Network Working Group                                           A. Zinin
Request for Comments: 5613                                Alcatel-Lucent
Obsoletes: 4813                                                   A. Roy
Category: Standards Track                                      L. Nguyen
                                                          Cisco Systems
                                                            B. Friedman
                                                           Google, Inc.
                                                               D. Yeung
                                                          Cisco Systems
                                                            August 2009


                      OSPF Link-Local Signaling

Abstract

  OSPF is a link-state intra-domain routing protocol.  OSPF routers
  exchange information on a link using packets that follow a well-
  defined fixed format.  The format is not flexible enough to enable
  new features that need to exchange arbitrary data.  This document
  describes a backward-compatible technique to perform link-local
  signaling, i.e., exchange arbitrary data on a link.  This document
  replaces the experimental specification published in RFC 4813 to
  bring it on the Standards Track.

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.








Zinin, et al.               Standards Track                     [Page 1]

RFC 5613               OSPF Link-Local Signaling             August 2009


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
    1.1.  Requirements Notation  . . . . . . . . . . . . . . . . . .  2
  2.  Proposed Solution  . . . . . . . . . . . . . . . . . . . . . .  3
    2.1.  L-Bit in Options Field . . . . . . . . . . . . . . . . . .  4
    2.2.  LLS Data Block . . . . . . . . . . . . . . . . . . . . . .  4
    2.3.  LLS TLVs . . . . . . . . . . . . . . . . . . . . . . . . .  5
    2.4.  Extended Options and Flags TLV . . . . . . . . . . . . . .  5
    2.5.  Cryptographic Authentication TLV (OSPFv2 ONLY) . . . . . .  6
    2.6.  Private TLVs . . . . . . . . . . . . . . . . . . . . . . .  7
  3.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . .  7
  4.  Compatibility Issues . . . . . . . . . . . . . . . . . . . . .  9
  5.  Security Considerations  . . . . . . . . . . . . . . . . . . .  9
  6.  References . . . . . . . . . . . . . . . . . . . . . . . . . .  9
    6.1.  Normative References . . . . . . . . . . . . . . . . . . .  9
    6.2.  Informative References . . . . . . . . . . . . . . . . . . 10
  Appendix A.  Acknowledgements  . . . . . . . . . . . . . . . . . . 11
  Appendix B.  Changes from RFC 4813 . . . . . . . . . . . . . . . . 11

1.  Introduction

  This document describes an extension to OSPFv2 [OSPFV2] and OSPFv3
  [OSPFV3] allowing additional information to be exchanged between
  routers on the same link.  OSPFv2 and OSPFv3 packet formats are fixed
  and do not allow for extension.  This document proposes appending an
  optional data block composed of Type/Length/Value (TLV) triplets to
  existing OSPFv2 and OSPFv3 packets to carry this additional
  information.  Throughout this document, OSPF will be used when the
  specification is applicable to both OSPFv2 and OSPFv3.  Similarly,
  OSPFv2 or OSPFv3 will be used when the text is protocol specific.

  One potential way of solving this task could be introducing a new
  packet type.  However, that would mean introducing extra packets on
  the network that may not be desirable and may cause backward
  compatibility issues.  This document describes how to exchange data
  using standard OSPF packet types.

1.1.  Requirements Notation

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [KEY].








Zinin, et al.               Standards Track                     [Page 2]

RFC 5613               OSPF Link-Local Signaling             August 2009


2.  Proposed Solution

  To perform link-local signaling (LLS), OSPF routers add a special
  data block to the end of OSPF packets or right after the
  authentication data block when cryptographic authentication is used.
  The length of the LLS block is not included into the length of the
  OSPF packet, but is included in the IPv4/IPv6 packet length.  Figure
  1 illustrates how the LLS data block is attached.

  +---------------------+ --              --  +---------------------+
  | IP Header           | ^               ^   | IPv6 Header         |
  | Length = HL+X+Y+Z   | | Header Length |   | Length = HL+X+Y     |
  |                     | v               v   |                     |
  +---------------------+ --              --  +---------------------+
  | OSPF Header         | ^               ^   | OSPFv3 Header       |
  | Length = X          | |               |   | Length = X          |
  |.....................| | X             | X |.....................|
  |                     | |               |   |                     |
  | OSPFv2 Data         | |               |   | OSPFv3 Data         |
  |                     | v               v   |                     |
  +---------------------+ --              --  +---------------------+
  |                     | ^               ^   |                     |
  | Authentication Data | | Y             | Y |  LLS Data           |
  |                     | v               v   |                     |
  +---------------------+ --              --  +---------------------+
  |                     | ^
  |  LLS Data           | | Z
  |                     | v
  +---------------------+ --

              Figure 1: LLS Data Block in OSPFv2 and OSPFv3

  The LLS block MAY be attached to OSPF Hello and Database Description
  (DD) packets.  The LLS block MUST NOT be attached to any other OSPF
  packet types on generation and MUST be ignored on reception.

  The data included in the LLS block attached to a Hello packet MAY be
  used for dynamic signaling since Hello packets may be sent at any
  time.  However, delivery of LLS data in Hello packets is not
  guaranteed.  The data sent with DD packets is guaranteed to be
  delivered as part of the adjacency forming process.

  This document does not specify how the data transmitted by the LLS
  mechanism should be interpreted by OSPF routers.  As routers that do
  not understand LLS may receive these packets, changes made due to LLS
  block TLV's do not affect the basic routing when interacting with
  non-LLS routers.




Zinin, et al.               Standards Track                     [Page 3]

RFC 5613               OSPF Link-Local Signaling             August 2009


2.1.  L-Bit in Options Field

  A new L-bit (L stands for LLS) is introduced into the OSPF Options
  field (see Figures 2a and 2b).  Routers set the L-bit in Hello and DD
  packets to indicate that the packet contains an LLS data block.  In
  other words, the LLS data block is only examined if the L-bit is set.

            +---+---+---+---+---+---+---+---+
            | * | O | DC| L |N/P| MC| E | * |
            +---+---+---+---+---+---+---+-+-+

             Figure 2a: OSPFv2 Options Field


  0                   1                       2
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4  5 6 7  8  9  0  1  2  3
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+--+--+--+--+--+--+
  | | | | | | | | | | | | | | |L|AF|*|*|DC| R| N|MC| E|V6|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+--+--+--+--+--+--+

             Figure 2b: OSPFv3 Options Field

  The L-bit MUST NOT be set except in Hello and DD packets that contain
  an LLS block.

2.2.  LLS Data Block

  The data block used for link-local signaling is formatted as
  described below (see Figure 3 for illustration).

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Checksum           |       LLS Data Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                           LLS TLVs                            |
  .                                                               .
  .                                                               .
  .                                                               .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 3: Format of LLS Data Block

  The Checksum field contains the standard IP checksum for the entire
  contents of the LLS block.  Before computing the checksum, the
  checksum field is set to 0.  If the checksum is incorrect, the OSPF
  packet MUST be processed, but the LLS block MUST be discarded.



Zinin, et al.               Standards Track                     [Page 4]

RFC 5613               OSPF Link-Local Signaling             August 2009


  The 16-bit LLS Data Length field contains the length (in 32-bit
  words) of the LLS block including the header and payload.

  Note that if the OSPF packet is cryptographically authenticated, the
  LLS data block MUST also be cryptographically authenticated.  In this
  case, the regular LLS checksum is not calculated, but is instead set
  to 0.

  The rest of the block contains a set of Type/Length/Value (TLV)
  triplets as described in Section 2.3.  All TLVs MUST be 32-bit
  aligned (with padding if necessary).

2.3.  LLS TLVs

  The contents of an LLS data block are constructed using TLVs.  See
  Figure 4 for the TLV format.

  The Type field contains the TLV ID, which is unique for each type of
  TLV.  The Length field contains the length of the Value field (in
  bytes).  The Value field is variable and contains arbitrary data.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Type               |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  .                                                               .
  .                             Value                             .
  .                                                               .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 4: Format of LLS TLVs

  Note that TLVs are always padded to a 32-bit boundary, but padding
  bytes are not included in the TLV Length field (though they are
  included in the LLS Data Length field in the LLS block header).
  Unrecognized TLV types are ignored.

2.4.  Extended Options and Flags TLV

  This subsection describes a TLV called the Extended Options and Flags
  (EOF) TLV.  The format of the EOF-TLV is shown in Figure 5.

  Bits in the Value field do not have any semantics from the point of
  view of the LLS mechanism.  Bits MAY be allocated to announce OSPF
  link-local capabilities.  Bits MAY also be allocated to perform
  boolean link-local signaling.



Zinin, et al.               Standards Track                     [Page 5]

RFC 5613               OSPF Link-Local Signaling             August 2009


  The length of the Value field in the EOF-TLV is 4 bytes.

  The value of the Type field in the EOF-TLV is 1.  The EOF-TLV MUST
  only appear once in the LLS data block.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             1                 |            4                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Extended Options and Flags                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 5: Format of the EOF-TLV

  Currently, [OOB] and [RESTART] use bits in the Extended Options field
  of the EOF-TLV.

  The Extended Options and Flags bits are defined in Section 3.

2.5.  Cryptographic Authentication TLV (OSPFv2 ONLY)

  This document defines a special TLV that is used for cryptographic
  authentication (CA-TLV) of the LLS data block.  This TLV MUST only be
  included in the LLS block when cryptographic authentication is
  enabled on the corresponding interface.  The message digest of the
  LLS block MUST be calculated using the same key and authentication
  algorithm as used for the OSPFv2 packet.  The cryptographic sequence
  number is included in the TLV and MUST be the same as the one in the
  OSPFv2 authentication data for the LLS block to be considered
  authentic.

  The TLV is constructed as shown in Figure 6.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              2                |         AuthLen               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Sequence Number                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  .                                                               .
  .                           AuthData                            .
  .                                                               .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 6: Format of Cryptographic Authentication TLV



Zinin, et al.               Standards Track                     [Page 6]

RFC 5613               OSPF Link-Local Signaling             August 2009


  The value of the Type field for the CA-TLV is 2.

  The Length field in the header contains the length of the data
  portion of the TLV including 4 bytes for Sequence Number and the
  length of the message digest block for the whole LLS block in bytes.

  The Sequence Number field contains the cryptographic sequence number
  that is used to prevent simple replay attacks.  For the LLS block to
  be considered authentic, the Sequence Number in the CA-TLV MUST match
  the Sequence Number in the OSPFv2 packet header Authentication field
  (which MUST be present).  In the event of Sequence Number mismatch or
  Authentication failure, the whole LLS block MUST be ignored.

  The CA-TLV MUST NOT appear more than once in the LLS block.  Also,
  when present, this TLV MUST be the last TLV in the LLS block.  If it
  appears more than once, only the first occurrence is processed and
  any others MUST be ignored.

  The AuthData field contains the message digest calculated for the LLS
  data block up to the CA-TLV AuthData field (i.e., excludes the CA-TLV
  AuthData).

  The CA-TLV is not applicable to OSPFv3 and it MUST NOT be added to
  any OSPFv3 packet.  If found on reception, this TLV MUST be ignored.

2.6.  Private TLVs

  LLS type values in the range of 32768-65536 are reserved for private
  use.  The first four octets of the Value field MUST be the private
  enterprise code [ENTNUM].  This allows multiple vendor private
  extensions to coexist in a network.

3.  IANA Considerations

  This document uses the registry that was originally created in
  [RFC4813].  IANA updated the following registry to point to this
  document instead:

  o  "Open Shortest Path First (OSPF) Link-Local Signalling (LLS) -
     Type/Length/Value Identifiers (TLV)"

  IANA allocated L-bit in the "OSPFv2 Options Registry" and "OSPFv3
  Options Registry" as per Section 2.1.

  LLS TLV types are maintained by the IANA.  Extensions to OSPF that
  require a new LLS TLV type MUST be reviewed by a Designated Expert
  from the routing area.




Zinin, et al.               Standards Track                     [Page 7]

RFC 5613               OSPF Link-Local Signaling             August 2009


  The criteria for allocating LLS TLVs are:

  o  LLS should not be used for information that would be better suited
     to be advertised in a link-local link state advertisement (LSA).

  o  LLS should be confined to signaling between direct neighbors.

  o  Discretion should be used in the volume of information signaled
     using LLS due to the obvious MTU and performance implications.

  Following the policies outlined in [IANA], LLS type values in the
  range of 0-32767 are allocated through an IETF Review and LLS type
  values in the range of 32768-65535 are reserved for private use.

  This document assigns the following LLS TLV types in OSPFv2/OSPFv3.

  TLV Type    Name                                      Reference
  0           Reserved
  1           Extended Options and Flags                [RFC5613]
  2           Cryptographic Authentication+             [RFC5613]
  3-32767     Reserved for assignment by the IANA
  32768-65535 Private Use

  + Cryptographic Authentication TLV is only defined for OSPFv2

  IANA renamed the sub-registry from "LLS Type 1 Extended Options" to
  "LLS Type 1 Extended Options and Flags".

  This document also assigns the following bits in the EOF-TLV outlined
  in Section 2.5:

  Bit                     Name                        Reference
  0x00000001              LSDB Resynchronization (LR) [RFC4811]
  0x00000002              Restart Signal (RS-bit)     [RFC4812]

  Future allocation of Extended Options and Flags bits MUST be reviewed
  by a Designated Expert from the routing area.














Zinin, et al.               Standards Track                     [Page 8]

RFC 5613               OSPF Link-Local Signaling             August 2009


4.  Compatibility Issues

  The modifications to OSPF packet formats are compatible with standard
  OSPF since OSPF routers not supporting LLS will ignore the LLS data
  block after the OSPF packet or cryptographic message digest.  As of
  this writing, there are implementations deployed with [RFC4813]-
  compliant software.  Routers not implementing [RFC4813] ignore the
  LLS data at the end of the OSPF packet.

  Careful consideration should be given to carrying additional LLS
  data, as it may affect the OSPF adjacency bring-up time due to
  additional propagation delay and/or processing time.

5.  Security Considerations

  Security considerations inherited from OSPFv2 are described in
  [OSPFV2].  This technique provides the same level of security as the
  basic OSPFv2 protocol by allowing LLS data to be authenticated using
  the same cryptographic authentication that OSPFv2 uses (see
  Section 2.5 for more details).

  Security considerations inherited from OSPFv3 are described in
  [OSPFV3] and [OSPFV3AUTH].  OSPFv3 utilizes IPsec for authentication
  and encryption.  With IPsec, the AH (Authentication Header), ESP
  (Encapsulating Security Payload), or both are applied to the entire
  OSPFv3 payload including the LLS block.

6.  References

6.1.  Normative References

  [IANA]        Narten, T. and H. Alvestrand, "Guidelines for Writing
                an IANA Considerations Section in RFCs", BCP 26,
                RFC 5226, May 2008.

  [KEY]         Bradner, S., "Key words for use in RFCs to Indicate
                Requirement Levels", BCP 14, RFC 2119, March 1997.

  [OSPFV2]      Moy, J., "OSPF Version 2", STD 54, RFC 2328,
                April 1998.

  [OSPFV3]      Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF
                for IPv6", RFC 5340, July 2008.

  [OSPFV3AUTH]  Gupta, M. and N. Melam, "Authentication/Confidentiality
                for OSPFv3", RFC 4552, June 2006.





Zinin, et al.               Standards Track                     [Page 9]

RFC 5613               OSPF Link-Local Signaling             August 2009


6.2.  Informative References

  [ENTNUM]      IANA, "PRIVATE ENTERPRISE NUMBERS",
                http://www.iana.org.

  [OOB]         Nguyen, L., Roy, A., and A. Zinin, "OSPF Out-of-Band
                Link State Database (LSDB) Resynchronization",
                RFC 4811, March 2007.

  [RESTART]     Nguyen, L., Roy, A., and A. Zinin, "OSPF Restart
                Signaling", RFC 4812, March 2007.

  [RFC4813]     Friedman, B., Nguyen, L., Roy, A., Yeung, D., and A.
                Zinin, "OSPF Link-Local Signaling", RFC 4813,
                March 2007.




































Zinin, et al.               Standards Track                    [Page 10]

RFC 5613               OSPF Link-Local Signaling             August 2009


Appendix A.  Acknowledgements

  The authors would like to acknowledge Russ White, Acee Lindem, and
  Manral Vishwas for their review of this document.

Appendix B.  Changes from RFC 4813

  This section describes the substantive change from [RFC4813].

  o  Added OSPFv3 support

  o  Private TLVs MUST use private enterprise code

  o  Clarified requirement levels at several places

  o  Changed from Experimental to Standards Track



































Zinin, et al.               Standards Track                    [Page 11]

RFC 5613               OSPF Link-Local Signaling             August 2009


Authors' Addresses

  Alex Zinin
  Alcatel-Lucent
  Singapore

  EMail: [email protected]


  Abhay Roy
  Cisco Systems
  170 West Tasman Drive
  San Jose, CA  95134
  USA

  EMail: [email protected]


  Liem Nguyen
  Cisco Systems
  170 West Tasman Drive
  San Jose, CA  95134
  USA

  EMail: [email protected]


  Barry Friedman
  Google, Inc.
  1600 Amphitheatre Parkway
  Mountain View, CA  94043
  USA

  EMail: [email protected]


  Derek Yeung
  Cisco Systems
  170 West Tasman Drive
  San Jose, CA  95134
  USA

  EMail: [email protected]








Zinin, et al.               Standards Track                    [Page 12]