    [Page 37]

RFC 5655                      IPFIX Files                   October 2009


9.1.2.  SignedData

  The SignedData content type contains the signature of the IPFIX File
  and information to aid in validation; the fields of SignedData are as
  follows:

  version:  MUST be 3.

  digestAlgorithms:  a collection of one-way hash function identifiers.
     It MUST contain the identifier used by the File Writer to generate
     the digital signature.

  encapContentInfo:  the signed content, including a content type
     identifier.  Since a detached signature is being created, it does
     not encapsulate the IPFIX File.  The EncapsulatedContentInfo is
     detailed in Section 9.1.4.

  certificates:  a collection of certificates.  It SHOULD include the
     X.509 certificate needed to validate the digital signature file.
     Certification Authority (CA) and File Writer certificates MUST
     conform to the certificate profile specified in [RFC5280].

  crls:  an optional collection of certificate revocation lists (CRLs).
     It SHOULD NOT contain any CRLs; any CRLs that are present MUST
     conform to the certificate profile specified in [RFC5280].

  signerInfos:  a collection of per-signer information; this identifies
     the File Writer.  More than one SignerInfo MAY appear to
     facilitate transitions between keys or algorithms.  The SignerInfo
     type is detailed in Section 9.1.3.

9.1.3.  SignerInfo

  The SignerInfo type identifies the File Writer; the fields of
  SignerInfo are as follows:

  version:  MUST be 3.

  sid:  identifies the File Writer's public key.  This identifier MUST
     match the value included in the subjectKeyIdentifier certificate
     extension on the File Writer's X.509 certificate.

  digestAlgorithm:  identifies the one-way hash function and associated
     parameters used to generate the signature.







Trammell, et al.            Standards Track                    [Page 38]

RFC 5655                      IPFIX Files                   October 2009


  signedAttrs:  an optional set of attributes that are signed along
     with the content.

  digestAlgorithm:  identifies the digital signature algorithm and
     associated parameters used to generate the signature.

  signature:  the digital signature of the associated file.

  unsignedAttrs:  an optional set of attributes that are not signed.

9.1.4.  EncapsulatedContentInfo

  The EncapsulatedContentInfo structure contains a content type
  identifier.  Since a detached signature is being created, it does not
  encapsulate the IPFIX File.  The fields of EncapsulatedContentInfo
  are as follows:

  eContentType:  an object identifier that uniquely specifies the
     content type.  The content type associated with IPFIX File MUST be
     id-data (1.2.840.113549.1.7.1).

  eContent:  an optional field containing the signed content.  Since
     this is a detached signature, eContent MUST be absent.

9.2.  Encryption Error Resilience

  Note that single bit errors in the encrypted data stream can result
  in larger errors in the decrypted stream, depending on the encryption
  scheme used.

  In applications (e.g., archival storage) in which error resilience is
  very important, File Writers SHOULD use an encryption scheme that can
  resynchronize after bit errors.  A common example is a block cipher
  in CBC (Cipher Block Chaining) mode.  In this case, File Writers MAY
  also use the Message Checksum Options Template to attach a checksum
  to each IPFIX Message in the IPFIX File, in order to support the
  recognition of errors in the decrypted data.

10.  Compression of IPFIX Files

  Network traffic measurement data is generally highly compressible.
  IPFIX Templates tend to increase the information content per record
  by not requiring the export of irrelevant or non-present fields in
  records, and the technique described in [RFC5473] also reduces the
  export of redundant information.  However, even with these
  techniques, generalized compression can decrease storage requirements
  significantly; therefore, IPFIX File Writers and File Readers SHOULD
  support compression as described in this section.



Trammell, et al.            Standards Track                    [Page 39]

RFC 5655                      IPFIX Files                   October 2009


10.1.  Supported Compression Formats

  IPFIX Files support two compression encapsulation formats: bzip2
  [bzip2] and gzip [RFC1952]. bzip2 provides better compression than
  gzip and, as a block compression algorithm, better error recovery
  characteristics, at the expense of slower compression. gzip is
  potentially a better choice when compression time is an issue.  These
  two algorithms and encapsulation formats were chosen for ubiquity and
  ease of implementation.

  IPFIX File Readers and Writers supporting compression MUST support
  bzip2, and SHOULD support gzip.

10.2.  Compression Recognition at the File Reader

  bzip2, gzip, and uncompressed IPFIX Files have distinct magic
  numbers.  IPFIX File Readers SHOULD use these magic numbers to
  determine what compression, if any, is in use for an IPFIX File, and
  invoke the proper decompression. bzip2 files are identified by the
  initial three-octet string 0x42, 0x5A, 0x68 ("BZh"). gzip files are
  identified by the initial two-octet string 0x1F, 0x8B.  IPFIX Files
  are identified by the initial two-octet string 0x00, 0x0A; these are
  the version bytes of the first IPFIX Message header in the File.

10.3.  Compression Error Resilience

  Compression at the file level, like encryption, is not particularly
  resilient to errors; in the worst case, a single bit error in a
  stream-compressed file could result in the loss of the entire file.

  Since block compression algorithms that support the identification
  and isolation of blocks containing errors limit the impact of errors
  on the recoverability of compressed data, the use of bzip2 in
  applications where error resilience is important is RECOMMENDED.

  Since the block boundary of a block-compressed IPFIX File may fall in
  the middle of an IPFIX Message, resynchronization of an IPFIX Message
  stream by a File Reader after a compression error requires some care.
  The beginning of an IPFIX Message may be identified by its header
  signature (the Version field of the Message Header, 0x00 0x0A,
  followed by a 16-bit Message Length), but simply searching for the
  first occurrence of the Version field is insufficient, since these
  two bytes may occur in valid IPFIX Template or Data Sets.

  Therefore, we specify the following algorithm for File Readers to
  resynchronize an IPFIX Message Stream after skipping a compressed
  block containing errors:




Trammell, et al.            Standards Track                    [Page 40]

RFC 5655                      IPFIX Files                   October 2009


  1.  Search after the error for the first occurrence of the octet
      string 0x00, 0x0A (the IPFIX Message Header Version field).

  2.  Treat this field as the beginning of a candidate IPFIX Message.
      Read the two bytes following the Version field as a Message
      Length, and seek to that offset from the beginning of the
      candidate IPFIX Message.

  3.  If the first two octets after the candidate IPFIX Message are
      0x00, 0x0A (i.e., the IPFIX Message Header Version field of the
      next message in the stream), or if the end-of-file is reached
      precisely at the end of the candidate IPFIX Message, presume that
      the candidate IPFIX Message is valid, and begin reading the IPFIX
      File from the start of the candidate IPFIX Message.

  4.  If not, or if the seek reaches end-of-file or another block
      containing errors before finding the end of the candidate
      message, go back to step 1, starting the search two bytes from
      the start of the candidate IPFIX Message.

  The algorithm above will improperly identify a non-message as a
  message approximately 1 in 2^32 times, assuming random IPFIX data.
  It may be expanded to consider multiple candidate IPFIX Messages in
  order to increase reliability.

  In applications (e.g., archival storage) in which error resilience is
  very important, File Writers SHOULD use block compression algorithms,
  and MAY attempt to align IPFIX Messages within compression blocks to
  ease resynchronization after errors.  File Readers SHOULD use the
  resynchronization algorithm above to minimize data loss due to
  compression errors.

11.  Recommended File Integration Strategies

  This section describes methods for integrating IPFIX File data with
  other file formats.

11.1.  Encapsulation of Non-IPFIX Data in IPFIX Files

  At times, it may be useful to export or store non-IPFIX data inline
  in an IPFIX File or Message stream.  To do this cleanly, this data
  must be encapsulated into IPFIX Messages so that an IPFIX File Reader
  or Collecting Process can handle it without any need to interpret it.
  At the same time, this data must not be changed during transmission
  or storage.  The opaqueOctets Information Element, as defined in
  Section 8.2.17, is provided for this encapsulation.





Trammell, et al.            Standards Track                    [Page 41]

RFC 5655                      IPFIX Files                   October 2009


  Processing the encapsulated non-IPFIX data is left to a separate
  processing mechanisms that can identify encapsulated non-IPFIX data
  in an IPFIX Message Stream, but need not have any other IPFIX
  handling capability, except the ability to skip over all IPFIX
  Messages that do not encapsulate non-IPFIX data.

  The Message Checksum Options Template, described in Section 8.1.1,
  may be used as a uniform mechanism to identify errors within
  encapsulated data.

  Note that this mechanism can only encapsulate data objects up to
  65,515 octets in length.  If the space available in one IPFIX Message
  is not enough for the amount of data to be encapsulated, then the
  data must be broken into smaller segments that are encapsulated into
  consecutive IPFIX Messages.  Any additional structuring or semantics
  of the raw data is outside the scope of IPFIX and must be implemented
  within the encapsulated binary data itself.  Furthermore, the raw
  encapsulated data cannot be assumed by an IPFIX File Reader to have
  any specific format.

11.2.  Encapsulation of IPFIX Files within Other File Formats

  Consequently, it may also be useful to reverse the encapsulation,
  that is, to export or store IPFIX data inline within a non-IPFIX File
  or data stream.  This makes sense when the other file format is not
  compatible with the encapsulation described above in Section 11.1.
  Generally speaking, the encapsulation here will be specific to the
  format of the containing file.  For example, IPFIX Files may be
  embedded in XML elements using hex or Base64 encoding, or in raw
  binary files using start and end delimiters or some form of run-
  length encoding.  As there are as many potential encapsulations here
  as there are potential file formats, the specifics of each are out of
  scope for this specification.

12.  Security Considerations

  The Security Considerations section of [RFC5101], on which the IPFIX
  File format is based, is largely concerned with the proper
  application of TLS and DTLS to ensure confidentiality and integrity
  when exporting IPFIX Messages.  By analogy, this document specifies
  the use of CMS [RFC3852] detached signatures to provide equivalent
  integrity protection to TLS and DTLS in Section 9.1.  However, aside
  from merely applying CMS for signatures, there are several security
  issues which much be considered in certain circumstances; these are
  covered in the subsections below.






Trammell, et al.            Standards Track                    [Page 42]

RFC 5655                      IPFIX Files                   October 2009


12.1.  Relationship between IPFIX File and Transport Encryption

  The underlying protocol used to exchange the information that will be
  stored using the format proposed in this document must as well apply
  appropriate procedures to guarantee the integrity and confidentiality
  of the exported information.  Such issues are addressed in [RFC5101].
  Specifically, IPFIX Files that store data taken from an IPFIX
  Collecting Process using TLS or DTLS for transport security SHOULD be
  signed as in Section 9.1 and SHOULD be encrypted out of band; storage
  of such flow data without encryption may present a potential breach
  of confidentiality.  Conversely, flow data considered sensitive
  enough to require encryption in storage that is later transmitted
  using IPFIX SHOULD be transmitted using TLS or DTLS for transport
  security.

12.2.  End-to-End Assertions for IPFIX Files

  Note that while both TLS and CMS provide the ability to sign an IPFIX
  Transport Session or an IPFIX File, there exists no method for
  protecting data integrity end-to-end in the case in which a
  Collecting Process is collocated with a File Writer.  The channel
  between the Exporting Process to Collecting Process using IPFIX is
  signed by the Exporting Process key and protected via TLS and DTLS,
  while the File is signed by the File Writer key and protected via
  CMS.  The identity of the Exporting Process is not asserted in the
  file, and the records may be modified between the Collecting Process
  and the File Writer.

  There are two potential ways to address this issue.  The first is by
  fiat, and is appropriate only when the application allows the
  Collecting-Process-to-File-Writer channel to be trusted.  In this
  case, the File Writer's signature is an implicit assertion that the
  channel to the Exporting Process was protected, that the Exporting
  Process's signature was verified, and that the data was not changed
  after collection.  For this to work, a File Writer collocated with a
  Collecting Process SHOULD NOT sign a File as specified in Section 9.1
  unless the Transport Session over which the data was exported was
  protected via TLS or DTLS, and the Collecting Process positively
  identified the Exporting Process by its certificate.  The File Writer
  SHOULD include the Exporting Process and Collecting Process
  certificates within the File using the Export Session Detail Options
  Template in Section 8.1.3 or the Message Detail Options Template in
  Section 8.1.4 to allow for later verification.

  In situations in which the Collecting Process and/or File Writer
  cannot be trusted, end-to-end integrity can then be approximated by
  collocating the File Writer with the Metering Process, and removing
  the IPFIX protocol completely from the chain.  In this case, the File



Trammell, et al.            Standards Track                    [Page 43]

RFC 5655                      IPFIX Files                   October 2009


  Writer's signature is an implicit assertion that the Metering Process
  is identified and is not tampering with the information as observed
  on the wire.

  Verification of these trust relationships is out of scope for this
  document, and should be considered on a per-implementation basis.

12.3.  Recommendations for Strength of Cryptography for IPFIX Files

  Note that when encrypting files for archival storage, the
  cryptographic strength is dependent on the length of time over which
  archival data is expected to be kept.  Long-term storage may require
  re-application of cryptographic protection, periodically resigning
  and reencrypting files with stronger keys.  In this case, it is
  recommended that the existing signed and/or encypted data be
  encapsulated within newer, stronger protection.  See [RFC4810] for a
  discussion of this issue.

13.  IANA Considerations

  This document specifies the creation of several new IPFIX Information
  Elements in the IPFIX Information Element registry located at
  http://www.iana.org, as defined in Section 8.2 above.  IANA has
  assigned the following Information Element numbers for their
  respective Information Elements as specified below:

  o  Information Element number 258 for the collectionTimeMilliseconds
     Information Element.

  o  Information Element number 274 for the collectorCertificate
     Information Element.

  o  Information Element number 275 for the exporterCertificate
     Information Element.

  o  Information Element number 259 for the exportSctpStreamId
     Information Element.

  o  Information Element number 260 for the maxExportSeconds
     Information Element.

  o  Information Element number 268 for the maxFlowEndMicroseconds
     Information Element.

  o  Information Element number 269 for the maxFlowEndMilliseconds
     Information Element.





Trammell, et al.            Standards Track                    [Page 44]

RFC 5655                      IPFIX Files                   October 2009


  o  Information Element number 270 for the maxFlowEndNanoseconds
     Information Element.

  o  Information Element number 261 for the maxFlowEndSeconds
     Information Element.

  o  Information Element number 262 for the messageMD5Checksum
     Information Element.

  o  Information Element number 263 for the messageScope Information
     Element.

  o  Information Element number 264 for the minExportSeconds
     Information Element.

  o  Information Element number 271 for the minFlowStartMicroseconds
     Information Element.

  o  Information Element number 272 for the minFlowStartMilliseconds
     Information Element.

  o  Information Element number 273 for the minFlowStartNanoseconds
     Information Element.

  o  Information Element number 265 for the minFlowStartSeconds
     Information Element.

  o  Information Element number 266 for the opaqueOctets Information
     Element.

  o  Information Element number 267 for the sessionScope Information
     Element.

  IANA has created the media type application/ipfix for IPFIX data, as
  described by the following registration information:

  Type name:   application

  Subtype name:   ipfix

  Required parameters:   none

  Optional parameters:   none

  Encoding considerations:   IPFIX Files are binary, and therefore must
     be encoded in non-binary contexts.





Trammell, et al.            Standards Track                    [Page 45]

RFC 5655                      IPFIX Files                   October 2009


  Security considerations:   See the Security Considerations
     (Section 12) of RFC 5655, and the Security Considerations of
     [RFC5101].

  Interoperability considerations:   See the "Detailed Specification"
     (Section 7) of RFC 5655.  The format is designed to be broadly
     interoperable, as any valid stream of IPFIX Messages over any
     transport specified in [RFC5101] MUST be recognizable as a valid
     IPFIX File.

  Published specification:   RFC 5655, especially Section 7, and
     [RFC5101].

  Applications that use this media type:   Various IPFIX
     implementations (see [RFC5153]) support the construction of IPFIX
     File Readers and Writers.

  Additional information:

     Magic number(s):   None, although the first two bytes of any IPFIX
        File are the first two bytes of a message header, the Version
        field, which as of [RFC5101] are always 10 in network byte
        order: 0x00, 0x0A.

     File extension(s):   .ipfix

     Macintosh file type code(s):   none

  Person & email address to contact for further information:   Brian
     Trammell <[email protected]> for the authors of RFC
     5655; Nevil Brownlee <[email protected]> for the IPFIX
     Working Group.

  Intended usage:   LIMITED USE

  Restrictions on usage:   none

  Change controller:   Brian Trammell <[email protected]>
     for the authors of RFC 5655; Nevil Brownlee
     <[email protected]> for the IPFIX Working Group.

14.  Acknowledgements

  Thanks to Maurizio Molina, Tom Kosnar, and Andreas Kind for technical
  assistance with the requirements for a standard flow storage format.
  Thanks to Benoit Claise, Paul Aitken, Andrew Johnson, Gerhard Muenz,
  and Nevil Brownlee for their reviews and feedback.  Thanks to Pasi
  Eronen for pointing out [RFC5485], and Russ Housley for writing it;



Trammell, et al.            Standards Track                    [Page 46]

RFC 5655                      IPFIX Files                   October 2009


  it specifies a detached signature format, from which Section 9.1 is
  largely drawn.  Thanks to the PRISM project for its support of this
  work.

15.  References

15.1.  Normative References

  [RFC5101]    Claise, B., "Specification of the IP Flow Information
               Export (IPFIX) Protocol for the Exchange of IP Traffic
               Flow Information", RFC 5101, January 2008.

  [RFC5102]    Quittek, J., Bryant, S., Claise, B., Aitken, P., and J.
               Meyer, "Information Model for IP Flow Information
               Export", RFC 5102, January 2008.

  [RFC5610]    Boschi, E., Trammell, B., Mark, L., and T. Zseby,
               "Exporting Type Information for IP Flow Information
               Export (IPFIX) Information Elements", RFC 5610,
               July 2009.

  [RFC1321]    Rivest, R., "The MD5 Message-Digest Algorithm",
               RFC 1321, April 1992.

  [RFC1952]    Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L., and
               G. Randers-Pehrson, "GZIP file format specification
               version 4.3", RFC 1952, May 1996.

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3852]    Housley, R., "Cryptographic Message Syntax (CMS)",
               RFC 3852, July 2004.

  [RFC4810]    Wallace, C., Pordesch, U., and R. Brandner, "Long-Term
               Archive Service Requirements", RFC 4810, March 2007.

  [RFC5280]    Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
               Housley, R., and W. Polk, "Internet X.509 Public Key
               Infrastructure Certificate and Certificate Revocation
               List (CRL) Profile", RFC 5280, May 2008.

  [bzip2]      Seward, J., "bzip2 (http://www.bzip.org/)", March 2008.








Trammell, et al.            Standards Track                    [Page 47]

RFC 5655                      IPFIX Files                   October 2009


15.2.  Informative References

  [RFC3917]    Quittek, J., Zseby, T., Claise, B., and S. Zander,
               "Requirements for IP Flow Information Export (IPFIX)",
               RFC 3917, October 2004.

  [RFC3954]    Claise, B., "Cisco Systems NetFlow Services Export
               Version 9", RFC 3954, October 2004.

  [RFC5153]    Boschi, E., Mark, L., Quittek, J., Stiemerling, M., and
               P. Aitken, "IP Flow Information Export (IPFIX)
               Implementation Guidelines", RFC 5153, April 2008.

  [RFC5470]    Sadasivan, G., Brownlee, N., Claise, B., and J. Quittek,
               "Architecture for IP Flow Information Export", RFC 5470,
               March 2009.

  [RFC5471]    Schmoll, C., Aitken, P., and B. Claise, "Guidelines for
               IP Flow Information Export (IPFIX) Testing", RFC 5471,
               March 2009.

  [RFC5472]    Zseby, T., Boschi, E., Brownlee, N., and B. Claise, "IP
               Flow Information Export (IPFIX) Applicability",
               RFC 5472, March 2009.

  [RFC5473]    Boschi, E., Mark, L., and B. Claise, "Reducing
               Redundancy in IP Flow Information Export (IPFIX) and
               Packet Sampling (PSAMP) Reports", RFC 5473, March 2009.

  [SAINT2007]  Trammell, B., Boschi, E., Mark, L., and T. Zseby,
               "Requirements for a standardized flow storage solution",
                in Proceedings of the SAINT 2007 workshop on Internet
               Measurement Technology, Hiroshima, Japan, January 2007.

  [RFC3851]    Ramsdell, B., "Secure/Multipurpose Internet Mail
               Extensions (S/MIME) Version 3.1 Message Specification",
               RFC 3851, July 2004.

  [RFC4288]    Freed, N. and J. Klensin, "Media Type Specifications and
               Registration Procedures", BCP 13, RFC 4288,
               December 2005.

  [RFC5485]    Housley, R., "Digital Signatures on Internet-Draft
               Documents", RFC 5485, March 2009.

  [pcap]       "libpcap (http://www.tcpdump.org/)", October 2008.





Trammell, et al.            Standards Track                    [Page 48]

RFC 5655                      IPFIX Files                   October 2009


Appendix A.  Example IPFIX File

  In this section we will explore an example IPFIX File that
  demonstrates the various features of the IPFIX File format.  This
  File contains flow records described by a single Template.  This File
  also contains a File Time Window record to note the start and end
  time of the data, and an Export Session Details record to record
  collection infrastructure information.  Each Message within this File
  also contains a Message Checksum record, as this File may be
  externally encrypted and/or stored as an archive.  The structure of
  this File is shown in Figure 2.

            +=================================================+
            | IPFIX Message                       seq. 0      |
            | +---------------------------------------------+ |
            | | Template Set (ID 2)                  1 rec  | |
            | |   Data Tmpl. ID 256                         | |
            | +---------------------------------------------+ |
            | | Options Template Set (ID 3)          3 recs | |
            | |   File Time Window Opt. Tmpl. ID 257        | |
            | |   Message Checksum Opt. Tmpl. ID 259        | |
            | |   Export Session Details Opt. Tmpl. ID 258  | |
            | +---------------------------------------------+ |
            | | Data Set (ID 259) [Message Checksum] 1 rec  | |
            | +---------------------------------------------+ |
            +=================================================+
            | IPFIX Message                       seq. 1      |
            | +---------------------------------------------+ |
            | | Data Set (ID 257) [File Time Window] 1 rec  | |
            | +---------------------------------------------+ |
            | | Data Set (ID 258) [Export Session]   1 rec  | |
            | +---------------------------------------------+ |
            | | Data Set (ID 259) [Message Checksum] 1 rec  | |
            | +---------------------------------------------+ |
            +=================================================+
            | IPFIX Message                       seq. 4      |
            | +---------------------------------------------+ |
            | | Data Set (ID 256)                   50 recs | |
            | |  contains flow data                         | |
            | +---------------------------------------------+ |
            | | Data Set (ID 259) [Message Checksum] 1 rec  | |
            | +---------------------------------------------+ |
            +=================================================+
            | IPFIX Message                       seq. 55     |
            |                    . . .                        |

                    Figure 2: File Example Structure




Trammell, et al.            Standards Track                    [Page 49]

RFC 5655                      IPFIX Files                   October 2009


  The Template describing the data records contains a flow start
  timestamp, an IPv4 5-tuple, and packet and octet total counts.  The
  Template Set defining this is as shown in Figure 3 below:

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Set ID = 2           |          Length =  40         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Template ID = 256        |        Field Count = 8        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| flowStartSeconds      = 150 |       Field Length =  4       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| sourceIPv4Address     =   8 |       Field Length =  4       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| dest.IPv4Address      =  12 |       Field Length =  4       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| sourceTransportPort   =   7 |       Field Length =  2       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| dest.TransportPort    =  11 |       Field Length =  2       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| protocolIdentifier    =   4 |       Field Length =  1       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| octetTotalCount       =  85 |       Field Length =  4       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| packetTotalCount      =  86 |       Field Length =  4       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 3: File Example Data Template

A.1.  Example Options Templates

  This is followed by an Options Template Set containing the Options
  Templates required to read the File: the File Time Window Options
  Template (defined in Section 8.1.2 above), the Export Session Details
  Options Template (defined in Section 8.1.3 above), and the Message
  Checksum Options Template (defined in Section 8.1.1 above).  This
  Options Template Set is shown in Figure 4 and Figure 5 below:













Trammell, et al.            Standards Track                    [Page 50]

RFC 5655                      IPFIX Files                   October 2009


                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Set ID = 3           |          Length =  80         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Template ID = 257        |        Field Count = 3        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Scope Field Count = 1      |0| sessionScope          = 267 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Length = 1        |0| minFlowStartSeconds   = 265 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Length = 4        |0| maxFlowEndSeconds     = 261 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Length = 4        |      Template ID = 259        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Count = 2         |    Scope Field Count = 1      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| messageScope          = 263 |       Field Length =  1       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| messageMD5Checksum    = 262 |       Field Length = 16       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 4: File Example Options Templates (Time Window and Checksum)




























Trammell, et al.            Standards Track                    [Page 51]

RFC 5655                      IPFIX Files                   October 2009


                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Template ID = 258       |         Field Count = 9       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Scope Field Count = 1      |0| sessionScope          = 267 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Length =  1       |0| exporterIPv4Address   = 130 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Length =  4       |0| collectorIPv4Address  = 211 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Length =  4       |0| exporterTransportPort = 217 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Length =  2       |0| col.TransportPort     = 216 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Length =  2       |0| col.TransportProtocol = 215 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Length =  1       |0| col.ProtocolVersion   = 214 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Length =  1       |0| minExportSeconds      = 264 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Length =  4       |0| maxExportSeconds      = 260 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Field Length =  4       |     set padding (2 octets)    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 5: File Example Options Templates, Continued (Session Details)

A.2.  Example Supplemental Options Data

  Following the Templates required to decode the File is the
  supplemental IPFIX Options information used to describe the File's
  contents and type information.  First comes the File Time Window
  record; it notes that the File contains data from 9 October 2007
  between 00:01:13 and 23:56:27 UTC, and appears as in Figure 6:
















Trammell, et al.            Standards Track                    [Page 52]

RFC 5655                      IPFIX Files                   October 2009


                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Set ID = 257         |          Length =  13         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | sessionScope  |           minFlowStartSeconds
  |       0       |         2007-10-09 00:01:13 UTC           . . .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  |            maxFlowEndSeconds
  . . .           |         2007-10-09 23:56:27 UTC           . . .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  |
  . . .           |
  +-+-+-+-+-+-+-+-+

                   Figure 6: File Example Time Window

  This is followed by information about how the data in the File was
  collected, in the Export Session Details record.  This record notes
  that the session stored in this File was sent via SCTP from an
  Exporter at 192.0.2.30 port 32769 to a Collector at 192.0.2.40 port
  4739, and contains messages exported between 00:01:57 and 23:57:12
  UTC on 9 October 2007; it is represented in its Data Set as in
  Figure 7:



























Trammell, et al.            Standards Track                    [Page 53]

RFC 5655                      IPFIX Files                   October 2009


                      1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Set ID = 258         |          Length =  27         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | sessionScope  |           exporterIPv4Address
  |       0       |               192.0.2.30                  . . .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  |           collectorIPv4Address
  . . .           |               192.0.2.31                  . . .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  |     exporterTransportPort     |   cTPort
  . . .           |             32769             |    4739   . . .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  |   cTProtocol  |  cPVersion    |
  . . .           |      132      |     10        |           . . .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               minExportSeconds                   |
  . . .     2007-10-09 00:01:57 UTC               |           . . .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               maxExportSeconds                   |
  . . .     2007-10-09 23:57:12 UTC               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 7: File Example Export Session Details

A.3.  Example Message Checksum

  Each IPFIX Message within the File is completed with a Message
  Checksum record; the structure of this record within its Data Set is
  as in Figure 8:

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Set ID = 259         |          Length =  24         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | messageScope  |                                               |
  |       0       |                                               |
  +-+-+-+-+-+-+-+-+                                               |
  |                       messageMD5Checksum                      |
  |           (16-byte MD5 checksum of options message)           |
  |                                                               |
  |                                                               |
  |               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               |              set padding (3 octets)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 8: File Example Message Checksum



Trammell, et al.            Standards Track                    [Page 54]

RFC 5655                      IPFIX Files                   October 2009


A.4.  File Example Data Set

  After the Templates and supplemental Options information comes the
  data itself.  The first record of an example Data Set is shown with
  its message and set headers in Figure 9:

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Version = 10              |         Length = 1296         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Export Time = 2007-10-09 00:01:57 UTC                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Sequence Number = 4                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   Observation Domain ID = 1                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Set ID = 256           |          Length = 1254         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      flowStartSeconds                         |
  |                    2007-10-09 00:01:13 UTC                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      sourceIPv4Address                        |
  |                          192.0.2.2                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    destinationIPv4Address                     |
  |                          192.0.2.3                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      sourceTransportPort      |   destinationTransportPort    |
  |             32770             |               80              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  protocolId   |             totalOctetCount
  |       6       |                  18000                    . . .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  |             totalPacketCount
  . . .           |                    65                     . . .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  |             (49 more records)
  . . .           |
  +-+-+-+-+-+-+-+-+

                     Figure 9: File Example Data Set

A.5.  Complete File Example

  Bringing together the examples above and adding message headers as
  appropriate, a hex dump of the first 317 bytes of the example File
  constructed above would appear as in the annotated Figure 10 below.



Trammell, et al.            Standards Track                    [Page 55]

RFC 5655                      IPFIX Files                   October 2009


    0:|00 0A 00 A0 47 0A B6 E5 00 00 00 00 00 00 00 01
     [^ first message header (length 160 bytes) -->
   16:|00 02 00 28 01 00 00 08 00 96 00 04 00 08 00 04
     [^ data template set -->
   32: 00 0C 00 04 00 07 00 02 00 0B 00 02 00 04 00 01

   48: 00 55 00 04 00 56 00 04|00 03 00 50 01 01 00 03
                             [^ opt template set -->
   64: 00 01 01 0B 00 01 01 09 00 04 01 05 00 04 01 03

   80: 00 02 00 01 01 07 00 01 01 06 00 10 01 02 00 09

   96: 00 01 01 0B 00 01 00 82 00 04 00 D3 00 04 00 D9

  112: 00 02 00 D8 00 02 00 D7 00 01 00 D0 00 01 01 08

  128: 00 04 01 04 00 04 00 00|01 03 00 18 00 73 F1 12
                             [^ checksum record -->
  144: D6 C7 58 BE 44 E6 60 06 4E 78 74 AE 7D 00 00 00

  176:|00 0A 00 50 47 0A B6 E5 00 00 00 01 00 00 00 01
     [^ second message header (length 80 bytes) -->
  192:|01 01 00 0E 00 47 0A B6 B9 47 0C 07 1B 00|01 02
     [^ time window rec -> [ session detail rec ^ -->
  208: 00 1C 00 C0 00 02 1E 0C 00 02 1F 80 01 12 83 84

  224: 0A 47 0A B6 E5 47 0C 07 48 00|01 03 00 18 00 3E
          [ message checksum record ^ -->
  240: 2B 37 08 CE B2 0E 30 11 32 12 4A 5F E3 AD DB 00

  256:|00 0A 05 10 47 0A B6 E5 00 00 00 06 00 00 00 01
     [^ third message header (length 1296 bytes) -->
  272:|01 00 04 E6|47 0A B6 B9 C0 00 02 02 C0 00 02 03
     [^ set hdr ][^ first data rec -->
  288: 80 02 00 50 06 00 00 46 50 00 00 00 41

                    Figure 10: File Example Hex Dump














Trammell, et al.            Standards Track                    [Page 56]

RFC 5655                      IPFIX Files                   October 2009


Appendix B.  Applicability of IPFIX Files to NetFlow V9 Flow Storage

  As the IPFIX Message format is nearly a superset of the NetFlow V9
  packet format, IPFIX Files can be used for store NetFlow V9 data
  relatively easily.  This section describes a method for doing so.
  The differences between the two protocols are outlined in
  Appendix B.1 below.  A simple, lightweight, message-for-message
  translation method for transforming V9 Packets into IPFIX Messages
  for storage within IPFIX Files is described in Appendix B.2.  An
  example of this translation method is given in Appendix B.3.

B.1.  Comparing NetFlow V9 to IPFIX

  With a few caveats, the IPFIX protocol is a superset of the NetFlow
  V9 protocol, having evolved from it largely through a process of
  feature addition to bring it into compliance with the IPFIX
  Requirements and the needs of stakeholders within the IPFIX Working
  Group.  This appendix outlines the differences between the two
  protocols.  It is informative only, and presented as an exploration
  of the two protocols to motivate the usage of IPFIX Files to store
  V9-collected flow data.

B.1.1.  Message Header Format

  Both NetFlow V9 and IPFIX use streams of messages prefixed by a
  message header, though the message header differs significantly
  between the two.  Note that in NetFlow V9 terminology, these messages
  are called packets, and messages must be delimited by datagram
  boundaries.  IPFIX does not have this constraint.  The header formats
  are detailed below:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Version Number          |            Count              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           sysUpTime                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           UNIX Secs                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Sequence Number                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Source ID                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 11: NetFlow V9 Packet Header Format





Trammell, et al.            Standards Track                    [Page 57]

RFC 5655                      IPFIX Files                   October 2009


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Version Number          |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Export Time                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Sequence Number                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Observation Domain ID                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 12: IPFIX Message Header Format

  Version Number:   The IPFIX Version Number MUST be 10, while the
     NetFlow V9 Version Number MUST be 9.

  Length vs. Count:   The Count field in the NetFlow V9 packet header
     counts records in the message (including Data and Template
     Records), while the Length field in the IPFIX Message Header
     counts octets in the message.  Note that this implies that NetFlow
     V9 collectors must rely on datagram boundaries or some other
     external delimiter; otherwise, they must completely consume a
     message before finding its end.

  System Uptime:   System uptime in milliseconds is exported in the
     NetFlow V9 packet header.  This field is not present in the IPFIX
     Message Header, and must be exported using an IPFIX Option if
     required.

  Export Time:   Aside from being called UNIX Secs in the NetFlow V9
     packet header specification, the export time in seconds since 1
     January 1970 at 0000 UTC appears in both NetFlow V9 and IPFIX
     message headers.

  Sequence Number:   The NetFlow V9 Sequence Number counts packets,
     while the IPFIX Sequence Number counts records in Data Sets.  Both
     are scoped to Observation Domain.

  Observation Domain ID:   Similarly, the NetFlow V9 sourceID has
     become the IPFIX Observation Domain ID.

B.1.2.  Set Header Format

  Set headers are identical between NetFlow V9 and IPFIX; that is, each
  Set (FlowSet in NetFlow V9 terminology) is prefixed by a 4-byte set
  header containing the Set ID and the length of the set in octets.




Trammell, et al.            Standards Track                    [Page 58]

RFC 5655                      IPFIX Files                   October 2009


  Note that the special Set IDs are different between IPFIX and NetFlow
  V9.  IPFIX Template Sets are identified by Set ID 2, while NetFlow V9
  Template FlowSets are identified by Set ID 0.  Similarly, IPFIX
  Options Template Sets are identified by Set ID 3, while NetFlow V9
  Options Template FlowSets are identified by Set ID 1.

  Both protocols reserve Set IDs 0-255, and use Set IDs 256-65535 for
  Data Sets (or FlowSets, in NetFlow V9 terminology).

B.1.3.  Template Format

  Template FlowSets in NetFlow V9 support a subset of functionality of
  those in IPFIX.  Specifically, NetFlow V9 does not have any support
  for vendor-specific Information Elements as IPFIX does, so there is
  no enterprise bit or facility for associating a private enterprise
  number with an information element.  NetFlow V9 also does not support
  variable-length fields.

  Options Template FlowSets in NetFlow V9 are similar to Options
  Template Sets in IPFIX subject to the same caveats.

B.1.4.  Information Model

  The NetFlow V9 field type definitions are a compatible subset of, and
  have evolved in concert with, the IPFIX Information Model.  IPFIX
  Information Element identifiers in the range 1-127 are defined by the
  IPFIX Information Model [RFC5102] to be compatible with the
  corresponding NetFlow V9 field types.

B.1.5.  Template Management

  NetFlow V9 has no concept of a Transport Session as in IPFIX, as
  NetFlow V9 was designed with a connectionless transport in mind.
  Template IDs are therefore scoped to an Exporting Process lifetime
  (i.e., an Exporting Process instance between restarts).  There is no
  facility in NetFlow V9 as in IPFIX for Template withdrawal or
  Template ID reuse.  Template retransmission at the Exporter works as
  in UDP-based IPFIX Exporting Processes.

B.1.6.  Transport

  In practice, though NetFlow V9 is designed to be transport-
  independent, it is transported only over UDP.  There is no facility
  as in IPFIX for full connection-oriented transport without datagram
  boundaries, due to the use of a record count field as opposed to a
  message length field in the packet header.  There is no support in
  NetFlow V9 for transport layer security via TLS or DTLS.




Trammell, et al.            Standards Track                    [Page 59]

RFC 5655                      IPFIX Files                   October 2009


B.2.  A Method for Transforming NetFlow V9 Messages to IPFIX

  This appendix describes a method for transforming NetFlow V9 Packets
  into IPFIX Messages, which can be used to store NetFlow V9 data in
  IPFIX Files.  A process transforming NetFlow V9 Packets into IPFIX
  Messages must handle the fact that NetFlow V9 Packets and IPFIX
  Messages are framed differently, that sequence numbering works
  differently, and that the NetFlow V9 field type definitions are only
  compatible with the IPFIX Information Model below Information Element
  identifier 128.

  For each incoming NetFlow V9 packet, the transformation process must:

  1.  Verify that the Version field of the packet header is 9.

  2.  Verify that the Sequence Number field of the packet header is
      valid.

  3.  Scan the packet to:

      1.  Verify that it contains no Templates with field types outside
          the range 1-127;

      2.  Verify that it contains no FlowSets with Set IDs between 2
          and 255 inclusive;

      3.  Verify that it contains the number of records in FlowSets,
          Template FlowSets, and Options Template FlowSets declared in
          the Count field of the packet header; and

      4.  Count the number of records in Data FlowSets for calculating
          the IPFIX Sequence Number.

  4.  Calculate a Sequence Number for each IPFIX Observation Domain by
      storing the last Sequence Number sent for each Observation Domain
      plus the count of records in Data FlowSets in the previous step
      to be sent as the Sequence Number for the IPFIX Message following
      this one within that Observation Domain.

  5.  Generate a new IPFIX Message Header with:

      1.  a Version field of 10;

      2.  a Length field with the number of octets in the IPFIX
          Message, generally available by subtracting 4 from the length
          of the NetFlow V9 packet as returned from the transport layer
          (accounting for the difference in message header lengths);




Trammell, et al.            Standards Track                    [Page 60]

RFC 5655                      IPFIX Files                   October 2009


      3.  the Sequence Number calculated for this message by the
          Sequence Number calculation step; and

      4.  Export Time and Observation Domain ID taken from the UNIX
          secs and Source ID fields of the NetFlow V9 packet header,
          respectively.

  6.  Copy each FlowSet from the Netflow V9 packet to the IPFIX Message
      after the header.  Replace Set ID 0 with Set ID 2 for Template
      Sets, and Set ID 1 with Set ID 3 for Options Template Sets.

  Note that this process loses system uptime information; if such
  information is required, the transformation process will have to
  export that information using IPFIX Options.  This may require a more
  sophisticated transformation process structure.

B.3.  NetFlow V9 Transformation Example

  The following two figures show a single NetFlow V9 packet with
  templates and the corresponding IPFIX Message, exporting a single
  flow record representing 60,303 octets sent from 192.0.2.2 to
  192.0.2.3.  This would be the third packet exported in Observation
  Domain 33 from the NetFlow V9 exporter, containing records starting
  with the 12th record (packet and record sequence numbers count from
  0).

  The ** symbol in the IPFIX example shows those fields that required
  modification from the NetFlow V9 packet by the transformation
  process.






















Trammell, et al.            Standards Track                    [Page 61]

RFC 5655                      IPFIX Files                   October 2009


                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Version = 9          |         Count = 2             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               Uptime = 3750405 ms (1:02:30.405)               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Export Time = 1171557627 epoch sec (2007-02-15 16:40:27)    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Sequence Number = 2                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Observation Domain ID = 33                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Set ID = 0          |       Set Length = 20         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Template ID = 256       |       Field Count = 3         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | IPV4_SRC_ADDR           =   8 |       Field Length = 4        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | IPV4_DST_ADDR           =  12 |       Field Length = 4        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | IN_BYTES                =   1 |       Field Length = 4        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Set ID = 256         |       Set Length = 16         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         IPV4_SRC_ADDR                         |
  |                           192.0.2.2                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         IPV4_DST_ADDR                         |
  |                           192.0.2.3                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           IN_BYTES                            |
  |                             60303                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 13: Example NetFlow V9 Packet















Trammell, et al.            Standards Track                    [Page 62]

RFC 5655                      IPFIX Files                   October 2009


                      1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | **       Version = 10         | **      Length = 52           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Export Time = 1171557627 epoch sec (2007-02-15 16:40:27)    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | **                   Sequence Number = 11                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   Observation Domain ID = 33                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | **         Set ID = 2         |       Set Length = 20         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Template ID = 256       |       Field Count  = 3        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| sourceIPv4Address      =  8 |       Field Length = 4        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| destinationIPv4Address = 12 |       Field Length = 4        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0| octetDeltaCount        =  1 |       Field Length = 4        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Set ID = 256         |       Set Length = 16         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       sourceIPv4Address                       |
  |                           192.0.2.2                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     destinationIPv4Address                    |
  |                           192.0.2.3                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        octetDeltaCount                        |
  |                             60303                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 14: Corresponding Example IPFIX Message

















Trammell, et al.            Standards Track                    [Page 63]

RFC 5655                      IPFIX Files                   October 2009


Authors' Addresses

  Brian Trammell
  Hitachi Europe
  c/o ETH Zurich
  Gloriastrasse 35
  8092 Zurich
  Switzerland
  Phone: +41 44 632 70 13
  EMail: [email protected]

  Elisa Boschi
  Hitachi Europe
  c/o ETH Zurich
  Gloriastrasse 35
  8092 Zurich
  Switzerland
  Phone: +41 44 632 70 57
  EMail: [email protected]

  Lutz Mark
  Fraunhofer IFAM
  Wiener Str. 12
  28359 Bremen
  Germany
  Phone: +49 421 2246206
  EMail: [email protected]

  Tanja Zseby
  Fraunhofer Institute for Open Communication Systems
  Kaiserin-Augusta-Allee 31
  10589 Berlin
  Germany
  Phone: +49 30 3463 7153
  EMail: [email protected]

  Arno Wagner
  ETH Zurich
  Gloriastrasse 35
  8092 Zurich
  Switzerland
  Phone: +41 44 632 70 04
  EMail: [email protected]








Trammell, et al.            Standards Track                    [Page 64]