Network Working Group                                        M. Upadhyay
Request for Comments: 5653                                        Google
Obsoletes: 2853                                               S. Malkani
Category: Standards Track                                  ActivIdentity
                                                            August 2009


     Generic Security Service API Version 2: Java Bindings Update

Abstract

  The Generic Security Services Application Program Interface (GSS-API)
  offers application programmers uniform access to security services
  atop a variety of underlying cryptographic mechanisms.  This document
  updates the Java bindings for the GSS-API that are specified in
  "Generic Security Service API Version 2 : Java Bindings" (RFC 2853).
  This document obsoletes RFC 2853 by making specific and incremental
  clarifications and corrections to it in response to identification of
  transcription errors and implementation experience.

  The GSS-API is described at a language-independent conceptual level
  in "Generic Security Service Application Program Interface Version 2,
  Update 1" (RFC 2743).  The GSS-API allows a caller application to
  authenticate a principal identity, to delegate rights to a peer, and
  to apply security services such as confidentiality and integrity on a
  per-message basis.  Examples of security mechanisms defined for GSS-
  API are "The Simple Public-Key GSS-API Mechanism" (RFC 2025) and "The
  Kerberos Version 5 Generic Security Service Application Program
  Interface (GSS-API) Mechanism: Version 2" (RFC 4121).

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.



Upadhyay & Malkani          Standards Track                     [Page 1]

RFC 5653                  Java GSS-API Update                August 2009


  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1. Introduction ....................................................6
  2. Conventions and Licenses ........................................7
  3. GSS-API Operational Paradigm ....................................8
  4. Additional Controls .............................................9
     4.1. Delegation ................................................10
     4.2. Mutual Authentication .....................................11
     4.3. Replay and Out-of-Sequence Detection ......................11
     4.4. Anonymous Authentication ..................................12
     4.5. Confidentiality ...........................................13
     4.6. Inter-process Context Transfer ............................13
     4.7. The Use of Incomplete Contexts ............................14
  5. Calling Conventions ............................................15
     5.1. Package Name ..............................................15
     5.2. Provider Framework ........................................15
     5.3. Integer Types .............................................16
     5.4. Opaque Data Types .........................................16
     5.5. Strings ...................................................16
     5.6. Object Identifiers ........................................16
     5.7. Object Identifier Sets ....................................17
     5.8. Credentials ...............................................17
     5.9. Contexts ..................................................19
     5.10. Authentication Tokens ....................................19
     5.11. Inter-Process Tokens .....................................20
     5.12. Error Reporting ..........................................20
          5.12.1. GSS Status Codes ..................................21
          5.12.2. Mechanism-Specific Status Codes ...................23
          5.12.3. Supplementary Status Codes ........................23
     5.13. Names ....................................................24
     5.14. Channel Bindings .........................................26
     5.15. Stream Objects ...........................................27
     5.16. Optional Parameters ......................................28
  6. Introduction to GSS-API Classes and Interfaces .................28
     6.1. GSSManager Class ..........................................28
     6.2. GSSName Interface .........................................29



Upadhyay & Malkani          Standards Track                     [Page 2]

RFC 5653                  Java GSS-API Update                August 2009


     6.3. GSSCredential Interface ...................................30
     6.4. GSSContext Interface ......................................30
     6.5. MessageProp Class .........................................31
     6.6. GSSException Class ........................................32
     6.7. Oid Class .................................................32
     6.8. ChannelBinding Class ......................................32
  7. Detailed GSS-API Class Description .............................33
     7.1. public abstract class GSSManager ..........................33
          7.1.1. Example Code .......................................34
          7.1.2. getInstance ........................................34
          7.1.3. getMechs ...........................................35
          7.1.4. getNamesForMech ....................................35
          7.1.5. getMechsForName ....................................35
          7.1.6. createName .........................................35
          7.1.7. createName .........................................36
          7.1.8. createName .........................................36
          7.1.9. createName .........................................37
          7.1.10. createCredential ..................................38
          7.1.11. createCredential ..................................38
          7.1.12. createCredential ..................................39
          7.1.13. createContext .....................................39
          7.1.14. createContext .....................................40
          7.1.15. createContext .....................................40
          7.1.16. addProviderAtFront ................................41
          7.1.17. Example Code ......................................41
          7.1.18. addProviderAtEnd ..................................42
          7.1.19. Example Code ......................................43
     7.2. public interface GSSName ..................................44
          7.2.1. Example Code .......................................44
          7.2.2. Static Constants ...................................45
          7.2.3. equals .............................................46
          7.2.4. equals .............................................46
          7.2.5. canonicalize .......................................46
          7.2.6. export .............................................47
          7.2.7. toString ...........................................47
          7.2.8. getStringNameType ..................................47
          7.2.9. isAnonymous ........................................47
          7.2.10. isMN ..............................................47
     7.3. public interface GSSCredential implements Cloneable .......47
          7.3.1. Example Code .......................................49
          7.3.2. Static Constants ...................................49
          7.3.3. dispose ............................................50
          7.3.4. getName ............................................50
          7.3.5. getName ............................................50
          7.3.6. getRemainingLifetime ...............................50
          7.3.7. getRemainingInitLifetime ...........................51
          7.3.8. getRemainingAcceptLifetime .........................51
          7.3.9. getUsage ...........................................51



Upadhyay & Malkani          Standards Track                     [Page 3]

RFC 5653                  Java GSS-API Update                August 2009


          7.3.10. getUsage ..........................................51
          7.3.11. getMechs ..........................................52
          7.3.12. add ...............................................52
          7.3.13. equals ............................................53
     7.4. public interface GSSContext ...............................53
          7.4.1. Example Code .......................................54
          7.4.2. Static Constants ...................................56
          7.4.3. initSecContext .....................................56
          7.4.4. Example Code .......................................57
          7.4.5. initSecContext .....................................58
          7.4.6. Example Code .......................................58
          7.4.7. acceptSecContext ...................................59
          7.4.8. Example Code .......................................60
          7.4.9. acceptSecContext ...................................61
          7.4.10. Example Code ......................................61
          7.4.11. isEstablished .....................................62
          7.4.12. dispose ...........................................62
          7.4.13. getWrapSizeLimit ..................................63
          7.4.14. wrap ..............................................63
          7.4.15. wrap ..............................................64
          7.4.16. unwrap ............................................65
          7.4.17. unwrap ............................................66
          7.4.18. getMIC ............................................67
          7.4.19. getMIC ............................................68
          7.4.20. verifyMIC .........................................68
          7.4.21. verifyMIC .........................................69
          7.4.22. export ............................................70
          7.4.23. requestMutualAuth .................................71
          7.4.24. requestReplayDet ..................................71
          7.4.25. requestSequenceDet ................................71
          7.4.26. requestCredDeleg ..................................71
          7.4.27. requestAnonymity ..................................72
          7.4.28. requestConf .......................................72
          7.4.29. requestInteg ......................................72
          7.4.30. requestLifetime ...................................73
          7.4.31. setChannelBinding .................................73
          7.4.32. getCredDelegState .................................73
          7.4.33. getMutualAuthState ................................73
          7.4.34. getReplayDetState .................................74
          7.4.35. getSequenceDetState ...............................74
          7.4.36. getAnonymityState .................................74
          7.4.37. isTransferable ....................................74
          7.4.38. isProtReady .......................................74
          7.4.39. getConfState ......................................75
          7.4.40. getIntegState .....................................75
          7.4.41. getLifetime .......................................75
          7.4.42. getSrcName ........................................75
          7.4.43. getTargName .......................................75



Upadhyay & Malkani          Standards Track                     [Page 4]

RFC 5653                  Java GSS-API Update                August 2009


          7.4.44. getMech ...........................................76
          7.4.45. getDelegCred ......................................76
          7.4.46. isInitiator .......................................76
     7.5. public class MessageProp ..................................76
          7.5.1. Constructors .......................................77
          7.5.2. getQOP .............................................77
          7.5.3. getPrivacy .........................................77
          7.5.4. getMinorStatus .....................................77
          7.5.5. getMinorString .....................................77
          7.5.6. setQOP .............................................78
          7.5.7. setPrivacy .........................................78
          7.5.8. isDuplicateToken ...................................78
          7.5.9. isOldToken .........................................78
          7.5.10. isUnseqToken ......................................78
          7.5.11. isGapToken ........................................78
          7.5.12. setSupplementaryStates ............................79
     7.6. public class ChannelBinding ...............................79
          7.6.1. Constructors .......................................80
          7.6.2. getInitiatorAddress ................................80
          7.6.3. getAcceptorAddress .................................80
          7.6.4. getApplicationData .................................81
          7.6.5. equals .............................................81
     7.7. public class Oid ..........................................81
          7.7.1. Constructors .......................................81
          7.7.2. toString ...........................................82
          7.7.3. equals .............................................82
          7.7.4. getDER .............................................82
          7.7.5. containedIn ........................................83
     7.8. public class GSSException extends Exception ...............83
          7.8.1. Static Constants ...................................83
          7.8.2. Constructors .......................................86
          7.8.3. getMajor ...........................................86
          7.8.4. getMinor ...........................................86
          7.8.5. getMajorString .....................................87
          7.8.6. getMinorString .....................................87
          7.8.7. setMinor ...........................................87
          7.8.8. toString ...........................................87
          7.8.9. getMessage .........................................87
  8. Sample Applications ............................................88
     8.1. Simple GSS Context Initiator ..............................88
     8.2. Simple GSS Context Acceptor ...............................92
  9. Security Considerations ........................................96
  10. Acknowledgments ...............................................96
  11. Changes since RFC 2853 ........................................97
  12. References ....................................................98
     12.1. Normative References .....................................98
     12.2. Informative References ...................................98




Upadhyay & Malkani          Standards Track                     [Page 5]

RFC 5653                  Java GSS-API Update                August 2009


1.  Introduction

  This document specifies Java language bindings for the Generic
  Security Services Application Programming Interface version 2 (GSS-
  API).  GSS-API version 2 is described in a language-independent
  format in RFC 2743 [GSSAPIv2-UPDATE].  The GSS-API allows a caller
  application to authenticate a principal identity, to delegate rights
  to a peer, and to apply security services such as confidentiality and
  integrity on a per-message basis.

  This document and its predecessor, RFC 2853 [RFC2853], leverage the
  work done by the working group (WG) in the area of RFC 2743
  [GSSAPIv2-UPDATE] and the C-bindings of RFC 2744 [GSSAPI-Cbind].
  Whenever appropriate, text has been used from the C-bindings document
  (RFC 2744) to explain generic concepts and provide direction to the
  implementors.

  The design goals of this API have been to satisfy all the
  functionality defined in RFC 2743 [GSSAPIv2-UPDATE] and to provide
  these services in an object-oriented method.  The specification also
  aims to satisfy the needs of both types of Java application
  developers, those who would like access to a "system-wide" GSS-API
  implementation, as well as those who would want to provide their own
  "custom" implementation.

  A system-wide implementation is one that is available to all
  applications in the form of a library package.  It may be the
  standard package in the Java runtime environment (JRE) being used or
  it may be additionally installed and accessible to any application
  via the CLASSPATH.

  A custom implementation of the GSS-API, on the other hand, is one
  that would, in most cases, be bundled with the application during
  distribution.  It is expected that such an implementation would be
  meant to provide for some particular need of the application, such as
  support for some specific mechanism.

  The design of this API also aims to provide a flexible framework to
  add and manage GSS-API mechanisms.  GSS-API leverages the Java
  Cryptography Architecture (JCA) provider model to support the
  plugability of mechanisms.  Mechanisms can be added on a system-wide
  basis, where all users of the framework will have them available.
  The specification also allows for the addition of mechanisms per-
  instance of the GSS-API.

  Lastly, this specification presents an API that will naturally fit
  within the operation environment of the Java platform.  Readers are
  assumed to be familiar with both the GSS-API and the Java platform.



Upadhyay & Malkani          Standards Track                     [Page 6]

RFC 5653                  Java GSS-API Update                August 2009


2.  Conventions and Licenses

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  The following license applies to all code segments included in this
  specification.  If code is extracted from this specification, please
  include the following text in the code:

/*
--   Copyright (c) 2009 IETF Trust and the persons identified as
--   authors of the code.  All rights reserved.
--
--   Redistribution and use in source and binary forms, with or without
--   modification, are permitted provided that the following conditions
--   are met:
--
--   - Redistributions of source code must retain the above copyright
--     notice, this list of conditions and the following disclaimer.
--
--   - Redistributions in binary form must reproduce the above copyright
--     notice, this list of conditions and the following disclaimer in
--     the documentation and/or other materials provided with the
--     distribution.
--
--   - Neither the name of Internet Society, IETF or IETF Trust, nor the
--     names of specific contributors, may be used to endorse or promote
--     products derived from this software without specific prior
--     written permission.
--
--   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
--   CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
--   INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
--   MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
--   DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
--   BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
--   TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
--   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
--   ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
--   OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
--   OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
--   POSSIBILITY OF SUCH DAMAGE.
--
--   This code is part of RFC 5653; see the RFC itself for full legal
--   notices.
*/



Upadhyay & Malkani          Standards Track                     [Page 7]

RFC 5653                  Java GSS-API Update                August 2009


3.  GSS-API Operational Paradigm

  "Generic Security Service Application Programming Interface, Version
  2" [GSSAPIv2-UPDATE] defines a generic security API to calling
  applications.  It allows a communicating application to authenticate
  the user associated with another application, to delegate rights to
  another application, and to apply security services such as
  confidentiality and integrity on a per-message basis.

  There are four stages to using GSS-API:

  1) The application acquires a set of credentials with which it may
     prove its identity to other processes.  The application's
     credentials vouch for its global identity, which may or may not be
     related to any local username under which it may be running.

  2) A pair of communicating applications establish a joint security
     context using their credentials.  The security context
     encapsulates shared state information, which is required in order
     that per-message security services may be provided.  Examples of
     state information that might be shared between applications as
     part of a security context are cryptographic keys and message
     sequence numbers.  As part of the establishment of a security
     context, the context initiator is authenticated to the responder,
     and may require that the responder is authenticated back to the
     initiator.  The initiator may optionally give the responder the
     right to initiate further security contexts, acting as an agent or
     delegate of the initiator.  This transfer of rights is termed
     "delegation", and is achieved by creating a set of credentials,
     similar to those used by the initiating application, but which may
     be used by the responder.

     A GSSContext object is used to establish and maintain the shared
     information that makes up the security context.  Certain
     GSSContext methods will generate a token, which applications treat
     as cryptographically protected, opaque data.  The caller of such a
     GSSContext method is responsible for transferring the token to the
     peer application, encapsulated if necessary in an application-to-
     application protocol.  On receipt of such a token, the peer
     application should pass it to a corresponding GSSContext method
     which will decode the token and extract the information, updating
     the security context state information accordingly.









Upadhyay & Malkani          Standards Track                     [Page 8]

RFC 5653                  Java GSS-API Update                August 2009


  3) Per-message services are invoked on a GSSContext object to apply
     either:

     integrity and data origin authentication, or

     confidentiality, integrity and data origin authentication

     to application data, which are treated by GSS-API as arbitrary
     octet-strings.  An application transmitting a message that it
     wishes to protect will call the appropriate GSSContext method
     (getMIC or wrap) to apply protection, and send the resulting token
     to the receiving application.  The receiver will pass the received
     token (and, in the case of data protected by getMIC, the
     accompanying message-data) to the corresponding decoding method of
     the GSSContext interface (verifyMIC or unwrap) to remove the
     protection and validate the data.

  4) At the completion of a communications session (which may extend
     across several transport connections), each application uses a
     GSSContext method to invalidate the security context and release
     any system or cryptographic resources held.  Multiple contexts may
     also be used (either successively or simultaneously) within a
     single communications association, at the discretion of the
     applications.

4.  Additional Controls

  This section discusses the optional services that a context initiator
  may request of the GSS-API before the context establishment.  Each of
  these services is requested by calling the appropriate mutator method
  in the GSSContext object before the first call to init is performed.
  Only the context initiator can request context flags.

  The optional services defined are:

     Delegation: The (usually temporary) transfer of rights from
     initiator to acceptor, enabling the acceptor to authenticate
     itself as an agent of the initiator.

     Mutual Authentication: In addition to the initiator authenticating
     its identity to the context acceptor, the context acceptor should
     also authenticate itself to the initiator.

     Replay Detection: In addition to providing message integrity
     services, GSSContext per-message operations of getMIC and wrap
     should include message numbering information to enable verifyMIC
     and unwrap to detect if a message has been duplicated.




Upadhyay & Malkani          Standards Track                     [Page 9]

RFC 5653                  Java GSS-API Update                August 2009


     Out-of-Sequence Detection: In addition to providing message
     integrity services, GSSContext per-message operations (getMIC and
     wrap) should include message sequencing information to enable
     verifyMIC and unwrap to detect if a message has been received out
     of sequence.

     Anonymous Authentication: The establishment of the security
     context should not reveal the initiator's identity to the context
     acceptor.

  Some mechanisms may not support all optional services, and some
  mechanisms may only support some services in conjunction with others.
  The GSSContext interface offers query methods to allow the
  verification by the calling application of which services will be
  available from the context when the establishment phase is complete.
  In general, if the security mechanism is capable of providing a
  requested service, it should do so even if additional services must
  be enabled in order to provide the requested service.  If the
  mechanism is incapable of providing a requested service, it should
  proceed without the service leaving the application to abort the
  context establishment process if it considers the requested service
  to be mandatory.

  Some mechanisms may specify that support for some services is
  optional, and that implementors of the mechanism need not provide it.
  This is most commonly true of the confidentiality service, often
  because of legal restrictions on the use of data-encryption, but may
  apply to any of the services.  Such mechanisms are required to send
  at least one token from acceptor to initiator during context
  establishment when the initiator indicates a desire to use such a
  service, so that the initiating GSS-API can correctly indicate
  whether the service is supported by the acceptor's GSS-API.

4.1.  Delegation

  The GSS-API allows delegation to be controlled by the initiating
  application via the requestCredDeleg method before the first call to
  init has been issued.  Some mechanisms do not support delegation, and
  for such mechanisms, attempts by an application to enable delegation
  are ignored.

  The acceptor of a security context, for which the initiator enabled
  delegation, can check if delegation was enabled by using the
  getCredDelegState method of the GSSContext interface.  In cases when
  it is enabled, the delegated credential object can be obtained by
  calling the getDelegCred method.  The obtained GSSCredential object
  may then be used to initiate subsequent GSS-API security contexts as
  an agent or delegate of the initiator.  If the original initiator's



Upadhyay & Malkani          Standards Track                    [Page 10]

RFC 5653                  Java GSS-API Update                August 2009


  identity is "A" and the delegate's identity is "B", then, depending
  on the underlying mechanism, the identity embodied by the delegated
  credential may be either "A" or "B acting for A".

  For many mechanisms that support delegation, a simple boolean does
  not provide enough control.  Examples of additional aspects of
  delegation control that a mechanism might provide to an application
  are duration of delegation, network addresses from which delegation
  is valid, and constraints on the tasks that may be performed by a
  delegate.  Such controls are presently outside the scope of the GSS-
  API.  GSS-API implementations supporting mechanisms offering
  additional controls should provide extension routines that allow
  these controls to be exercised (perhaps by modifying the initiator's
  GSS-API credential object prior to its use in establishing a
  context).  However, the simple delegation control provided by GSS-API
  should always be able to override other mechanism-specific delegation
  controls.  If the application instructs the GSSContext object that
  delegation is not desired, then the implementation must not permit
  delegation to occur.  This is an exception to the general rule that a
  mechanism may enable services even if they are not requested --
  delegation may only be provided at the explicit request of the
  application.

4.2.  Mutual Authentication

  Usually, a context acceptor will require that a context initiator
  authenticate itself so that the acceptor may make an access-control
  decision prior to performing a service for the initiator.  In some
  cases, the initiator may also request that the acceptor authenticate
  itself.  GSS-API allows the initiating application to request this
  mutual authentication service by calling the requestMutualAuth method
  of the GSSContext interface with a "true" parameter before making the
  first call to init.  The initiating application is informed as to
  whether or not the context acceptor has authenticated itself.  Note
  that some mechanisms may not support mutual authentication, and other
  mechanisms may always perform mutual authentication, whether or not
  the initiating application requests it.  In particular, mutual
  authentication may be required by some mechanisms in order to support
  replay or out-of-sequence message detection, and for such mechanisms,
  a request for either of these services will automatically enable
  mutual authentication.

4.3.  Replay and Out-of-Sequence Detection

  The GSS-API may provide detection of mis-ordered messages once a
  security context has been established.  Protection may be applied to
  messages by either application, by calling either getMIC or wrap




Upadhyay & Malkani          Standards Track                    [Page 11]

RFC 5653                  Java GSS-API Update                August 2009


  methods of the GSSContext interface, and verified by the peer
  application by calling verifyMIC or unwrap for the peer's GSSContext
  object.

  The getMIC method calculates a cryptographic checksum of an
  application message, and returns that checksum in a token.  The
  application should pass both the token and the message to the peer
  application, which presents them to the verifyMIC method of the
  peer's GSSContext object.

  The wrap method calculates a cryptographic checksum of an application
  message, and places both the checksum and the message inside a single
  token.  The application should pass the token to the peer
  application, which presents it to the unwrap method of the peer's
  GSSContext object to extract the message and verify the checksum.

  Either pair of routines may be capable of detecting out-of-sequence
  message delivery or the duplication of messages.  Details of such
  mis-ordered messages are indicated through supplementary query
  methods of the MessageProp object that is filled in by each of these
  routines.

  A mechanism need not maintain a list of all tokens that have been
  processed in order to support these status codes.  A typical
  mechanism might retain information about only the most recent "N"
  tokens processed, allowing it to distinguish duplicates and missing
  tokens within the most recent "N" messages; the receipt of a token
  older than the most recent "N" would result in the isOldToken method
  of the instance of MessageProp to return "true".

4.4.  Anonymous Authentication

  In certain situations, an application may wish to initiate the
  authentication process to authenticate a peer, without revealing its
  own identity.  As an example, consider an application providing
  access to a database containing medical information and offering
  unrestricted access to the service.  A client of such a service might
  wish to authenticate the service (in order to establish trust in any
  information retrieved from it), but might not wish the service to be
  able to obtain the client's identity (perhaps due to privacy concerns
  about the specific inquiries, or perhaps simply to avoid being placed
  on mailing-lists).

  In normal use of the GSS-API, the initiator's identity is made
  available to the acceptor as a result of the context establishment
  process.  However, context initiators may request that their identity
  not be revealed to the context acceptor.  Many mechanisms do not
  support anonymous authentication, and for such mechanisms, the



Upadhyay & Malkani          Standards Track                    [Page 12]

RFC 5653                  Java GSS-API Update                August 2009


  request will not be honored.  An authentication token will still be
  generated, but the application is always informed if a requested
  service is unavailable, and has the option to abort context
  establishment if anonymity is valued above the other security
  services that would require a context to be established.

  In addition to informing the application that a context is
  established anonymously (via the isAnonymous method of the GSSContext
  class), the getSrcName method of the acceptor's GSSContext object
  will, for such contexts, return a reserved internal-form name,
  defined by the implementation.

  The toString method for a GSSName object representing an anonymous
  entity will return a printable name.  The returned value will be
  syntactically distinguishable from any valid principal name supported
  by the implementation.  The associated name-type object identifier
  will be an oid representing the value of NT_ANONYMOUS.  This name-
  type oid will be defined as a public, static Oid object of the
  GSSName class.  The printable form of an anonymous name should be
  chosen such that it implies anonymity, since this name may appear in,
  for example, audit logs.  For example, the string "<anonymous>" might
  be a good choice, if no valid printable names supported by the
  implementation can begin with "<" and end with ">".

  When using the equal method of the GSSName interface, and one of the
  operands is a GSSName instance representing an anonymous entity, the
  method must return "false".

4.5.  Confidentiality

  If a GSSContext supports the confidentiality service, wrap method may
  be used to encrypt application messages.  Messages are selectively
  encrypted, under the control of the setPrivacy method of the
  MessageProp object used in the wrap method.

4.6.  Inter-process Context Transfer

  GSS-APIv2 provides functionality that allows a security context to be
  transferred between processes on a single machine.  These are
  implemented using the export method of GSSContext and a byte array
  constructor of the same class.  The most common use for such a
  feature is a client-server design where the server is implemented as
  a single process that accepts incoming security contexts, which then
  launches child processes to deal with the data on these contexts.  In
  such a design, the child processes must have access to the security
  context object created within the parent so that they can use per-
  message protection services and delete the security context when the
  communication session ends.



Upadhyay & Malkani          Standards Track                    [Page 13]

RFC 5653                  Java GSS-API Update                August 2009


  Since the security context data structure is expected to contain
  sequencing information, it is impractical in general to share a
  context between processes.  Thus, the GSSContext interface provides
  an export method that the process, which currently owns the context,
  can call to declare that it has no intention to use the context
  subsequently, and to create an inter-process token containing
  information needed by the adopting process to successfully recreate
  the context.  After successful completion of export, the original
  security context is made inaccessible to the calling process by GSS-
  API, and any further usage of this object will result in failures.
  The originating process transfers the inter-process token to the
  adopting process, which creates a new GSSContext object using the
  byte array constructor.  The properties of the context are equivalent
  to that of the original context.

  The inter-process token may contain sensitive data from the original
  security context (including cryptographic keys).  Applications using
  inter-process tokens to transfer security contexts must take
  appropriate steps to protect these tokens in transit.

  Implementations are not required to support the inter-process
  transfer of security contexts.  Calling the isTransferable method of
  the GSSContext interface will indicate if the context object is
  transferable.

4.7.  The Use of Incomplete Contexts

  Some mechanisms may allow the per-message services to be used before
  the context establishment process is complete.  For example, a
  mechanism may include sufficient information in its initial context-
  level tokens for the context acceptor to immediately decode messages
  protected with wrap or getMIC.  For such a mechanism, the initiating
  application need not wait until subsequent context-level tokens have
  been sent and received before invoking the per-message protection
  services.

  An application can invoke the isProtReady method of the GSSContext
  class to determine if the per-message services are available in
  advance of complete context establishment.  Applications wishing to
  use per-message protection services on partially established contexts
  should query this method before attempting to invoke wrap or getMIC.










Upadhyay & Malkani          Standards Track                    [Page 14]

RFC 5653                  Java GSS-API Update                August 2009


5.  Calling Conventions

  Java provides the implementors with not just a syntax for the
  language, but also an operational environment.  For example, memory
  is automatically managed and does not require application
  intervention.  These language features have allowed for a simpler API
  and have led to the elimination of certain GSS-API functions.

  Moreover, the JCA defines a provider model that allows for
  implementation-independent access to security services.  Using this
  model, applications can seamlessly switch between different
  implementations and dynamically add new services.  The GSS-API
  specification leverages these concepts by the usage of providers for
  the mechanism implementations.

5.1.  Package Name

  The classes and interfaces defined in this document reside in the
  package called "org.ietf.jgss".  Applications that wish to make use
  of this API should import this package name as shown in section 8.

5.2.  Provider Framework

  The Java security API's use a provider architecture that allows
  applications to be implementation independent and security API
  implementations to be modular and extensible.  The
  java.security.Provider class is an abstract class that a vendor
  extends.  This class maps various properties that represent different
  security services that are available to the names of the actual
  vendor classes that implement those services.  When requesting a
  service, an application simply specifies the desired provider and the
  API delegates the request to service classes available from that
  provider.

  Using the Java security provider model insulates applications from
  implementation details of the services they wish to use.
  Applications can switch between providers easily and new providers
  can be added as needed, even at runtime.

  The GSS-API may use providers to find components for specific
  underlying security mechanisms.  For instance, a particular provider
  might contain components that will allow the GSS-API to support the
  Kerberos v5 mechanism [RFC4121] and another might contain components
  to support the Simple Public-Key GSS-API Mechanism (SPKM) [RFC2025].
  By delegating mechanism-specific functionality to the components
  obtained from providers, the GSS-API can be extended to support an
  arbitrary list of mechanism.




Upadhyay & Malkani          Standards Track                    [Page 15]

RFC 5653                  Java GSS-API Update                August 2009


  How the GSS-API locates and queries these providers is beyond the
  scope of this document and is being deferred to a Service Provider
  Interface (SPI) specification.  The availability of such an SPI
  specification is not mandatory for the adoption of this API
  specification nor is it mandatory to use providers in the
  implementation of a GSS-API framework.  However, by using the
  provider framework together with an SPI specification, one can create
  an extensible and implementation-independent GSS-API framework.

5.3.  Integer Types

  All numeric values are declared as "int" primitive Java type.  The
  Java specification guarantees that this will be a 32-bit two's
  complement signed number.

  Throughout this API, the "boolean" primitive Java type is used
  wherever a boolean value is required or returned.

5.4.  Opaque Data Types

  Java byte arrays are used to represent opaque data types that are
  consumed and produced by the GSS-API in the form of tokens.  Java
  arrays contain a length field that enables the users to easily
  determine their size.  The language has automatic garbage collection
  that alleviates the need by developers to release memory and
  simplifies buffer ownership issues.

5.5.  Strings

  The String object will be used to represent all textual data.  The
  Java String object transparently treats all characters as two-byte
  Unicode characters, which allows support for many locals.  All
  routines returning or accepting textual data will use the String
  object.

5.6.  Object Identifiers

  An Oid object will be used to represent Universal Object Identifiers
  (Oids).  Oids are ISO-defined, hierarchically globally interpretable
  identifiers used within the GSS-API framework to identify security
  mechanisms and name formats.  The Oid object can be created from a
  string representation of its dot notation (e.g., "1.3.6.1.5.6.2") as
  well as from its ASN.1 DER encoding.  Methods are also provided to
  test equality and provide the DER representation for the object.







Upadhyay & Malkani          Standards Track                    [Page 16]

RFC 5653                  Java GSS-API Update                August 2009


  An important feature of the Oid class is that its instances are
  immutable -- i.e., there are no methods defined that allow one to
  change the contents of an Oid.  This property allows one to treat
  these objects as "statics" without the need to perform copies.

  Certain routines allow the usage of a default oid.  A "null" value
  can be used in those cases.

5.7.  Object Identifier Sets

  The Java bindings represent object identifier sets as arrays of Oid
  objects.  All Java arrays contain a length field, which allows for
  easy manipulation and reference.

  In order to support the full functionality of RFC 2743 [GSSAPIv2-
  UPDATE], the Oid class includes a method that checks for existence of
  an Oid object within a specified array.  This is equivalent in
  functionality to gss_test_oid_set_member.  The use of Java arrays and
  Java's automatic garbage collection has eliminated the need for the
  following routines: gss_create_empty_oid_set, gss_release_oid_set,
  and gss_add_oid_set_member.  Java GSS-API implementations will not
  contain them.  Java's automatic garbage collection and the immutable
  property of the Oid object eliminates the memory management issues of
  the C counterpart.

  Whenever a default value for an Object Identifier Set is required, a
  "null" value can be used.  Please consult the detailed method
  description for details.

5.8.  Credentials

  GSS-API credentials are represented by the GSSCredential interface.
  The interface contains several constructs to allow for the creation
  of most common credential objects for the initiator and the acceptor.
  Comparisons are performed using the interface's "equals" method.  The
  following general description of GSS-API credentials is included from
  the C-bindings specification:

     GSS-API credentials can contain mechanism-specific principal
     authentication data for multiple mechanisms.  A GSS-API credential
     is composed of a set of credential-elements, each of which is
     applicable to a single mechanism.  A credential may contain at
     most one credential-element for each supported mechanism.  A
     credential-element identifies the data needed by a single
     mechanism to authenticate a single principal, and conceptually
     contains two credential-references that describe the actual
     mechanism-specific authentication data, one to be used by GSS-API
     for initiating contexts, and one to be used for accepting



Upadhyay & Malkani          Standards Track                    [Page 17]

RFC 5653                  Java GSS-API Update                August 2009


     contexts.  For mechanisms that do not distinguish between acceptor
     and initiator credentials, both references would point to the same
     underlying mechanism-specific authentication data.

  Credentials describe a set of mechanism-specific principals, and give
  their holder the ability to act as any of those principals.  All
  principal identities asserted by a single GSS-API credential should
  belong to the same entity, although enforcement of this property is
  an implementation-specific matter.  A single GSSCredential object
  represents all the credential elements that have been acquired.

  The creation of an GSSContext object allows the value of "null" to be
  specified as the GSSCredential input parameter.  This will indicate a
  desire by the application to act as a default principal.  While
  individual GSS-API implementations are free to determine such default
  behavior as appropriate to the mechanism, the following default
  behavior by these routines is recommended for portability:

  For the initiator side of the context:

  1) If there is only a single principal capable of initiating security
     contexts for the chosen mechanism that the application is
     authorized to act on behalf of, then that principal shall be used;
     otherwise,

  2) If the platform maintains a concept of a default network-identity
     for the chosen mechanism, and if the application is authorized to
     act on behalf of that identity for the purpose of initiating
     security contexts, then the principal corresponding to that
     identity shall be used; otherwise,

  3) If the platform maintains a concept of a default local identity,
     and provides a means to map local identities into network-
     identities for the chosen mechanism, and if the application is
     authorized to act on behalf of the network-identity image of the
     default local identity for the purpose of initiating security
     contexts using the chosen mechanism, then the principal
     corresponding to that identity shall be used; otherwise,

  4) A user-configurable default identity should be used.

  For the acceptor side of the context:

  1) If there is only a single authorized principal identity capable of
     accepting security contexts for the chosen mechanism, then that
     principal shall be used; otherwise,





Upadhyay & Malkani          Standards Track                    [Page 18]

RFC 5653                  Java GSS-API Update                August 2009


  2) If the mechanism can determine the identity of the target
     principal by examining the context-establishment token processed
     during the accept method, and if the accepting application is
     authorized to act as that principal for the purpose of accepting
     security contexts using the chosen mechanism, then that principal
     identity shall be used; otherwise,

  3) If the mechanism supports context acceptance by any principal, and
     if mutual authentication was not requested, any principal that the
     application is authorized to accept security contexts under using
     the chosen mechanism may be used; otherwise,

  4) A user-configurable default identity shall be used.

  The purpose of the above rules is to allow security contexts to be
  established by both initiator and acceptor using the default behavior
  whenever possible.  Applications requesting default behavior are
  likely to be more portable across mechanisms and implementations than
  ones that instantiate an GSSCredential object representing a specific
  identity.

5.9.  Contexts

  The GSSContext interface is used to represent one end of a GSS-API
  security context, storing state information appropriate to that end
  of the peer communication, including cryptographic state information.
  The instantiation of the context object is done differently by the
  initiator and the acceptor.  After the context has been instantiated,
  the initiator may choose to set various context options that will
  determine the characteristics of the desired security context.  When
  all the application-desired characteristics have been set, the
  initiator will call the initSecContext method, which will produce a
  token for consumption by the peer's acceptSecContext method.  It is
  the responsibility of the application to deliver the authentication
  token(s) between the peer applications for processing.  Upon
  completion of the context-establishment phase, context attributes can
  be retrieved, by both the initiator and acceptor, using the accessor
  methods.  These will reflect the actual attributes of the established
  context.  At this point, the context can be used by the application
  to apply cryptographic services to its data.

5.10.  Authentication Tokens

  A token is a caller-opaque type that GSS-API uses to maintain
  synchronization between each end of the GSS-API security context.
  The token is a cryptographically protected octet-string, generated by





Upadhyay & Malkani          Standards Track                    [Page 19]

RFC 5653                  Java GSS-API Update                August 2009


  the underlying mechanism at one end of a GSS-API security context for
  use by the peer mechanism at the other end.  Encapsulation (if
  required) within the application protocol and transfer of the token
  are the responsibility of the peer applications.

  Java GSS-API uses byte arrays to represent authentication tokens.
  Overloaded methods exist that allow the caller to supply input and
  output streams that will be used for the reading and writing of the
  token data.

5.11.  Inter-Process Tokens

  Certain GSS-API routines are intended to transfer data between
  processes in multi-process programs.  These routines use a caller-
  opaque octet-string, generated by the GSS-API in one process for use
  by the GSS-API in another process.  The calling application is
  responsible for transferring such tokens between processes.  Note
  that, while GSS-API implementors are encouraged to avoid placing
  sensitive information within inter-process tokens, or to
  cryptographically protect them, many implementations will be unable
  to avoid placing key material or other sensitive data within them.
  It is the application's responsibility to ensure that inter-process
  tokens are protected in transit, and transferred only to processes
  that are trustworthy.  An inter-process token is represented using a
  byte array emitted from the export method of the GSSContext
  interface.  The receiver of the inter-process token would initialize
  an GSSContext object with this token to create a new context.  Once a
  context has been exported, the GSSContext object is invalidated and
  is no longer available.

5.12.  Error Reporting

  RFC 2743 [GSSAPIv2-UPDATE] defined the usage of major and minor
  status values for the signaling of GSS-API errors.  The major code,
  also called GSS status code, is used to signal errors at the GSS-API
  level, independent of the underlying mechanism(s).  The minor status
  value or Mechanism status code, is a mechanism-defined error value
  indicating a mechanism-specific error code.

  Java GSS-API uses exceptions implemented by the GSSException class to
  signal both minor and major error values.  Both mechanism-specific
  errors and GSS-API level errors are signaled through instances of
  this class.  The usage of exceptions replaces the need for major and
  minor codes to be used within the API calls.  The GSSException class
  also contains methods to obtain textual representations for both the
  major and minor values, which is equivalent to the functionality of
  gss_display_status.




Upadhyay & Malkani          Standards Track                    [Page 20]

RFC 5653                  Java GSS-API Update                August 2009


5.12.1.  GSS Status Codes

  GSS status codes indicate errors that are independent of the
  underlying mechanism(s) used to provide the security service.  The
  errors that can be indicated via a GSS status code are generic API
  routine errors (errors that are defined in the GSS-API
  specification).  These bindings take advantage of the Java exceptions
  mechanism, thus, eliminating the need for calling errors.

  A GSS status code indicates a single fatal generic API error from the
  routine that has thrown the GSSException.  Using exceptions announces
  that a fatal error has occurred during the execution of the method.
  The GSS-API operational model also allows for the signaling of
  supplementary status information from the per-message calls.  These
  need to be handled as return values since using exceptions is not
  appropriate for informatory or warning-like information.  The methods
  that are capable of producing supplementary information are the two
  per-message methods GSSContext.verifyMIC() and GSSContext.unwrap().
  These methods fill the supplementary status codes in the MessageProp
  object that was passed in.

  A GSSException object, along with providing the functionality for
  setting of the various error codes and translating them into textual
  representation, also contains the definitions of all the numeric
  error values.  The following table lists the definitions of error
  codes:

     Table: GSS Status Codes

     Name                   Value   Meaning

     BAD_BINDINGS             1     Incorrect channel bindings were
                                    supplied.

     BAD_MECH                 2     An unsupported mechanism
                                    was requested.

     BAD_NAME                 3     An invalid name was supplied.

     BAD_NAMETYPE             4     A supplied name was of an
                                    unsupported type.

     BAD_STATUS               5     An invalid status code was
                                    supplied.

     BAD_MIC                  6     A token had an invalid MIC.

     CONTEXT_EXPIRED          7     The context has expired.



Upadhyay & Malkani          Standards Track                    [Page 21]

RFC 5653                  Java GSS-API Update                August 2009


     CREDENTIALS_EXPIRED      8     The referenced credentials
                                    have expired.

     DEFECTIVE_CREDENTIAL     9     A supplied credential was
                                    invalid.

     DEFECTIVE_TOKEN         10     A supplied token was invalid.

     FAILURE                 11     Miscellaneous failure,
                                    unspecified at the GSS-API
                                    level.

     NO_CONTEXT              12     Invalid context has been
                                    supplied.

     NO_CRED                 13     No credentials were supplied, or
                                    the credentials were unavailable
                                    or inaccessible.

     BAD_QOP                 14     The quality-of-protection (QOP)
                                    requested could not be provided.

     UNAUTHORIZED            15     The operation is forbidden by
                                    the local security policy.

     UNAVAILABLE             16     The operation or option is
                                    unavailable.

     DUPLICATE_ELEMENT       17     The requested credential
                                    element already exists.

     NAME_NOT_MN             18     The provided name was not a
                                    mechanism name.

     The following four status codes (DUPLICATE_TOKEN, OLD_TOKEN,
     UNSEQ_TOKEN, and GAP_TOKEN) are contained in a GSSException
     only if detected during context establishment, in which case it
     is a fatal error. (During per-message calls, these values are
     indicated as supplementary information contained in the
     MessageProp object.) They are:

     DUPLICATE_TOKEN         19     The token was a duplicate of an
                                    earlier version.


     OLD_TOKEN               20     The token's validity period has
                                    expired.




Upadhyay & Malkani          Standards Track                    [Page 22]

RFC 5653                  Java GSS-API Update                August 2009


     UNSEQ_TOKEN             21     A later token has already been
                                    processed.

     GAP_TOKEN               22     The expected token was not
                                    received.

  The GSS major status code of FAILURE is used to indicate that the
  underlying mechanism detected an error for which no specific GSS
  status code is defined.  The mechanism-specific status code can
  provide more details about the error.

  The different major status codes that can be contained in the
  GSSException object thrown by the methods in this specification are
  the same as the major status codes returned by the corresponding
  calls in RFC 2743 [GSSAPIv2-UPDATE].

5.12.2.  Mechanism-Specific Status Codes

  Mechanism-specific status codes are communicated in two ways, they
  are part of any GSSException thrown from the mechanism-specific layer
  to signal a fatal error, or they are part of the MessageProp object
  that the per-message calls use to signal non-fatal errors.

  A default value of 0 in either the GSSException object or the
  MessageProp object will be used to represent the absence of any
  mechanism-specific status code.

5.12.3.  Supplementary Status Codes

  Supplementary status codes are confined to the per-message methods of
  the GSSContext interface.  Because of the informative nature of these
  errors it is not appropriate to use exceptions to signal them.
  Instead, the per-message operations of the GSSContext interface
  return these values in a MessageProp object.

  The MessageProp class defines query methods that return boolean
  values indicating the following supplementary states:

     Table: Supplementary Status Methods

     Method Name        Meaning when "true" is returned

     isDuplicateToken   The token was a duplicate of an
                        earlier token.

     isOldToken         The token's validity period has
                        expired.




Upadhyay & Malkani          Standards Track                    [Page 23]

RFC 5653                  Java GSS-API Update                August 2009


     isUnseqToken       A later token has already been
                        processed.

     isGapToken         An expected per-message token was
                        not received.

  A "true" return value for any of the above methods indicates that the
  token exhibited the specified property.  The application must
  determine the appropriate course of action for these supplementary
  values.  They are not treated as errors by the GSS-API.

5.13.  Names

  A name is used to identify a person or entity.  GSS-API authenticates
  the relationship between a name and the entity claiming the name.

  Since different authentication mechanisms may employ different
  namespaces for identifying their principals, GSS-API's naming support
  is necessarily complex in multi-mechanism environments (or even in
  some single-mechanism environments where the underlying mechanism
  supports multiple namespaces).

  Two distinct conceptual representations are defined for names:

  1) A GSS-API form represented by implementations of the GSSName
     interface: A single GSSName object may contain multiple names from
     different namespaces, but all names should refer to the same
     entity.  An example of such an internal name would be the name
     returned from a call to the getName method of the GSSCredential
     interface, when applied to a credential containing credential
     elements for multiple authentication mechanisms employing
     different namespaces.  This GSSName object will contain a distinct
     name for the entity for each authentication mechanism.

     For GSS-API implementations supporting multiple namespaces,
     GSSName implementations must contain sufficient information to
     determine the namespace to which each primitive name belongs.

  2) Mechanism-specific contiguous byte array and string forms:
     Different GSSName initialization methods are provided to handle
     both byte array and string formats and to accommodate various
     calling applications and name types.  These formats are capable of
     containing only a single name (from a single namespace).
     Contiguous string names are always accompanied by an object
     identifier specifying the namespace to which the name belongs, and
     their format is dependent on the authentication mechanism that
     employs that name.  The string name forms are assumed to be
     printable, and may therefore be used by GSS-API applications for



Upadhyay & Malkani          Standards Track                    [Page 24]

RFC 5653                  Java GSS-API Update                August 2009


     communication with their users.  The byte array name formats are
     assumed to be in non-printable formats (e.g., the byte array
     returned from the export method of the GSSName interface).

  A GSSName object can be converted to a contiguous representation by
  using the toString method.  This will guarantee that the name will be
  converted to a printable format.  Different initialization methods in
  the GSSName interface are defined allowing support for multiple
  syntaxes for each supported namespace, and allowing users the freedom
  to choose a preferred name representation.  The toString method
  should use an implementation-chosen printable syntax for each
  supported name type.  To obtain the printable name type,
  getStringNameType method can be used.

  There is no guarantee that calling the toString method on the GSSName
  interface will produce the same string form as the original imported
  string name.  Furthermore, it is possible that the name was not even
  constructed from a string representation.  The same applies to
  namespace identifiers, which may not necessarily survive unchanged
  after a journey through the internal name form.  An example of this
  might be a mechanism that authenticates X.500 names, but provides an
  algorithmic mapping of Internet DNS names into X.500.  That
  mechanism's implementation of GSSName might, when presented with a
  DNS name, generate an internal name that contained both the original
  DNS name and the equivalent X.500 name.  Alternatively, it might only
  store the X.500 name.  In the latter case, the toString method of
  GSSName would most likely generate a printable X.500 name, rather
  than the original DNS name.

  The context acceptor can obtain a GSSName object representing the
  entity performing the context initiation (through the usage of
  getSrcName method).  Since this name has been authenticated by a
  single mechanism, it contains only a single name (even if the
  internal name presented by the context initiator to the GSSContext
  object had multiple components).  Such names are termed internal-
  mechanism names (or MNs), and the names emitted by GSSContext
  interface in the getSrcName and getTargName are always of this type.
  Since some applications may require MNs without wanting to incur the
  overhead of an authentication operation, creation methods are
  provided that take not only the name buffer and name type, but also
  the mechanism oid for which this name should be created.  When
  dealing with an existing GSSName object, the canonicalize method may
  be invoked to convert a general internal name into an MN.

  GSSName objects can be compared using their equal method, which
  returns "true" if the two names being compared refer to the same
  entity.  This is the preferred way to perform name comparisons
  instead of using the printable names that a given GSS-API



Upadhyay & Malkani          Standards Track                    [Page 25]

RFC 5653                  Java GSS-API Update                August 2009


  implementation may support.  Since GSS-API assumes that all primitive
  names contained within a given internal name refer to the same
  entity, equal can return "true" if the two names have at least one
  primitive name in common.  If the implementation embodies knowledge
  of equivalence relationships between names taken from different
  namespaces, this knowledge may also allow successful comparisons of
  internal names containing no overlapping primitive elements.

  When used in large access control lists, the overhead of creating a
  GSSName object on each name and invoking the equal method on each
  name from the Access Control List (ACL) may be prohibitive.  As an
  alternative way of supporting this case, GSS-API defines a special
  form of the contiguous byte array name, which may be compared
  directly (byte by byte).  Contiguous names suitable for comparison
  are generated by the export method.  Exported names may be re-
  imported by using the byte array constructor and specifying the
  NT_EXPORT_NAME as the name type object identifier.  The resulting
  GSSName name will also be a MN.

  The GSSName interface defines public static Oid objects representing
  the standard name types.  Structurally, an exported name object
  consists of a header containing an OID identifying the mechanism that
  authenticated the name, and a trailer containing the name itself,
  where the syntax of the trailer is defined by the individual
  mechanism specification.  Detailed description of the format is
  specified in the language-independent GSS-API specification
  [GSSAPIv2-UPDATE].

  Note that the results obtained by using the equals method will in
  general be different from those obtained by invoking canonicalize and
  export, and then comparing the byte array output.  The first series
  of operation determines whether two (unauthenticated) names identify
  the same principal; the second whether a particular mechanism would
  authenticate them as the same principal.  These two operations will
  in general give the same results only for MNs.

  It is important to note that the above are guidelines as to how
  GSSName implementations should behave, and are not intended to be
  specific requirements of how name objects must be implemented.  The
  mechanism designers are free to decide on the details of their
  implementations of the GSSName interface as long as the behavior
  satisfies the above guidelines.

5.14.  Channel Bindings

  GSS-API supports the use of user-specified tags to identify a given
  context to the peer application.  These tags are intended to be used
  to identify the particular communications channel that carries the



Upadhyay & Malkani          Standards Track                    [Page 26]

RFC 5653                  Java GSS-API Update                August 2009


  context.  Channel bindings are communicated to the GSS-API using the
  ChannelBinding object.  The application may use byte arrays to
  specify the application data to be used in the channel binding as
  well as using instances of the InetAddress.  The InetAddress for the
  initiator and/or acceptor can be used within an instance of a
  ChannelBinding.  ChannelBinding can be set for the GSSContext object
  using the setChannelBinding method before the first call to init or
  accept has been performed.  Unless the setChannelBinding method has
  been used to set the ChannelBinding for a GSSContext object, "null"
  ChannelBinding will be assumed.  InetAddress is currently the only
  address type defined within the Java platform and as such, it is the
  only one supported within the ChannelBinding class.  Applications
  that use other types of addresses can include them as part of the
  application-specific data.

  Conceptually, the GSS-API concatenates the initiator and acceptor
  address information, and the application-supplied byte array to form
  an octet-string.  The mechanism calculates a Message Integrity Code
  (MIC) over this octet-string and binds the MIC to the context
  establishment token emitted by the init method of the GSSContext
  interface.  The same bindings are set by the context acceptor for its
  GSSContext object and during processing of the accept method, a MIC
  is calculated in the same way.  The calculated MIC is compared with
  that found in the token, and if the MICs differ, accept will throw a
  GSSException with the major code set to BAD_BINDINGS, and the context
  will not be established.  Some mechanisms may include the actual
  channel binding data in the token (rather than just a MIC);
  applications should therefore not use confidential data as channel-
  binding components.

  Individual mechanisms may impose additional constraints on addresses
  that may appear in channel bindings.  For example, a mechanism may
  verify that the initiator address field of the channel binding
  contains the correct network address of the host system.  Portable
  applications should therefore ensure that they either provide correct
  information for the address fields, or omit the setting of the
  addressing information.

5.15.  Stream Objects

  The context object provides overloaded methods that use input and
  output streams as the means to convey authentication and per-message
  GSS-API tokens.  It is important to note that the streams are
  expected to contain the usual GSS-API tokens, which would otherwise
  be handled through the usage of byte arrays.  The tokens are expected
  to have a definite start and an end.  The callers are responsible for





Upadhyay & Malkani          Standards Track                    [Page 27]

RFC 5653                  Java GSS-API Update                August 2009


  ensuring that the supplied streams will not block, or expect to block
  until a full token is processed by the GSS-API method.  Only a single
  GSS-API token will be processed per invocation of the stream-based
  method.

  The usage of streams allows the callers to have control and
  management of the supplied buffers.  Because streams are non-
  primitive objects, the callers can make the streams as complicated or
  as simple as desired simply by using the streams defined in the
  java.io package or creating their own through the use of inheritance.
  This will allow for the application's greatest flexibility.

5.16.  Optional Parameters

  Whenever the application wishes to omit an optional parameter the
  "null" value shall be used.  The detailed method descriptions
  indicate which parameters are optional.  Method overloading has also
  been used as a technique to indicate default parameters.

6.  Introduction to GSS-API Classes and Interfaces

  This section presents a brief description of the classes and
  interfaces that constitute the GSS-API.  The implementations of these
  are obtained from the CLASSPATH defined by the application.  If Java
  GSS becomes part of the standard Java APIs, then these classes will
  be available by default on all systems as part of the JRE's system
  classes.

  This section also shows the corresponding RFC 2743 [GSSAPIv2-UPDATE]
  functionality implemented by each of the classes.  Detailed
  description of these classes and their methods is presented in
  section 7.

6.1.  GSSManager Class

  This abstract class serves as a factory to instantiate
  implementations of the GSS-API interfaces and also provides methods
  to make queries about underlying security mechanisms.

  A default implementation can be obtained using the static method
  getInstance().  Applications that desire to provide their own
  implementation of the GSSManager class can simply extend the abstract
  class themselves.

  This class contains equivalents of the following RFC 2743 [GSSAPIv2-
  UPDATE] routines:





Upadhyay & Malkani          Standards Track                    [Page 28]

RFC 5653                  Java GSS-API Update                August 2009


     RFC 2743 Routine             Function                   Section(s)

     gss_import_name              Create an internal name from  7.1.6-
                                  the supplied information.     7.1.9

     gss_acquire_cred             Acquire credential            7.1.10-
                                  for use.                      7.1.12

     gss_import_sec_context       Create a previously exported  7.1.15
                                  context.

     gss_indicate_mechs           List the mechanisms           7.1.3
                                  supported by this GSS-API
                                  implementation.

     gss_inquire_mechs_for_name   List the mechanisms           7.1.5
                                  supporting the
                                  specified name type.

     gss_inquire_names_for_mech   List the name types           7.1.4
                                  supported by the
                                  specified mechanism.

6.2.  GSSName Interface

  GSS-API names are represented in the Java bindings through the
  GSSName interface.  Different name formats and their definitions are
  identified with Universal Object Identifiers (oids).  The format of
  the names can be derived based on the unique oid of each name type.
  The following GSS-API routines are provided by the GSSName interface:

     RFC 2743 Routine        Function                       Section(s)

     gss_display_name        Covert internal name             7.2.7
                             representation to text format.

     gss_compare_name        Compare two internal names.      7.2.3,
                                                              7.2.4

     gss_release_name        Release resources associated     N/A
                             with the internal name.

     gss_canonicalize_name   Convert an internal name to a    7.2.5
                             mechanism name.

     gss_export_name         Convert a mechanism name to      7.2.6
                             export format.




Upadhyay & Malkani          Standards Track                    [Page 29]

RFC 5653                  Java GSS-API Update                August 2009


     gss_duplicate_name      Create a copy of the internal    N/A
                             name.

  The gss_release_name call is not provided as Java does its own
  garbage collection.  The gss_duplicate_name call is also redundant;
  the GSSName interface has no mutator methods that can change the
  state of the object so it is safe for sharing across threads.

6.3.  GSSCredential Interface

  The GSSCredential interface is responsible for the encapsulation of
  GSS-API credentials.  Credentials identify a single entity and
  provide the necessary cryptographic information to enable the
  creation of a context on behalf of that entity.  A single credential
  may contain multiple mechanism-specific credentials, each referred to
  as a credential element.  The GSSCredential interface provides the
  functionality of the following GSS-API routines:

     RFC 2743 Routine           Function                    Section(s)

     gss_add_cred               Constructs credentials        7.3.12
                                incrementally.

     gss_inquire_cred           Obtain information about      7.3.4-
                                credential.                   7.3.11

     gss_inquire_cred_by_mech   Obtain per-mechanism          7.3.5-
                                information about             7.3.10
                                a credential.

     gss_release_cred           Dispose of credentials        7.3.3
                                after use.

6.4.  GSSContext Interface

  This interface encapsulates the functionality of context-level calls
  required for security context establishment and management between
  peers as well as the per-message services offered to applications.  A
  context is established between a pair of peers and allows the usage
  of security services on a per-message basis on application data.  It
  is created over a single security mechanism.  The GSSContext
  interface provides the functionality of the following GSS-API
  routines:

     RFC 2743 Routine         Function                       Section(s)

     gss_init_sec_context     Initiate the creation of a       7.4.3-
                              security context with a peer.    7.4.6



Upadhyay & Malkani          Standards Track                    [Page 30]

RFC 5653                  Java GSS-API Update                August 2009


     gss_accept_sec_context   Accept a security context        7.4.7-
                              initiated by a peer.             7.4.10

     gss_delete_sec_context   Destroy a security context.      7.4.12

     gss_context_time         Obtain remaining context         7.4.41
                              time.

     gss_inquire_context      Obtain context                   7.4.32-
                              characteristics.                 7.4.46

     gss_wrap_size_limit      Determine token-size limit       7.4.13
                              for gss_wrap.

     gss_export_sec_context   Transfer security context        7.4.22
                              to another process.


     gss_get_mic              Calculate a cryptographic        7.4.18,
                              Message Integrity Code (MIC)     7.4.19
                              for a message.

     gss_verify_mic           Verify integrity on a received   7.4.20,
                              message.                         7.4.21

     gss_wrap                 Attach a MIC to a message and    7.4.14,
                              optionally encrypt the message   7.4.15
                              content.

     gss_unwrap               Obtain a previously wrapped      7.4.16,
                              application message verifying    7.4.17
                              its integrity and optionally
                              decrypting it.

  The functionality offered by the gss_process_context_token routine
  has not been included in the Java bindings specification.  The
  corresponding functionality of gss_delete_sec_context has also been
  modified to not return any peer tokens.  This has been proposed in
  accordance to the recommendations stated in RFC 2743 [GSSAPIv2-
  UPDATE].  GSSContext does offer the functionality of destroying the
  locally stored context information.

6.5.  MessageProp Class

  This helper class is used in the per-message operations on the
  context.  An instance of this class is created by the application and
  then passed into the per-message calls.  In some cases, the
  application conveys information to the GSS-API implementation through



Upadhyay & Malkani          Standards Track                    [Page 31]

RFC 5653                  Java GSS-API Update                August 2009


  this object and in other cases the GSS-API returns information to the
  application by setting it in this object.  See the description of the
  per-message operations wrap, unwrap, getMIC, and verifyMIC in the
  GSSContext interfaces for details.

6.6.  GSSException Class

  Exceptions are used in the Java bindings to signal fatal errors to
  the calling applications.  This replaces the major and minor codes
  used in the C-bindings specification as a method of signaling
  failures.  The GSSException class handles both minor and major codes,
  as well as their translation into textual representation.  All GSS-
  API methods are declared as throwing this exception.

     RFC 2743 Routine     Function                  Section

     gss_display_status   Retrieve textual          7.8.5, 7.8.6,
                          representation of error   7.8.8, 7.8.9
                          codes.

6.7.  Oid Class

  This utility class is used to represent Universal Object Identifiers
  and their associated operations.  GSS-API uses object identifiers to
  distinguish between security mechanisms and name types.  This class,
  aside from being used whenever an object identifier is needed,
  implements the following GSS-API functionality:

     RFC 2743 Routine          Function                         Section

     gss_test_oid_set_member   Determine if the specified oid   7.7.5
                               is part of a set of oids.

6.8.  ChannelBinding Class

  An instance of this class is used to specify channel binding
  information to the GSSContext object before the start of a security
  context establishment.  The application may use a byte array to
  specify application data to be used in the channel binding as well as
  to use instances of the InetAddress.  InetAddress is currently the
  only address type defined within the Java platform and as such, it is
  the only one supported within the ChannelBinding class.  Applications
  that use other types of addresses can include them as part of the
  application data.







Upadhyay & Malkani          Standards Track                    [Page 32]

RFC 5653                  Java GSS-API Update                August 2009


7.  Detailed GSS-API Class Description

  This section lists a detailed description of all the public methods
  that each of the GSS-API classes and interfaces must provide.

7.1.  public abstract class GSSManager

  The GSSManager class is an abstract class that serves as a factory
  for three GSS interfaces: GSSName, GSSCredential, and GSSContext.  It
  also provides methods for applications to determine what mechanisms
  are available from the GSS implementation and what name types these
  mechanisms support.  An instance of the default GSSManager subclass
  may be obtained through the static method getInstance(), but
  applications are free to instantiate other subclasses of GSSManager.

  All but one method in this class are declared abstract.  This means
  that subclasses have to provide the complete implementation for those
  methods.  The only exception to this is the static method
  getInstance(), which will have platform-specific code to return an
  instance of the default subclass.

  Platform providers of GSS are required not to add any constructors to
  this class, private, public, or protected.  This will ensure that all
  subclasses invoke only the default constructor provided to the base
  class by the compiler.

  A subclass extending the GSSManager abstract class may be implemented
  as a modular provider-based layer that utilizes some well-known
  service provider specification.  The GSSManager API provides the
  application with methods to set provider preferences on such an
  implementation.  These methods also allow the implementation to throw
  a well-defined exception in case provider-based configuration is not
  supported.  Applications that expect to be portable should be aware
  of this and recover cleanly by catching the exception.

  It is envisioned that there will be three most common ways in which
  providers will be used:

  1) The application does not care about what provider is used (the
     default case).

  2) The application wants a particular provider to be used
     preferentially, either for a particular mechanism or all the time,
     irrespective of the mechanism.

  3) The application wants to use the locally configured providers as
     far as possible, but if support is missing for one or more
     mechanisms, then it wants to fall back on its own provider.



Upadhyay & Malkani          Standards Track                    [Page 33]

RFC 5653                  Java GSS-API Update                August 2009


  The GSSManager class has two methods that enable these modes of
  usage: addProviderAtFront() and addProviderAtEnd().  These methods
  have the effect of creating an ordered list of <provider, oid> pairs
  where each pair indicates a preference of provider for a given oid.

  The use of these methods does not require any knowledge of whatever
  service provider specification the GSSManager subclass follows.  It
  is hoped that these methods will serve the needs of most
  applications.  Additional methods may be added to an extended
  GSSManager that could be part of a service provider specification
  that is standardized later.

7.1.1.  Example Code

     GSSManager mgr = GSSManager.getInstance();

     // What mechs are available to us?

     Oid[] supportedMechs = mgr.getMechs();

     // Set a preference for the provider to be used when support
     // is needed for the mechanisms:
     //  "1.2.840.113554.1.2.2" and "1.3.6.1.5.5.1.1".

     Oid krb = new Oid("1.2.840.113554.1.2.2");
     Oid spkm1 = new Oid("1.3.6.1.5.5.1.1");

     Provider p = (Provider) (new com.foo.security.Provider());

     mgr.addProviderAtFront(p, krb);
     mgr.addProviderAtFront(p, spkm1);

     // What name types does this spkm implementation support?
     Oid[] nameTypes = mgr.getNamesForMech(spkm1);

7.1.2.  getInstance

  public static GSSManager getInstance()

  Returns the default GSSManager implementation.











Upadhyay & Malkani          Standards Track                    [Page 34]

RFC 5653                  Java GSS-API Update                August 2009


7.1.3.  getMechs

  public abstract Oid[] getMechs()

  Returns an array of Oid objects indicating the mechanisms available
  to GSS-API callers.  A "null" value is returned when no mechanism are
  available (an example of this would be when mechanism are dynamically
  configured, and currently no mechanisms are installed).

7.1.4.  getNamesForMech

  public abstract Oid[] getNamesForMech(Oid mech)
                        throws GSSException

  Returns name type Oid's supported by the specified mechanism.

  Parameters:

     mech:         The Oid object for the mechanism to query.

7.1.5.  getMechsForName

  public abstract Oid[] getMechsForName(Oid nameType)

  Returns an array of Oid objects corresponding to the mechanisms that
  support the specific name type. "null" is returned when no mechanisms
  are found to support the specified name type.

  Parameters:

     nameType:     The Oid object for the name type.

7.1.6.  createName

  public abstract GSSName createName(String nameStr, Oid nameType)
                  throws GSSException

  Factory method to convert a contiguous string name from the specified
  namespace to a GSSName object.  In general, the GSSName object
  created will not be an MN; two examples that are exceptions to this
  are when the namespace type parameter indicates NT_EXPORT_NAME or
  when the GSS-API implementation is not multi-mechanism.

  Parameters:

     nameStr:      The string representing a printable form of the name
                   to create.




Upadhyay & Malkani          Standards Track                    [Page 35]

RFC 5653                  Java GSS-API Update                August 2009


     nameType:     The Oid specifying the namespace of the printable
                   name is supplied.  Note that nameType serves to
                   describe and qualify the interpretation of the input
                   nameStr, it does not necessarily imply a type for
                   the output GSSName implementation.  The "null" value
                   can be used to specify that a mechanism-specific
                   default printable syntax should be assumed by each
                   mechanism that examines nameStr.

7.1.7.  createName

  public abstract GSSName createName(byte[] name, Oid nameType)
                  throws GSSException

  Factory method to convert a contiguous byte array containing a name
  from the specified namespace to a GSSName object.  In general, the
  GSSName object created will not be an MN; two examples that are
  exceptions to this are when the namespace type parameter indicates
  NT_EXPORT_NAME or when the GSS-API implementation is not multi-
  mechanism.

  Parameters:

     name:         The byte array containing the name to create.

     nameType:     The Oid specifying the namespace of the name
                   supplied in the byte array.  Note that nameType
                   serves to describe and qualify the interpretation of
                   the input name byte array; it does not necessarily
                   imply a type for the output GSSName implementation.
                   The "null" value can be used to specify that a
                   mechanism-specific default syntax should be assumed
                   by each mechanism that examines the byte array.

7.1.8.  createName

  public abstract GSSName createName(String nameStr, Oid nameType,
                  Oid mech) throws GSSException

  Factory method to convert a contiguous string name from the specified
  namespace to a GSSName object that is a mechanism name (MN).  In
  other words, this method is a utility that does the equivalent of two
  steps: the createName described in section 7.1.6, and then also the
  GSSName.canonicalize() described in section 7.2.5.







Upadhyay & Malkani          Standards Track                    [Page 36]

RFC 5653                  Java GSS-API Update                August 2009


  Parameters:

     nameStr:      The string representing a printable form of the name
                   to create.

     nameType:     The Oid specifying the namespace of the printable
                   name supplied.  Note that nameType serves to
                   describe and qualify the interpretation of the input
                   nameStr; it does not necessarily imply a type for
                   the output GSSName implementation.  The "null" value
                   can be used to specify that a mechanism-specific
                   default printable syntax should be assumed when the
                   mechanism examines nameStr.

     mech:         Oid specifying the mechanism for which this name
                   should be created.

7.1.9.  createName

  public abstract GSSName createName(byte[] name, Oid nameType,
                  Oid mech) throws GSSException

  Factory method to convert a contiguous byte array containing a name
  from the specified namespace to a GSSName object that is an MN.  In
  other words, this method is a utility that does the equivalent of two
  steps: the createName described in section 7.1.7, and then also the
  GSSName.canonicalize() described in section 7.2.5.

  Parameters:

     name:         The byte array representing the name to create.

     nameType:     The Oid specifying the namespace of the name
                   supplied in the byte array.  Note that nameType
                   serves to describe and qualify the interpretation of
                   the input name byte array, it does not necessarily
                   imply a type for the output GSSName implementation.
                   The "null" value can be used to specify that a
                   mechanism-specific default syntax should be assumed
                   by each mechanism that examines the byte array.

     mech:         Oid specifying the mechanism for which this name
                   should be created.








Upadhyay & Malkani          Standards Track                    [Page 37]

RFC 5653                  Java GSS-API Update                August 2009


7.1.10.  createCredential

  public abstract GSSCredential createCredential(int usage)
                  throws GSSException

  Factory method for acquiring default credentials.  This will cause
  the GSS-API to use system-specific defaults for the set of
  mechanisms, name, and a DEFAULT lifetime.

  Parameters:

     usage:        The intended usage for this credential object.  The
                   value of this parameter must be one of:

                   GSSCredential.INITIATE_AND_ACCEPT(0),
                   GSSCredential.INITIATE_ONLY(1), or
                   GSSCredential.ACCEPT_ONLY(2)

7.1.11.  createCredential

  public abstract GSSCredential createCredential(GSSName aName,
                  int lifetime, Oid mech, int usage)
                  throws GSSException

  Factory method for acquiring a single mechanism credential.

  Parameters:

     aName:        Name of the principal for whom this credential is to
                   be acquired.  Use "null" to specify the default
                   principal.

     lifetime:     The number of seconds that credentials should remain
                   valid.  Use GSSCredential.INDEFINITE_LIFETIME to
                   request that the credentials have the maximum
                   permitted lifetime.  Use
                   GSSCredential.DEFAULT_LIFETIME to request default
                   credential lifetime.

     mech:         The oid of the desired mechanism.  Use "(Oid) null"
                   to request the default mechanism(s).










Upadhyay & Malkani          Standards Track                    [Page 38]

RFC 5653                  Java GSS-API Update                August 2009


     usage:        The intended usage for this credential object.  The
                   value of this parameter must be one of:

                   GSSCredential.INITIATE_AND_ACCEPT(0),
                   GSSCredential.INITIATE_ONLY(1), or
                   GSSCredential.ACCEPT_ONLY(2)

7.1.12.  createCredential

  public abstract GSSCredential createCredential(GSSName aName,
                  int lifetime, Oid[] mechs, int usage)
                  throws GSSException

  Factory method for acquiring credentials over a set of mechanisms.
  Acquires credentials for each of the mechanisms specified in the
  array called mechs.  To determine the list of mechanisms' for which
  the acquisition of credentials succeeded, the caller should use the
  GSSCredential.getMechs() method.

  Parameters:

     aName:        Name of the principal for whom this credential is to
                   be acquired.  Use "null" to specify the default
                   principal.

     lifetime:     The number of seconds that credentials should remain
                   valid.  Use GSSCredential.INDEFINITE_LIFETIME to
                   request that the credentials have the maximum
                   permitted lifetime.  Use
                   GSSCredential.DEFAULT_LIFETIME to request default
                   credential lifetime.

     mechs:        The array of mechanisms over which the credential is
                   to be acquired.  Use "(Oid[]) null" for requesting a
                   system-specific default set of mechanisms.

     usage:        The intended usage for this credential object.  The
                   value of this parameter must be one of:

                   GSSCredential.INITIATE_AND_ACCEPT(0),
                   GSSCredential.INITIATE_ONLY(1), or
                   GSSCredential.ACCEPT_ONLY(2)

7.1.13.  createContext

  public abstract GSSContext createContext(GSSName peer, Oid mech,
                  GSSCredential myCred, int lifetime)
                  throws GSSException



Upadhyay & Malkani          Standards Track                    [Page 39]

RFC 5653                  Java GSS-API Update                August 2009


  Factory method for creating a context on the initiator's side.
  Context flags may be modified through the mutator methods prior to
  calling GSSContext.initSecContext().

  Parameters:

     peer:         Name of the target peer.

     mech:         Oid of the desired mechanism.  Use "(Oid) null" to
                   request the default mechanism.

     myCred:       Credentials of the initiator.  Use "null" to act as
                   a default initiator principal.

     lifetime:     The request lifetime, in seconds, for the context.
                   Use GSSContext.INDEFINITE_LIFETIME and
                   GSSContext.DEFAULT_LIFETIME to request indefinite or
                   default context lifetime.

7.1.14.  createContext

  public abstract GSSContext createContext(GSSCredential myCred)
                  throws GSSException

  Factory method for creating a context on the acceptor' side.  The
  context's properties will be determined from the input token supplied
  to the accept method.

  Parameters:

     myCred:       Credentials for the acceptor.  Use "null" to act as
                   a default acceptor principal.

7.1.15.  createContext

  public abstract GSSContext createContext(byte[] interProcessToken)
                  throws GSSException

  Factory method for creating a previously exported context.  The
  context properties will be determined from the input token and can't
  be modified through the set methods.

  Parameters:

     interProcessToken: The token previously emitted from the export
                        method.





Upadhyay & Malkani          Standards Track                    [Page 40]

RFC 5653                  Java GSS-API Update                August 2009


7.1.16.  addProviderAtFront

  public abstract void addProviderAtFront(Provider p, Oid mech)
                  throws GSSException

  This method is used to indicate to the GSSManager that the
  application would like a particular provider to be used ahead of all
  others when support is desired for the given mechanism.  When a value
  of "null" is used instead of an Oid for the mechanism, the GSSManager
  must use the indicated provider ahead of all others no matter what
  the mechanism is.  Only when the indicated provider does not support
  the needed mechanism should the GSSManager move on to a different
  provider.

  Calling this method repeatedly preserves the older settings but
  lowers them in preference thus forming an ordered list of provider
  and Oid pairs that grows at the top.

  Calling addProviderAtFront with a null Oid will remove all previous
  preferences that were set for this provider in the GSSManager
  instance.  Calling addProviderAtFront with a non-null Oid will remove
  any previous preference that was set using this mechanism and this
  provider together.

  If the GSSManager implementation does not support an SPI with a
  pluggable provider architecture, it should throw a GSSException with
  the status code GSSException.UNAVAILABLE to indicate that the
  operation is unavailable.

  Parameters:

     p:            The provider instance that should be used whenever
                   support is needed for mech.

     mech:         The mechanism for which the provider is being set.

7.1.17.  Example Code

  Suppose an application desired that the provider A always be checked
  first when any mechanism is needed, it would call:

     GSSManager mgr = GSSManager.getInstance();
     // mgr may at this point have its own pre-configured list
     // of provider preferences.  The following will prepend to
     // any such list:

     mgr.addProviderAtFront(A, null);




Upadhyay & Malkani          Standards Track                    [Page 41]

RFC 5653                  Java GSS-API Update                August 2009


  Now if it also desired that the mechanism of Oid m1 always be
  obtained from the provider B before the previously set A was checked,
  it would call:

     mgr.addProviderAtFront(B, m1);

  The GSSManager would then first check with B if m1 was needed.  In
  case B did not provide support for m1, the GSSManager would continue
  on to check with A.  If any mechanism m2 is needed where m2 is
  different from m1, then the GSSManager would skip B and check with A
  directly.

  Suppose, at a later time, the following call is made to the same
  GSSManager instance:

     mgr.addProviderAtFront(B, null)

  then the previous setting with the pair (B, m1) is subsumed by this
  and should be removed.  Effectively, the list of preferences now
  becomes {(B, null), (A, null), ... //followed by the pre-configured
  list.

  Please note, however, that the following call:

     mgr.addProviderAtFront(A, m3)

  does not subsume the previous setting of (A, null), and the list will
  effectively become {(A, m3), (B, null), (A, null), ...}

7.1.18.  addProviderAtEnd

  public abstract void addProviderAtEnd(Provider p, Oid mech)
                  throws GSSException

  This method is used to indicate to the GSSManager that the
  application would like a particular provider to be used if no other
  provider can be found that supports the given mechanism.  When a
  value of "null" is used instead of an Oid for the mechanism, the
  GSSManager must use the indicated provider for any mechanism.

  Calling this method repeatedly preserves the older settings, but
  raises them above newer ones in preference thus forming an ordered
  list of providers and Oid pairs that grows at the bottom.  Thus, the
  older provider settings will be utilized first before this one is.

  If there are any previously existing preferences that conflict with
  the preference being set here, then the GSSManager should ignore this
  request.



Upadhyay & Malkani          Standards Track                    [Page 42]

RFC 5653                  Java GSS-API Update                August 2009


  If the GSSManager implementation does not support an SPI with a
  pluggable provider architecture, it should throw a GSSException with
  the status code GSSException.UNAVAILABLE to indicate that the
  operation is unavailable.

  Parameters:

     p:            The provider instance that should be used whenever
                   support is needed for mech.

     mech:         The mechanism for which the provider is being set.

7.1.19.  Example Code

  Suppose an application desired that when a mechanism of Oid m1 is
  needed, the system default providers always be checked first, and
  only when they do not support m1 should a provider A be checked.  It
  would then make the call:

     GSSManager mgr = GSSManager.getInstance();

     mgr.addProviderAtEnd(A, m1);

  Now, if it also desired that for all mechanisms the provider B be
  checked after all configured providers have been checked, it would
  then call:

     mgr.addProviderAtEnd(B, null);

  Effectively, the list of preferences now becomes {..., (A, m1), (B,
  null)}.

  Suppose, at a later time, the following call is made to the same
  GSSManager instance:

     mgr.addProviderAtEnd(B, m2)

  then the previous setting with the pair (B, null) subsumes this;
  therefore, this request should be ignored.  The same would happen if
  a request is made for the already existing pairs of (A, m1) or (B,
  null).

  Please note, however, that the following call:

     mgr.addProviderAtEnd(A, null)

  is not subsumed by the previous setting of (A, m1) and the list will
  effectively become {..., (A, m1), (B, null), (A, null)}.



Upadhyay & Malkani          Standards Track                    [Page 43]

RFC 5653                  Java GSS-API Update                August 2009


7.2.  public interface GSSName

  This interface encapsulates a single GSS-API principal entity.
  Different name formats and their definitions are identified with
  Universal Object Identifiers (Oids).  The format of the names can be
  derived based on the unique oid of its namespace type.

7.2.1.  Example Code

  Included below are code examples utilizing the GSSName interface.
  The code below creates a GSSName, converts it to a mechanism name
  (MN), performs a comparison, obtains a printable representation of
  the name, exports it and then re-imports to obtain a new GSSName.

     GSSManager mgr = GSSManager.getInstance();

     // create a host-based service name
     GSSName name = mgr.createName("service@host",
                     GSSName.NT_HOSTBASED_SERVICE);

     Oid krb5 = new Oid("1.2.840.113554.1.2.2");

     GSSName mechName = name.canonicalize(krb5);

     // the above two steps are equivalent to the following
     GSSName mechName = mgr.createName("service@host",
                     GSSName.NT_HOSTBASED_SERVICE, krb5);

     // perform name comparison
     if (name.equals(mechName))
             print("Names are equals.");

     // obtain textual representation of name and its printable
     // name type
     print(mechName.toString() +
           mechName.getStringNameType().toString());

     // export and re-import the name
     byte[] exportName = mechName.export();

     // create a new name object from the exported buffer
     GSSName newName = mgr.createName(exportName,
                       GSSName.NT_EXPORT_NAME);








Upadhyay & Malkani          Standards Track                    [Page 44]

RFC 5653                  Java GSS-API Update                August 2009


7.2.2.  Static Constants

  public static final Oid NT_HOSTBASED_SERVICE

  Oid indicating a host-based service name form.  It is used to
  represent services associated with host computers.  This name form is
  constructed using two elements, "service" and "hostname", as follows:

     service@hostname

  Values for the "service" element are registered with the IANA.  It
  represents the following value: { iso(1) member-body(2) Unites
  States(840) mit(113554) infosys(1) gssapi(2) generic(1)
  service_name(4) }

  public static final Oid NT_USER_NAME

  Name type to indicate a named user on a local system.  It represents
  the following value: { iso(1) member-body(2) United States(840)
  mit(113554) infosys(1) gssapi(2) generic(1) user_name(1) }

  public static final Oid NT_MACHINE_UID_NAME

  Name type to indicate a numeric user identifier corresponding to a
  user on a local system (e.g., Uid).  It represents the following
  value: { iso(1) member-body(2) United States(840) mit(113554)
  infosys(1) gssapi(2) generic(1) machine_uid_name(2) }

  public static final Oid NT_STRING_UID_NAME

  Name type to indicate a string of digits representing the numeric
  user identifier of a user on a local system.  It represents the
  following value: { iso(1) member-body(2) United States(840)
  mit(113554) infosys(1) gssapi(2) generic(1) string_uid_name(3) }

  public static final Oid NT_ANONYMOUS

  Name type for representing an anonymous entity.  It represents the
  following value: { iso(1), org(3), dod(6), internet(1), security(5),
  nametypes(6), gss-anonymous-name(3) }

  public static final Oid NT_EXPORT_NAME

  Name type used to indicate an exported name produced by the export
  method.  It represents the following value: { iso(1), org(3), dod(6),
  internet(1), security(5), nametypes(6), gss-api-exported-name(4) }





Upadhyay & Malkani          Standards Track                    [Page 45]

RFC 5653                  Java GSS-API Update                August 2009


7.2.3.  equals

  public boolean equals(GSSName another) throws GSSException

  Compares two GSSName objects to determine whether they refer to the
  same entity.  This method may throw a GSSException when the names
  cannot be compared.  If either of the names represents an anonymous
  entity, the method will return "false".

  Parameters:

     another:      GSSName object with which to compare.

7.2.4.  equals

     public boolean equals(Object another)

     A variation of the equals method, described in section 7.2.3, that
     is provided to override the Object.equals() method that the
     implementing class will inherit.  The behavior is exactly the same
     as that in section 7.2.3 except that no GSSException is thrown;
     instead, "false" will be returned in the situation where an error
     occurs.  (Note that the Java language specification requires that
     two objects that are equal according to the equals(Object) method
     must return the same integer result when the hashCode() method is
     called on them.)

     Parameters:

     another:      GSSName object with which to compare.

7.2.5.  canonicalize

     public GSSName canonicalize(Oid mech) throws GSSException

     Creates a mechanism name (MN) from an arbitrary internal name.
     This is equivalent to using the factory methods described in
     sections 7.1.8 or 7.1.9 that take the mechanism name as one of
     their parameters.

     Parameters:

     mech:         The oid for the mechanism for which the canonical
                   form of the name is requested.







Upadhyay & Malkani          Standards Track                    [Page 46]

RFC 5653                  Java GSS-API Update                August 2009


7.2.6.  export

  public byte[] export() throws GSSException

  Returns a canonical contiguous byte representation of a mechanism
  name (MN), suitable for direct, byte-by-byte comparison by
  authorization functions.  If the name is not an MN, implementations
  may throw a GSSException with the NAME_NOT_MN status code.  If an
  implementation chooses not to throw an exception, it should use some
  system-specific default mechanism to canonicalize the name and then
  export it.  The format of the header of the output buffer is
  specified in RFC 2743 [GSSAPIv2-UPDATE].

7.2.7.  toString

  public String toString()

  Returns a textual representation of the GSSName object.  To retrieve
  the printed name format, which determines the syntax of the returned
  string, the getStringNameType method can be used.

7.2.8.  getStringNameType

  public Oid getStringNameType() throws GSSException

  Returns the oid representing the type of name returned through the
  toString method.  Using this oid, the syntax of the printable name
  can be determined.

7.2.9.  isAnonymous

  public boolean isAnonymous()

  Tests if this name object represents an anonymous entity.  Returns
  "true" if this is an anonymous name.

7.2.10.  isMN

  public boolean isMN()

  Tests if this name object contains only one mechanism element and is
  thus a mechanism name as defined by RFC 2743 [GSSAPIv2-UPDATE].

7.3.  public interface GSSCredential implements Cloneable

  This interface encapsulates the GSS-API credentials for an entity.  A
  credential contains all the necessary cryptographic information to
  enable the creation of a context on behalf of the entity that it



Upadhyay & Malkani          Standards Track                    [Page 47]

RFC 5653                  Java GSS-API Update                August 2009


  represents.  It may contain multiple, distinct, mechanism-specific
  credential elements, each containing information for a specific
  security mechanism, but all referring to the same entity.

  A credential may be used to perform context initiation, acceptance,
  or both.

  GSS-API implementations must impose a local access-control policy on
  callers to prevent unauthorized callers from acquiring credentials to
  which they are not entitled.  GSS-API credential creation is not
  intended to provide a "login to the network" function, as such a
  function would involve the creation of new credentials rather than
  merely acquiring a handle to existing credentials.  Such functions,
  if required, should be defined in implementation-specific extensions
  to the API.

  If credential acquisition is time-consuming for a mechanism, the
  mechanism may choose to delay the actual acquisition until the
  credential is required (e.g., by GSSContext).  Such mechanism-
  specific implementation decisions should be invisible to the calling
  application; thus, the query methods immediately following the
  creation of a credential object must return valid credential data,
  and may therefore incur the overhead of a deferred credential
  acquisition.

  Applications will create a credential object passing the desired
  parameters.  The application can then use the query methods to obtain
  specific information about the instantiated credential object
  (equivalent to the gss_inquire routines).  When the credential is no
  longer needed, the application should call the dispose (equivalent to
  gss_release_cred) method to release any resources held by the
  credential object and to destroy any cryptographically sensitive
  information.

  Classes implementing this interface also implement the Cloneable
  interface.  This indicates that the class will support the clone()
  method that will allow the creation of duplicate credentials.  This
  is useful when called just before the add() call to retain a copy of
  the original credential.












Upadhyay & Malkani          Standards Track                    [Page 48]

RFC 5653                  Java GSS-API Update                August 2009


7.3.1.  Example Code

  This example code demonstrates the creation of a GSSCredential
  implementation for a specific entity, querying of its fields, and its
  release when it is no longer needed.

     GSSManager mgr = GSSManager.getInstance();

     // start by creating a name object for the entity
     GSSName name = mgr.createName("userName", GSSName.NT_USER_NAME);

     // now acquire credentials for the entity
     GSSCredential cred = mgr.createCredential(name,
                          GSSCredential.ACCEPT_ONLY);

     // display credential information - name, remaining lifetime,
     // and the mechanisms it has been acquired over
     print(cred.getName().toString());
     print(cred.getRemainingLifetime());

     Oid[] mechs = cred.getMechs();
     if (mechs != null) {
        for (int i = 0; i < mechs.length; i++)
            print(mechs[i].toString());
     }
     // release system resources held by the credential
     cred.dispose();

7.3.2.  Static Constants

  public static final int INITIATE_AND_ACCEPT

  Credential usage flag requesting that it be able to be used for both
  context initiation and acceptance.  The value of this constant is 0.

  public static final int INITIATE_ONLY

  Credential usage flag requesting that it be able to be used for
  context initiation only.  The value of this constant is 1.

  public static final int ACCEPT_ONLY

  Credential usage flag requesting that it be able to be used for
  context acceptance only.  The value of this constant is 2.

  public static final int DEFAULT_LIFETIME

  A lifetime constant representing the default credential lifetime.



Upadhyay & Malkani          Standards Track                    [Page 49]

RFC 5653                  Java GSS-API Update                August 2009


  The value of this constant is 0.

  public static final int INDEFINITE_LIFETIME

  A lifetime constant representing indefinite credential lifetime.  The
  value of this constant is the maximum integer value in Java -
  Integer.MAX_VALUE.

7.3.3.  dispose

  public void dispose() throws GSSException

  Releases any sensitive information that the GSSCredential object may
  be containing.  Applications should call this method as soon as the
  credential is no longer needed to minimize the time any sensitive
  information is maintained.

7.3.4.  getName

  public GSSName getName() throws GSSException

  Retrieves the name of the entity that the credential asserts.

7.3.5.  getName

  public GSSName getName(Oid mechOID) throws GSSException

  Retrieves a mechanism name of the entity that the credential asserts.
  Equivalent to calling canonicalize() on the name returned by section
  7.3.4.

  Parameters:

     mechOID:      The mechanism for which information should be
                   returned.

7.3.6.  getRemainingLifetime

  public int getRemainingLifetime() throws GSSException

  Returns the remaining lifetime in seconds for a credential.  The
  remaining lifetime is the minimum lifetime for any of the underlying
  credential mechanisms.  A return value of
  GSSCredential.INDEFINITE_LIFETIME indicates that the credential does
  not expire.  A return value of 0 indicates that the credential is
  already expired.





Upadhyay & Malkani          Standards Track                    [Page 50]

RFC 5653                  Java GSS-API Update                August 2009


7.3.7.  getRemainingInitLifetime

  public int getRemainingInitLifetime(Oid mech) throws GSSException

  Returns the remaining lifetime in seconds for the credential to
  remain capable of initiating security contexts under the specified
  mechanism.  A return value of GSSCredential.INDEFINITE_LIFETIME
  indicates that the credential does not expire for context initiation.
  A return value of 0 indicates that the credential is already expired.

  Parameters:

     mechOID:      The mechanism for which information should be
                   returned.

7.3.8.  getRemainingAcceptLifetime

  public int getRemainingAcceptLifetime(Oid mech) throws GSSException

  Returns the remaining lifetime in seconds for the credential to
  remain capable of accepting security contexts under the specified
  mechanism.  A return value of GSSCredential.INDEFINITE_LIFETIME
  indicates that the credential does not expire for context acceptance.
  A return value of 0 indicates that the credential is already expired.

  Parameters:

     mechOID:      The mechanism for which information should be
                   returned.

7.3.9.  getUsage

  public int getUsage() throws GSSException

  Returns the credential usage flag as a union over all mechanisms.
  The return value will be one of GSSCredential.INITIATE_AND_ACCEPT(0),
  GSSCredential.INITIATE_ONLY(1), or GSSCredential.ACCEPT_ONLY(2).

7.3.10.  getUsage

  public int getUsage(Oid mechOID) throws GSSException

  Returns the credential usage flag for the specified mechanism only.
  The return value will be one of GSSCredential.INITIATE_AND_ACCEPT(0),
  GSSCredential.INITIATE_ONLY(1), or GSSCredential.ACCEPT_ONLY(2).






Upadhyay & Malkani          Standards Track                    [Page 51]

RFC 5653                  Java GSS-API Update                August 2009


  Parameters:

     mechOID:      The mechanism for which information should be
                   returned.

7.3.11.  getMechs

  public Oid[] getMechs() throws GSSException

  Returns an array of mechanisms supported by this credential.

7.3.12.  add

  public void add(GSSName aName, int initLifetime, int acceptLifetime,
                  Oid mech, int usage) throws GSSException

  Adds a mechanism-specific credential-element to an existing
  credential.  This method allows the construction of credentials one
  mechanism at a time.

  This routine is envisioned to be used mainly by context acceptors
  during the creation of acceptance credentials, which are to be used
  with a variety of clients using different security mechanisms.

  This routine adds the new credential element "in-place".  To add the
  element in a new credential, first call clone() to obtain a copy of
  this credential, then call its add() method.

  Parameters:

     aName:             Name of the principal for whom this credential
                        is to be acquired.  Use "null" to specify the
                        default principal.

     initLifetime:      The number of seconds that credentials should
                        remain valid for initiating of security
                        contexts.  Use
                        GSSCredential.INDEFINITE_LIFETIME to request
                        that the credentials have the maximum permitted
                        lifetime.  Use GSSCredential.DEFAULT_LIFETIME
                        to request default credential lifetime.

     acceptLifetime:    The number of seconds that credentials should
                        remain valid for accepting of security
                        contexts.






Upadhyay & Malkani          Standards Track                    [Page 52]

RFC 5653                  Java GSS-API Update                August 2009


                        Use GSSCredential.INDEFINITE_LIFETIME to
                        request that the credentials have the maximum
                        permitted lifetime.  Use
                        GSSCredential.DEFAULT_LIFETIME to request
                        default credential lifetime.

     mech:              The mechanisms over which the credential is to
                        be acquired.

     usage:             The intended usage for this credential object.
                        The value of this parameter must be one of:

                        GSSCredential.INITIATE_AND_ACCEPT(0),
                        GSSCredential.INITIATE_ONLY(1), or
                        GSSCredential.ACCEPT_ONLY(2)

7.3.13.  equals

  public boolean equals(Object another)

  Tests if this GSSCredential refers to the same entity as the supplied
  object.  The two credentials must be acquired over the same
  mechanisms and must refer to the same principal.  Returns "true" if
  the two GSSCredentials refer to the same entity; "false" otherwise.
  (Note that the Java language specification [JLS] requires that two
  objects that are equal according to the equals(Object) method must
  return the same integer result when the hashCode() method is called
  on them.)

  Parameters:

     another:      Another GSSCredential object for comparison.

7.4.  public interface GSSContext

  This interface encapsulates the GSS-API security context and provides
  the security services (wrap, unwrap, getMIC, verifyMIC) that are
  available over the context.  Security contexts are established
  between peers using locally acquired credentials.  Multiple contexts
  may exist simultaneously between a pair of peers, using the same or
  different set of credentials.  GSS-API functions in a manner
  independent of the underlying transport protocol and depends on its
  calling application to transport its tokens between peers.








Upadhyay & Malkani          Standards Track                    [Page 53]

RFC 5653                  Java GSS-API Update                August 2009


  Before the context establishment phase is initiated, the context
  initiator may request specific characteristics desired of the
  established context.  These can be set using the set methods.  After
  the context is established, the caller can check the actual
  characteristic and services offered by the context using the query
  methods.

  The context establishment phase begins with the first call to the
  init method by the context initiator.  During this phase, the
  initSecContext and acceptSecContext methods will produce GSS-API
  authentication tokens, which the calling application needs to send to
  its peer.  If an error occurs at any point, an exception will get
  thrown and the code will start executing in a catch block.  If not,
  the normal flow of code continues and the application can make a call
  to the isEstablished() method.  If this method returns "false" it
  indicates that a token is needed from its peer in order to continue
  the context establishment phase.  A return value of "true" signals
  that the local end of the context is established.  This may still
  require that a token be sent to the peer, if one is produced by GSS-
  API.  During the context establishment phase, the isProtReady()
  method may be called to determine if the context can be used for the
  per-message operations.  This allows applications to use per-message
  operations on contexts that aren't fully established.

  After the context has been established or the isProtReady() method
  returns "true", the query routines can be invoked to determine the
  actual characteristics and services of the established context.  The
  application can also start using the per-message methods of wrap and
  getMIC to obtain cryptographic operations on application supplied
  data.

  When the context is no longer needed, the application should call
  dispose to release any system resources the context may be using.

7.4.1.  Example Code

  The example code presented below demonstrates the usage of the
  GSSContext interface for the initiating peer.  Different operations
  on the GSSContext object are presented, including: object
  instantiation, setting of desired flags, context establishment, query
  of actual context flags, per-message operations on application data,
  and finally context deletion.

     GSSManager mgr = GSSManager.getInstance();

     // start by creating the name for a service entity
     GSSName targetName = mgr.createName("service@host",
                          GSSName.NT_HOSTBASED_SERVICE);



Upadhyay & Malkani          Standards Track                    [Page 54]

RFC 5653                  Java GSS-API Update                August 2009


     // create a context using default credentials for the above entity
     // and the implementation-specific default mechanism
     GSSContext context = mgr.createContext(targetName,
                     null,   /* default mechanism */
                     null,   /* default credentials */
                     GSSContext.INDEFINITE_LIFETIME);

     // set desired context options - all others are "false" by default
     context.requestConf(true);
     context.requestMutualAuth(true);
     context.requestReplayDet(true);
     context.requestSequenceDet(true);

     // establish a context between peers - using byte arrays
     byte[]inTok = new byte[0];

     try {
         do {
             byte[] outTok = context.initSecContext(inTok, 0,
                                                   inTok.length);

             // send the token if present
             if (outTok != null)
                 sendToken(outTok);

             // check if we should expect more tokens
             if (context.isEstablished())
                 break;

             // another token expected from peer
             inTok = readToken();

         } while (true);

     } catch (GSSException e) {
         print("GSSAPI error: " + e.getMessage());
     }

     // display context information
     print("Remaining lifetime in seconds = " + context.getLifetime());
     print("Context mechanism = " + context.getMech().toString());
     print("Initiator = " + context.getSrcName().toString());
     print("Acceptor = " + context.getTargName().toString());

     if (context.getConfState())
         print("Confidentiality security service available");

     if (context.getIntegState())



Upadhyay & Malkani          Standards Track                    [Page 55]

RFC 5653                  Java GSS-API Update                August 2009


         print("Integrity security service available");

     // perform wrap on an application-supplied message, appMsg,
     // using QOP = 0, and requesting privacy service
     byte[] appMsg ...

     MessageProp mProp = new MessageProp(0, true);

     byte[] tok = context.wrap(appMsg, 0, appMsg.length, mProp);

     if (mProp.getPrivacy())
         print("Message protected with privacy.");

     sendToken(tok);

     // release the local end of the context
     context.dispose();

7.4.2.  Static Constants

  public static final int DEFAULT_LIFETIME

  A lifetime constant representing the default context lifetime.  The
  value of this constant is 0.

  public static final int INDEFINITE_LIFETIME

  A lifetime constant representing indefinite context lifetime.  The
  value of this constant is the maximum integer value in Java -
  Integer.MAX_VALUE.

7.4.3.  initSecContext

  public byte[] initSecContext(byte[] inputBuf, int offset, int len)
                throws GSSException

  Called by the context initiator to start the context creation
  process.  This is equivalent to the stream-based method except that
  the token buffers are handled as byte arrays instead of using stream
  objects.  This method may return an output token that the application
  will need to send to the peer for processing by the accept call.
  Typically, the application would do so by calling the flush() method
  on an OutputStream that encapsulates the connection between the two
  peers.  The application can call isEstablished() to determine if the
  context establishment phase is complete for this peer.  A return
  value of "false" from isEstablished() indicates that more tokens are
  expected to be supplied to the initSecContext() method.  Note that it
  is possible that the initSecContext() method will return a token for



Upadhyay & Malkani          Standards Track                    [Page 56]

RFC 5653                  Java GSS-API Update                August 2009


  the peer and isEstablished() will return "true" also.  This indicates
  that the token needs to be sent to the peer, but the local end of the
  context is now fully established.

  Upon completion of the context establishment, the available context
  options may be queried through the get methods.

  Parameters:

     inputBuf:     Token generated by the peer.  This parameter is
                   ignored on the first call.

     offset:       The offset within the inputBuf where the token
                   begins.

     len:          The length of the token within the inputBuf
                   (starting at the offset).

7.4.4.  Example Code

     // Create a new GSSContext implementation object.
     // GSSContext wrapper implements interface GSSContext.
     GSSContext context = mgr.createContext(...);

     byte[] inTok = new byte[0];

     try {
         do {
             byte[] outTok = context.initSecContext(inTok, 0,
                             inTok.length);

             // send the token if present
             if (outTok != null)
                 sendToken(outTok);

             // check if we should expect more tokens
             if (context.isEstablished())
                 break;

             // another token expected from peer
             inTok = readToken();
         } while (true);

     } catch (GSSException e) {
        print("GSSAPI error: " + e.getMessage());
     }





Upadhyay & Malkani          Standards Track                    [Page 57]

RFC 5653                  Java GSS-API Update                August 2009


7.4.5.  initSecContext

  public int initSecContext(InputStream inStream,
             OutputStream outStream) throws GSSException

  Called by the context initiator to start the context creation
  process.  This is equivalent to the byte-array-based method.  This
  method may write an output token to the outStream, which the
  application will need to send to the peer for processing by the
  accept call.  Typically, the application would do so by calling the
  flush() method on an OutputStream that encapsulates the connection
  between the two peers.  The application can call isEstablished() to
  determine if the context establishment phase is complete for this
  peer.  A return value of "false" from isEstablished indicates that
  more tokens are expected to be supplied to the initSecContext method.
  Note that it is possible that the initSecContext() method will return
  a token for the peer and isEstablished() will return "true" also.
  This indicates that the token needs to be sent to the peer, but the
  local end of the context is now fully established.

  The GSS-API authentication tokens contain a definitive start and end.
  This method will attempt to read one of these tokens per invocation,
  and may block on the stream if only part of the token is available.

  Upon completion of the context establishment, the available context
  options may be queried through the get methods.

  Parameters:

     inStream:     Contains the token generated by the peer.  This
                   parameter is ignored on the first call.

     outStream:    Output stream where the output token will be
                   written.  During the final stage of context
                   establishment, there may be no bytes written.

7.4.6.  Example Code

  This sample code merely demonstrates the token exchange during the
  context establishment phase.  It is expected that most Java
  applications will use custom implementations of the Input and Output
  streams that encapsulate the communication routines.  For instance, a
  simple read on the application InputStream, when called by the
  Context, might cause a token to be read from the peer, and a simple
  flush() on the application OutputStream might cause a previously
  written token to be transmitted to the peer.





Upadhyay & Malkani          Standards Track                    [Page 58]

RFC 5653                  Java GSS-API Update                August 2009


     // Create a new GSSContext implementation object.
     // GSSContext wrapper implements interface GSSContext.
     GSSContext context = mgr.createContext(...);
     // use standard java.io stream objects
     ByteArrayOutputStream os = new ByteArrayOutputStream();
     ByteArrayInputStream is = null;

     try {
         do {
             context.initSecContext(is, os);

             // send token if present
             if (os.size() > 0)
                 sendToken(os);

             // check if we should expect more tokens
             if (context.isEstablished())
                 break;

             // another token expected from peer
             is = recvToken();

         } while (true);

     } catch (GSSException e) {
         print("GSSAPI error: " + e.getMessage());
     }

7.4.7.  acceptSecContext

  public byte[] acceptSecContext(byte[] inTok, int offset, int len)
             throws GSSException

  Called by the context acceptor upon receiving a token from the peer.
  This call is equivalent to the stream-based method except that the
  token buffers are handled as byte arrays instead of using stream
  objects.

  This method may return an output token that the application will need
  to send to the peer for further processing by the init call.

  The "null" return value indicates that no token needs to be sent to
  the peer.  The application can call isEstablished() to determine if
  the context establishment phase is complete for this peer.  A return
  value of "false" from isEstablished() indicates that more tokens are
  expected to be supplied to this method.





Upadhyay & Malkani          Standards Track                    [Page 59]

RFC 5653                  Java GSS-API Update                August 2009


  Note that it is possible that acceptSecContext() will return a token
  for the peer and isEstablished() will return "true" also.  This
  indicates that the token needs to be sent to the peer, but the local
  end of the context is now fully established.

  Upon completion of the context establishment, the available context
  options may be queried through the get methods.

  Parameters:

     inTok:        Token generated by the peer.

     offset:       The offset within the inTok where the token begins.

     len:          The length of the token within the inTok (starting
                   at the offset).

7.4.8.  Example Code

     // acquire server credentials
     GSSCredential server = mgr.createCredential(...);

     // create acceptor GSS-API context from the default provider
     GSSContext context = mgr.createContext(server, null);

     try {
         do {
             byte[] inTok = readToken();

             byte[] outTok = context.acceptSecContext(inTok, 0,
                             inTok.length);

             // possibly send token to peer
             if (outTok != null)
                 sendToken(outTok);

             // check if local context establishment is complete
             if (context.isEstablished())
                 break;
         } while (true);

     } catch (GSSException e) {
        print("GSS-API error: " + e.getMessage());
     }







Upadhyay & Malkani          Standards Track                    [Page 60]

RFC 5653                  Java GSS-API Update                August 2009


7.4.9.  acceptSecContext

  public void acceptSecContext(InputStream inStream,
                   OutputStream outStream) throws GSSException

  Called by the context acceptor upon receiving a token from the peer.
  This call is equivalent to the byte array method.  It may write an
  output token to the outStream, which the application will need to
  send to the peer for processing by its initSecContext method.
  Typically, the application would do so by calling the flush() method
  on an OutputStream that encapsulates the connection between the two
  peers.  The application can call isEstablished() to determine if the
  context establishment phase is complete for this peer.  A return
  value of "false" from isEstablished() indicates that more tokens are
  expected to be supplied to this method.

  Note that it is possible that acceptSecContext() will return a token
  for the peer and isEstablished() will return "true" also.  This
  indicates that the token needs to be sent to the peer, but the local
  end of the context is now fully established.

  The GSS-API authentication tokens contain a definitive start and end.
  This method will attempt to read one of these tokens per invocation,
  and may block on the stream if only part of the token is available.

  Upon completion of the context establishment, the available context
  options may be queried through the get methods.

  Parameters:

     inStream:     Contains the token generated by the peer.

     outStream:    Output stream where the output token will be
                   written.  During the final stage of context
                   establishment, there may be no bytes written.

7.4.10.  Example Code

  This sample code merely demonstrates the token exchange during the
  context establishment phase.  It is expected that most Java
  applications will use custom implementations of the Input and Output
  streams that encapsulate the communication routines.  For instance, a
  simple read on the application InputStream, when called by the
  Context, might cause a token to be read from the peer, and a simple
  flush() on the application OutputStream might cause a previously
  written token to be transmitted to the peer.





Upadhyay & Malkani          Standards Track                    [Page 61]

RFC 5653                  Java GSS-API Update                August 2009


     // acquire server credentials
     GSSCredential server = mgr.createCredential(...);

     // create acceptor GSS-API context from the default provider
     GSSContext context = mgr.createContext(server, null);

     // use standard java.io stream objects
     ByteArrayOutputStream os = new ByteArrayOutputStream();
     ByteArrayInputStream is = null;

     try {
         do {

             is = recvToken();

             context.acceptSecContext(is, os);

             // possibly send token to peer
             if (os.size() > 0)
                 sendToken(os);

             // check if local context establishment is complete
             if (context.isEstablished())
                 break;
         } while (true);

     } catch (GSSException e) {
         print("GSS-API error: " + e.getMessage());
     }

7.4.11.  isEstablished

  public boolean isEstablished()

  Used during context establishment to determine the state of the
  context.  Returns "true" if this is a fully established context on
  the caller's side and no more tokens are needed from the peer.
  Should be called after a call to initSecContext() or
  acceptSecContext() when no GSSException is thrown.

7.4.12.  dispose

  public void dispose() throws GSSException

  Releases any system resources and cryptographic information stored in
  the context object.  This will invalidate the context.





Upadhyay & Malkani          Standards Track                    [Page 62]

RFC 5653                  Java GSS-API Update                August 2009


7.4.13.  getWrapSizeLimit

  public int getWrapSizeLimit(int qop, boolean confReq,
             int maxTokenSize) throws GSSException

  Returns the maximum message size that, if presented to the wrap
  method with the same confReq and qop parameters, will result in an
  output token containing no more than the maxTokenSize bytes.

  This call is intended for use by applications that communicate over
  protocols that impose a maximum message size.  It enables the
  application to fragment messages prior to applying protection.

  GSS-API implementations are recommended but not required to detect
  invalid QOP values when getWrapSizeLimit is called.  This routine
  guarantees only a maximum message size, not the availability of
  specific QOP values for message protection.

  Successful completion of this call does not guarantee that wrap will
  be able to protect a message of the computed length, since this
  ability may depend on the availability of system resources at the
  time that wrap is called.  However, if the implementation itself
  imposes an upper limit on the length of messages that may be
  processed by wrap, the implementation should not return a value that
  is greater than this length.

  Parameters:

     qop:          Indicates the level of protection wrap will be asked
                   to provide.

     confReq:      Indicates if wrap will be asked to provide privacy
                   service.

     maxTokenSize: The desired maximum size of the token emitted by
                   wrap.

7.4.14.  wrap

  public byte[] wrap(byte[] inBuf, int offset, int len,
                     MessageProp msgProp) throws GSSException

  Applies per-message security services over the established security
  context.  The method will return a token with a cryptographic MIC and
  may optionally encrypt the specified inBuf.  This method is
  equivalent in functionality to its stream counterpart.  The returned
  byte array will contain both the MIC and the message.




Upadhyay & Malkani          Standards Track                    [Page 63]

RFC 5653                  Java GSS-API Update                August 2009


  The MessageProp object is instantiated by the application and used to
  specify a QOP value that selects cryptographic algorithms, and a
  privacy service to optionally encrypt the message.  The underlying
  mechanism that is used in the call may not be able to provide the
  privacy service.  It sets the actual privacy service that it does
  provide in this MessageProp object, which the caller should then
  query upon return.  If the mechanism is not able to provide the
  requested QOP, it throws a GSSException with the BAD_QOP code.

  Since some application-level protocols may wish to use tokens emitted
  by wrap to provide "secure framing", implementations should support
  the wrapping of zero-length messages.

  The application will be responsible for sending the token to the
  peer.

  Parameters:

     inBuf:        Application data to be protected.

     offset:       The offset within the inBuf where the data begins.

     len:          The length of the data within the inBuf (starting at
                   the offset).

     msgProp:      Instance of MessageProp that is used by the
                   application to set the desired QOP and privacy
                   state.  Set the desired QOP to 0 to request the
                   default QOP.  Upon return from this method, this
                   object will contain the actual privacy state that
                   was applied to the message by the underlying
                   mechanism.

7.4.15.  wrap

  public void wrap(InputStream inStream, OutputStream outStream,
                   MessageProp msgProp) throws GSSException

  Allows to apply per-message security services over the established
  security context.  The method will produce a token with a
  cryptographic MIC and may optionally encrypt the message in inStream.
  The outStream will contain both the MIC and the message.

  The MessageProp object is instantiated by the application and used to
  specify a QOP value that selects cryptographic algorithms, and a
  privacy service to optionally encrypt the message.  The underlying
  mechanism that is used in the call may not be able to provide the
  privacy service.  It sets the actual privacy service that it does



Upadhyay & Malkani          Standards Track                    [Page 64]

RFC 5653                  Java GSS-API Update                August 2009


  provide in this MessageProp object, which the caller should then
  query upon return.  If the mechanism is not able to provide the
  requested QOP, it throws a GSSException with the BAD_QOP code.

  Since some application-level protocols may wish to use tokens emitted
  by wrap to provide "secure framing", implementations should support
  the wrapping of zero-length messages.

  The application will be responsible for sending the token to the
  peer.

  Parameters:

     inStream:     Input stream containing the application data to be
                   protected.

     outStream:    The output stream to which to write the protected
                   message.  The application is responsible for sending
                   this to the other peer for processing in its unwrap
                   method.

     msgProp:      Instance of MessageProp that is used by the
                   application to set the desired QOP and privacy
                   state.  Set the desired QOP to 0 to request the
                   default QOP.  Upon return from this method, this
                   object will contain the actual privacy state that
                   was applied to the message by the underlying
                   mechanism.

7.4.16.  unwrap

  public byte[] unwrap(byte[] inBuf, int offset, int len,
                       MessageProp msgProp) throws GSSException

  Used by the peer application to process tokens generated with the
  wrap call.  This call is equal in functionality to its stream
  counterpart.  The method will return the message supplied in the peer
  application to the wrap call, verifying the embedded MIC.

  The MessageProp object is instantiated by the application and is used
  by the underlying mechanism to return information to the caller such
  as the QOP, whether confidentiality was applied to the message, and
  other supplementary message state information.

  Since some application-level protocols may wish to use tokens emitted
  by wrap to provide "secure framing", implementations should support
  the wrapping and unwrapping of zero-length messages.




Upadhyay & Malkani          Standards Track                    [Page 65]

RFC 5653                  Java GSS-API Update                August 2009


  Parameters:

     inBuf:        GSS-API wrap token received from peer.

     offset:       The offset within the inBuf where the token begins.

     len:          The length of the token within the inBuf (starting
                   at the offset).

     msgProp:      Upon return from the method, this object will
                   contain the applied QOP, the privacy state of the
                   message, and supplementary information, described in
                   section 5.12.3, stating whether the token was a
                   duplicate, old, out of sequence, or arriving after a
                   gap.

7.4.17.  unwrap

  public void unwrap(InputStream inStream, OutputStream outStream,
                     MessageProp msgProp) throws GSSException

  Used by the peer application to process tokens generated with the
  wrap call.  This call is equal in functionality to its byte array
  counterpart.  It will produce the message supplied in the peer
  application to the wrap call, verifying the embedded MIC.

  The MessageProp object is instantiated by the application and is used
  by the underlying mechanism to return information to the caller such
  as the QOP, whether confidentiality was applied to the message, and
  other supplementary message state information.

  Since some application-level protocols may wish to use tokens emitted
  by wrap to provide "secure framing", implementations should support
  the wrapping and unwrapping of zero-length messages.

  Parameters:

     inStream:     Input stream containing the GSS-API wrap token
                   received from the peer.

     outStream:    The output stream to which to write the application
                   message.









Upadhyay & Malkani          Standards Track                    [Page 66]

RFC 5653                  Java GSS-API Update                August 2009


     msgProp:      Upon return from the method, this object will
                   contain the applied QOP, the privacy state of the
                   message, and supplementary information, described in
                   section 5.12.3, stating whether the token was a
                   duplicate, old, out of sequence, or arriving after a
                   gap.

7.4.18.  getMIC

  public byte[] getMIC(byte[] inMsg, int offset, int len,
                       MessageProp msgProp) throws GSSException

  Returns a token containing a cryptographic MIC for the supplied
  message for transfer to the peer application.  Unlike wrap, which
  encapsulates the user message in the returned token, only the message
  MIC is returned in the output token.  This method is identical in
  functionality to its stream counterpart.

  Note that privacy can only be applied through the wrap call.

  Since some application-level protocols may wish to use tokens emitted
  by getMIC to provide "secure framing", implementations should support
  derivation of MICs from zero-length messages.

  Parameters:

     inMsg:        Message over which to generate MIC.

     offset:       The offset within the inMsg where the token begins.

     len:          The length of the token within the inMsg (starting
                   at the offset).

     msgProp:      Instance of MessageProp that is used by the
                   application to set the desired QOP.  Set the desired
                   QOP to 0 in msgProp to request the default QOP.
                   Alternatively, pass in "null" for msgProp to request
                   default QOP.













Upadhyay & Malkani          Standards Track                    [Page 67]

RFC 5653                  Java GSS-API Update                August 2009


7.4.19.  getMIC

  public void getMIC(InputStream inStream, OutputStream outStream,
                     MessageProp msgProp) throws GSSException

  Produces a token containing a cryptographic MIC for the supplied
  message, for transfer to the peer application.  Unlike wrap, which
  encapsulates the user message in the returned token, only the message
  MIC is produced in the output token.  This method is identical in
  functionality to its byte array counterpart.

  Note that privacy can only be applied through the wrap call.

  Since some application-level protocols may wish to use tokens emitted
  by getMIC to provide "secure framing", implementations should support
  derivation of MICs from zero-length messages.

  Parameters:

     inStream:     Input stream containing the message over which to
                   generate MIC.

     outStream:    Output stream to which to write the GSS-API output
                   token.

     msgProp:      Instance of MessageProp that is used by the
                   application to set the desired QOP.  Set the desired
                   QOP to 0 in msgProp to request the default QOP.
                   Alternatively, pass in "null" for msgProp to request
                   default QOP.

7.4.20.  verifyMIC

  public void verifyMIC(byte[] inTok, int tokOffset, int tokLen,
                        byte[] inMsg, int msgOffset, int msgLen,
                        MessageProp msgProp) throws GSSException

  Verifies the cryptographic MIC, contained in the token parameter,
  over the supplied message.  This method is equivalent in
  functionality to its stream counterpart.

  The MessageProp object is instantiated by the application and is used
  by the underlying mechanism to return information to the caller such
  as the QOP indicating the strength of protection that was applied to
  the message and other supplementary message state information.






Upadhyay & Malkani          Standards Track                    [Page 68]

RFC 5653                  Java GSS-API Update                August 2009


  Since some application-level protocols may wish to use tokens emitted
  by getMIC to provide "secure framing", implementations should support
  the calculation and verification of MICs over zero-length messages.

  Parameters:

     inTok:        Token generated by peer's getMIC method.

     tokOffset:    The offset within the inTok where the token begins.

     tokLen:       The length of the token within the inTok (starting
                   at the offset).

     inMsg:        Application message over which to verify the
                   cryptographic MIC.

     msgOffset:    The offset within the inMsg where the message
                   begins.

     msgLen:       The length of the message within the inMsg (starting
                   at the offset).

     msgProp:      Upon return from the method, this object will
                   contain the applied QOP and supplementary
                   information, described in section 5.12.3, stating
                   whether the token was a duplicate, old, out of
                   sequence, or arriving after a gap.  The
                   confidentiality state will be set to "false".

7.4.21.  verifyMIC

  public void verifyMIC(InputStream tokStream, InputStream msgStream,
                        MessageProp msgProp) throws GSSException

  Verifies the cryptographic MIC, contained in the token parameter,
  over the supplied message.  This method is equivalent in
  functionality to its byte array counterpart.

  The MessageProp object is instantiated by the application and is used
  by the underlying mechanism to return information to the caller such
  as the QOP indicating the strength of protection that was applied to
  the message and other supplementary message state information.

  Since some application-level protocols may wish to use tokens emitted
  by getMIC to provide "secure framing", implementations should support
  the calculation and verification of MICs over zero-length messages.





Upadhyay & Malkani          Standards Track                    [Page 69]

RFC 5653                  Java GSS-API Update                August 2009


  Parameters:

     tokStream:    Input stream containing the token generated by the
                   peer's getMIC method.

     msgStream:    Input stream containing the application message over
                   which to verify the cryptographic MIC.

     msgProp:      Upon return from the method, this object will
                   contain the applied QOP and supplementary
                   information, described in section 5.12.3, stating
                   whether the token was a duplicate, old, out of
                   sequence, or arriving after a gap.  The
                   confidentiality state will be set to "false".

7.4.22.  export

  public byte[] export() throws GSSException

  Provided to support the sharing of work between multiple processes.
  This routine will typically be used by the context acceptor, in an
  application where a single process receives incoming connection
  requests and accepts security contexts over them, then passes the
  established context to one or more other processes for message
  exchange.

  This method deactivates the security context and creates an inter-
  process token which, when passed to the byte array constructor of the
  GSSContext interface in another process, will re-activate the context
  in the second process.  Only a single instantiation of a given
  context may be active at any one time; a subsequent attempt by a
  context exporter to access the exported security context will fail.

  The implementation may constrain the set of processes by which the
  inter-process token may be imported, either as a function of local
  security policy, or as a result of implementation decisions.  For
  example, some implementations may constrain contexts to be passed
  only between processes that run under the same account, or which are
  part of the same process group.

  The inter-process token may contain security-sensitive information
  (for example, cryptographic keys).  While mechanisms are encouraged
  to either avoid placing such sensitive information within inter-
  process tokens or to encrypt the token before returning it to the
  application, in a typical GSS-API implementation, this may not be
  possible.  Thus, the application must take care to protect the
  inter-process token, and ensure that any process to which the token
  is transferred is trustworthy.



Upadhyay & Malkani          Standards Track                    [Page 70]

RFC 5653                  Java GSS-API Update                August 2009


7.4.23.  requestMutualAuth

  public void requestMutualAuth(boolean state) throws GSSException

  Sets the request state of the mutual authentication flag for the
  context.  This method is only valid before the context creation
  process begins and only for the initiator.

  Parameters:

     state:        Boolean representing if mutual authentication should
                   be requested during context establishment.

7.4.24.  requestReplayDet

  public void requestReplayDet(boolean state) throws GSSException

  Sets the request state of the replay detection service for the
  context.  This method is only valid before the context creation
  process begins and only for the initiator.

  Parameters:

     state:        Boolean representing if replay detection is desired
                   over the established context.

7.4.25.  requestSequenceDet

  public void requestSequenceDet(boolean state) throws GSSException

  Sets the request state for the sequence checking service of the
  context.  This method is only valid before the context creation
  process begins and only for the initiator.

  Parameters:

     state:        Boolean representing if sequence detection is
                   desired over the established context.

7.4.26.  requestCredDeleg

  public void requestCredDeleg(boolean state) throws GSSException

  Sets the request state for the credential delegation flag for the
  context.  This method is only valid before the context creation
  process begins and only for the initiator.





Upadhyay & Malkani          Standards Track                    [Page 71]

RFC 5653                  Java GSS-API Update                August 2009


  Parameters:

     state:        Boolean representing if credential delegation is
                   desired.

7.4.27.  requestAnonymity

  public void requestAnonymity(boolean state) throws GSSException

  Requests anonymous support over the context.  This method is only
  valid before the context creation process begins and only for the
  initiator.

  Parameters:

     state:        Boolean representing if anonymity support is
                   requested.

7.4.28.  requestConf

  public void requestConf(boolean state) throws GSSException

  Requests that confidentiality service be available over the context.
  This method is only valid before the context creation process begins
  and only for the initiator.

  Parameters:

     state:        Boolean indicating if confidentiality services are
                   to be requested for the context.

7.4.29.  requestInteg

  public void requestInteg(boolean state) throws GSSException

  Requests that integrity services be available over the context.  This
  method is only valid before the context creation process begins and
  only for the initiator.

  Parameters:

     state:        Boolean indicating if integrity services are to be
                   requested for the context.








Upadhyay & Malkani          Standards Track                    [Page 72]

RFC 5653                  Java GSS-API Update                August 2009


7.4.30.  requestLifetime

  public void requestLifetime(int lifetime) throws GSSException

  Sets the desired lifetime for the context in seconds.  This method is
  only valid before the context creation process begins and only for
  the initiator.  Use GSSContext.INDEFINITE_LIFETIME and
  GSSContext.DEFAULT_LIFETIME to request indefinite or default context
  lifetime.

  Parameters:

     lifetime:     The desired context lifetime in seconds.

7.4.31.  setChannelBinding

  public void setChannelBinding(ChannelBinding cb) throws GSSException

  Sets the channel bindings to be used during context establishment.
  This method is only valid before the context creation process begins.

  Parameters:

     cb:           Channel bindings to be used.

7.4.32.  getCredDelegState

  public boolean getCredDelegState()

  Returns the state of the delegated credentials for the context.  When
  issued before context establishment is completed or when the
  isProtReady method returns "false", it returns the desired state;
  otherwise, it will indicate the actual state over the established
  context.

7.4.33.  getMutualAuthState

  public boolean getMutualAuthState()

  Returns the state of the mutual authentication option for the
  context.  When issued before context establishment completes or when
  the isProtReady method returns "false", it returns the desired state;
  otherwise, it will indicate the actual state over the established
  context.







Upadhyay & Malkani          Standards Track                    [Page 73]

RFC 5653                  Java GSS-API Update                August 2009


7.4.34.  getReplayDetState

  public boolean getReplayDetState()

  Returns the state of the replay detection option for the context.
  When issued before context establishment completes or when the
  isProtReady method returns "false", it returns the desired state;
  otherwise, it will indicate the actual state over the established
  context.

7.4.35.  getSequenceDetState

  public boolean getSequenceDetState()

  Returns the state of the sequence detection option for the context.
  When issued before context establishment completes or when the
  isProtReady method returns "false", it returns the desired state;
  otherwise, it will indicate the actual state over the established
  context.

7.4.36.  getAnonymityState

  public boolean getAnonymityState()

  Returns "true" if this is an anonymous context.  When issued before
  context establishment completes or when the isProtReady method
  returns "false", it returns the desired state; otherwise, it will
  indicate the actual state over the established context.

7.4.37.  isTransferable

  public boolean isTransferable() throws GSSException

  Returns "true" if the context is transferable to other processes
  through the use of the export method.  This call is only valid on
  fully established contexts.

7.4.38.  isProtReady

  public boolean isProtReady()

  Returns "true" if the per-message operations can be applied over the
  context.  Some mechanisms may allow the usage of per-message
  operations before the context is fully established.  This will also
  indicate that the get methods will return actual context state
  characteristics instead of the desired ones.





Upadhyay & Malkani          Standards Track                    [Page 74]

RFC 5653                  Java GSS-API Update                August 2009


7.4.39.  getConfState

  public boolean getConfState()

  Returns the confidentiality service state over the context.  When
  issued before context establishment completes or when the isProtReady
  method returns "false", it returns the desired state; otherwise, it
  will indicate the actual state over the established context.

7.4.40.  getIntegState

  public boolean getIntegState()

  Returns the integrity service state over the context.  When issued
  before context establishment completes or when the isProtReady method
  returns "false", it returns the desired state; otherwise, it will
  indicate the actual state over the established context.

7.4.41.  getLifetime

  public int getLifetime()

  Returns the context lifetime in seconds.  When issued before context
  establishment completes or when the isProtReady method returns
  "false", it returns the desired lifetime; otherwise, it will indicate
  the remaining lifetime for the context.

7.4.42.  getSrcName

  public GSSName getSrcName() throws GSSException

  Returns the name of the context initiator.  This call is valid only
  after the context is fully established or the isProtReady method
  returns "true".  It is guaranteed to return an MN.

7.4.43.  getTargName

  public GSSName getTargName() throws GSSException

  Returns the name of the context target (acceptor).  This call is
  valid only after the context is fully established or the isProtReady
  method returns "true".  It is guaranteed to return an MN.









Upadhyay & Malkani          Standards Track                    [Page 75]

RFC 5653                  Java GSS-API Update                August 2009


7.4.44.  getMech

  public Oid getMech() throws GSSException

  Returns the mechanism oid for this context.  This method may be
  called before the context is fully established, but the mechanism
  returned may change on successive calls in negotiated mechanism case.

7.4.45.  getDelegCred

  public GSSCredential getDelegCred() throws GSSException

  Returns the delegated credential object on the acceptor's side.  To
  check for availability of delegated credentials call
  getDelegCredState.  This call is only valid on fully established
  contexts.

7.4.46.  isInitiator

  public boolean isInitiator() throws GSSException

  Returns "true" if this is the initiator of the context.  This call is
  only valid after the context creation process has started.

7.5.  public class MessageProp

  This is a utility class used within the per-message GSSContext
  methods to convey per-message properties.

  When used with the GSSContext interface's wrap and getMIC methods, an
  instance of this class is used to indicate the desired QOP and to
  request if confidentiality services are to be applied to caller
  supplied data (wrap only).  To request default QOP, the value of 0
  should be used for QOP.

  When used with the unwrap and verifyMIC methods of the GSSContext
  interface, an instance of this class will be used to indicate the
  applied QOP and confidentiality services over the supplied message.
  In the case of verifyMIC, the confidentiality state will always be
  "false".  Upon return from these methods, this object will also
  contain any supplementary status values applicable to the processed
  token.  The supplementary status values can indicate old tokens, out
  of sequence tokens, gap tokens, or duplicate tokens.








Upadhyay & Malkani          Standards Track                    [Page 76]

RFC 5653                  Java GSS-API Update                August 2009


7.5.1.  Constructors

  public MessageProp(boolean privState)

  Constructor that sets QOP to 0 indicating that the default QOP is
  requested.

  Parameters:

     privState:    The desired privacy state. "true" for privacy and
                   "false" for integrity only.

  public MessageProp(int qop, boolean privState)

  Constructor that sets the values for the qop and privacy state.

  Parameters:

     qop:          The desired QOP.  Use 0 to request a default QOP.

     privState:    The desired privacy state. "true" for privacy and
                   "false" for integrity only.

7.5.2.  getQOP

  public int getQOP()

  Retrieves the QOP value.

7.5.3.  getPrivacy

  public boolean getPrivacy()

  Retrieves the privacy state.

7.5.4.  getMinorStatus

  public int getMinorStatus()

  Retrieves the minor status that the underlying mechanism might have
  set.

7.5.5.  getMinorString

  public String getMinorString()

  Returns a string explaining the mechanism-specific error code. "null"
  will be returned when no mechanism error code has been set.



Upadhyay & Malkani          Standards Track                    [Page 77]

RFC 5653                  Java GSS-API Update                August 2009


7.5.6.  setQOP

  public void setQOP(int qopVal)

  Sets the QOP value.

  Parameters:

     qopVal:       The QOP value to be set.  Use 0 to request a default
                   QOP value.

7.5.7.  setPrivacy

  public void setPrivacy(boolean privState)

  Sets the privacy state.

  Parameters:

     privState:    The privacy state to set.

7.5.8.  isDuplicateToken

  public boolean isDuplicateToken()

  Returns "true" if this is a duplicate of an earlier token.

7.5.9.  isOldToken

  public boolean isOldToken()

  Returns "true" if the token's validity period has expired.

7.5.10.  isUnseqToken

  public boolean isUnseqToken()

  Returns "true" if a later token has already been processed.

7.5.11.  isGapToken

  public boolean isGapToken()

  Returns "true" if an expected per-message token was not received.







Upadhyay & Malkani          Standards Track                    [Page 78]

RFC 5653                  Java GSS-API Update                August 2009


7.5.12.  setSupplementaryStates

  public void setSupplementaryStates(boolean duplicate,
                 boolean old, boolean unseq, boolean gap,
                 int minorStatus, String minorString)

  This method sets the state for the supplementary information flags
  and the minor status in MessageProp.  It is not used by the
  application but by the GSS implementation to return this information
  to the caller of a per-message context method.

  Parameters:

     duplicate:    "true" if the token was a duplicate of an earlier
                   token; otherwise, "false".

     old:          "true" if the token's validity period has expired;
                   otherwise, "false".

     unseq:        "true" if a later token has already been processed;
                   otherwise, "false".

     gap:          "true" if one or more predecessor tokens have not
                   yet been successfully processed; otherwise, "false".

     minorStatus:  The integer minor status code that the underlying
                   mechanism wants to set.

     minorString:  The textual representation of the minorStatus value.

7.6.  public class ChannelBinding

  The GSS-API accommodates the concept of caller-provided channel
  binding information.  Channel bindings are used to strengthen the
  quality with which peer entity authentication is provided during
  context establishment.  They enable the GSS-API callers to bind the
  establishment of the security context to relevant characteristics
  like addresses or to application-specific data.

  The caller initiating the security context must determine the
  appropriate channel binding values to set in the GSSContext object.
  The acceptor must provide an identical binding in order to validate
  that received tokens possess correct channel-related characteristics.

  Use of channel bindings is optional in GSS-API.  Since channel-
  binding information may be transmitted in context establishment
  tokens, applications should therefore not use confidential data as
  channel-binding components.



Upadhyay & Malkani          Standards Track                    [Page 79]

RFC 5653                  Java GSS-API Update                August 2009


7.6.1.  Constructors

  public ChannelBinding(InetAddress initAddr, InetAddress acceptAddr,
                        byte[] appData)

  Create a ChannelBinding object with user-supplied address information
  and data. "null" values can be used for any fields that the
  application does not want to specify.

  Parameters:

     initAddr:     The address of the context initiator. "null" value
                   can be supplied to indicate that the application
                   does not want to set this value.

     acceptAddr:   The address of the context acceptor. "null" value
                   can be supplied to indicate that the application
                   does not want to set this value.

     appData:      Application-supplied data to be used as part of the
                   channel bindings. "null" value can be supplied to
                   indicate that the application does not want to set
                   this value.

  public ChannelBinding(byte[] appData)

  Creates a ChannelBinding object without any addressing information.

  Parameters:

     appData:      Application supplied data to be used as part of the
                   channel bindings.

7.6.2.  getInitiatorAddress

  public InetAddress getInitiatorAddress()

  Returns the initiator's address for this channel binding. "null" is
  returned if the address has not been set.

7.6.3.  getAcceptorAddress

  public InetAddress getAcceptorAddress()

  Returns the acceptor's address for this channel binding. "null" is
  returned if the address has not been set.





Upadhyay & Malkani          Standards Track                    [Page 80]

RFC 5653                  Java GSS-API Update                August 2009


7.6.4.  getApplicationData

  public byte[] getApplicationData()

  Returns application data being used as part of the ChannelBinding.
  "null" is returned if no application data has been specified for the
  channel binding.

7.6.5.  equals

  public boolean equals(Object obj)

  Returns "true" if two channel bindings match.  (Note that the Java
  language specification requires that two objects that are equal
  according to the equals(Object) method must return the same integer
  result when the hashCode() method is called on them.)

  Parameters:

     obj:          Another channel binding with which to compare.

7.7.  public class Oid

  This class represents Universal Object Identifiers (Oids) and their
  associated operations.

  Oids are hierarchically globally interpretable identifiers used
  within the GSS-API framework to identify mechanisms and name formats.

  The structure and encoding of Oids is defined in ISOIEC-8824 and
  ISOIEC-8825.  For example, the Oid representation of the Kerberos v5
  mechanism is "1.2.840.113554.1.2.2".

  The GSSName name class contains public static Oid objects
  representing the standard name types defined in GSS-API.

7.7.1.  Constructors

  public Oid(String strOid) throws GSSException

  Creates an Oid object from a string representation of its integer
  components (e.g., "1.2.840.113554.1.2.2").

  Parameters:

     strOid:       The string representation for the oid.

  public Oid(InputStream derOid) throws GSSException



Upadhyay & Malkani          Standards Track                    [Page 81]

RFC 5653                  Java GSS-API Update                August 2009


  Creates an Oid object from its DER encoding.  This refers to the full
  encoding including tag and length.  The structure and encoding of
  Oids is defined in ISOIEC-8824 and ISOIEC-8825.  This method is
  identical in functionality to its byte array counterpart.

  Parameters:

     derOid:       Stream containing the DER-encoded oid.

  public Oid(byte[] DEROid) throws GSSException

  Creates an Oid object from its DER encoding.  This refers to the full
  encoding including tag and length.  The structure and encoding of
  Oids is defined in ISOIEC-8824 and ISOIEC-8825.  This method is
  identical in functionality to its byte array counterpart.

  Parameters:

     derOid:       Byte array storing a DER-encoded oid.

7.7.2.  toString

  public String toString()

  Returns a string representation of the oid's integer components in
  dot separated notation (e.g., "1.2.840.113554.1.2.2").

7.7.3.  equals

  public boolean equals(Object Obj)

  Returns "true" if the two Oid objects represent the same oid value.
  (Note that the Java language specification [JLS] requires that two
  objects that are equal according to the equals(Object) method must
  return the same integer result when the hashCode() method is called
  on them.)

  Parameters:

     obj:          Another Oid object with which to compare.

7.7.4.  getDER

  public byte[] getDER()

  Returns the full ASN.1 DER encoding for this oid object, which
  includes the tag and length.




Upadhyay & Malkani          Standards Track                    [Page 82]

RFC 5653                  Java GSS-API Update                August 2009


7.7.5.  containedIn

  public boolean containedIn(Oid[] oids)

  A utility method to test if an Oid object is contained within the
  supplied Oid object array.

  Parameters:

     oids:         An array of oids to search.

7.8.  public class GSSException extends Exception

  This exception is thrown whenever a fatal GSS-API error occurs
  including mechanism-specific errors.  It may contain both, the major
  and minor, GSS-API status codes.  The mechanism implementors are
  responsible for setting appropriate minor status codes when throwing
  this exception.  Aside from delivering the numeric error code(s) to
  the caller, this class performs the mapping from their numeric values
  to textual representations.  All Java GSS-API methods are declared
  throwing this exception.

  All implementations are encouraged to use the Java
  internationalization techniques to provide local translations of the
  message strings.

7.8.1.  Static Constants

  All valid major GSS-API error code values are declared as constants
  in this class.

  public static final int BAD_BINDINGS

  Channel bindings mismatch error.  The value of this constant is 1.

  public static final int BAD_MECH

  Unsupported mechanism requested error.  The value of this constant is
  2.

  public static final int BAD_NAME

  Invalid name provided error.  The value of this constant is 3.

  public static final int BAD_NAMETYPE

  Name of unsupported type provided error.  The value of this constant
  is 4.



Upadhyay & Malkani          Standards Track                    [Page 83]

RFC 5653                  Java GSS-API Update                August 2009


  public static final int BAD_STATUS

  Invalid status code error - this is the default status value.  The
  value of this constant is 5.

  public static final int BAD_MIC

  Token had invalid integrity check error.  The value of this constant
  is 6.

  public static final int CONTEXT_EXPIRED

  Specified security context expired error.  The value of this constant
  is 7.

  public static final int CREDENTIALS_EXPIRED

  Expired credentials detected error.  The value of this constant is 8.

  public static final int DEFECTIVE_CREDENTIAL

  Defective credential error.  The value of this constant is 9.

  public static final int DEFECTIVE_TOKEN

  Defective token error.  The value of this constant is 10.

  public static final int FAILURE

  General failure, unspecified at GSS-API level.  The value of this
  constant is 11.

  public static final int NO_CONTEXT

  Invalid security context error.  The value of this constant is 12.

  public static final int NO_CRED

  Invalid credentials error.  The value of this constant is 13.

  public static final int BAD_QOP

  Unsupported QOP value error.  The value of this constant is 14.

  public static final int UNAUTHORIZED

  Operation unauthorized error.  The value of this constant is 15.




Upadhyay & Malkani          Standards Track                    [Page 84]

RFC 5653                  Java GSS-API Update                August 2009


  public static final int UNAVAILABLE

  Operation unavailable error.  The value of this constant is 16.

  public static final int DUPLICATE_ELEMENT

  Duplicate credential element requested error.  The value of this
  constant is 17.

  public static final int NAME_NOT_MN

  Name contains multi-mechanism elements error.  The value of this
  constant is 18.

  public static final int DUPLICATE_TOKEN

  The token was a duplicate of an earlier token.  This is contained in
  an exception only when detected during context establishment, in
  which case it is considered a fatal error.  (Non-fatal supplementary
  codes are indicated via the MessageProp object.)  The value of this
  constant is 19.

  public static final int OLD_TOKEN

  The token's validity period has expired.  This is contained in an
  exception only when detected during context establishment, in which
  case it is considered a fatal error.  (Non-fatal supplementary codes
  are indicated via the MessageProp object.)  The value of this
  constant is 20.

  public static final int UNSEQ_TOKEN

  A later token has already been processed.  This is contained in an
  exception only when detected during context establishment, in which
  case it is considered a fatal error.  (Non-fatal supplementary codes
  are indicated via the MessageProp object.)  The value of this
  constant is 21.

  public static final int GAP_TOKEN

  An expected per-message token was not received.  This is contained in
  an exception only when detected during context establishment, in
  which case it is considered a fatal error.  (Non-fatal supplementary
  codes are indicated via the MessageProp object.)  The value of this
  constant is 22.






Upadhyay & Malkani          Standards Track                    [Page 85]

RFC 5653                  Java GSS-API Update                August 2009


7.8.2.  Constructors

  public GSSException(int majorCode)

  Creates a GSSException object with a specified major code.

  Parameters:

     majorCode:    The GSS error code causing this exception to be
                   thrown.

  public GSSException(int majorCode, int minorCode, String minorString)

  Creates a GSSException object with the specified major code, minor
  code, and minor code textual explanation.  This constructor is to be
  used when the exception is originating from the security mechanism.
  It allows to specify the GSS code and the mechanism code.

  Parameters:

     majorCode:    The GSS error code causing this exception to be
                   thrown.

     minorCode:    The mechanism error code causing this exception to
                   be thrown.

     minorString:  The textual explanation of the mechanism error code.

7.8.3.  getMajor

  public int getMajor()

  Returns the major code representing the GSS error code that caused
  this exception to be thrown.

7.8.4.  getMinor

  public int getMinor()

  Returns the mechanism error code that caused this exception.  The
  minor code is set by the underlying mechanism.  Value of 0 indicates
  that mechanism error code is not set.









Upadhyay & Malkani          Standards Track                    [Page 86]

RFC 5653                  Java GSS-API Update                August 2009


7.8.5.  getMajorString

  public String getMajorString()

  Returns a string explaining the GSS major error code causing this
  exception to be thrown.

7.8.6.  getMinorString

  public String getMinorString()

  Returns a string explaining the mechanism-specific error code. "null"
  will be returned when no mechanism error code has been set.

7.8.7.  setMinor

  public void setMinor(int minorCode, String message)

  Used internally by the GSS-API implementation and the underlying
  mechanisms to set the minor code and its textual representation.

  Parameters:

     minorCode:    The mechanism-specific error code.

     message:      A textual explanation of the mechanism error code.

7.8.8.  toString

  public String toString()

  Returns a textual representation of both the major and minor status
  codes.

7.8.9.  getMessage

  public String getMessage()

  Returns a detailed message of this exception.  Overrides
  Throwable.getMessage.  It is customary in Java to use this method to
  obtain exception information.










Upadhyay & Malkani          Standards Track                    [Page 87]

RFC 5653                  Java GSS-API Update                August 2009


8.  Sample Applications

8.1.  Simple GSS Context Initiator

     import org.ietf.jgss.*;

     /**
      * This is a partial sketch for a simple client program that acts
      * as a GSS context initiator.  It illustrates how to use the Java
      * bindings for the GSS-API specified in
      * Generic Security Service API Version 2 : Java bindings
      *
      *
      * This code sketch assumes the existence of a GSS-API
      * implementation that supports the mechanism that it will need
      * and is present as a library package (org.ietf.jgss) either as
      * part of the standard JRE or in the CLASSPATH the application
      * specifies.
      */

      public class SimpleClient {

          private String serviceName; // name of peer (i.e., server)
          private GSSCredential clientCred = null;
          private GSSContext context = null;
          private Oid mech; // underlying mechanism to use

          private GSSManager mgr = GSSManager.getInstance();

          ...
          ...

          private void clientActions() {
              initializeGSS();
              establishContext();
              doCommunication();
          }

         /**
          * Acquire credentials for the client.
          */
          private void initializeGSS() {

            try {

              clientCred = mgr.createCredential(null /*default princ*/,
                  GSSCredential.INDEFINITE_LIFETIME /* max lifetime */,
                  mech /* mechanism to use */,



Upadhyay & Malkani          Standards Track                    [Page 88]

RFC 5653                  Java GSS-API Update                August 2009


                  GSSCredential.INITIATE_ONLY /* init context */);

              print("GSSCredential created for " +
                       cred.getName().toString());
              print("Credential lifetime (sec)=" +
                       cred.getRemainingLifetime());
             } catch (GSSException e) {
                 print("GSS-API error in credential acquisition: "
                       + e.getMessage());
                     ...
                     ...
             }

             ...
             ...
           }

          /**
           * Does the security context establishment with the
           * server.
           */
           private void establishContext() {

               byte[] inToken = new byte[0];
               byte[] outToken = null;

             try {

                  GSSName peer = mgr.createName(serviceName,
                                         GSSName.NT_HOSTBASED_SERVICE);
                  context = mgr.createContext(peer, mech, gssCred,
                         GSSContext.INDEFINITE_LIFETIME/*lifetime*/);

                  // Will need to support confidentiality
                  context.requestConf(true);

                  while (!context.isEstablished()) {

                     outToken = context.initSecContext(inToken, 0,
                                                       inToken.length);

                     if (outToken != null)
                         writeGSSToken(outToken);

                     if (!context.isEstablished())
                         inToken = readGSSToken();
                  }




Upadhyay & Malkani          Standards Track                    [Page 89]

RFC 5653                  Java GSS-API Update                August 2009


                  GSSName peer = context.getSrcName();
                  print("Security context established with " + peer +
                    " using underlying mechanism " + mech.toString());
             } catch (GSSException e) {
                  print("GSS-API error during context establishment: "
                        + e.getMessage());
                  ...
                  ...
             }

             ...
             ...
         }

         /**
          * Sends some data to the server and reads back the
          * response.
          */
         private void doCommunication()  {
                byte[] inToken = null;
                byte[] outToken = null;
                byte[] buffer;

                // Container for multiple input-output arguments to and
                // from the per-message routines (e.g., wrap/unwrap).
                MessageProp messgInfo = new MessageProp();

                try {

                     /*
                      * Now send some bytes to the server to be
                      * processed.  They will be integrity protected
                      * but not encrypted for privacy.
                      */

                     buffer = readFromFile();

                     // Set privacy to "false" and use the default QOP
                     messgInfo.setPrivacy(false);

                     outToken = context.wrap(buffer, 0, buffer.length,
                                             messgInfo);

                     writeGSSToken(outToken);

                     /*
                      * Now read the response from the server.
                      */



Upadhyay & Malkani          Standards Track                    [Page 90]

RFC 5653                  Java GSS-API Update                August 2009


                     inToken = readGSSToken();
                     buffer = context.unwrap(inToken, 0,
                                   inToken.length, messgInfo);
                     // All ok if no exception was thrown!

                     GSSName peer = context.getSrcName();

                     print("Message from "  + peer.toString()
                           + " arrived.");
                     print("Was it encrypted? "  +
                           messgInfo.getPrivacy());
                     print("Duplicate Token? "   +
                           messgInfo.isDuplicateToken());
                     print("Old Token? "         +
                           messgInfo.isOldToken());
                     print("Unsequenced Token? " +
                           messgInfo.isUnseqToken());
                     print("Gap Token? "         +
                           messgInfo.isGapToken());

                     ...
                     ...

                 } catch (GSSException e) {
                     print("GSS-API error in per-message calls: "
                           + e.getMessage());
                     ...
                     ...

               }

                 ...

                 ...

         } // end of doCommunication method

         ...
         ...

     } // end of class SimpleClient










Upadhyay & Malkani          Standards Track                    [Page 91]

RFC 5653                  Java GSS-API Update                August 2009


8.2.  Simple GSS Context Acceptor

     import org.ietf.jgss.*;

     /**
      * This is a partial sketch for a simple server program that acts
      * as a GSS context acceptor.  It illustrates how to use the Java
      * bindings for the GSS-API specified in
      * Generic Security Service API Version 2 : Java bindings.
      *
      * This code sketch assumes the existence of a GSS-API
      * implementation that supports the mechanisms that it will need
      * and is present as a library package (org.ietf.jgss) either as
      * part of the standard JRE or in the CLASSPATH the application
      * specifies.
      */

     import org.ietf.jgss.*;

     public class SimpleServer {

          private String serviceName;
          private GSSName name;
          private GSSCredential cred;

          private GSSManager mgr;

          ...
          ...

          /**
           * Wait for client connections, establish security contexts
           * and provide service.
           */
             private void loop() {

             ...
             ...

             mgr = GSSManager.getInstance();

             name = mgr.createName(serviceName,
                       GSSName.NT_HOSTBASED_SERVICE);

             cred = mgr.createCredential(name,
                       GSSCredential.INDEFINITE_LIFETIME,
                       null,
                       GSSCredential.ACCEPT_ONLY);



Upadhyay & Malkani          Standards Track                    [Page 92]

RFC 5653                  Java GSS-API Update                August 2009


             // Loop infinitely
             while (true) {

                  Socket s = serverSock.accept();

                  // Start a new thread to serve this connection
                  Thread serverThread = new ServerThread(s);
                  serverThread.start();

             }
         }

         /**
          * Inner class ServerThread whose run() method provides the
          * secure service to a connection.
          */

         private class ServerThread extends Thread {

         ...
         ...

             /**
              * Deals with the connection from one client.  It also
              * handles all GSSException's thrown while talking to
              * this client.
              */
             public void run() {

                  byte[] inToken = null;
                  byte[] outToken = null;
                  byte[] buffer;

                  GSSName peer;

                  // Container for multiple input-output arguments to
                  // and from the per-message routines
                  // (i.e., wrap/unwrap).
                  MessageProp supplInfo = new MessageProp();
                  GSSContext secContext = null;

                  try {


                     // Now do the context establishment loop

                     GSSContext context = mgr.createContext(cred);




Upadhyay & Malkani          Standards Track                    [Page 93]

RFC 5653                  Java GSS-API Update                August 2009


                     while (!context.isEstablished()) {

                         inToken = readGSSToken();

                         outToken = context.acceptSecContext(inToken,
                                                  0, inToken.length);

                         if (outToken != null)
                             writeGSSToken(outToken);

                     }


                     // SimpleServer wants confidentiality to be
                     // available.  Check for it.
                     if (!context.getConfState()){
                         ...
                         ...
                     }

                     GSSName peer = context.getSrcName();
                     Oid mech = context.getMech();
                     print("Security context established with " +
                            peer.toString() +
                           " using underlying mechanism " +
                           mech.toString() +
                           " from Provider " +
                           context.getProvider().getName());

                     // Now read the bytes sent by the client to be
                     // processed.
                     inToken = readGSSToken();

                     // Unwrap the message
                     buffer = context.unwrap(inToken, 0,
                                 inToken.length, supplInfo);
                     // All ok if no exception was thrown!

                     // Print other supplementary per-message status
                     // information.

                     print("Message from " +
                             peer.toString() + " arrived.");
                     print("Was it encrypted? " +
                             supplInfo.getPrivacy());
                     print("Duplicate Token? " +
                             supplInfo.isDuplicateToken());
                     print("Old Token? "  + supplInfo.isOldToken());



Upadhyay & Malkani          Standards Track                    [Page 94]

RFC 5653                  Java GSS-API Update                August 2009


                     print("Unsequenced Token? " +
                             supplInfo.isUnseqToken());
                     print("Gap Token? "  + supplInfo.isGapToken());

                     /*
                      * Now process the bytes and send back an
                      * encrypted response.
                      */

                     buffer = serverProcess(buffer);

                     // Encipher it and send it across

                     supplInfo.setPrivacy(true); // privacy requested
                     supplInfo.setQOP(0); // default QOP
                     outToken = context.wrap(buffer, 0, buffer.length,
                                                supplInfo);
                     writeGSSToken(outToken);

                 } catch (GSSException e) {
                     print("GSS-API Error: " + e.getMessage());
                     // Alternatively, could call e.getMajorMessage()
                     // and e.getMinorMessage()
                     print("Abandoning security context.");

                     ...
                     ...

                 }

                 ...
                 ...

             } // end of run method in ServerThread

          } // end of inner class ServerThread

          ...
          ...

         } // end of class SimpleServer










Upadhyay & Malkani          Standards Track                    [Page 95]

RFC 5653                  Java GSS-API Update                August 2009


9.  Security Considerations

  The Java language security model allows platform providers to have
  policy-based fine-grained access control over any resource that an
  application wants.  When using a Java security manager (such as, but
  not limited to, the case of applets running in browsers) the
  application code is in a sandbox by default.

  Administrators of the platform JRE determine what permissions, if
  any, are to be given to source from different codebases.  Thus, the
  administrator has to be aware of any special requirements that the
  GSS provider might have for system resources.  For instance, a
  Kerberos provider might wish to make a network connection to the Key
  Distribution Center (KDC) to obtain initial credentials.  This would
  not be allowed under the sandbox unless the administrator had granted
  permissions for this.  Also, note that this granting and checking of
  permissions happens transparently to the application and is outside
  the scope of this document.

  The Java language allows administrators to pre-configure a list of
  security service providers in the <JRE>/lib/security/java.security
  file.  At runtime, the system approaches these providers in order of
  preference when looking for security related services.  Applications
  have a means to modify this list through methods in the "Security"
  class in the "java.security" package.  However, since these
  modifications would be visible in the entire Java Virtual Machine
  (JVM) and thus affect all code executing in it, this operation is not
  available in the sandbox and requires special permissions to perform.
  Thus, when a GSS application has special needs that are met by a
  particular security provider, it has two choices:

  1) To install the provider on a JVM-wide basis using the
     java.security.Security class and then depend on the system to find
     the right provider automatically when the need arises.  (This
     would require the application to be granted a "insertProvider
     SecurityPermission".)

  2) To pass an instance of the provider to the local instance of
     GSSManager so that only factory calls going through that
     GSSManager use the desired provider.  (This would not require any
     permissions.)

10.  Acknowledgments

  This proposed API leverages earlier work performed by the IETF's CAT
  WG as outlined in both RFC 2743 [GSSAPIv2-UPDATE] and RFC 2744
  [GSSAPI-Cbind].  Many conceptual definitions, implementation
  directions, and explanations have been included from these documents.



Upadhyay & Malkani          Standards Track                    [Page 96]

RFC 5653                  Java GSS-API Update                August 2009


  We would like to thank Mike Eisler, Lin Ling, Ram Marti, Michael
  Saltz, and other members of Sun's development team for their helpful
  input, comments, and suggestions.

  We would also like to thank Joe Salowey, and Michael Smith for many
  insightful ideas and suggestions that have contributed to this
  document.

11.  Changes since RFC 2853

  This document has following changes:

  1) Major GSS Status Code Constant Values

     RFC 2853 listed all the GSS status code values in two different
     sections: section 4.12.1 defined numeric values for them, and
     section 6.8.1 defined them as static constants in the GSSException
     class without assigning any values.  Due to an inconsistent
     ordering between these two sections, all of the GSS major status
     codes resulted in misalignment, and a subsequent disagreement
     between deployed implementations.

     This document defines the numeric values of the GSS status codes
     in both sections, while maintaining the original ordering from
     section 6.8.1 of RFC 2853 [RFC2853], and obsoletes the GSS status
     code values defined in section 4.12.1.  The relevant sections in
     this document are sections 5.12.1 and 7.8.1.

  2) GSS Credential Usage Constant Values

     RFC 2853 section 6.3.2 defines static constants for the
     GSSCredential usage flags.  However, the values of these constants
     were not defined anywhere in RFC 2853 [RFC2853].

     This document defines the credential usage values in section
     7.3.2.  The original ordering of these values from section 6.3.2
     of RFC 2853 [RFC2853] is maintained.

  3) GSS Host-Based Service Name

     RFC 2853 [RFC2853], section 6.2.2, defines the static constant for
     the GSS host-based service OID NT_HOSTBASED_SERVICE, using a
     deprecated OID value.

     This document updates the NT_HOSTBASED_SERVICE OID value in
     section 7.2.2 to be consistent with the C-bindings in RFC 2744
     [GSSAPI-Cbind].




Upadhyay & Malkani          Standards Track                    [Page 97]

RFC 5653                  Java GSS-API Update                August 2009


12.  References

12.1.  Normative References

  [GSSAPI-Cbind]
             Wray, J., "Generic Security Service API Version 2 :
             C-bindings", RFC 2744, January 2000.

  [GSSAPIv2-UPDATE]
             Linn, J., "Generic Security Service Application Program
             Interface Version 2, Update 1", RFC 2743, January 2000.

  [RFC2025]  Adams, C., "The Simple Public-Key GSS-API Mechanism
             (SPKM)", RFC 2025, October 1996.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2853]  Kabat, J. and M. Upadhyay, "Generic Security Service API
             Version 2 : Java Bindings", RFC 2853, June 2000.

  [RFC4121]  Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
             Version 5 Generic Security Service Application Program
             Interface (GSS-API) Mechanism: Version 2", RFC 4121, July
             2005.

12.2.  Informative References

  [JLS]      Gosling, J., Joy, B., Steele, G., and G. Bracha "The Java
             Language Specification", Third Edition,
             http://java.sun.com/docs/books/jls/.




















Upadhyay & Malkani          Standards Track                    [Page 98]

RFC 5653                  Java GSS-API Update                August 2009


Authors' Addresses

  Mayank D. Upadhyay
  Google Inc.
  1600 Amphitheatre Parkway
  Mountain View, CA  94043
  USA

  EMail: [email protected]


  Seema Malkani
  ActivIdentity Corp.
  6623 Dumbarton Circle
  Fremont, California 94555
  USA

  EMail: [email protected]

































Upadhyay & Malkani          Standards Track                    [Page 99]