Network Working Group                                       V. Mammoliti
Request for Comments: 5515                                  C. Pignataro
Category: Informational                                    Cisco Systems
                                                              P. Arberg
                                                       Redback Networks
                                                             J. Gibbons
                                                       Juniper Networks
                                                              P. Howard
                                                               May 2009


      Layer 2 Tunneling Protocol (L2TP) Access Line Information
                Attribute Value Pair (AVP) Extensions

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

Abstract

  This document describes a set of Layer 2 Tunneling Protocol (L2TP)
  Attribute Value Pair (AVP) extensions designed to carry the
  subscriber Access Line identification and characterization
  information that arrives at the Broadband Remote Access Server (BRAS)
  with L2TP Access Concentrator (LAC) functionality.  It also describes
  a mechanism to report connection speed changes, after the initial
  connection speeds are sent during session establishment.  The primary
  purpose of this document is to provide a reference for DSL equipment
  vendors wishing to interoperate with other vendors' products.  The
  L2TP AVPs defined in this document are applicable to both L2TPv2 and
  L2TPv3.







Mammoliti, et al.            Informational                      [Page 1]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


Table of Contents

  1. Introduction ....................................................3
  2. Terminology .....................................................3
     2.1. Requirements Language ......................................3
     2.2. Technical Terms and Acronyms ...............................4
  3. Access Line Information L2TP AVP Operation ......................5
  4. Additional L2TP Messages ........................................6
     4.1. Connect-Speed-Update-Notification (CSUN) ...................8
     4.2. Connect-Speed-Update-Request (CSURQ) .......................8
  5. Access Line Information L2TP Attribute Value Pair Extensions ....9
     5.1. Access Line Agent-Circuit-Id AVP ..........................10
     5.2. Access Line Agent-Remote-Id AVP ...........................11
     5.3. Access Line Actual-Data-Rate-Upstream AVP .................12
     5.4. Access Line Actual-Data-Rate-Downstream AVP ...............13
     5.5. Access Line Minimum-Data-Rate-Upstream AVP ................13
     5.6. Access Line Minimum-Data-Rate-Downstream AVP ..............14
     5.7. Access Line Attainable-Data-Rate-Upstream AVP .............14
     5.8. Access Line Attainable-Data-Rate-Downstream AVP ...........14
     5.9. Access Line Maximum-Data-Rate-Upstream AVP ................15
     5.10. Access Line Maximum-Data-Rate-Downstream AVP .............15
     5.11. Access Line Minimum-Data-Rate-Upstream-Low-Power AVP .....16
     5.12. Access Line Minimum-Data-Rate-Downstream-Low-Power AVP ...16
     5.13. Access Line Maximum-Interleaving-Delay-Upstream AVP ......17
     5.14. Access Line Actual-Interleaving-Delay-Upstream AVP .......17
     5.15. Access Line Maximum-Interleaving-Delay-Downstream AVP ....18
     5.16. Access Line Actual-Interleaving-Delay-Downstream AVP .....18
     5.17. Access Line Access-Loop-Encapsulation AVP ................19
     5.18. ANCP Access Line Type AVP ................................20
     5.19. Access Line IWF-Session AVP ..............................21
  6. Connect Speed Update L2TP Attribute Value Pair Extensions ......22
     6.1. Connect Speed Update AVP (CSUN, CSURQ) ....................22
     6.2. Connect Speed Update Enable AVP (ICRQ) ....................23
  7. Access Line Information AVP Mapping ............................24
     7.1. Summary of Access Line AVPs ...............................24
  8. IANA Considerations ............................................25
     8.1. Message Type AVP Values ...................................25
     8.2. Control Message Attribute Value Pairs (AVPs) ..............25
     8.3. Values for Access Line Information AVPs ...................25
  9. Security Considerations ........................................25
  10. Acknowledgements ..............................................26
  11. References ....................................................26
     11.1. Normative References .....................................26
     11.2. Informative References ...................................27







Mammoliti, et al.            Informational                      [Page 2]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


1.  Introduction

  Access Nodes (ANs), referred to as Digital Subscriber Line Access
  Multiplexers (DSLAMs) in DSL, are adding enhancement features to
  forward, via in-band signaling, subscriber Access Line identification
  and characterization information to their connected upstream
  Broadband Remote Access Server (BRAS) with L2TP Access Concentrator
  (LAC) functionality.

  The Access Node/DSLAM may forward the information via one or more of
  the following methods:

  o  Vendor-Specific Point-to-Point Protocol over Ethernet (PPPoE) Tags
     [RFC2516].

  o  DHCP Relay Options [RFC3046] and Vendor-Specific Information
     Suboptions [RFC4243].

  o  Access Node Control Protocol [ANCP].

  Currently, this information is been collected on the BRAS and
  forwarded to a radius server via [RFC4679].

  This document describes the new additional L2TP AVPs that were
  created to forward the subscriber line identification and
  characterization information received at the BRAS/LAC to the
  terminating L2TP Network Server (LNS).  It also describes a mechanism
  by which the LAC may report connection speed changes to the LNS,
  after the initial connection speeds are sent by the LAC during
  session establishment.

  The L2TP AVPs defined in this document MAY be used with either an
  L2TPv2 [RFC2661] or L2TPv3 [RFC3931] implementation.

  The information acquired may be used to provide authentication,
  policy, and accounting functionality.  It may also be collected and
  used for management and troubleshooting purposes.

2.  Terminology

  The following sections define the usage and meaning of certain
  specialized terms in the context of this document.

2.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].



Mammoliti, et al.            Informational                      [Page 3]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


2.2.  Technical Terms and Acronyms

  Access Node/DSLAM

     The Access Node/DSLAM is a DSL signal terminator that contains a
     minimum of one Ethernet or ATM interface that serves as its
     upstream interface into which it aggregates traffic from several
     ATM-based (subscriber ports) or Ethernet-based downstream
     interfaces.

  BNG

     Broadband Network Gateway.  A BNG is an IP edge router where
     bandwidth and Quality-of-Service (QoS) policies are applied; the
     functions performed by a BRAS are a superset of those performed by
     a BNG.

  BRAS

     Broadband Remote Access Server.  A BRAS is a BNG and is the
     aggregation point for the subscriber traffic.  It provides
     aggregation capabilities (e.g., IP, PPP, Ethernet) between the
     access network and the core network.  Beyond its aggregation
     function, the BRAS is also an injection point for policy
     management and IP QoS in the access network.

  DSL

     Digital Subscriber Line.  DSL is a technology that allows digital
     data transmission over wires in the local telephone network.

  DSLAM

     Digital Subscriber Line Access Multiplexer.  DSLAM is a device
     that terminates DSL subscriber lines.  The data is aggregated and
     forwarded to ATM- or Ethernet-based aggregation networks.

  IWF

     Interworking Function.  The set of functions required for
     interconnecting two networks of different technologies (e.g., ATM
     and Ethernet).  IWF is utilized to enable the carriage of Point-
     to-Point Protocol over ATM (PPPoA) traffic over PPPoE.








Mammoliti, et al.            Informational                      [Page 4]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  LAC

     L2TP Access Concentrator.  If an L2TP Control Connection Endpoint
     (LCCE) is being used to cross-connect an L2TP session directly to
     a data link, we refer to it as an L2TP Access Concentrator (LAC).
     (See [RFC2661] and [RFC3931].)

  LCCE

     L2TP Control Connection Endpoint.  An L2TP node that exists at
     either end of an L2TP control connection.  May also be referred to
     as an LAC or LNS, depending on whether tunneled frames are
     processed at the data link (LAC) or network layer (LNS).  (See
     [RFC3931].)

  LNS

     L2TP Network Server.  If a given L2TP session is terminated at the
     L2TP node and the encapsulated network layer (L3) packet processed
     on a virtual interface, we refer to this L2TP node as an L2TP
     Network Server (LNS).  (See [RFC2661] and [RFC3931].)

3.  Access Line Information L2TP AVP Operation

  When the BRAS with LAC functionality receives the Access Line
  information from the Access Node and has determined that the session
  will be established with an LNS, the LAC will forward the information
  that it has collected in the newly defined L2TP AVPs.  The LAC will
  only forward the Access Line Information AVPs that have populated
  values.

  Access Line information from any of the above methods must be
  available at the BRAS prior to the start of session negotiation by
  the LAC.  This ensures Access Line parameters are reliably provided
  to the LNS and avoids additional call set-up delays.  Under the
  condition that the LAC has not received any Access Line information
  from any of the methods, as default behavior the LAC SHOULD establish
  the L2TP session without waiting for the Access Line information.  In
  this case, the LAC MUST NOT send any of the Access Line AVPs to the
  LNS.  The LAC MAY, as local policy, wait for the Access Line
  information from one or more of the methods before forwarding the
  information in the Access Line L2TP AVPs to the LNS.

  It is possible that the Access Node will only send a subset of the
  currently available line information defined.  The LAC MUST be able
  to limit and/or filter which AVPs, if any, are sent to the LNS.





Mammoliti, et al.            Informational                      [Page 5]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  It is also possible that the LAC may receive Access Line information
  from multiple sources and at different time intervals.  Local policy
  SHOULD determine which source(s) the LAC will accept.  The LAC SHOULD
  default to accepting ANCP-sourced parameters.

  The Access Line AVPs are sent as part of the L2TP Incoming-Call-
  Request (ICRQ) control message.  Connect Speed Update AVPs are sent
  as part of the Connect-Speed-Update-Notification (CSUN) or Connect-
  Speed-Update-Request (CSURQ) L2TP messages (see Sections 4, 4.1, and
  4.2).

  It is possible for the LAC to send updated Connect Speed
  characteristics to the LNS via the Connect Speed Update AVP in an
  L2TP Connect-Speed-Update-Notification (CSUN) control message (see
  Section 4.1).  To avoid unnecessary L2TP Connect-Speed-Update-Request
  and Connect-Speed-Update-Notification message exchanges between the
  LAC and LNS (e.g., during failover protocol recovery and
  resynchronization), the LAC signals in the session establishment
  exchange its ability and desire to provide speed updates during the
  life of the session.  This is achieved using a new AVP, Connect Speed
  Update Enable (see Section 6.2), sent in the L2TP Incoming-Call-
  Request (ICRQ) control message.  The absence of this AVP in the ICRQ
  message implies that the LAC will not be sending any speed updates
  during the life of the session.  If the LAC is configured to accept
  ANCP-sourced parameters, and supports providing speed updates during
  the life of a session, it MUST send the Connect Speed Update Enable
  AVP in the ICRQ, since this implies that speed updates may occur over
  the life of the connection.  If the LAC is configured to only accept
  PPPoE vendor-specific tags, it MUST NOT send the Connect Speed Update
  Enable AVP in the ICRQ, since the connection speed is only sent
  during PPPoE discovery and no further updates will occur during the
  life of the connection.

4.  Additional L2TP Messages

  If the Access Line information changes while the session is still
  maintained, connection speed updates MAY be sent from the LAC to the
  LNS via an L2TP Connect-Speed-Update-Notification (CSUN) Message (see
  Section 4.1).  A new AVP, Connect Speed Update AVP (see Section 6.1),
  is included in the CSUN message to report connect speed updates for a
  specific session after the initial connection speeds are established
  (i.e., at session establishment via the Tx Connect Speed and Rx
  Connect Speed AVPs, Attribute Types 24 and 38, respectively, for
  L2TPv2 and 74 and 75, respectively, for L2TPv3).  The values
  established in the Connect Speed Update AVP (as well as the values
  for the initial Tx/Rx Connect Speeds AVPs) are based on LAC local
  policy.  For example, the LAC's local policy may use the Actual-Data-
  Rate-Upstream and Actual-Data-Rate-Downstream as its policy to report



Mammoliti, et al.            Informational                      [Page 6]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  connection speed updates.  For consistency, the same local policy
  SHOULD equally apply both to the initial connect speeds (conveyed
  during session establishment) and to the (optional) connect speed
  updates (sent after the establishment of the session).  The CSUN
  message MAY be sent periodically to the LNS based on local policy and
  may include more than one Connect Speed Update AVP.  The bulking of
  more than one Connect Speed Update AVP into the CSUN message serves
  the following purposes:

  o  Dampens the rate of changes sent to the LNS when Access Line
     parameter updates are received at a high rate for a given line.

  o  Efficiently forwards speed updates when Access Line parameter
     updates are received for many lines at the same time.

  o  Supports failover [RFC4951] protocol recovery and
     resynchronization.

  During failover recovery and resynchronization, to ensure the correct
  speeds have been applied to outstanding sessions on each tunnel, the
  LNS MAY issue a Connect-Speed-Update-Request (CSURQ) message (see
  Section 4.2) to the LAC containing one or more Session IDs.  In
  response to the CSURQ message, the LAC MUST issue a Connect-Speed-
  Update-Notification (CSUN) message (see Section 4.1) containing a
  Connect Speed Update AVP for each of the Session IDs requested in the
  CSURQ.  Note: In the CSUN response to the CSURQ, the LAC MUST NOT
  respond to unknown sessions, or to known sessions for which it did
  not issue a Connect Speed Update Enable AVP in the prior Incoming-
  Call-Request (ICRQ) control message for the session (see Sections 3
  and 6.2).

  This section defines two new Messages that are used with the IETF
  Vendor ID of 0 in the Message Type AVP.

     The following message types will be assigned to these new messages
     (see Section 8.1):

        28: (CSUN) Connect-Speed-Update-Notification

        29: (CSURQ) Connect-Speed-Update-Request

  The Mandatory (M) bit within the Message Type AVP SHOULD be clear
  (i.e., not set) for the CSUN and CSURQ control messages, to allow for
  an L2TP Control Connection Endpoint (LCCE) to maintain the control
  connection if the message type is unknown.






Mammoliti, et al.            Informational                      [Page 7]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


4.1.  Connect-Speed-Update-Notification (CSUN)

  The Connect-Speed-Update-Notification (CSUN) is an L2TP control
  message sent by the LAC to the LNS to provide transmit and receive
  connection speed updates for one or more sessions.  The connection
  speed may change at any time during the life of the call; thus, the
  LNS SHOULD be able to update its connection speed on an active
  session.

  The following AVPs MUST be present in the CSUN:

     Message Type

     Connect Speed Update (more than one may be present in the CSUN)

  Note that the LAC MUST NOT include a Connect Speed Update AVP for
  which it did not send a Connect Speed Update Enable AVP in the prior
  Incoming-Call-Request (ICRQ) control message for the session.

4.2.  Connect-Speed-Update-Request (CSURQ)

  The Connect-Speed-Update-Request (CSURQ) is an L2TP control message
  sent by the LNS to the LAC to request the current transmit and
  receive connection speed for one or more sessions.  It MAY be issued
  at any time during the life of the tunnel and MUST only be issued for
  each outstanding session on each tunnel on which the LNS has already
  received a Connect Speed Update Enable AVP in the prior Incoming-
  Call-Request (ICRQ) control message for the session.  It is typically
  used as part of failover recovery and resynchronization to allow the
  LNS to verify it has the correct speeds for each outstanding session
  on each tunnel.

  The following AVPs MUST be present in the CSURQ:

     Message Type

     Connect Speed Update (more than one may be present in the CSURQ)

  The Current Tx Connect Speed and Current Rx Connect Speed fields in
  the Connect Speed Update AVP MUST be set to 0 when this AVP is used
  in the CSURQ message.

  In the CSUN response to the CSURQ, the LAC MUST NOT respond to
  unknown sessions or to known sessions for which it did not issue a
  Connect Speed Update Enable AVP in the prior Incoming-Call-Request
  (ICRQ) control message for the session.





Mammoliti, et al.            Informational                      [Page 8]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


5.  Access Line Information L2TP Attribute Value Pair Extensions

  The Access Line information was initially defined in the DSL Forum
  Technical Report TR-101 [TR-101].  TR-101 defines the line
  characteristic that are sent from an Access Node.

  The following sections contain a list of the Access Line Information
  L2TP AVPs.  Included with each of the listed AVPs is a short
  description of the purpose of the AVPs.

  The AVPs follow the standard method of encoding AVPs as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |M|H| rsvd  |      Length       |           Vendor ID           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Attribute Type        |Attribute Value, if Required ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    ... (Until Length is reached)                   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The M bit for all the AVPs defined in this document SHOULD be set to
  0 to allow for backwards compatibility with LNSs that do not support
  the Access Line Information AVP extensions hereby defined.  However,
  if it is desired to prevent the establishment of the L2TP session if
  the peer LNS does not support the Access Line Information AVP
  extensions, the M bit MAY be set to 1.  See Section 4.2 of [RFC2661]
  and Section 5.2 of [RFC3931].

  All the AVPs defined in this document MAY be hidden (the H bit MAY be
  0 or 1).

  The Length (before hiding) of all the listed AVPs is 6 plus the
  length of the Attribute Value, if one is required, in octets.

  The Vendor ID for all the listed AVPs (Sections 5.1 through 5.19) is
  that of the IANA assigned ADSL Forum Vendor ID, decimal 3561
  [IANA.enterprise-numbers].

  All the listed AVPs (Section 5.1 through Section 5.19) MAY be present
  in the following messages unless otherwise stipulated:

     Incoming-Call-Request (ICRQ)

  The Value of the AVP contains information about the Access Line to
  which the subscriber is attached.




Mammoliti, et al.            Informational                      [Page 9]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  With the exception of the Connect Speed Update AVP (see Section 6.1),
  all new AVPs specifying a data rate or speed expressed in bits per
  second (bps) will be sent as 64-bits to provide extensibility to
  support future increases in subscriber connection speeds.  These new
  AVPs that specify a 64-bit "Data-Rate" are defined from Section 5.3
  to Section 5.12, both inclusive.  Whenever a speed value sent in an
  AVP fits within 32 bits, the upper 32 bits MUST be transmitted as 0s.

  The various Data-Rates and Interleaving-Delays used in the subsequent
  Sections 5.3 through 5.16 are defined in Section 3.9.4 of [TR-101].
  The qualifiers used with these Data-Rates and Interleaving-Delays
  have the following meanings:

  o  Actual      Actual rate or delay of an access loop

  o  Attainable  Maximum value that can be achieved by the equipment

  o  Minimum     Minimum value configured by the operator

  o  Maximum     Maximum value configured by the operator

5.1.  Access Line Agent-Circuit-Id AVP

  The Access Line Agent-Circuit-Id AVP, Attribute Type 1, contains
  information describing the subscriber agent circuit ID corresponding
  to the logical access loop port of the Access Node/DSLAM from which a
  subscriber's requests are initiated.

  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Agent-Circuit-Id ... (2 to 63 octets)
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Agent-Circuit-Id is of arbitrary length, but MUST be greater than
  1 octet and not greater than 63 octets.

  The Length (before hiding) of this AVP is 6 plus the length of the
  Agent-Circuit-Id.

  The Agent-Circuit-Id contains information about the Access Node/DSLAM
  to which the subscriber is attached, along with a unique identifier
  for the subscriber's DSL port on that Access Node/DSLAM.  The Agent-






Mammoliti, et al.            Informational                     [Page 10]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  Circuit-Id contains a locally administered string representing the
  access loop logical port, and its syntax is defined in Section 3.9.3
  of [TR-101].  The text string is encoded in the UTF-8 charset
  [RFC3629].

  An exemplary description of the Agent-Circuit-Id string format
  follows for background purposes.  The LAC MUST treat the string as an
  opaque value and MUST NOT manipulate or enforce the format of the
  string based on the description here or in TR-101 [TR-101].

  Default syntax for the string is defined in [TR-101].  The examples
  in this section are included only for illustrative purposes.  The
  exact syntax of the string is implementation dependent; however, a
  typical practice is to subdivide it into two or more space-separated
  components, one to identify the Access Node and another the
  subscriber line on that node, with perhaps an indication of whether
  that line is Ethernet or ATM.  Example formats for this string are
  shown below.

     "Access-Node-Identifier atm slot/port:vpi.vci"
     (when ATM/DSL is used)

     "Access-Node-Identifier eth slot/port[:vlan-id]"
     (when Ethernet/DSL is used)

  The syntax for the string is defined in [TR-101].  An example showing
  the slot and port field encoding is given below:

     "Relay-identifier atm 3/0:100.33"
     (slot = 3, port = 0, vpi = 100, vci = 33)

  The Access-Node-Identifier is a unique ASCII string that does not
  include 'space' characters.  The syntax of the slot and port fields
  reflects typical practices currently in place.  The slot identifier
  does not exceed 6 characters in length, and the port identifier does
  not exceed 3 characters in length using a '/' as a delimiter.

  The exact manner in which slots are identified is Access Node/DSLAM
  implementation dependent.  The vpi, vci, and vlan-id fields (when
  applicable) are related to a given access loop (U-interface).

5.2.  Access Line Agent-Remote-Id AVP

  The Access Line Agent-Remote-Id AVP, Attribute Type 2, contains an
  operator-specific, statically configured string that uniquely
  identifies the subscriber on the associated access loop of the Access
  Node/DSLAM.




Mammoliti, et al.            Informational                     [Page 11]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Agent-Remote-Id ... (2 to 63 octets)
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Agent-Remote-Id is of arbitrary length, but MUST be greater than
  1 octet and not greater than 63 octets.

  The Length (before hiding) of this AVP is 6 plus the length of the
  Agent-Remote-Id.

  The Agent-Remote-Id contains information sent from the Access Node/
  DSLAM from which the subscriber is attached, to further refine the
  access loop logical port identification with a user.  The content of
  this message is entirely open to the service provider's discretion.
  For example, it MAY contain a subscriber billing ID or telephone
  number.  The LAC MUST treat the string as an opaque value and MUST
  NOT manipulate or enforce its format.  The text string is defined in
  [TR-101], and is encoded in the UTF-8 charset [RFC3629].

5.3.  Access Line Actual-Data-Rate-Upstream AVP

  The Access Line Actual-Data-Rate-Upstream AVP, Attribute Type 129,
  contains the actual upstream train rate of a subscriber's
  synchronized Access link.

  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                  Actual-Data-Rate-Upstream
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        ... in bps (64 bits)                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Actual-Data-Rate-Upstream is an 8-octet value.

  The Actual-Data-Rate-Upstream AVP contains an 8-octet unsigned
  integer, indicating the subscriber's actual data rate upstream of a
  synchronized Access link.  The rate is coded in bits per second.

  The Length (before hiding) of this AVP is 14.





Mammoliti, et al.            Informational                     [Page 12]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


5.4.  Access Line Actual-Data-Rate-Downstream AVP

  The Access Line Actual-Data-Rate-Downstream AVP, Attribute Type 130,
  contains the actual downstream train rate of a subscriber's
  synchronized Access link.

  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                  Actual-Data-Rate-Downstream
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        ... in bps (64 bits)                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Actual-Data-Rate-Downstream AVP contains an 8-octet unsigned
  integer, indicating the subscriber's actual data rate downstream of a
  synchronized Access link.  The rate is coded in bits per second.

  The Length (before hiding) of this AVP is 14.

5.5.  Access Line Minimum-Data-Rate-Upstream AVP

  The Access Line Minimum-Data-Rate-Upstream AVP, Attribute Type 131,
  contains the subscriber's operator-configured minimum upstream data
  rate.

  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                  Minimum-Data-Rate-Upstream
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        ... in bps (64 bits)                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Minimum-Data-Rate-Upstream AVP contains an 8-octet unsigned
  integer, indicating the subscriber's minimum upstream data rate (as
  configured by the operator).  The rate is coded in bits per second.

  The Length (before hiding) of this AVP is 14.








Mammoliti, et al.            Informational                     [Page 13]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


5.6.  Access Line Minimum-Data-Rate-Downstream AVP

  The Access Line Minimum-Data-Rate-Downstream AVP, Attribute Type 132,
  contains the subscriber's operator-configured minimum downstream data
  rate.

  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Minimum-Data-Rate-Downstream
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        ... in bps (64 bits)                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Minimum-Data-Rate-Downstream AVP contains an 8-octet unsigned
  integer, indicating the subscriber's minimum downstream data rate (as
  configured by the operator).  The rate is coded in bits per second.

  The Length (before hiding) of this AVP is 14.

5.7.  Access Line Attainable-Data-Rate-Upstream AVP

  The Access Line Attainable-Data-Rate-Upstream AVP, Attribute Type
  133, contains the subscriber's actual attainable upstream data rate.

  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Attainable-Data-Rate-Upstream
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        ... in bps (64 bits)                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Attainable-Data-Rate-Upstream AVP contains an 8-octet unsigned
  integer, indicating the subscriber's Access Line actual attainable
  upstream data rate.  The rate is coded in bits per second.

  The Length (before hiding) of this AVP is 14.

5.8.  Access Line Attainable-Data-Rate-Downstream AVP

  The Access Line Attainable-Data-Rate-Downstream AVP, Attribute Type
  134, contains the subscriber's actual attainable downstream data
  rate.



Mammoliti, et al.            Informational                     [Page 14]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Attainable-Data-Rate-Downstream
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        ... in bps (64 bits)                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Attainable-Data-Rate-Downstream AVP contains an 8-octet unsigned
  integer, indicating the subscriber's Access Line actual DSL
  attainable downstream data rate.  The rate is coded in bits per
  second.

  The Length (before hiding) of this AVP is 14.

5.9.  Access Line Maximum-Data-Rate-Upstream AVP

  The Access Line Maximum-Data-Rate-Upstream AVP, Attribute Type 135,
  contains the subscriber's maximum upstream data rate, as configured
  by the operator.

  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                  Maximum-Data-Rate-Upstream
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        ... in bps (64 bits)                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Maximum-Data-Rate-Upstream AVP contains an 8-octet unsigned
  integer, indicating the numeric value of the subscriber's Access Line
  maximum upstream data rate.  The rate is coded in bits per second.

  The Length (before hiding) of this AVP is 14.

5.10.  Access Line Maximum-Data-Rate-Downstream AVP

  The Access Line Maximum-Data-Rate-Downstream AVP, Attribute Type 136,
  contains the subscriber's maximum downstream data rate, as configured
  by the operator.







Mammoliti, et al.            Informational                     [Page 15]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Maximum-Data-Rate-Downstream
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        ... in bps (64 bits)                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Maximum-Data-Rate-Downstream AVP contains an 8-octet unsigned
  integer, indicating the numeric value of the subscriber's Access Line
  maximum downstream data rate.  The rate is coded in bits per second.

  The Length (before hiding) of this AVP is 14.

5.11.  Access Line Minimum-Data-Rate-Upstream-Low-Power AVP

  The Access Line Minimum-Data-Rate-Upstream-Low-Power AVP, Attribute
  Type 137, contains the subscriber's minimum upstream data rate in low
  power state, as configured by the operator.

  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Minimum-Data-Rate-Upstream-Low-Power
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        ... in bps (64 bits)                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Minimum-Data-Rate-Upstream-Low-Power AVP contains an 8-octet
  unsigned integer, indicating the numeric value of the subscriber's
  Access Line minimum upstream data rate when in low power state
  (L1/L2).  The rate is coded in bits per second.

  The Length (before hiding) of this AVP is 14.

5.12.  Access Line Minimum-Data-Rate-Downstream-Low-Power AVP

  The Access Line Minimum-Data-Rate-Downstream-Low-Power AVP, Attribute
  Type 138, contains the subscriber's minimum downstream data rate in
  low power state, as configured by the operator.







Mammoliti, et al.            Informational                     [Page 16]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |            Minimum-Data-Rate-Downstream-Low-Power
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        ... in bps (64 bits)                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Minimum-Data-Rate-Downstream-Low-Power AVP contains an 8-octet
  unsigned integer, indicating the numeric value of the subscriber's
  Access Line minimum downstream data rate when in low power state
  (L1/L2).  The rate is coded in bits per second.

  The Length (before hiding) of this AVP is 14.

5.13.  Access Line Maximum-Interleaving-Delay-Upstream AVP

  The Access Line Maximum-Interleaving-Delay-Upstream AVP, Attribute
  Type 139, contains the subscriber's maximum one-way upstream
  interleaving delay, as configured by the operator.

  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Maximum-Interleaving-Delay-Upstream               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Maximum-Interleaving-Delay-Upstream AVP contains a 4-octet
  unsigned integer, indicating the numeric value in milliseconds of the
  subscriber's Access Line maximum one-way upstream interleaving delay.

  The Length (before hiding) of this AVP is 10.

5.14.  Access Line Actual-Interleaving-Delay-Upstream AVP

  The Access Line Actual-Interleaving-Delay-Upstream AVP, Attribute
  Type 140, contains the subscriber's actual one-way upstream
  interleaving delay.









Mammoliti, et al.            Informational                     [Page 17]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |            Actual-Interleaving-Delay-Upstream                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Actual-Interleaving-Delay-Upstream AVP contains a 4-octet
  unsigned integer, indicating the numeric value in milliseconds of the
  subscriber's Access Line actual upstream interleaving delay.

  The Length (before hiding) of this AVP is 10.

5.15.  Access Line Maximum-Interleaving-Delay-Downstream AVP

  The Access Line Maximum-Interleaving-Delay-Downstream AVP, Attribute
  Type 141, contains the subscriber's maximum one-way downstream
  interleaving delay, as configured by the operator.

  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           Maximum-Interleaving-Delay-Downstream               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Maximum-Interleaving-Delay-Downstream AVP contains a 4-octet
  unsigned integer, indicating the numeric value in milliseconds of the
  subscriber's Access Line maximum one-way downstream interleaving
  delay.

  The Length (before hiding) of this AVP is 10.

5.16.  Access Line Actual-Interleaving-Delay-Downstream AVP

  The Access Line Actual-Interleaving-Delay-Downstream AVP, Attribute
  Type 142, contains the subscriber's actual one-way downstream
  interleaving delay.











Mammoliti, et al.            Informational                     [Page 18]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |            Actual-Interleaving-Delay-Downstream               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Actual-Interleaving-Delay-Downstream AVP contains a 4-octet
  unsigned integer, indicating the numeric value in milliseconds of the
  subscriber's Access Line actual downstream interleaving delay.

  The Length (before hiding) of this AVP is 10.

5.17.  Access Line Access-Loop-Encapsulation AVP

  The Access Line Access-Loop-Encapsulation AVP, Attribute Type 144,
  describes the encapsulation(s) used by the subscriber on the access
  loop.

  The Length (before hiding) of this AVP is 9.

  The Access-Loop-Encapsulation value is comprised of three 1-octet
  values representing the Data Link, Encapsulation 1, and Encapsulation
  2, respectively.

  The Access-Loop-Encapsulation value is 3 octets in length, logically
  divided into three 1-octet sub-fields, each containing its own
  enumeration value, as shown in the following diagram:


             0                   1                   2
             0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            |   Data Link   |    Encaps 1   |    Encaps 2   |
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Valid values for the sub-fields are as follows:

     Data Link

        0x00 ATM AAL5

        0x01 Ethernet







Mammoliti, et al.            Informational                     [Page 19]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


     Encaps 1

        0x00 NA - Not Available

        0x01 Untagged Ethernet

        0x02 Single-Tagged Ethernet

     Encaps 2

        0x00 NA - Not Available

        0x01 PPPoA LLC

        0x02 PPPoA Null

        0x03 IP over ATM (IPoA) LLC

        0x04 IPoA Null

        0x05 Ethernet over AAL5 LLC with Frame Check Sequence (FCS)

        0x06 Ethernet over AAL5 LLC without FCS

        0x07 Ethernet over AAL5 Null with FCS

        0x08 Ethernet over AAL5 Null without FCS

5.18.  ANCP Access Line Type AVP

  The ANCP Access Line Type AVP, Attribute Type 145, describes the
  transmission systems on access loop to the subscriber.

  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      ANCP-Access-Line-Type                    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Length (before hiding) of this AVP is 10.  The ANCP Access Line
  Type AVP defines the type of transmission system used.








Mammoliti, et al.            Informational                     [Page 20]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  The ANCP Access Line Type AVP contains a 1-octet field encoding the
  Transmission System, followed by a 3-octet reserved field (MUST be
  zero), and is 4 octets in length.  It indicates the transmission
  systems on access loop to the subscriber.  The current valid values
  only utilize the 1-octet field.

  Valid values are as follows:

     Transmission system:

        0x01 ADSL1

        0x02 ADSL2

        0x03 ADSL2+

        0x04 VDSL1

        0x05 VDSL2

        0x06 SDSL

        0x07 UNKNOWN

5.19.  Access Line IWF-Session AVP

  The Access Line IWF-Session AVP, Attribute Type 254, indicates if an
  Interworking Function has been performed with respect to the
  subscriber's session.

  The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   Inter-Working Function                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Inter-Working Function is a 4-octet value.

     Valid values for this field are as follows:

        0x00 IWF not performed

        0x01 IWF performed

  The Length (before hiding) of this AVP is 10.




Mammoliti, et al.            Informational                     [Page 21]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


6.  Connect Speed Update L2TP Attribute Value Pair Extensions

  The following sections define Connect Speed Update related AVPs.
  These AVPs (Section 6.1 and Section 6.2) use the IETF Vendor ID of 0.

  The M bit for these AVPs SHOULD be set to 0.  However, if it is
  desired to prevent the establishment or tear down the established
  L2TP session if the peer LNS does not support the Connect Speed
  Update AVP extensions, the M bit MAY be set to 1.  See Section 4.2 of
  [RFC2661] and Section 5.2 of [RFC3931].

6.1.  Connect Speed Update AVP (CSUN, CSURQ)

  The Connect Speed Update AVP, Attribute Type 97, contains the updated
  connection speeds for this session.  The format is consistent with
  that of the Tx Connect Speed and Rx Connect Speed AVPs for L2TPv2
  (Attribute Types 24 and 38, respectively) and L2TPv3 (Attribute Types
  74 and 75, respectively).  Hence, there is a separate format defined
  for L2TPv2 and L2TPv3.

  The Attribute Value field for this AVP has the following format for
  L2TPv2 Tunnels:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Reserved             |      Remote Session Id        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Current Tx Connect Speed in bps                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Current Rx Connect Speed in bps                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



















Mammoliti, et al.            Informational                     [Page 22]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  The Attribute Value field for this AVP has the following format for
  L2TPv3 Tunnels:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Remote Session Id                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Current Tx Connect Speed in bps...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               ...Current Tx Connect Speed in bps (64 bits)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Current Rx Connect Speed in bps...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               ...Current Rx Connect Speed in bps (64 bits)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Remote Session Id is the remote session id relative to the sender
  (i.e., the identifier that was assigned to this session by the peer).
  The Current Tx Connect Speed is a 4-octet value (L2TPv2) or an
  8-octet value (L2TPv3) representing the current transmit connect
  speed, from the perspective of the LAC (e.g., data flowing from the
  LAC to the remote system).  The rate is encoded in bits per second.
  The Current Rx Connect Speed is a 4-octet value (L2TPv2) or an
  8-octet value (L2TPv3) representing the current receive connect
  speed, from the perspective of the LAC (e.g., data flowing from the
  remote system to the LAC).  The rate is encoded in bits per second.

  The Length (before hiding) of this AVP is 18 (L2TPv2) or 26 (L2TPv3).

6.2.  Connect Speed Update Enable AVP (ICRQ)

  The Connect Speed Update Enable AVP, Attribute Type 98, indicates
  whether the LAC intends to send speed updates to the LNS during the
  life of the session.  The Connect Speed Update Enable AVP is a
  boolean AVP.  Presence of this AVP indicates that the LAC MAY send
  speed updates using CSUN (see Section 4.1) during the life of the
  session, and the LNS SHOULD query for the current connection speed
  via the CSURQ (see Section 4.2) during failover synchronization.
  Absence of this AVP indicates that the LAC will not be sending speed
  updates using CSUN (see Section 4.1) during the life of the session,
  and the LNS MUST NOT query for the current connection speed via the
  CSURQ (see Section 4.2) during failover synchronization.

  The Length (before hiding) of this AVP is 6.






Mammoliti, et al.            Informational                     [Page 23]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


7.  Access Line Information AVP Mapping

  The Access Line information that is obtained from the Access Node/
  DSLAM is required to be mapped into the Access Line AVPs.  The Access
  Line information can be obtained via:

  o  Vendor-Specific PPPoE Tags [RFC2516].

  o  DHCP Relay Options [RFC3046] and Vendor-Specific Information
     Suboptions [RFC4243].

  o  ANCP [ANCP].

7.1.  Summary of Access Line AVPs

  Table 1 summarizes the Access Line AVPs defined in Sections 5.1
  through 5.19.

      +-----------------+----------------------------------------+
      | Access Line AVP | Name                                   |
      +-----------------+----------------------------------------+
      |        1 (0x01) | Agent-Circuit-Id                       |
      |        2 (0x02) | Agent-Remote-Id                        |
      |      129 (0x81) | Actual-Data-Rate-Upstream              |
      |      130 (0x82) | Actual-Data-Rate-Downstream            |
      |      131 (0x83) | Minimum-Data-Rate-Upstream             |
      |      132 (0x84) | Minimum-Data-Rate-Downstream           |
      |      133 (0x85) | Attainable-Data-Rate-Upstream          |
      |      134 (0x86) | Attainable-Data-Rate-Downstream        |
      |      135 (0x87) | Maximum-Data-Rate-Upstream             |
      |      136 (0x88) | Maximum-Data-Rate-Downstream           |
      |      137 (0x89) | Minimum-Data-Rate-Upstream-Low-Power   |
      |      138 (0x8A) | Minimum-Data-Rate-Downstream-Low-Power |
      |      139 (0x8B) | Maximum-Interleaving-Delay-Upstream    |
      |      140 (0x8C) | Actual-Interleaving-Delay-Upstream     |
      |      141 (0x8D) | Maximum-Interleaving-Delay-Downstream  |
      |      142 (0x8E) | Actual-Interleaving-Delay-Downstream   |
      |      144 (0x90) | Access-Loop-Encapsulation              |
      |      145 (0x91) | ANCP Access Line Type                  |
      |      254 (0xFE) | IWF-Session                            |
      +-----------------+----------------------------------------+

                    Table 1: Access Line AVP Summary








Mammoliti, et al.            Informational                     [Page 24]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


8.  IANA Considerations

  Sections 8.1 and 8.2 describe request for new values in
  [IANA.l2tp-parameters], for registries already managed by IANA
  assignable through Expert Review according to [RFC3438].  Section 8.3
  describes number spaces not managed by IANA.

8.1.  Message Type AVP Values

  This number space is managed by IANA as per [RFC3438].  There are two
  new message types, defined in Sections 4.1 and 4.2, to be allocated
  for this specification.

     Message Type AVP (Attribute Type 0) Values

        28: (CSUN) Connect-Speed-Update-Notification

        29: (CSURQ) Connect-Speed-Update-Request

8.2.  Control Message Attribute Value Pairs (AVPs)

  This number space is managed by IANA as per [RFC3438].  There are two
  new AVPs, defined in Sections 6.1 and 6.2, to be allocated for this
  specification.

     Control Message Attribute Value Pairs (AVPs)

        97: Connect Speed Update AVP

        98: Connect Speed Update Enable AVP

8.3.  Values for Access Line Information AVPs

  The Access Line Information AVPs use the Vendor ID of 3561 for the
  ADSL Forum (now Broadband Forum).  The number spaces in these Values
  and their new allocations (e.g., enumerated values for the Access
  Line Access-Loop-Encapsulation AVP and ANCP Access Line Type AVP) are
  managed by the Broadband Forum.

9.  Security Considerations

  The security of these AVP relies on an implied trust relationship
  between the Access Node/DSLAM and the BRAS/LAC, and between the LAC
  and the LNS.  The identifiers that are inserted by the Access Node/
  DSLAM are unconditionally trusted; the BRAS does not perform any
  validity check on the information received before forwarding the
  information.




Mammoliti, et al.            Informational                     [Page 25]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  These AVPs are intended to be used in environments in which the
  network infrastructure (the Access Node/DSLAM, the BRAS/LAC, the LNS,
  and the entire network in which those devices reside) is trusted and
  secure.

  Careful consideration should be given to the potential security
  vulnerabilities that are present in this model before deploying this
  option in actual networks.

  The AVPs described in this document are used to carry identification
  and characterization of subscriber Access Line, and to report
  connection speed changes.  If used in a non-secure environment, they
  could reveal such information.  The Tunnel (Control Connection)
  security considerations are covered in Section 9.1 of [RFC2661] and
  Section 8.l of [RFC3931].  Additionally, the hiding of AVP attribute
  values mechanism can be used to hide the value of the AVPs described
  in this document, if they are deemed sensitive in some environments.
  AVP hiding is described in Section 4.3 of [RFC2661] and Section 5.3
  of [RFC3931].

  The Attributes described in this document neither increase nor
  decrease the security of the L2TP protocol.

  It is possible to utilize [RFC3193] "Securing L2TP with IPsec" to
  increase the security by utilizing IPsec to provide for tunnel
  authentication, privacy protection, integrity checking and replay
  protection.

10.  Acknowledgements

  Many thanks to Wojciech Dec and the others of the Broadband Forum
  (previously the DSL Forum) Architecture and Transport Working Group
  for their help in putting together this document.

11.  References

11.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2661]  Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
             G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",
             RFC 2661, August 1999.

  [RFC3438]  Townsley, W., "Layer Two Tunneling Protocol (L2TP)
             Internet Assigned Numbers Authority (IANA) Considerations
             Update", BCP 68, RFC 3438, December 2002.



Mammoliti, et al.            Informational                     [Page 26]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


  [RFC3931]  Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling
             Protocol - Version 3 (L2TPv3)", RFC 3931, March 2005.

  [TR-101]   DSL Forum, "Migration to Ethernet-Based DSL Aggregation",
             TR 101, April 2006, <http://www.broadband-forum.org/
             technical/download/TR-101.pdf>.

11.2.  Informative References

  [ANCP]     Wadhwa, S., Moisand, J., Subramanian, S., Haag, T., Voigt,
             N., and R. Maglione, "Protocol for Access Node Control
             Mechanism in Broadband Networks", Work in Progress,
             March 2009.

  [IANA.enterprise-numbers]
             Internet Assigned Numbers Authority, "PRIVATE ENTERPRISE
             NUMBERS", <http://www.iana.org>.

  [IANA.l2tp-parameters]
             Internet Assigned Numbers Authority, "Layer Two Tunneling
             Protocol 'L2TP'", <http://www.iana.org>.

  [RFC2516]  Mamakos, L., Lidl, K., Evarts, J., Carrel, D., Simone, D.,
             and R. Wheeler, "A Method for Transmitting PPP Over
             Ethernet (PPPoE)", RFC 2516, February 1999.

  [RFC3046]  Patrick, M., "DHCP Relay Agent Information Option",
             RFC 3046, January 2001.

  [RFC3193]  Patel, B., Aboba, B., Dixon, W., Zorn, G., and S. Booth,
             "Securing L2TP using IPsec", RFC 3193, November 2001.

  [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
             10646", STD 63, RFC 3629, November 2003.

  [RFC4243]  Stapp, M., Johnson, R., and T. Palaniappan, "Vendor-
             Specific Information Suboption for the Dynamic Host
             Configuration Protocol (DHCP) Relay Agent Option",
             RFC 4243, December 2005.

  [RFC4679]  Mammoliti, V., Zorn, G., Arberg, P., and R. Rennison, "DSL
             Forum Vendor-Specific RADIUS Attributes", RFC 4679,
             September 2006.

  [RFC4951]  Jain, V., "Fail Over Extensions for Layer 2 Tunneling
             Protocol (L2TP) "failover"", RFC 4951, August 2007.





Mammoliti, et al.            Informational                     [Page 27]

RFC 5515            L2TP Access Line AVP Extensions             May 2009


Authors' Addresses

  Vince Mammoliti
  Cisco Systems
  181 Bay Street, Suite 3400
  Toronto, ON  M5J 2T3
  Canada

  EMaill: [email protected]


  Carlos Pignataro
  Cisco Systems
  7200 Kit Creek Road
  PO Box 14987
  Research Triangle Park, NC  27709
  USA

  EMail: [email protected]


  Peter Arberg
  Redback Networks
  300 Holger Way
  San Jose, CA  95134
  USA

  EMail: [email protected]


  John Gibbons
  Juniper Networks
  10 Technology Park Drive
  Westford, MA  01886
  USA

  EMail: [email protected]


  Paul Howard

  EMail: [email protected]









Mammoliti, et al.            Informational                     [Page 28]