Network Working Group                                          S. Turner
Request for Comments: 5480                                          IECA
Updates: 3279                                                   D. Brown
Category: Standards Track                                       Certicom
                                                                 K. Yiu
                                                              Microsoft
                                                             R. Housley
                                                         Vigil Security
                                                                T. Polk
                                                                   NIST
                                                             March 2009


     Elliptic Curve Cryptography Subject Public Key Information

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

Abstract

  This document specifies the syntax and semantics for the Subject
  Public Key Information field in certificates that support Elliptic
  Curve Cryptography.  This document updates Sections 2.3.5 and 5, and
  the ASN.1 module of "Algorithms and Identifiers for the Internet
  X.509 Public Key Infrastructure Certificate and Certificate
  Revocation List (CRL) Profile", RFC 3279.









Turner, et al.              Standards Track                     [Page 1]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


Table of Contents

  1. Introduction ....................................................2
     1.1. Terminology ................................................3
  2. Subject Public Key Information Fields ...........................3
     2.1. Elliptic Curve Cryptography Public Key Algorithm
          Identifiers ................................................3
     2.2. Subject Public Key .........................................7
  3. Key Usage Bits ..................................................7
  4. Security Considerations .........................................8
  5. ASN.1 Considerations ...........................................10
  6. IANA Considerations ............................................11
  7. Acknowledgments ................................................11
  8. References .....................................................11
     8.1. Normative References ......................................11
     8.2. Informative References ....................................12
  Appendix A. ASN.1 Module ..........................................13

1.  Introduction

  This document specifies the format of the subjectPublicKeyInfo field
  in X.509 certificates [PKI] that use Elliptic Curve Cryptography
  (ECC).  It updates RFC 3279 [PKI-ALG].  This document specifies the
  encoding formats for public keys used with the following ECC
  algorithms:

     o Elliptic Curve Digital Signature Algorithm (ECDSA);

     o Elliptic Curve Diffie-Hellman (ECDH) family schemes; and

     o Elliptic Curve Menezes-Qu-Vanstone (ECMQV) family schemes.

  Two methods for specifying the algorithms that can be used with the
  subjectPublicKey are defined.  One method allows the key to be used
  with any ECC algorithm, while the other method restricts the usage of
  the key to specific algorithms.  To promote interoperability, this
  document indicates which is required to implement for Certification
  Authorities (CAs) that implement ECC algorithms and relying parties
  that claim to process ECC algorithms.

  The ASN.1 [X.680] module in this document includes ASN.1 for ECC
  algorithms.  It also includes ASN.1 for non-ECC algorithms defined in
  [PKI-ALG] and [PKI-ADALG], even though the associated text is
  unaffected.  By updating all of the ASN.1 from [PKI-ALG] in this
  document, implementers only need to use the module found in this
  document.





Turner, et al.              Standards Track                     [Page 2]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


1.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [MUSTSHOULD].

2.  Subject Public Key Information Fields

  In the X.509 certificate, the subjectPublicKeyInfo field has the
  SubjectPublicKeyInfo type, which has the following ASN.1 syntax:

    SubjectPublicKeyInfo  ::=  SEQUENCE  {
      algorithm         AlgorithmIdentifier,
      subjectPublicKey  BIT STRING
    }

  The fields in SubjectPublicKeyInfo have the following meanings:

     o algorithm is the algorithm identifier and parameters for the ECC
       public key.

     o subjectPublicKey is the ECC public key.  See Section 2.2.

  The AlgorithmIdentifier type, which is included for convenience
  [PKI], is defined as follows:

     AlgorithmIdentifier  ::=  SEQUENCE  {
       algorithm   OBJECT IDENTIFIER,
       parameters  ANY DEFINED BY algorithm OPTIONAL
     }

  The fields in AlgorithmIdentifier have the following meanings:

     o algorithm identifies the cryptographic algorithm with an object
       identifier.  See Section 2.1.

     o parameters, which are optional, are the associated parameters
       for the algorithm identifier in the algorithm field.  See
       Section 2.1.1.

2.1.  Elliptic Curve Cryptography Public Key Algorithm Identifiers

  The algorithm field in the SubjectPublicKeyInfo structure [PKI]
  indicates the algorithm and any associated parameters for the ECC
  public key (see Section 2.2).  Three algorithm identifiers are
  defined in this document:





Turner, et al.              Standards Track                     [Page 3]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


     o id-ecPublicKey indicates that the algorithms that can be used
       with the subject public key are unrestricted.  The key is only
       restricted by the values indicated in the key usage certificate
       extension (see Section 3).  id-ecPublicKey MUST be supported.
       See Section 2.1.1.  This value is also included in certificates
       when a public key is used with ECDSA.

     o id-ecDH indicates that the algorithm that can be used with the
       subject public key is restricted to the Elliptic Curve Diffie-
       Hellman algorithm.  See Section 2.1.2.  id-ecDH MAY be
       supported.

     o id-ecMQV indicates that the algorithm that can be used with the
       subject public key is restricted to the Elliptic Curve Menezes-
       Qu-Vanstone key agreement algorithm.  See Section 2.1.2.
       id-ecMQV MAY be supported.

2.1.1.  Unrestricted Algorithm Identifier and Parameters

  The "unrestricted" algorithm identifier is:

    id-ecPublicKey OBJECT IDENTIFIER ::= {
      iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }

  The public key (ECPoint) syntax is described in Section 2.2.

  The parameter for id-ecPublicKey is as follows and MUST always be
  present:

    ECParameters ::= CHOICE {
      namedCurve         OBJECT IDENTIFIER
      -- implicitCurve   NULL
      -- specifiedCurve  SpecifiedECDomain
    }
      -- implicitCurve and specifiedCurve MUST NOT be used in PKIX.
      -- Details for SpecifiedECDomain can be found in [X9.62].
      -- Any future additions to this CHOICE should be coordinated
      -- with ANSI X9.

  The fields in ECParameters have the following meanings:

     o namedCurve identifies all the required values for a particular
       set of elliptic curve domain parameters to be represented by an
       object identifier.  This choice MUST be supported.  See Section
       2.1.1.1.

     o implicitCurve allows the elliptic curve domain parameters to be
       inherited.  This choice MUST NOT be used.



Turner, et al.              Standards Track                     [Page 4]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


     o specifiedCurve, which is of type SpecifiedECDomain type (defined
       in [X9.62]), allows all of the elliptic curve domain parameters
       to be explicitly specified.  This choice MUST NOT be used.  See
       Section 5, "ASN.1 Considerations".

  The addition of any new choices in ECParameters needs to be
  coordinated with ANSI X9.

  The AlgorithmIdentifier within SubjectPublicKeyInfo is the only place
  within a certificate where the elliptic curve domain parameters may
  be located.  If the elliptic curve domain parameters are not present,
  then clients MUST reject the certificate.

2.1.1.1.  Named Curve

  The namedCurve field in ECParameters uses object identifiers to name
  well-known curves.  This document publishes curve identifiers for the
  fifteen NIST-recommended curves [FIPS186-3].  Other documents can
  publish other name curve identifiers.  The NIST-named curves are:

    -- Note that in [X9.62] the curves are referred to as 'ansiX9' as
    -- opposed to 'sec'.  For example, secp192r1 is the same curve as
    -- ansix9p192r1.

    -- Note that in [PKI-ALG] the secp192r1 curve was referred to as
    -- prime192v1 and the secp256r1 curve was referred to as
    -- prime256v1.

    -- Note that [FIPS186-3] refers to secp192r1 as P-192, secp224r1 as
    -- P-224, secp256r1 as P-256, secp384r1 as P-384, and secp521r1 as
    -- P-521.

    secp192r1 OBJECT IDENTIFIER ::= {
      iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
      prime(1) 1 }

    sect163k1 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 1 }

    sect163r2 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 15 }

    secp224r1 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 33 }

    sect233k1 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 26 }




Turner, et al.              Standards Track                     [Page 5]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


    sect233r1 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 27 }

    secp256r1 OBJECT IDENTIFIER ::= {
      iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
      prime(1) 7 }

    sect283k1 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 16 }

    sect283r1 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 17 }

    secp384r1 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 34 }

    sect409k1 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 36 }

    sect409r1 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 37 }

    secp521r1 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 35 }

    sect571k1 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 38 }

    sect571r1 OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) curve(0) 39 }

2.1.2.  Restricted Algorithm Identifiers and Parameters

  Two "restricted" algorithms are defined for key agreement algorithms:
  the Elliptic Curve Diffie-Hellman (ECDH) key agreement family schemes
  and the Elliptic Curve Menezes-Qu-Vanstone (ECMQV) key agreement
  family schemes.  Both algorithms are identified by an object
  identifier and have parameters.  The object identifier varies based
  on the algorithm, but the parameters are always ECParameters and they
  MUST always be present (see Section 2.1.1).

  The ECDH algorithm uses the following object identifier:

    id-ecDH OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) schemes(1)
      ecdh(12) }





Turner, et al.              Standards Track                     [Page 6]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


  The ECMQV algorithm uses the following object identifier:

    id-ecMQV OBJECT IDENTIFIER ::= {
      iso(1) identified-organization(3) certicom(132) schemes(1)
      ecmqv(13) }

2.2.  Subject Public Key

  The subjectPublicKey from SubjectPublicKeyInfo is the ECC public key.
  ECC public keys have the following syntax:

    ECPoint ::= OCTET STRING

  Implementations of Elliptic Curve Cryptography according to this
  document MUST support the uncompressed form and MAY support the
  compressed form of the ECC public key.  The hybrid form of the ECC
  public key from [X9.62] MUST NOT be used.  As specified in [SEC1]:

     o The elliptic curve public key (a value of type ECPoint that is
       an OCTET STRING) is mapped to a subjectPublicKey (a value of
       type BIT STRING) as follows: the most significant bit of the
       OCTET STRING value becomes the most significant bit of the BIT
       STRING value, and so on; the least significant bit of the OCTET
       STRING becomes the least significant bit of the BIT STRING.
       Conversion routines are found in Sections 2.3.1 and 2.3.2 of
       [SEC1].

     o The first octet of the OCTET STRING indicates whether the key is
       compressed or uncompressed.  The uncompressed form is indicated
       by 0x04 and the compressed form is indicated by either 0x02 or
       0x03 (see 2.3.3 in [SEC1]).  The public key MUST be rejected if
       any other value is included in the first octet.

3.  Key Usage Bits

  If the keyUsage extension is present in a Certification Authority
  (CA) certificate that indicates id-ecPublicKey in
  SubjectPublicKeyInfo, then any combination of the following values
  MAY be present:

    digitalSignature;
    nonRepudiation;
    keyAgreement;
    keyCertSign; and
    cRLSign.






Turner, et al.              Standards Track                     [Page 7]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


  If the CA certificate keyUsage extension asserts keyAgreement, then
  it MAY assert either encipherOnly or decipherOnly.  However, this
  specification RECOMMENDS that if keyCertSign or cRLSign is present,
  then keyAgreement, encipherOnly, and decipherOnly SHOULD NOT be
  present.

  If the keyUsage extension is present in an End Entity (EE)
  certificate that indicates id-ecPublicKey in SubjectPublicKeyInfo,
  then any combination of the following values MAY be present:

    digitalSignature;
    nonRepudiation; and
    keyAgreement.

  If the EE certificate keyUsage extension asserts keyAgreement, then
  it MAY assert either encipherOnly or decipherOnly.

  If the keyUsage extension is present in a certificate that indicates
  id-ecDH or id-ecMQV in SubjectPublicKeyInfo, then the following MUST
  be present:

    keyAgreement;

  one of the following MAY be present:

    encipherOnly; or
    decipherOnly.

  If the keyUsage extension is present in a certificate that indicates
  id-ecDH or id-ecMQV in SubjectPublicKeyInfo, then the following
  values MUST NOT be present:

    digitalSignature;
    nonRepudiation;
    keyTransport;
    keyCertSign; and
    cRLSign.

4.  Security Considerations

  The security considerations in [PKI-ALG] apply.

  When implementing ECC in X.509 Certificates and Certificate
  Revocation Lists (CRLs), there are three algorithm-related choices
  that need to be made for the signatureAlgorithm field in a
  Certificate or CertificateList:





Turner, et al.              Standards Track                     [Page 8]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


  1) What is the public key size?

  2) What is the hash algorithm [FIPS180-3]?

  3) What is the curve?

  Consideration must be given by the CA to the strength of the security
  provided by each of these choices.  Security is measured in bits,
  where a strong symmetric cipher with a key of X bits is said to
  provide X bits of security.  It is recommended that the bits of
  security provided by each choice are roughly equivalent.  The
  following table provides comparable minimum bits of security
  [SP800-57] for the ECDSA key sizes and message digest algorithms.  It
  also lists curves (see Section 2.1.1.1) for the key sizes.

  Minimum  | ECDSA    | Message    | Curves
  Bits of  | Key Size | Digest     |
  Security |          | Algorithms |
  ---------+----------+------------+-----------
  80       | 160-223  | SHA-1      | sect163k1
           |          | SHA-224    | secp163r2
           |          | SHA-256    | secp192r1
           |          | SHA-384    |
           |          | SHA-512    |
  ---------+----------+------------+-----------
  112      | 224-255  | SHA-224    | secp224r1
           |          | SHA-256    | sect233k1
           |          | SHA-384    | sect233r1
           |          | SHA-512    |
  ---------+----------+------------+-----------
  128      | 256-383  | SHA-256    | secp256r1
           |          | SHA-384    | sect283k1
           |          | SHA-512    | sect283r1
  ---------+----------+------------+-----------
  192      | 384-511  | SHA-384    | secp384r1
           |          | SHA-512    | sect409k1
           |          |            | sect409r1
  ---------+----------+------------+-----------
  256      | 512+     | SHA-512    | secp521r1
           |          |            | sect571k1
           |          |            | sect571r1
  ---------+----------+------------+-----------









Turner, et al.              Standards Track                     [Page 9]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


  To promote interoperability, the following choices are RECOMMENDED:

  Minimum  | ECDSA    | Message    | Curves
  Bits of  | Key Size | Digest     |
  Security |          | Algorithms |
  ---------+----------+------------+-----------
  80       | 192      | SHA-256    | secp192r1
  ---------+----------+------------+-----------
  112      | 224      | SHA-256    | secp224r1
  ---------+----------+------------+-----------
  128      | 256      | SHA-256    | secp256r1
  ---------+----------+------------+-----------
  192      | 384      | SHA-384    | secp384r1
  ---------+----------+------------+-----------
  256      | 512      | SHA-512    | secp521r1
  ---------+----------+------------+-----------

  Using a larger hash value and then truncating it consumes more
  processing power than is necessary.  This is more important on
  constrained devices.  Since the signer does not know the environment
  that the recipient will use to validate the signature, it is better
  to use a hash function that provides the desired hash value output
  size, and no more.

  There are security risks with using keys not associated with well-
  known and widely reviewed curves.  For example, the curve may not
  satisfy the Menezes-Okamoto-Vanstone (MOV) condition [X9.62] or the
  curve may be vulnerable to the Anomalous attack [X9.62].
  Additionally, either a) all of the arithmetic properties of a
  candidate ECC public key must be validated to ensure that it has the
  unique correct representation in the correct (additive) subgroup (and
  therefore is also in the correct EC group) specified by the
  associated ECC domain parameters, or b) some of the arithmetic
  properties of a candidate ECC public key must be validated to ensure
  that it is in the correct group (but not necessarily the correct
  subgroup) specified by the associated ECC domain parameters
  [SP800-56A].

  As noted in [PKI-ALG], the use of MD2 and MD5 for new applications is
  discouraged.  It is still reasonable to use MD2 and MD5 to verify
  existing signatures.

5.  ASN.1 Considerations

  [X9.62] defines additional options for ECParameters and ECDSA-Sig-
  Value [PKI-ALG].  If an implementation needs to use these options,
  then use the [X9.62] ASN.1 module.  This RFC contains a conformant
  subset of the ASN.1 module defined in [X9.62].



Turner, et al.              Standards Track                    [Page 10]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


  If an implementation generates a PER [X.691] encoding using the ASN.1
  module found in this specification, it might not achieve the same
  encoded output as one that uses the [X9.62] module.  PER is not
  required by either the PKIX or S/MIME environments.  If an
  implementation environment requires PER, then implementation concerns
  are less likely with the use of the [X9.62] module.

6.  IANA Considerations

  This document makes extensive use of object identifiers to register
  public key types, elliptic curves, and algorithms.  Most are
  registered in the ANSI X9.62 arc, with the exception of the hash
  algorithms (which are in the NIST arc) and many of the curves (which
  are in the Certicom Inc. arc; these curves have been adopted by ANSI
  and NIST).  Additionally, an object identifier is used to identify
  the ASN.1 module found in Appendix A.  It is defined in an arc
  delegated by IANA to the PKIX Working Group.  No further action by
  IANA is necessary for this document or any anticipated updates.

7.  Acknowledgments

  The authors wish to thank Stephen Farrell, Alfred Hoenes, Johannes
  Merkle, Jim Schaad, and Carl Wallace for their valued input.

8.  References

8.1.  Normative References

  [FIPS180-3]  National Institute of Standards and Technology (NIST),
               FIPS Publication 180-3: Secure Hash Standard, October
               2008.

  [FIPS186-3]  National Institute of Standards and Technology (NIST),
               FIPS Publication 186-3: Digital Signature Standard,
               (draft) November 2008.

  [MUSTSHOULD] Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [PKI]        Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
               Housley, R., and W. Polk, "Internet X.509 Public Key
               Infrastructure Certificate and Certificate Revocation
               List (CRL) Profile", RFC 5280, May 2008.

  [PKI-ALG]    Bassham, L., Polk, W., and R. Housley, "Algorithms and
               Identifiers for the Internet X.509 Public Key
               Infrastructure Certificate and Certificate Revocation
               List (CRL) Profile", RFC 3279, April 2002.



Turner, et al.              Standards Track                    [Page 11]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


  [RSAOAEP]    Schaad, J., Kaliski, B., and R. Housley, "Additional
               Algorithms and Identifiers for RSA Cryptography for use
               in the Internet X.509 Public Key Infrastructure
               Certificate and Certificate Revocation List (CRL)
               Profile", RFC 4055, June 2005.

  [SEC1]       Standards for Efficient Cryptography Group (SECG), "SEC
               1: Elliptic Curve Cryptography", Version 1.0, September
               2000.

  [X9.62]      American National Standards Institute (ANSI), ANS
               X9.62-2005: The Elliptic Curve Digital Signature
               Algorithm (ECDSA), 2005.

  [X.680]      ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002.
               Information Technology - Abstract Syntax Notation One.

8.2.  Informative References

  [PKI-ADALG]  Dang, Q., Santesson, S., Moriarty, K., Brown, D., and T.
               Polk, "Internet X.509 Public Key Infrastructure:
               Additional Algorithms and Identifiers for DSA and
               ECDSA", Work in Progress, October 2008.

  [SP800-56A]  National Institute of Standards and Technology (NIST),
               Special Publication 800-56A: Recommendation for Pair-
               Wise Key Establishment Schemes Using Discrete Logarithm
               Cryptography (Revised), March 2007.

  [SP800-57]   National Institute of Standards and Technology (NIST),
               Special Publication 800-57: Recommendation for Key
               Management - Part 1 (Revised), March 2007.

  [X.691]      ITU-T Recommendation X.691 (2002) | ISO/IEC 8825-2:2002.
               Information Technology - ASN.1 Encoding Rules:
               Specification of Packed Encoding Rules.















Turner, et al.              Standards Track                    [Page 12]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


Appendix A.  ASN.1 Module

  PKIX1Algorithms2008 { iso(1) identified-organization(3) dod(6)
    internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) 45 }

  DEFINITIONS EXPLICIT TAGS ::=

  BEGIN

  -- EXPORTS ALL;

  IMPORTS

  -- From RFC 4055 [RSAOAEP]

  id-sha224, id-sha256, id-sha384, id-sha512
    FROM PKIX1-PSS-OAEP-Algorithms
      { iso(1) identified-organization(3) dod(6) internet(1)
        security(5) mechanisms(5) pkix(7) id-mod(0)
        id-mod-pkix1-rsa-pkalgs(33) }

  ;

  --
  -- Message Digest Algorithms
  --

  -- MD-2
  -- Parameters are NULL

  id-md2  OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) rsadsi(113549) digestAlgorithm(2) 2 }

  -- MD-5
  -- Parameters are NULL

  id-md5  OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) rsadsi(113549)digestAlgorithm(2) 5 }

  -- SHA-1
  -- Parameters are preferred absent

  id-sha1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) oiw(14) secsig(3)
    algorithm(2) 26 }

  -- SHA-224
  -- Parameters are preferred absent



Turner, et al.              Standards Track                    [Page 13]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


  -- id-sha224 OBJECT IDENTIFIER ::= {
  --   joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
  --   csor(3) nistalgorithm(4) hashalgs(2) 4 }
  -- SHA-256
  -- Parameters are preferred absent

  -- id-sha256 OBJECT IDENTIFIER ::= {
  --   joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
  --   csor(3) nistalgorithm(4) hashalgs(2) 1 }

  -- SHA-384
  -- Parameters are preferred absent

  -- id-sha384 OBJECT IDENTIFIER ::= {
  --   joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
  --   csor(3) nistalgorithm(4) hashalgs(2) 2 }

  -- SHA-512
  -- Parameters are preferred absent

  -- id-sha512 OBJECT IDENTIFIER ::= {
  --   joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
  --   csor(3) nistalgorithm(4) hashalgs(2) 3 }

  --
  -- Public Key (PK) Algorithms
  --

  -- RSA PK Algorithm and Key

  rsaEncryption OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

  RSAPublicKey ::= SEQUENCE {
    modulus         INTEGER, -- n
    publicExponent  INTEGER  -- e
  }

  -- DSA PK Algorithm, Key, and Parameters

  id-dsa OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) x9-57(10040) x9algorithm(4) 1 }

  DSAPublicKey ::= INTEGER --  public key, y







Turner, et al.              Standards Track                    [Page 14]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


  DSS-Parms ::= SEQUENCE {
    p  INTEGER,
    q  INTEGER,
    g  INTEGER
  }

  -- Diffie-Hellman PK Algorithm, Key, and Parameters

  dhpublicnumber OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) ansi-x942(10046) number-type(2) 1 }

  DHPublicKey ::= INTEGER  -- public key, y = g^x mod p

  DomainParameters ::= SEQUENCE {
    p                INTEGER,           -- odd prime, p=jq +1
    g                INTEGER,           -- generator, g
    q                INTEGER,           -- factor of p-1
    j                INTEGER OPTIONAL,  -- subgroup factor, j>= 2
    validationParms  ValidationParms OPTIONAL
  }

  ValidationParms ::= SEQUENCE {
    seed         BIT STRING,
    pgenCounter  INTEGER
  }

  -- KEA PK Algorithm and Parameters

  id-keyExchangeAlgorithm OBJECT IDENTIFIER ::= {
    joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
    dod(2) infosec(1) algorithms(1) 22 }


  KEA-Parms-Id ::= OCTET STRING

  -- Sec 2.1.1 Unrestricted Algorithm ID, Key, and Parameters
  -- (ECDSA keys use id-ecPublicKey)

  id-ecPublicKey OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }

  ECPoint ::= OCTET STRING

  -- Parameters for both Restricted and Unrestricted

  ECParameters ::= CHOICE {
    namedCurve         OBJECT IDENTIFIER
    -- implicitCurve   NULL



Turner, et al.              Standards Track                    [Page 15]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


    -- specifiedCurve  SpecifiedECDomain
  }
    -- implicitCurve and specifiedCurve MUST NOT be used in PKIX.
    -- Details for SpecifiedECDomain can be found in [X9.62].
    -- Any future additions to this CHOICE should be coordinated
    -- with ANSI X9.

  -- Sec 2.1.2 Restricted Algorithm IDs, Key, and Parameters: ECDH

  id-ecDH OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) schemes(1)
    ecdh(12) }

  -- ECPoint ::= OCTET STRING

  -- Parameters are ECParameters.

  -- Sec 2.1.2 Restricted Algorithm IDs, Key, and Parameters: ECMQV

  id-ecMQV OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) schemes(1)
    ecmqv(13) }

  -- ECPoint ::= OCTET STRING

  -- Parameters are ECParameters.

  --
  -- Signature Algorithms
  --

  -- RSA with MD-2
  -- Parameters are NULL

  md2WithRSAEncryption OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 2 }

  -- RSA with MD-5
  -- Parameters are NULL

  md5WithRSAEncryption OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 4 }

  -- RSA with SHA-1
  -- Parameters are NULL

  sha1WithRSAEncryption OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }



Turner, et al.              Standards Track                    [Page 16]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


  -- DSA with SHA-1
  -- Parameters are ABSENT

  id-dsa-with-sha1 OBJECT IDENTIFIER ::=  {
    iso(1) member-body(2) us(840) x9-57(10040) x9algorithm(4) 3 }

  -- DSA with SHA-224
  -- Parameters are ABSENT

  id-dsa-with-sha224 OBJECT IDENTIFIER  ::=  {
    joint-iso-ccitt(2) country(16) us(840) organization(1) gov(101)
    csor(3) algorithms(4) id-dsa-with-sha2(3) 1 }

  -- DSA with SHA-256
  -- Parameters are ABSENT

  id-dsa-with-sha256 OBJECT IDENTIFIER  ::=  {
    joint-iso-ccitt(2) country(16) us(840) organization(1) gov(101)
    csor(3) algorithms(4) id-dsa-with-sha2(3) 2 }

  -- ECDSA with SHA-1
  -- Parameters are ABSENT

  ecdsa-with-SHA1 OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4) 1 }

  -- ECDSA with SHA-224
  -- Parameters are ABSENT

  ecdsa-with-SHA224 OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4)
    ecdsa-with-SHA2(3) 1 }

  -- ECDSA with SHA-256
  -- Parameters are ABSENT

  ecdsa-with-SHA256 OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4)
    ecdsa-with-SHA2(3) 2 }

  -- ECDSA with SHA-384
  -- Parameters are ABSENT

  ecdsa-with-SHA384 OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4)
    ecdsa-with-SHA2(3) 3 }





Turner, et al.              Standards Track                    [Page 17]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


  -- ECDSA with SHA-512
  -- Parameters are ABSENT

  ecdsa-with-SHA512 OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4)
    ecdsa-with-SHA2(3) 4 }

  --
  -- Signature Values
  --

  -- DSA

  DSA-Sig-Value ::= SEQUENCE {
    r  INTEGER,
    s  INTEGER
  }

  -- ECDSA

  ECDSA-Sig-Value ::= SEQUENCE {
    r  INTEGER,
    s  INTEGER
  }

  --
  -- Named Elliptic Curves
  --

  -- Note that in [X9.62] the curves are referred to as 'ansiX9' as
  -- opposed to 'sec'.  For example secp192r1 is the same curve as
  -- ansix9p192r1.

  -- Note that in [PKI-ALG] the secp192r1 curve was referred to as
  -- prime192v1 and the secp256r1 curve was referred to as prime256v1.

  -- Note that [FIPS186-3] refers to secp192r1 as P-192, secp224r1 as
  -- P-224, secp256r1 as P-256, secp384r1 as P-384, and secp521r1 as
  -- P-521.

  secp192r1 OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
    prime(1) 1 }

  sect163k1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 1 }





Turner, et al.              Standards Track                    [Page 18]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


  sect163r2 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 15 }

  secp224r1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 33 }

  sect233k1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 26 }

  sect233r1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 27 }

  secp256r1 OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
    prime(1) 7 }

  sect283k1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 16 }

  sect283r1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 17 }

  secp384r1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 34 }

  sect409k1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 36 }

  sect409r1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 37 }

  secp521r1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 35 }

  sect571k1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 38 }

  sect571r1 OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) certicom(132) curve(0) 39 }

  END










Turner, et al.              Standards Track                    [Page 19]

RFC 5480            ECC SubjectPublicKeyInfo Format           March 2009


Authors' Addresses

  Sean Turner
  IECA, Inc.
  3057 Nutley Street, Suite 106
  Fairfax, VA 22031
  USA

  EMail: [email protected]


  Kelvin Yiu
  Microsoft
  One Microsoft Way
  Redmond, WA 98052-6399
  USA

  EMail: [email protected]


  Daniel R. L. Brown
  Certicom Corp
  5520 Explorer Drive #400
  Mississauga, ON L4W 5L1
  CANADA

  EMail: [email protected]


  Russ Housley
  Vigil Security, LLC
  918 Spring Knoll Drive
  Herndon, VA 20170
  USA

  EMail: [email protected]


  Tim Polk
  NIST
  Building 820, Room 426
  Gaithersburg, MD 20899

  EMail: [email protected]







Turner, et al.              Standards Track                    [Page 20]