Network Working Group                                           J. Lacan
Request for Comments: 5510                                ISAE/LAAS-CNRS
Category: Standards Track                                        V. Roca
                                                                  INRIA
                                                           J. Peltotalo
                                                           S. Peltotalo
                                       Tampere University of Technology
                                                             April 2009


         Reed-Solomon Forward Error Correction (FEC) Schemes

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.









Lacan, et al.               Standards Track                     [Page 1]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


Abstract

  This document describes a Fully-Specified Forward Error Correction
  (FEC) Scheme for the Reed-Solomon FEC codes over GF(2^^m), where m is
  in {2..16}, and its application to the reliable delivery of data
  objects on the packet erasure channel (i.e., a communication path
  where packets are either received without any corruption or discarded
  during transmission).  This document also describes a Fully-Specified
  FEC Scheme for the special case of Reed-Solomon codes over GF(2^^8)
  when there is no encoding symbol group.  Finally, in the context of
  the Under-Specified Small Block Systematic FEC Scheme (FEC Encoding
  ID 129), this document assigns an FEC Instance ID to the special case
  of Reed-Solomon codes over GF(2^^8).

  Reed-Solomon codes belong to the class of Maximum Distance Separable
  (MDS) codes, i.e., they enable a receiver to recover the k source
  symbols from any set of k received symbols.  The schemes described
  here are compatible with the implementation from Luigi Rizzo.

































Lacan, et al.               Standards Track                     [Page 2]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


Table of Contents

  1. Introduction ....................................................4
  2. Terminology .....................................................5
  3. Definitions Notations and Abbreviations .........................5
     3.1. Definitions ................................................5
     3.2. Notations ..................................................6
     3.3. Abbreviations ..............................................7
  4. Formats and Codes with FEC Encoding ID 2 ........................7
     4.1. FEC Payload ID .............................................7
     4.2. FEC Object Transmission Information ........................8
          4.2.1. Mandatory Elements ..................................8
          4.2.2. Common Elements .....................................8
          4.2.3. Scheme-Specific Elements ............................9
          4.2.4. Encoding Format .....................................9
  5. Formats and Codes with FEC Encoding ID 5 .......................11
     5.1. FEC Payload ID ............................................11
     5.2. FEC Object Transmission Information .......................12
          5.2.1. Mandatory Elements .................................12
          5.2.2. Common Elements ....................................12
          5.2.3. Scheme-Specific Elements ...........................12
          5.2.4. Encoding Format ....................................12
  6. Procedures with FEC Encoding IDs 2 and 5 .......................13
     6.1. Determining the Maximum Source Block Length (B) ...........13
     6.2. Determining the Number of Encoding Symbols of a Block .....14
  7. Small Block Systematic FEC Scheme (FEC Encoding ID 129)
     and Reed-Solomon Codes over GF(2^^8) ...........................15
  8. Reed-Solomon Codes Specification for the Erasure Channel .......16
     8.1. Finite Field ..............................................16
     8.2. Reed-Solomon Encoding Algorithm ...........................17
          8.2.1. Encoding Principles ................................17
          8.2.2. Encoding Complexity ................................18
     8.3. Reed-Solomon Decoding Algorithm ...........................18
          8.3.1. Decoding Principles ................................18
          8.3.2. Decoding Complexity ................................19
     8.4. Implementation for the Packet Erasure Channel .............19
  9. Security Considerations ........................................22
     9.1. Problem Statement .........................................22
     9.2. Attacks against the Data Flow .............................23
          9.2.1. Access to Confidential Objects .....................23
          9.2.2. Content Corruption .................................23
     9.3. Attacks against the FEC Parameters ........................24
  10. IANA Considerations ...........................................25
  11. Acknowledgments ...............................................25
  12. References ....................................................26
     12.1. Normative References .....................................26
     12.2. Informative References ...................................26




Lacan, et al.               Standards Track                     [Page 3]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


1.  Introduction

  The use of Forward Error Correction (FEC) codes is a classical
  solution to improve the reliability of multicast and broadcast
  transmissions.  The [RFC5052] document describes a general framework
  to use FEC in Content Delivery Protocols (CDPs).  The companion
  document [RFC3453] describes some applications of FEC codes for
  content delivery.

  Recent FEC schemes like [RFC5053] and [RFC5170] proposed erasure
  codes based on sparse graphs/matrices.  These codes are efficient in
  terms of processing but not optimal in terms of correction
  capabilities when dealing with "small" objects.

  The FEC schemes described in this document belongs to the class of
  Maximum Distance Separable codes that are optimal in terms of erasure
  correction capability.  In others words, it enables a receiver to
  recover the k source symbols from any set of exactly k encoding
  symbols.  They are also systematic codes, which means that the k
  source symbols are part of the encoding symbols.  Even if the
  encoding/decoding complexity is larger than that of [RFC5053] or
  [RFC5170], this family of codes is very useful.

  Many applications dealing with content transmission or content
  storage already rely on packet-based Reed-Solomon codes.  In
  particular, many of them use the Reed-Solomon codec of Luigi Rizzo
  [RS-codec] [Rizzo97].  The goal of the present document is to specify
  an implementation of Reed-Solomon codes that is compatible with this
  codec.

  The present document:

  o  introduces the Fully-Specified FEC Scheme with FEC Encoding ID 2,
     which specifies the use of Reed-Solomon codes over GF(2^^m), where
     m is in {2..16},

  o  introduces the Fully-Specified FEC Scheme with FEC Encoding ID 5,
     which focuses on the special case of Reed-Solomon codes over
     GF(2^^8) and no encoding symbol group (i.e., exactly one symbol
     per packet), and

  o  in the context of the Under-Specified Small Block Systematic FEC
     Scheme (FEC Encoding ID 129) [RFC5445], assigns the FEC Instance
     ID 0 to the special case of Reed-Solomon codes over GF(2^^8) and
     no encoding symbol group.

  For a definition of the terms Fully-Specified and Under-Specified FEC
  Schemes, see [RFC5052], Section 4.



Lacan, et al.               Standards Track                     [Page 4]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Definitions Notations and Abbreviations

3.1.  Definitions

  This document uses the same terms and definitions as those specified
  in [RFC5052].  Additionally, it uses the following definitions:

     Source symbol:  unit of data used during the encoding process.

     Encoding symbol:  unit of data generated by the encoding process.

     Repair symbol:  encoding symbol that is not a source symbol.

     Code rate:  the k/n ratio, i.e., the ratio between the number of
        source symbols and the number of encoding symbols.  By
        definition, the code rate is such that: 0 < code rate <= 1.  A
        code rate close to 1 indicates that a small number of repair
        symbols have been produced during the encoding process.

     Systematic code:  FEC code in which the source symbols are part of
        the encoding symbols.

     Source block:  a block of k source symbols that are considered
        together for the encoding.

     Encoding Symbol Group:  a group of encoding symbols that are sent
        together within the same packet, and whose relationships to the
        source block can be derived from a single Encoding Symbol ID.

     Source Packet:  a data packet containing only source symbols.

     Repair Packet:  a data packet containing only repair symbols.

     Packet Erasure Channel:  a communication path where packets are
        either dropped (e.g., by a congested router, or because the
        number of transmission errors exceeds the correction
        capabilities of the physical layer codes) or received.  When a
        packet is received, it is assumed that this packet is not
        corrupted.






Lacan, et al.               Standards Track                     [Page 5]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


3.2.  Notations

  This document uses the following notations:

     L      the object transfer length in bytes.

     k      the number of source symbols in a source block.

     n_r    the number of repair symbols generated for a source block.

     n      the encoding block length, i.e., the number of encoding
            symbols generated for a source block.  Therefore: n = k +
            n_r.

     max_n  the maximum number of encoding symbols generated for any
            source block.

     B      the maximum source block length in symbols, i.e., the
            maximum number of source symbols per source block.

     N      the number of source blocks into which the object shall be
            partitioned.

     E      the encoding symbol length in bytes.

     S      the symbol size in units of m-bit elements.  When m = 8,
            then S and E are equal.

     m      the length of the elements in the finite field, in bits.
            In this document, m belongs to {2..16}.

     q      the number of elements in the finite field.  We have: q =
            2^^m in this specification.

     G      the number of encoding symbols per group, i.e., the number
            of symbols sent in the same packet.

     GM     the Generator Matrix of a Reed-Solomon code.

     CR     the "code rate", i.e., the k/n ratio.

     a^^b   a raised to the power b.

     a^^-1  the inverse of a.

     I_k    the k*k identity matrix.





Lacan, et al.               Standards Track                     [Page 6]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


3.3.  Abbreviations

  This document uses the following abbreviations:

     ESI      Encoding Symbol ID.

     FEC OTI  FEC Object Transmission Information.

     RS       Reed-Solomon.

     MDS      Maximum Distance Separable code.

     GF(q)    a finite field (also known as Galois Field) with q
              elements.  We assume that q = 2^^m in this document.

4.  Formats and Codes with FEC Encoding ID 2

  This section introduces the formats and codes associated with the
  Fully-Specified FEC Scheme with FEC Encoding ID 2, which specifies
  the use of Reed-Solomon codes over GF(2^^m).

4.1.  FEC Payload ID

  The FEC Payload ID is composed of the Source Block Number and the
  Encoding Symbol ID.  The lengths of these two fields depend on the
  parameter m (which is transmitted in the FEC OTI) as follows:

  o  The Source Block Number (field of size 32-m bits) identifies from
     which source block of the object the encoding symbol(s) in the
     payload are generated.  There is a maximum of 2^^(32-m) blocks per
     object.

  o  The Encoding Symbol ID (field of size m bits) identifies which
     specific encoding symbol(s) generated from the source block are
     carried in the packet payload.  There is a maximum of 2^^m
     encoding symbols per block.  The first k values (0 to k - 1)
     identify source symbols, the remaining n-k values identify repair
     symbols.

  There MUST be exactly one FEC Payload ID per source or repair packet.
  In case of an Encoding Symbol Group, when multiple encoding symbols
  are sent in the same packet, the FEC Payload ID refers to the first
  symbol of the packet.  The other symbols can be deduced from the ESI
  of the first symbol by incrementing sequentially the ESI.







Lacan, et al.               Standards Track                     [Page 7]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Source Block Number (32-8=24 bits)        | Enc. Symb. ID |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 1: FEC Payload ID Encoding Format for m = 8 (Default)


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Src Block Nb (32-16=16 bits)  |  Enc. Symbol ID (m=16 bits)   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 2: FEC Payload ID Encoding Format for m = 16

  The formats of the FEC Payload ID for m = 8 and m = 16 are
  illustrated in Figure 1 and Figure 2, respectively.

4.2.  FEC Object Transmission Information

4.2.1.  Mandatory Elements

  o  FEC Encoding ID: the Fully-Specified FEC Scheme described in this
     section uses FEC Encoding ID 2.

4.2.2.  Common Elements

  The following elements MUST be defined with the present FEC scheme.

  o  Transfer-Length (L): a non-negative integer indicating the length
     of the object in bytes.  There are some restrictions on the
     maximum Transfer-Length that can be supported:

        max_transfer_length = 2^^(32-m) * B * E

     For instance, for m = 8, for B = 2^^8 - 1 (because the codec
     operates on a finite field with 2^^8 elements), and if E = 1024
     bytes, then the maximum transfer length is approximately equal to
     2^^42 bytes (i.e., 4 terabytes).  Similarly, for m = 16, for B =
     2^^16 - 1, and if E = 1024 bytes, then the maximum transfer length
     is also approximately equal to 2^^42 bytes.  For larger objects,
     another FEC scheme, with a larger Source Block Number field in the
     FEC Payload ID, could be defined.  Another solution consists in
     fragmenting large objects into smaller objects, each of them
     complying with the above limits.




Lacan, et al.               Standards Track                     [Page 8]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


  o  Encoding-Symbol-Length (E): a non-negative integer indicating the
     length of each encoding symbol in bytes.

  o  Maximum-Source-Block-Length (B): a non-negative integer indicating
     the maximum number of source symbols in a source block.

  o  Max-Number-of-Encoding-Symbols (max_n): a non-negative integer
     indicating the maximum number of encoding symbols generated for
     any source block.

  Section 6 explains how to derive the values of each of these
  elements.

4.2.3.  Scheme-Specific Elements

  The following element MUST be defined with the present FEC scheme.
  It contains two distinct pieces of information:

  o  G: a non-negative integer indicating the number of encoding
     symbols per group used for the object.  The default value is 1,
     meaning that each packet contains exactly one symbol.  When no G
     parameter is communicated to the decoder, then the latter MUST
     assume that G = 1.

  o  m: The m parameter is the length of the finite field elements, in
     bits.  It also characterizes the number of elements in the finite
     field: q = 2^^m elements.  The default value is m = 8.  When no
     finite field size parameter is communicated to the decoder, then
     the latter MUST assume that m = 8.

4.2.4.  Encoding Format

  This section shows the two possible encoding formats of the above FEC
  OTI.  The present document does not specify when one encoding format
  or the other should be used.

4.2.4.1.  Using the General EXT_FTI Format

  The FEC OTI binary format is the following, when the EXT_FTI
  mechanism is used (e.g., within the ALC [ALC] or NORM [NORM]
  protocols).










Lacan, et al.               Standards Track                     [Page 9]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   HET = 64    |    HEL = 4    |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  |                      Transfer Length (L)                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       m       |       G       |   Encoding Symbol Length (E)  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Max Source Block Length (B)  |  Max Nb Enc. Symbols (max_n)  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 3: EXT_FTI Header Format

4.2.4.2.  Using the FDT Instance (FLUTE specific)

  When it is desired that the FEC OTI be carried in the FDT (File
  Delivery Table) Instance of a FLUTE session [FLUTE], the following
  XML attributes must be described for the associated object:

  o  FEC-OTI-FEC-Encoding-ID

  o  FEC-OTI-Transfer-Length (L)

  o  FEC-OTI-Encoding-Symbol-Length (E)

  o  FEC-OTI-Maximum-Source-Block-Length (B)

  o  FEC-OTI-Max-Number-of-Encoding-Symbols (max_n)

  o  FEC-OTI-Scheme-Specific-Info

  The FEC-OTI-Scheme-Specific-Info contains the string resulting from
  the Base64 encoding (in the XML Schema xs:base64Binary sense) of the
  following value:

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       m       |       G       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 4: FEC OTI Scheme Specific Information To Be Included in the
                              FDT Instance

  When no m parameter is to be carried in the FEC OTI, the m field is
  set to 0 (which is not a valid seed value).  Otherwise, the m field
  contains a valid value as explained in Section 4.2.3.  Similarly,



Lacan, et al.               Standards Track                    [Page 10]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


  when no G parameter is to be carried in the FEC OTI, the G field is
  set to 0 (which is not a valid seed value).  Otherwise, the G field
  contains a valid value as explained in Section 4.2.3.  When neither m
  nor G are to be carried in the FEC OTI, then the sender simply omits
  the FEC-OTI-Scheme-Specific-Info attribute.

  During Base64 encoding, the 2 bytes of the FEC OTI Scheme-Specific
  Information are transformed into a string of 4 printable characters
  (in the 64-character alphabet) that is added to the FEC-OTI-Scheme-
  Specific-Info attribute.

5.  Formats and Codes with FEC Encoding ID 5

  This section introduces the formats and codes associated with the
  Fully-Specified FEC Scheme with FEC Encoding ID 5, which focuses on
  the special case of Reed-Solomon codes over GF(2^^8) and no encoding
  symbol group.

5.1.  FEC Payload ID

  The FEC Payload ID is composed of the Source Block Number and the
  Encoding Symbol ID:

  o  The Source Block Number (24-bit field) identifies from which
     source block of the object the encoding symbol in the payload is
     generated.  There is a maximum of 2^^24 blocks per object.

  o  The Encoding Symbol ID (8-bit field) identifies which specific
     encoding symbol generated from the source block is carried in the
     packet payload.  There is a maximum of 2^^8 encoding symbols per
     block.  The first k values (0 to k - 1) identify source symbols;
     the remaining n-k values identify repair symbols.

  There MUST be exactly one FEC Payload ID per source or repair packet.
  This FEC Payload ID refers to the one and only symbol of the packet.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Source Block Number (24 bits)          | Enc. Symb. ID |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 5: FEC Payload ID Encoding Format with FEC Encoding ID 5








Lacan, et al.               Standards Track                    [Page 11]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


5.2.  FEC Object Transmission Information

5.2.1.  Mandatory Elements

  o  FEC Encoding ID: the Fully-Specified FEC Scheme described in this
     section uses FEC Encoding ID 5.

5.2.2.  Common Elements

  The Common elements are the same as those specified in Section 4.2.2
  when m = 8 and G = 1.

5.2.3.  Scheme-Specific Elements

  No Scheme-Specific elements are defined by this FEC scheme.

5.2.4.  Encoding Format

  This section shows the two possible encoding formats of the above FEC
  OTI.  The present document does not specify when one encoding format
  or the other should be used.

5.2.4.1.  Using the General EXT_FTI Format

  The FEC OTI binary format is the following, when the EXT_FTI
  mechanism is used (e.g., within the ALC [ALC] or NORM [NORM]
  protocols).

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   HET = 64    |    HEL = 3    |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  |                      Transfer Length (L)                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Encoding Symbol Length (E)  | MaxBlkLen (B) |     max_n     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 6: EXT_FTI Header Format with FEC Encoding ID 5

5.2.4.2.  Using the FDT Instance (FLUTE specific)

  When it is desired that the FEC OTI be carried in the FDT Instance of
  a FLUTE session [FLUTE], the following XML attributes must be
  described for the associated object:

  o  FEC-OTI-FEC-Encoding-ID




Lacan, et al.               Standards Track                    [Page 12]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


  o  FEC-OTI-Transfer-Length (L)

  o  FEC-OTI-Encoding-Symbol-Length (E)

  o  FEC-OTI-Maximum-Source-Block-Length (B)

  o  FEC-OTI-Max-Number-of-Encoding-Symbols (max_n)

6.  Procedures with FEC Encoding IDs 2 and 5

  This section defines procedures that are common to FEC Encoding IDs 2
  and 5.  In case of FEC Encoding ID 5, m = 8 and G = 1.  The block
  partitioning algorithm that is defined in Section 9.1 of [RFC5052]
  MUST be used with FEC Encoding IDs 2 and 5.

6.1.  Determining the Maximum Source Block Length (B)

  The finite field size parameter, m, defines the number of non-zero
  elements in this field, which is equal to: q - 1 = 2^^m - 1.  Note
  that q - 1 is also the theoretical maximum number of encoding symbols
  that can be produced for a source block.  For instance, when m = 8
  (default) there is a maximum of 2^^8 - 1 = 255 encoding symbols.

  Given the target FEC code rate (e.g., provided by the user when
  starting a FLUTE sending application), the sender calculates:

     max1_B = floor((2^^m - 1) * CR)

  This max1_B value leaves enough room for the sender to produce the
  desired number of parity symbols.

  Additionally, a codec MAY impose other limitations on the maximum
  block size.  Yet it is not expected that such limits exist when using
  the default m = 8 value.  This decision MUST be clarified at
  implementation time, when the target use case is known.  This results
  in a max2_B limitation.

  Then, B is given by:

     B = min(max1_B, max2_B)

  Note that this calculation is only required at the coder, since the B
  parameter is communicated to the decoder through the FEC OTI.








Lacan, et al.               Standards Track                    [Page 13]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


6.2.  Determining the Number of Encoding Symbols of a Block

  The following algorithm, also called "n-algorithm", explains how to
  determine the maximum number of encoding symbols generated for any
  source block (max_n) and the number of encoding symbols for a given
  block (n) as a function of the target code rate.

  AT A SENDER:

  Input:

     B: Maximum source block length, for any source block.  Section 6.1
     explains how to determine its value.

     k: Current source block length.  This parameter is given by the
     block partitioning algorithm.

     CR: FEC code rate, which is given by the user (e.g., when starting
     a FLUTE sending application).  It is expressed as a floating point
     value.

  Output:

     max_n: Maximum number of encoding symbols generated for any source
     block.

     n: Number of encoding symbols generated for this source block.

  Algorithm:

     max_n = ceil(B / CR);

     if (max_n > 2^^m - 1), then return an error ("invalid code rate");

     n = floor(k * max_n / B);

  AT A RECEIVER:

  Input:

     B: Extracted from the received FEC OTI.

     max_n: Extracted from the received FEC OTI.

     k: Given by the block partitioning algorithm.






Lacan, et al.               Standards Track                    [Page 14]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


  Output:

     n

  Algorithm:

     n = floor(k * max_n / B);

  It is RECOMMENDED that the "n-algorithm" be used by a sender, but
  other algorithms remain possible to determine max_n and/or n.

  At a receiver, the max_n value is extracted from the received FEC
  OTI.  Since the Reed-Solomon decoder does not need to know the actual
  n value, using the receiver part of the "n-algorithm" is not
  necessary from a decoding point of view.

  However, a receiver may want to have an estimate of n for other
  reasons (e.g., for memory management purposes).  In that case, a
  receiver knows that the number of encoding symbols of a block cannot
  exceed max_n.  Additionally, if a receiver believes that a sender
  uses the "n-algorithm", this receiver MAY use the receiver part of
  the "n-algorithm" to get a better estimate of n.  When this is the
  case, a receiver MUST be prepared to handle symbols with an Encoding
  Symbol ID superior or equal to the computed n value (e.g., it can
  choose to simply drop them).

7.  Small Block Systematic FEC Scheme (FEC Encoding ID 129) and Reed-
   Solomon Codes over GF(2^^8)

  In the context of the Under-Specified Small Block Systematic FEC
  Scheme (FEC Encoding ID 129) [RFC5445], this document assigns the FEC
  Instance ID 0 to the special case of Reed-Solomon codes over GF(2^^8)
  and no encoding symbol group.

  The FEC Instance ID 0 uses the Formats and Codes specified in
  [RFC5445].

  The FEC scheme with FEC Instance ID 0 MAY use the block partitioning
  algorithm defined in Section 9.1 of [RFC5052] to partition the object
  into source blocks.  This FEC scheme MAY also use another algorithm.
  For instance, the CDP sender may change the length of each source
  block dynamically, depending on some external criteria (e.g., to
  adjust the FEC coding rate to the current loss rate experienced by
  NORM receivers) and inform the CDP receivers of the current block
  length by means of the EXT_FTI mechanism.  This choice is out of the
  scope of the current document.





Lacan, et al.               Standards Track                    [Page 15]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


8.  Reed-Solomon Codes Specification for the Erasure Channel

  Reed-Solomon (RS) codes are linear block codes.  They also belong to
  the class of MDS codes.  A [n,k]-RS code encodes a sequence of k
  source elements defined over a finite field GF(q) into a sequence of
  n encoding elements, where n is upper bounded by q - 1.  The
  implementation described in this document is based on a generator
  matrix built from a Vandermonde matrix put into systematic form.

  Sections 8.1 to 8.3 specify the [n,k]-RS codes when applied to m-bit
  elements, and Section 8.4 specifies the use of [n,k]-RS codes when
  applied to symbols composed of several m-bit elements.  The use
  described in Section 8.4 is the crux of this specification.

  A reader who wants to understand the underlying theory is invited to
  refer to references [Rizzo97] and [MWS77].

8.1.  Finite Field

  A finite field GF(q) is defined as a finite set of q elements that
  has a structure of field.  It contains necessarily q = p^^m elements,
  where p is a prime number.  With packet erasure channels, p is always
  set to 2.  The elements of the field GF(2^^m) can be represented by
  polynomials with binary coefficients (i.e., over GF(2)) of degree
  lower or equal to m-1.  The polynomials can be associated with binary
  vectors of length m.  For example, the vector (11001) represents the
  polynomial 1 + x + x^^4.  This representation is often called
  polynomial representation.  The addition between two elements is
  defined as the addition of binary polynomials in GF(2) and the
  multiplication is the multiplication modulo a given irreducible
  polynomial over GF(2) of degree m.  Note that all the roots of this
  polynomial are in GF(2^^m) but not in GF(2).

  The chosen polynomial representation of the finite field GF(2^^m) is
  completely characterized by the irreducible polynomial.  The
  following polynomials are chosen to represent the field GF(2^^m), for
  m varying from 2 to 16:

     m = 2, "111" (1+x+x^^2)

     m = 3, "1101", (1+x+x^^3)

     m = 4, "11001", (1+x+x^^4)

     m = 5, "101001", (1+x^^2+x^^5)

     m = 6, "1100001", (1+x+x^^6)




Lacan, et al.               Standards Track                    [Page 16]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


     m = 7, "10010001", (1+x^^3+x^^7)

     m = 8, "101110001", (1+x^^2+x^^3+x^^4+x^^8)

     m = 9, "1000100001", (1+x^^4+x^^9)

     m = 10, "10010000001", (1+x^^3+x^^10)

     m = 11, "101000000001", (1+x^^2+x^^11)

     m = 12, "1100101000001", (1+x+x^^4+x^^6+x^^12)

     m = 13, "11011000000001", (1+x+x^^3+x^^4+x^^13)

     m = 14, "110000100010001", (1+x+x^^6+x^^10+x^^14)

     m = 15, "1100000000000001", (1+x+x^^15)

     m = 16, "11010000000010001", (1+x+x^^3+x^^12+x^^16)

  In order to facilitate the implementation, these polynomials are also
  primitive.  This means that any element of GF(2^^m) can be expressed
  as a power of a given root of this polynomial.  These polynomials are
  also chosen so that they contain the minimum number of monomials.

8.2.  Reed-Solomon Encoding Algorithm

8.2.1.  Encoding Principles

  Let s = (s_0, ..., s_{k-1}) be a source vector of k elements over
  GF(2^^m).  Let e = (e_0, ..., e_{n-1}) be the corresponding encoding
  vector of n elements over GF(2^^m).  Being a linear code, encoding is
  performed by multiplying the source vector by a generator matrix, GM,
  of k rows and n columns over GF(2^^m).  Thus:

     e = s * GM.

  The definition of the generator matrix completely characterizes the
  RS code.

  Let us consider that n = 2^^m - 1 and that 0 < k <= n.  Let us denote
  by alpha the root of the primitive polynomial of degree m chosen in
  the list of Section 8.1 for the corresponding value of m.  Let us
  consider a Vandermonde matrix of k rows and n columns, denoted by
  V_{k,n}, and built as follows: the {i, j} entry of V_{k,n} is v_{i,j}
  = alpha^^(i*j), where 0 <= i <= k - 1 and 0 <= j <= n - 1.  This
  matrix generates a MDS code.  However, this MDS code is not
  systematic, which is a problem for many networking applications.  To



Lacan, et al.               Standards Track                    [Page 17]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


  obtain a systematic matrix (and code), the simplest solution consists
  in considering the matrix V_{k,k} formed by the first k columns of
  V_{k,n}, then to invert it and to multiply this inverse by V_{k,n}.
  Clearly, the product V_{k,k}^^-1 * V_{k,n} contains the identity
  matrix I_k on its first k columns, meaning that the first k encoding
  elements are equal to source elements.  Besides, the associated code
  keeps the MDS property.

  Therefore, the generator matrix of the code considered in this
  document is:

     GM = (V_{k,k}^^-1) * V_{k,n}

  Note that, in practice, the [n,k]-RS code can be shortened to a
  [n',k]-RS code, where k <= n' < n, by considering the sub-matrix
  formed by the n' first columns of GM.

8.2.2.  Encoding Complexity

  Encoding can be performed by first pre-computing GM and by
  multiplying the source vector (k elements) by GM (k rows and n
  columns).  The complexity of the pre-computation of the generator
  matrix can be estimated as the complexity of the multiplication of
  the inverse of a Vandermonde matrix by n-k vectors (i.e., the last
  n-k columns of V_{k,n}).  Since the complexity of the inverse of a
  k*k-Vandermonde matrix by a vector is O(k * (log(k))^^2), the
  generator matrix can be computed in 0((n-k)* k * (log(k))^^2))
  operations.  When the generator matrix is pre-computed, the encoding
  needs k operations per repair element (vector-matrix multiplication).

  Encoding can also be performed by first computing the product s *
  V_{k,k}^^-1 and then by multiplying the result with V_{k,n}.  The
  multiplication by the inverse of a square Vandermonde matrix is known
  as the interpolation problem and its complexity is O(k *
  (log(k))^^2).  The multiplication by a Vandermonde matrix, known as
  the multipoint evaluation problem, requires O((n-k) * log(k)) by
  using Fast Fourier Transform, as explained in [GO94].  The total
  complexity of this encoding algorithm is then O((k/(n-k)) *
  (log(k))^^2 + log(k)) operations per repair element.

8.3.  Reed-Solomon Decoding Algorithm

8.3.1.  Decoding Principles

  The Reed-Solomon decoding algorithm for the erasure channel allows
  the recovery of the k source elements from any set of k received
  elements.  It is based on the fundamental property of the generator
  matrix, which is such that any k*k-submatrix is invertible (see



Lacan, et al.               Standards Track                    [Page 18]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


  [MWS77]).  The first step of the decoding consists in extracting the
  k*k submatrix of the generator matrix obtained by considering the
  columns corresponding to the received elements.  Indeed, since any
  encoding element is obtained by multiplying the source vector by one
  column of the generator matrix, the received vector of k encoding
  elements can be considered as the result of the multiplication of the
  source vector by a k*k submatrix of the generator matrix.  Since this
  submatrix is invertible, the second step of the algorithm is to
  invert this matrix and to multiply the received vector by the
  obtained matrix to recover the source vector.

8.3.2.  Decoding Complexity

  The decoding algorithm described previously includes the matrix
  inversion and the vector-matrix multiplication.  With the classical
  Gauss-Jordan algorithm, the matrix inversion requires O(k^^3)
  operations and the vector-matrix multiplication is performed in
  O(k^^2) operations.

  This complexity can be improved by considering that the received
  submatrix of GM is the product between the inverse of a Vandermonde
  matrix (V_(k,k)^^-1) and another Vandermonde matrix (denoted by V',
  which is a submatrix of V_(k,n)).  The decoding can be done by
  multiplying the received vector by V'^^-1 (interpolation problem with
  complexity O( k * (log(k))^^2) ) then by V_{k,k} (multipoint
  evaluation with complexity O(k * log(k))).  The global decoding
  complexity is then O((log(k))^^2) operations per source element.

8.4.  Implementation for the Packet Erasure Channel

  In a packet erasure channel, each packet (including its symbol(s),
  since packets contain G >= 1 symbols) is either correctly received or
  erased.  The location of the erased symbols in the sequence of
  symbols MUST be known.  The following specification describes the use
  of Reed-Solomon codes for generating redundant symbols from the k
  source symbols and for recovering the source symbols from any set of
  k received symbols.

  The k source symbols of a source block are assumed to be composed of
  S m-bit elements.  Each m-bit element corresponds to an element of
  the finite field GF(2^^m) through the polynomial representation
  (Section 8.1).  If some of the source symbols contain less than S
  elements, they MUST be virtually padded with zero elements (this can
  be the case for the last symbol of the last block of the object).
  However, this padding does not need to be actually sent with the data
  to the receivers.





Lacan, et al.               Standards Track                    [Page 19]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


  The encoding process produces n encoding symbols of size S m-bit
  elements, of which k are source symbols (this is a systematic code)
  and n-k are repair symbols (Figure 7).  The m-bit elements of the
  repair symbols are calculated using the corresponding m-bit elements
  of the source symbol set.  A logical u-th source vector, comprised of
  the u-th elements from the set of source symbols, is used to
  calculate a u-th encoding vector.  This u-th encoding vector then
  provides the u-th elements for the set encoding symbols calculated
  for the block.  As a systematic code, the first k encoding symbols
  are the same as the k source symbols, and the last n-k repair symbols
  are the result of the Reed-Solomon encoding.








































Lacan, et al.               Standards Track                    [Page 20]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


         Input:  k source symbols

   0             u                                S-1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             |X|                                 | source symbol 0
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             |X|                                 | source symbol 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               . . .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             |X|                                 | source symbol k-1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 *

       +--------------------+
       |  generator matrix  |
       |         GM         |
       |       (k x n)      |
       +--------------------+

                 |
                 V

       Output: n encoding symbols (source + repair)

   0             u                                S-1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             |X|                                 | enc. symbol 0
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             |X|                                 | enc. symbol 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               . . .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             |Y|                                 | enc. symbol n-1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 7: Packet Encoding Scheme

  An asset of this scheme is that the loss of some encoding symbols
  produces the same erasure pattern for each of the S encoding vectors.
  It follows that the matrix inversion must be done only once and will
  be used by all the S encoding vectors.  For large S, this matrix
  inversion cost becomes negligible in front of the S vector-matrix
  multiplications.




Lacan, et al.               Standards Track                    [Page 21]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


  Another asset is that the n-k repair symbols can be produced on
  demand.  For instance, a sender can start by producing a limited
  number of repair symbols and later on, depending on the observed
  erasures on the channel, decide to produce additional repair symbols,
  up to the n-k upper limit.  Indeed, to produce the repair symbol e_j,
  where k <= j < n, it is sufficient to multiply the S source vectors
  with column j of GM.

9.  Security Considerations

9.1.  Problem Statement

  A content delivery system is potentially subject to many attacks:
  some of them target the network (e.g., to compromise the routing
  infrastructure, by compromising the congestion control component),
  others target the Content Delivery Protocol (CDP) (e.g., to
  compromise its normal behavior), and finally some attacks target the
  content itself.  Since this document focuses on a FEC building block
  independently of any particular CDP (even if ALC and NORM are two
  natural candidates), this section only discusses the additional
  threats that an arbitrary CDP may be exposed to when using this
  building block.

  More specifically, several kinds of attacks exist:

  o  those that are meant to give access to confidential content (e.g.,
     in case of non-free content),

  o  those that try to corrupt the object being transmitted (e.g., to
     inject malicious code within an object or to prevent a receiver
     from using an object),

  o  and those that try to compromise the receiver's behavior (e.g., by
     making the decoding of an object computationally expensive).

  These attacks can be launched either against the data flow itself
  (e.g., by sending forged symbols) or against the FEC parameters that
  are sent either in-band (e.g., in an EXT_FTI or FDT Instance) or out-
  of-band (e.g., in a session description).












Lacan, et al.               Standards Track                    [Page 22]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


9.2.  Attacks against the Data Flow

  First of all, let us consider the attacks against the data flow.

9.2.1.  Access to Confidential Objects

  Access control to the object being transmitted is typically provided
  by means of encryption.  This encryption can be done over the whole
  object (e.g., by the content provider, before the FEC encoding
  process), or be done on a packet per-packet basis (e.g., when IPsec
  Encapsulating Security Payload (ESP) is used [RFC4303]).  If access
  control is a concern, it is RECOMMENDED that one of these solutions
  be used.  Even if we mention these attacks here, they are not related
  nor facilitated by the use of FEC.

9.2.2.  Content Corruption

  Protection against corruptions (e.g., after sending forged packets)
  is achieved by means of a content integrity verification/sender
  authentication scheme.  This service can be provided at the object
  level, but in that case a receiver has no way to identify which
  symbol(s) are corrupted if the object is detected as corrupted.  This
  service can also be provided at the packet level.  In this case,
  after removing all forged packets, the object may be recovered
  sometimes.  Several techniques can provide this source
  authentication/content integrity service:

  o  At the object level, the object MAY be digitally signed (with
     public key cryptography), for instance by using RSASSA-PKCS1-v1_5
     [RFC3447].  This signature enables a receiver to check the object
     integrity, once the object has been fully decoded.  Even if
     digital signatures are computationally expensive, this calculation
     occurs only once per object, which is usually acceptable.

  o  At the packet level, each packet can be digitally signed.  A major
     limitation is the high computational and transmission overheads
     that this solution requires (unless Elliptic Curve Cryptography
     (ECC) is used).  To avoid this problem, the signature may span a
     set of symbols (instead of a single one) in order to amortize the
     signature calculation.  But if a single symbol is missing, the
     integrity of the whole set cannot be checked.

  o  At the packet level, a Group Message Authentication Code (MAC)
     [RFC2104] scheme can be used; for instance, by using HMAC-SHA-256
     with a secret key shared by all the group members (i.e., the
     sender(s) and receivers).  Thanks to the secret key, this
     technique creates a cryptographically secured digest of a packet
     that is sent along with the packet.  The Group MAC scheme does not



Lacan, et al.               Standards Track                    [Page 23]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


     create prohibitive processing load nor transmission overhead, but
     it has a major limitation: it only provides a group
     authentication/integrity service since all group members share the
     same secret group key, which means that each member can send a
     forged packet.  It is therefore restricted to situations where
     group members are fully trusted (or in association with another
     technique as a pre-check).

  o  At the packet level, TESLA [RFC4082] is a very attractive and
     efficient solution that is robust to losses, provides a true
     authentication/integrity service, and does not create any
     prohibitive processing load or transmission overhead.  Yet
     checking a packet requires a small delay (a second or more) after
     its reception.

  Techniques relying on public key cryptography (digital signatures and
  TESLA during the bootstrap process, when used) require that public
  keys be securely associated to the entities.  This can be achieved by
  a Public Key Infrastructure (PKI), or by a PGP Web of Trust, or by
  pre-distributing the public keys of each group member.

  Techniques relying on symmetric key cryptography (group MAC) require
  that a secret key be shared by all group members.  This can be
  achieved by means of a group key management protocol, or simply by
  pre-distributing the secret key (but this manual solution has many
  limitations).

  It is up to the developer and deployer, who know the security
  requirements and features of the target application area, to define
  which solution is the most appropriate.  Nonetheless, in case there
  is any concern of the threat of object corruption, it is RECOMMENDED
  that at least one of these techniques be used.

9.3.  Attacks against the FEC Parameters

  Let us now consider attacks against the FEC parameters (or FEC OTI).
  The FEC OTI can either be sent in-band (i.e., in an EXT_FTI or in an
  FDT Instance containing FEC OTI for the object) or out-of-band (e.g.,
  in a session description).  Attacks on these FEC parameters can
  prevent the decoding of the associated object: for instance,
  modifying the B parameter will lead to a different block partitioning
  at a receiver thereby compromising decoding; or setting the m
  parameter to 16 instead of 8 with FEC Encoding ID 2 will increase the
  processing load while compromising decoding.

  It is therefore RECOMMENDED that security measures be taken to
  guarantee the FEC OTI integrity.  To that purpose, the packets
  carrying the FEC parameters sent in-band in an EXT_FTI header



Lacan, et al.               Standards Track                    [Page 24]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


  extension SHOULD be protected by one of the per-packet techniques
  described above: digital signature, group MAC, or TESLA.  When FEC
  OTI is contained in an FDT Instance, this FDT Instance object SHOULD
  be protected, for instance, by digitally signing it with XML digital
  signatures [RFC3275].  Finally, when FEC OTI is sent out-of-band
  (e.g., in a session description), this FEC OTI SHOULD be protected,
  for instance, by digitally signing the object that includes this FEC
  OTI.

  The same considerations concerning the key management aspects apply
  here also.

10.  IANA Considerations

  Values of FEC Encoding IDs and FEC Instance IDs are subject to IANA
  registration.  For general guidelines on IANA considerations as they
  apply to this document, see [RFC5052].

  This document assigns the Fully-Specified FEC Encoding ID 2 under the
  "ietf:rmt:fec:encoding" name-space to "Reed-Solomon Codes over
  GF(2^^m)".

  This document assigns the Fully-Specified FEC Encoding ID 5 under the
  "ietf:rmt:fec:encoding" name-space to "Reed-Solomon Codes over
  GF(2^^8)".

  This document assigns the FEC Instance ID 0 scoped by the Under-
  Specified FEC Encoding ID 129 to "Reed-Solomon Codes over GF(2^^8)".
  More specifically, under the "ietf:rmt:fec:encoding:instance" sub-
  name-space that is scoped by the "ietf:rmt:fec:encoding" called
  "Small Block Systematic FEC Codes", this document assigns FEC
  Instance ID 0 to "Reed-Solomon Codes over GF(2^^8)".

11.  Acknowledgments

  The authors want to thank Brian Adamson, Igor Slepchin, Stephen Kent,
  Francis Dupont, Elwyn Davies, Magnus Westerlund, and Alfred Hoenes
  for their valuable comments.  The authors also want to thank Luigi
  Rizzo for his comments and for the design of the reference Reed-
  Solomon codec.











Lacan, et al.               Standards Track                    [Page 25]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


12.  References

12.1.  Normative References

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC5052]   Watson, M., Luby, M., and L. Vicisano, "Forward Error
              Correction (FEC) Building Block", RFC 5052, August 2007.

  [RFC5445]   Watson, M., "Basic Forward Error Correction (FEC)
              Schemes", RFC 5445, March 2009.

12.2.  Informative References

  [RFC3453]   Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley,
              M., and J. Crowcroft, "The Use of Forward Error
              Correction (FEC) in Reliable Multicast", RFC 3453,
              December 2002.

  [RS-codec]  Rizzo, L., "Reed-Solomon FEC codec", available at
              http://info.iet.unipi.it/~luigi/vdm98/vdm980702.tgz and
              mirrored at http://planete-bcast.inrialpes.fr/, revised
              version of July 1998.

  [Rizzo97]   Rizzo, L., "Effective Erasure Codes for Reliable Computer
              Communication Protocols", ACM SIGCOMM Computer
              Communication Review Vol.27, No.2, pp.24-36, April 1997.

  [MWS77]     Mac Williams, F. and N. Sloane, "The Theory of Error
              Correcting Codes", North Holland, 1977.

  [GO94]      Gohberg, I. and V. Olshevsky, "Fast algorithms with
              preprocessing for matrix-vector multiplication problems",
              Journal of Complexity, pp. 411-427, vol. 10, 1994.

  [RFC5170]   Roca, V., Neumann, C., and D. Furodet, "Low Density
              Parity Check (LDPC) Forward Error Correction", RFC 5170,
              June 2008.

  [RFC5053]   Luby, M., Shokrollahi, A., Watson, M., and T.
              Stockhammer, "Raptor Forward Error Correction Scheme",
              RFC 5053, October 2007.

  [ALC]       Luby, M., Watson, M., and L. Vicisano, "Asynchronous
              Layered Coding (ALC) Protocol Instantiation", Work
              in Progress, November 2008.




Lacan, et al.               Standards Track                    [Page 26]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


  [NORM]      Adamson, B., Bormann, C., Handley, M., and J. Macker,
              "NACK-Oriented Reliable Multicast Protocol", Work
              in Progress, March 2009.

  [FLUTE]     Paila, T., Walsh, R., Luby, M., Lehtonen, R., and V.
              Roca, "FLUTE - File Delivery over Unidirectional
              Transport", Work in Progress, September 2008.

  [RFC3447]   Jonsson, J. and B. Kaliski, "Public-Key Cryptography
              Standards (PKCS) #1: RSA Cryptography Specifications
              Version 2.1", RFC 3447, February 2003.

  [RFC4303]   Kent, S., "IP Encapsulating Security Payload (ESP)",
              RFC 4303, December 2005.

  [RFC2104]   "HMAC: Keyed-Hashing for Message Authentication",
              RFC 2104, February 1997.

  [RFC4082]   "Timed Efficient Stream Loss-Tolerant Authentication
              (TESLA): Multicast Source Authentication Transform
              Introduction", RFC 4082, June 2005.

  [RFC3275]   Eastlake 3rd, D., Reagle, J., and D. Solo, "(Extensible
              Markup Language) XML-Signature Syntax and Processing",
              RFC 3275, March 2002.


























Lacan, et al.               Standards Track                    [Page 27]

RFC 5510         Reed-Solomon Forward Error Correction        April 2009


Authors' Addresses

  Jerome Lacan
  ISAE/LAAS-CNRS
  1, place Emile Blouin
  Toulouse  31056
  France

  EMail: [email protected]
  URI:   http://pagespro.isae.fr/jerome-lacan/


  Vincent Roca
  INRIA
  655, av. de l'Europe
  Inovallee; Montbonnot
  ST ISMIER cedex  38334
  France

  EMail: [email protected]
  URI:   http://planete.inrialpes.fr/people/roca/


  Jani Peltotalo
  Tampere University of Technology
  P.O. Box 553 (Korkeakoulunkatu 1)
  Tampere  FIN-33101
  Finland

  EMail: [email protected]
  URI:   http://mad.cs.tut.fi/


  Sami Peltotalo
  Tampere University of Technology
  P.O. Box 553 (Korkeakoulunkatu 1)
  Tampere  FIN-33101
  Finland

  EMail: [email protected]
  URI:   http://mad.cs.tut.fi/










Lacan, et al.               Standards Track                    [Page 28]