Network Working Group                                          M. Watson
Request for Comments: 5445                              Digital Fountain
Obsoletes: 3452, 3695                                         March 2009
Category: Standards Track


             Basic Forward Error Correction (FEC) Schemes

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

Abstract

  This document provides Forward Error Correction (FEC) Scheme
  specifications according to the Reliable Multicast Transport (RMT)
  FEC building block for the Compact No-Code FEC Scheme, the Small
  Block, Large Block, and Expandable FEC Scheme, the Small Block
  Systematic FEC Scheme, and the Compact FEC Scheme.  This document
  obsoletes RFC 3695 and assumes responsibility for the FEC Schemes
  defined in RFC 3452.















Watson                      Standards Track                     [Page 1]

RFC 5445                   Basic FEC Schemes                  March 2009


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  Requirements Notation  . . . . . . . . . . . . . . . . . . . .  4
  3.  Compact No-Code FEC Scheme . . . . . . . . . . . . . . . . . .  4
    3.1.  Introduction . . . . . . . . . . . . . . . . . . . . . . .  4
    3.2.  Formats and Codes  . . . . . . . . . . . . . . . . . . . .  4
      3.2.1.  FEC Payload ID(s)  . . . . . . . . . . . . . . . . . .  4
      3.2.2.  FEC Object Transmission Information  . . . . . . . . .  5
    3.3.  Procedures . . . . . . . . . . . . . . . . . . . . . . . .  7
    3.4.  FEC Code Specification . . . . . . . . . . . . . . . . . .  7
      3.4.1.  Source Block Logistics . . . . . . . . . . . . . . . .  7
      3.4.2.  Sending and Receiving a Source Block . . . . . . . . .  8
  4.  Small Block, Large Block, and Expandable FEC Scheme  . . . . .  9
    4.1.  Introduction . . . . . . . . . . . . . . . . . . . . . . .  9
    4.2.  Formats and Codes  . . . . . . . . . . . . . . . . . . . .  9
      4.2.1.  FEC Payload ID(s)  . . . . . . . . . . . . . . . . . .  9
      4.2.2.  FEC Object Transmission Information  . . . . . . . . . 10
    4.3.  Procedures . . . . . . . . . . . . . . . . . . . . . . . . 11
    4.4.  FEC Code Specification . . . . . . . . . . . . . . . . . . 12
  5.  Small Block Systematic FEC Scheme  . . . . . . . . . . . . . . 12
    5.1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . 12
    5.2.  Formats and Codes  . . . . . . . . . . . . . . . . . . . . 12
      5.2.1.  FEC Payload ID(s)  . . . . . . . . . . . . . . . . . . 12
      5.2.2.  FEC Object Transmission Information  . . . . . . . . . 13
    5.3.  Procedures . . . . . . . . . . . . . . . . . . . . . . . . 14
    5.4.  FEC Code Specification . . . . . . . . . . . . . . . . . . 15
  6.  Compact FEC Scheme . . . . . . . . . . . . . . . . . . . . . . 15
    6.1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . 15
    6.2.  Formats and Codes  . . . . . . . . . . . . . . . . . . . . 15
      6.2.1.  FEC Payload ID(s)  . . . . . . . . . . . . . . . . . . 15
      6.2.2.  FEC Object Transmission Information  . . . . . . . . . 15
    6.3.  Procedures . . . . . . . . . . . . . . . . . . . . . . . . 15
    6.4.  FEC Code Specification . . . . . . . . . . . . . . . . . . 16
  7.  Security Considerations  . . . . . . . . . . . . . . . . . . . 16
  8.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 16
  9.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 16
  10. Changes from Schemes Defined in RFC 3452 and RFC 3695  . . . . 17
  11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 18
    11.1. Normative References . . . . . . . . . . . . . . . . . . . 18
    11.2. Informative References . . . . . . . . . . . . . . . . . . 18










Watson                      Standards Track                     [Page 2]

RFC 5445                   Basic FEC Schemes                  March 2009


1.  Introduction

  The document specifies the following FEC Schemes according to the
  specification requirements of the FEC building block [RFC5052]:

  o  Compact No-Code FEC Scheme

  o  Small Block, Large Block, and Expandable FEC Scheme

  o  Small Block Systematic FEC Scheme

  o  Compact FEC Scheme

  This document inherits the context, language, declarations and
  restrictions of the FEC building block [RFC5052].  This document also
  uses the terminology of the companion document [RFC3453], which
  describes the use of FEC codes within the context of reliable IP
  multicast transport and provides an introduction to some commonly
  used FEC codes.

  Building blocks are defined in [RFC3048].  This document follows the
  general guidelines provided in [RFC3269].

  [RFC3452] and [RFC3695] contain previous versions of the FEC Schemes
  defined in this specification.  These RFCs were published in the
  "Experimental" category.  It was the stated intent of the RMT working
  group to re-submit these specifications as an IETF Proposed Standard
  in due course.  This document obsoletes [RFC3695].  [RFC3452] has
  already been obsoleted by [RFC5052], and this document assumes
  responsibility for aspects of [RFC3452] that were not included in
  [RFC5052].

  This Proposed Standard specification is thus based on and backwards
  compatible with the FEC Schemes defined in [RFC3452] and [RFC3695],
  updated according to accumulated experience and growing protocol
  maturity since their original publication.  Said experience applies
  both to this specification itself and to congestion control
  strategies related to the use of this specification.

  The differences between the FEC Scheme specifications in [RFC3452]
  and [RFC3695] and this document are listed in Section 10.

  Integer fields specified in this document are all encoded in network
  byte order.







Watson                      Standards Track                     [Page 3]

RFC 5445                   Basic FEC Schemes                  March 2009


2.  Requirements Notation

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Compact No-Code FEC Scheme

3.1.  Introduction

  The Compact No-code FEC Scheme is a Fully-Specified FEC Scheme.  The
  scheme requires no FEC coding and is specified primarily to allow
  simple interoperability testing between different implementations of
  protocol instantiations that use the FEC building block.

3.2.  Formats and Codes

3.2.1.  FEC Payload ID(s)

  The FEC Payload ID for the Compact No-Code FEC Scheme is composed of
  a Source Block Number and an Encoding Symbol ID as shown in Figure 1.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Source Block Number       |      Encoding Symbol ID       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 1: FEC Payload ID Format for Compact No-Code FEC Scheme

  The Source Block Number (SBN) is a 16-bit unsigned integer that is
  used to identify from which source block of the object the encoding
  symbol in the payload of the packet is generated.  There are two
  possible modes: in the unique SBN mode, each source block within the
  object has a unique Source Block Number associated with it, and in
  the non-unique SBN mode, the same Source Block Number may be used for
  more than one source block within the object.  Which mode is being
  used for an object is outside the scope of this document and MUST be
  communicated, either explicitly or implicitly, out-of-band to
  receivers.

  If the unique SBN mode is used, then successive Source Block Numbers
  are associated with consecutive source blocks of the object starting
  with Source Block Number 0 for the first source block of the object.
  In this case, there are at most 2^^16 source blocks in the object.






Watson                      Standards Track                     [Page 4]

RFC 5445                   Basic FEC Schemes                  March 2009


  If the non-unique SBN mode is used, then the mapping from source
  blocks to Source Block Numbers MUST be communicated out-of-band to
  receivers, and how this is done is outside the scope of this
  document.  This mapping could be implicit, for example, determined by
  the transmission order of the source blocks.  In non-unique SBN mode,
  packets for two different source blocks mapped to the same Source
  Block Number SHOULD NOT be sent within an interval of time that is
  shorter than the transport time of a source block.  The transport
  time of a source block includes the amount of time needed to process
  the source block at the sender transport layer, the network transit
  time for packets, and the amount of time needed to process the source
  block at the receiver transport.  This allows the receiver to clearly
  decide which packets belong to which source block.

  The Encoding Symbol ID is a 16-bit unsigned integer that identifies
  which specific encoding symbol generated from the source block is
  carried in the packet payload.  The exact details of the
  correspondence between Encoding Symbol IDs and the encoding symbols
  in the packet payload are specified in Section 3.4.

3.2.2.  FEC Object Transmission Information

3.2.2.1.  Mandatory

  The mandatory FEC Object Transmission Information element for the
  Compact No-Code FEC Scheme is:

  o  FEC Encoding ID: zero (0)

3.2.2.2.  Common

  The Common FEC Object Transmission Information elements and their
  value ranges for the Compact No-Code FEC Scheme are:

  Transfer-Length:  a non-negative integer, less than 2^^48, indicating
     the length of the object in octets.

  Encoding-Symbol-Length:  a non-negative integer, less than 2^^16,
     indicating the length of each encoding symbol in octets.

  Maximum-Source-Block-Length:  a non-negative integer, less than
     2^^32, indicating the maximum number of source symbols in a source
     block.

  The encoded Common FEC Object Transmission Information is defined in
  Figure 2.





Watson                      Standards Track                     [Page 5]

RFC 5445                   Basic FEC Schemes                  March 2009


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Transfer Length                          |
     +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |           Reserved            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Encoding Symbol Length     | Max. Source Block Length (MSB)|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Max. Source Block Length (LSB)|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 2: Encoded Common FEC Object Transmission Information (OTI)
                     for Compact No-Code FEC Scheme

  The Transfer Length, Encoding Symbol Length, and Maximum Source Block
  Length are encoded as unsigned integers, of length 48 bits, 16 bits,
  and 32 bits, respectively.

  All Encoding Symbols of a transport object MUST have length equal to
  the length specified in the Encoding Symbol Length element, with the
  optional exception of the last source symbol of the last source block
  (so that redundant padding is not mandatory in this last symbol).
  This last source symbol MUST be logically padded out with zeroes when
  another Encoding Symbol is computed based on this source symbol to
  ensure the same interpretation of this Encoding Symbol value by the
  sender and receiver.  However, this padding does not actually need to
  be sent with the data of the last source symbol.

  The "Reserved" field in the Encoded FEC Object Transmission
  Information MUST be set to zero by senders and its value MUST be
  ignored by receivers.

     Note: this FEC Scheme was first defined in [RFC3695], which did
     not require that the Encoding Symbol Length should be the same for
     every source block.  This document introduces a general
     requirement that the Encoding Symbol Length be the same across
     source blocks.  Since no protocols were defined that support
     variation in the Encoding Symbol Length between source blocks,
     this can be done without introducing backwards compatibility
     issues.

3.2.2.3.  Scheme-Specific

  No Scheme-Specific FEC Object Transmission Information elements are
  defined by this FEC Scheme.





Watson                      Standards Track                     [Page 6]

RFC 5445                   Basic FEC Schemes                  March 2009


3.3.  Procedures

  The algorithm defined in Section 9.1. of [RFC5052] MUST be used to
  partition the file into source blocks.

3.4.  FEC Code Specification

  The Compact No-Code FEC Scheme does not require FEC encoding or
  decoding.  Instead, each encoding symbol consists of consecutive
  bytes of a source block of the object.

  The following two subsections describe the details of how the Compact
  No-Code FEC Scheme operates for each source block of an object.

3.4.1.  Source Block Logistics

  Let X > 0 be the length of a source block in bytes.  Let L > 0 be the
  length of the encoding symbol contained in the payload of each
  packet.  The value of X and L are part of the FEC Object Transmission
  Information, and how this information is communicated to a receiver
  is outside the scope of this document.

  For a given source block X bytes in length with Source Block Number
  I, let N = X/L rounded up to the nearest integer.  The encoding
  symbol carried in the payload of a packet consists of a consecutive
  portion of the source block.  The source block is logically
  partitioned into N encoding symbols, each L bytes in length, and the
  corresponding Encoding Symbol IDs range from 0 through N-1 starting
  at the beginning of the source block and proceeding to the end.
  Thus, the encoding symbol with Encoding Symbol ID Y consists of bytes
  L*Y through L*(Y+1)-1 of the source block, where the bytes of the
  source block are numbered from 0 through X-1.  If X/L is not integral
  then the last encoding symbol with Encoding Symbol ID = N-1 consists
  of bytes L*(N-1) through the last byte X-1 of the source block, and
  the remaining L*N - X bytes of the encoding symbol can by padded out
  with zeroes.

  As an example, suppose that the source block length X = 20,400 and
  encoding symbol length L = 1,000.  The encoding symbol with Encoding
  Symbol ID = 10 contains bytes 10,000 through 10,999 of the source
  block, and the encoding symbol with Encoding Symbol ID = 20 contains
  bytes 20,000 through the last byte 20,399 of the source block and the
  remaining 600 bytes of the encoding symbol can be padded with zeroes.

  There are no restrictions beyond the rules stated above on how a
  sender generates encoding symbols to send from a source block.
  However, it is recommended that an implementor refer to the companion
  document [RFC3452] for general advice.



Watson                      Standards Track                     [Page 7]

RFC 5445                   Basic FEC Schemes                  March 2009


  In the next subsection, a procedure is recommended for sending and
  receiving source blocks.

3.4.2.  Sending and Receiving a Source Block

  The following carousel procedure is RECOMMENDED for a sender to
  generate packets containing FEC Payload IDs and corresponding
  encoding symbols for a source block with Source Block Number I.  Set
  the length in bytes of an encoding symbol to a fixed value L, which
  is reasonable for a packet payload (e.g., ensure that the total
  packet size does not exceed the MTU) and that is smaller than the
  source block length X, e.g., L = 1,000 for X >= 1,000.  Initialize Y
  to a value randomly chosen in the interval [0..N-1].  Repeat the
  following for each packet of the source block to be sent.

  o  If Y <= N-1, then generate the encoding symbol Y.

  o  Within the FEC Payload ID, set the Source Block Length to X, set
     the Source Block Number = I, set the Encoding Symbol ID = Y, place
     the FEC Payload ID and the encoding symbol into the packet to
     send.

  o  In preparation for the generation of the next packet: if Y < N-1
     then increment Y by one else if Y = N-1 then reset Y to zero.

  The following procedure is RECOMMENDED for a receiver to recover the
  source block based on receiving packets for the source block from a
  sender that is using the carousel procedure described above.  The
  receiver can determine from which source block a received packet was
  generated by the Source Block Number carried in the FEC Payload ID.
  Upon receipt of the first FEC Payload ID for a source block, the
  receiver uses the Source Block Length and Encoding Symbol Length
  received out-of-band as part of the FEC Object Transmission
  Information to determine the length X in bytes of the source block
  and length L in bytes of each encoding symbol.  The receiver
  allocates space for the X bytes that the source block requires.  The
  receiver also computes the length of the encoding symbol in the
  payload of the packet by subtracting the packet header length from
  the total length of the received packet.  The receiver checks that
  this symbol length is equal to L, except in the case that this is the
  last symbol of the source block in which case the symbol length in
  the packet may be less than L.  After calculating N = X/L rounded up
  to the nearest integer, the receiver allocates a boolean array
  RECEIVED[0..N-1] with all N entries initialized to false to track
  received encoding symbols.  The receiver keeps receiving packets for
  the source block as long as there is at least one entry in RECEIVED
  still set to false or until the application decides to give up on
  this source block and move on to other source blocks.  For each



Watson                      Standards Track                     [Page 8]

RFC 5445                   Basic FEC Schemes                  March 2009


  received packet for the source block (including the first packet),
  the steps to be taken to help recover the source block are as
  follows.  Let Y be the value of the Encoding Symbol ID within the FEC
  Payload ID of the packet.  If Y <= N-1, then the receiver copies the
  encoding symbol into the appropriate place within the space reserved
  for the source block and sets RECEIVED[Y] = true.  If all N entries
  of RECEIVED are true, then the receiver has recovered the entire
  source block.

4.  Small Block, Large Block, and Expandable FEC Scheme

4.1.  Introduction

  This section defines an Under-Specified FEC Scheme for Small Block
  FEC codes, Large Block FEC codes, and Expandable FEC codes as
  described in [RFC3453].

4.2.  Formats and Codes

4.2.1.  FEC Payload ID(s)

  The FEC Payload ID is composed of a Source Block Number and an
  Encoding Symbol ID structured as shown in Figure 3.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Source Block Number                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Encoding Symbol ID                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 3: FEC Payload ID Format for Small Block, Large Block, and
                          Expandable FEC Codes

  The Source Block Number is a 32-bit unsigned integer that identifies
  from which source block of the object the encoding symbol(s) in the
  payload are generated.  These blocks are numbered consecutively from
  0 to N-1, where N is the number of source blocks in the object.

  The Encoding Symbol ID is a 32-bit unsigned integer that identifies
  which specific encoding symbol(s) generated from the source block are
  carried in the packet payload.  The exact details of the
  correspondence between Encoding Symbol IDs and the encoding symbol(s)
  in the packet payload are dependent on the particular FEC Scheme
  instance used as identified by the FEC Encoding ID and by the FEC
  Instance ID, and these details may be proprietary.




Watson                      Standards Track                     [Page 9]

RFC 5445                   Basic FEC Schemes                  March 2009


4.2.2.  FEC Object Transmission Information

4.2.2.1.  Mandatory

  The mandatory FEC Object Transmission Information element for the
  Small Block, Large Block, and Expandable FEC Scheme are:

  o  FEC Encoding ID: 128

4.2.2.2.  Common

  The Common FEC Object Transmission Information elements and their
  value ranges for the Small Block, Large Block, and Expandable FEC
  Scheme are:

  FEC Instance ID:  a non-negative integer less than 2^^16.

  Transfer-Length:  a non-negative integer less than 2^^48, indicating
     the length of the object in octets.

  Encoding-Symbol-Length:  a non-negative integer less than 2^^16,
     indicating the length of each encoding symbol in octets.

  Maximum-Source-Block-Length:  a non-negative integer less than 2^^32,
     indicating the maximum number of source symbols in a source block.

  The encoded Common FEC Object Transmission Information is defined in
  Figure 4.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Transfer Length                          |
     +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |         FEC Instance ID       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Encoding Symbol Length     | Max. Source Block Length (MSB)|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Max. Source Block Length (LSB)|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 4: Encoded Common FEC OTI for Small Block, Large Block, and
                          Expandable FEC Scheme

  The Transfer Length (48 bits), FEC Instance ID (16 bits), Encoding
  Symbol Length (16 bits), and Maximum Source Block Length (32 bits)
  are encoded as unsigned integers.




Watson                      Standards Track                    [Page 10]

RFC 5445                   Basic FEC Schemes                  March 2009


4.2.2.3.  Scheme-Specific

  The Scheme-Specific FEC Object Transmission Information field for the
  Small Block, Large Block, and Expandable FEC Scheme provides for the
  possibility of Instance-specific FEC Object Transmission Information.
  The format of the Scheme-Specific FEC Object Transmission Information
  for this FEC Scheme is defined in Figure 5.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Length    |           Instance-specific FEC OTI           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |               Instance-specific FEC OTI contd.                |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 5: Encoded Scheme-Specific FEC OTI for Small Block, Large
                    Block, and Expandable FEC Scheme

  The Scheme-Specific FEC Object Transmission Information field
  contains the following sub-fields:

  Length (1 octet):  an unsigned integer that specifies the length of
     the Scheme-Specific FEC OTI in four-octet words (including this
     length field), except that the value zero indicates that no
     Instance-specific FEC OTI Information is provided.  When the
     Length is zero, three padding bytes containing value zero SHALL
     follow the Length field to maintain 4-octet alignment.

  Instance-specific FEC OTI Information:   the contents of this field
     are FEC Scheme Instance-specific.

  Note that in the case of a Content Delivery protocol that supports
  external signaling of the total FEC Object Transmission Information
  length, then the Scheme-Specific FEC OTI field defined here is
  optional.  Otherwise, this field MUST be included.

4.3.  Procedures

  The algorithm defined in Section 9.1. of [RFC5052] MUST be used to
  partition the file into source blocks.








Watson                      Standards Track                    [Page 11]

RFC 5445                   Basic FEC Schemes                  March 2009


4.4.  FEC Code Specification

  The FEC code specification and the correspondence of Encoding Symbols
  IDs to encoding symbols are defined by specific instances of this
  scheme and so are out of scope of this document.

5.  Small Block Systematic FEC Scheme

5.1.  Introduction

  This section defines an Under-Specified FEC Scheme for Small Block
  Systematic FEC codes as described in [RFC3453].  For Small Block
  Systematic FEC codes, each source block is of length at most 65535
  source symbols.

  Although these codes can generally be accommodated by the FEC
  Encoding ID described in Section 4, a specific FEC Encoding ID is
  defined for Small Block Systematic FEC codes to allow more
  flexibility and to retain header compactness.  The small source block
  length and small expansion factor that often characterize systematic
  codes may require the data source to frequently change the source
  block length.  To allow the dynamic variation of the source block
  length and to communicate it to the receivers with low overhead, the
  block length is included in the FEC Payload ID.

5.2.  Formats and Codes

5.2.1.  FEC Payload ID(s)

  The FEC Payload ID is composed of the Source Block Number, Source
  Block Length, and the Encoding Symbol ID structured as shown in
  Figure 6.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Source Block Number                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Source Block Length      |       Encoding Symbol ID      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 6: FEC Payload ID Format for Small Block Systematic FEC Scheme

  The Source Block Number is a 32-bit unsigned integer that identifies
  from which source block of the object the encoding symbol(s) in the
  payload are generated.  These blocks are numbered consecutively from
  0 to N-1, where N is the number of source blocks in the object.




Watson                      Standards Track                    [Page 12]

RFC 5445                   Basic FEC Schemes                  March 2009


  The Source Block Length is a 16-bit unsigned integer that specifies
  the length in units of source symbols of the source block identified
  by the Source Block Number.

  The Encoding Symbol ID is a 16-bit unsigned integer that identifies
  which specific encoding symbol(s) generated from the source block are
  carried in the packet payload.  Each encoding symbol is either an
  original source symbol or a redundant symbol generated by the
  encoder.  The exact details of the correspondence between Encoding
  Symbol IDs and the encoding symbol(s) in the packet payload are
  dependent on the particular FEC Scheme instance used as identified by
  the FEC Instance ID, and these details may be proprietary.

5.2.2.  FEC Object Transmission Information

5.2.2.1.  Mandatory

  The mandatory FEC Object Transmission Information element for the
  Small Block Systematic FEC Scheme is:

  o  FEC Encoding ID: 129

5.2.2.2.  Common

  The Common FEC Object Transmission Information elements and their
  value ranges for the Small Block Systematic FEC Scheme are:

  FEC Instance ID:  a non-negative integer less than 2^^16.

  Transfer-Length:  a non-negative integer less than 2^^48, indicating
     the length of the object in octets.

  Encoding-Symbol-Length:  a non-negative integer less than 2^^16,
     indicating the length of each encoding symbol in octets.

  Maximum-Source-Block-Length:  a non-negative integer less than 2^^16,
     indicating the maximum number of source symbols in a source block.

  Max-Number-of-Encoding-Symbols:  a non-negative integer less than
     2^^16, indicating the maximum number of encoding symbols per block
     (i.e., source plus repair symbols in the case of a systematic
     code).

  The encoded Common FEC Object Transmission Information is defined in
  Figure 7.






Watson                      Standards Track                    [Page 13]

RFC 5445                   Basic FEC Schemes                  March 2009


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Transfer Length                          |
     +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |         FEC Instance ID       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Encoding Symbol Length     |  Maximum Source Block Length  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Max. Num. of Encoding Symbols |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 7: FEC OTI Format for Small Block Systematic FEC Scheme

  The Transfer Length (48 bits), FEC Instance ID (16 bits), Encoding
  Symbol Length (16 bits), Maximum Source Block Length (16 bits), and
  Maximum Number of Encoding Symbols (16 bits) are encoded as unsigned
  integers.

  All Encoding Symbols of a transport object MUST have length equal to
  the length specified in the Encoding Symbol Length field, with the
  optional exception of the last source symbol of the last source block
  (so that redundant padding is not mandatory in this last symbol).
  This last source symbol MUST be logically padded out with zeroes when
  another Encoding Symbol is computed based on this source symbol to
  ensure the same interpretation of this Encoding Symbol value by the
  sender and receiver.  However, this padding need not be actually sent
  with the data of the last source symbol.

     Note: this FEC Scheme was first defined in [RFC3452], which did
     not require that the Encoding Symbol Length should be the same for
     every source block.  However, no protocols have been defined that
     support variation in the Encoding Symbol Length between source
     blocks, and thus introduction of a general requirement that the
     Encoding Symbol Length be the same across source blocks (as
     defined here) should not cause backwards compatibility issues and
     will aid interoperability.

5.2.2.3.  Scheme-Specific

  The Scheme-Specific FEC Object Transmission Information format
  defined in Section 4.2.2.3 SHALL be used.

5.3.  Procedures

  The algorithm defined in Section 9.1. of [RFC5052] MAY be used to
  partition the file into source blocks.  Otherwise, the FEC Scheme
  instance MUST specify the algorithm that is used.



Watson                      Standards Track                    [Page 14]

RFC 5445                   Basic FEC Schemes                  March 2009


5.4.  FEC Code Specification

  The FEC code specification and the correspondence of Encoding Symbols
  IDs to encoding symbols are defined by specific instances of this
  scheme and so are out of scope of this document.

6.  Compact FEC Scheme

6.1.  Introduction

  The Compact FEC Scheme is an Under-Specified FEC Scheme.  This FEC
  Scheme is similar in spirit to the Compact No-Code FEC Scheme, except
  that a non-trivial FEC encoding (that is Under-Specified) may be used
  to generate encoding symbol(s) placed in the payload of each packet
  and a corresponding FEC decoder may be used to produce the source
  block from received packets.

6.2.  Formats and Codes

6.2.1.  FEC Payload ID(s)

  The FEC Payload ID format defined in Section 3.2.1 SHALL be used.

6.2.2.  FEC Object Transmission Information

6.2.2.1.  Mandatory

  The mandatory FEC Object Transmission Information element for the
  Compact No-Code FEC Scheme is:

  o  FEC Encoding ID: 130

6.2.2.2.  Common

  The Common FEC Object Transmission Information elements and their
  encoding are the same as defined for the Small Block, Large Block,
  and Expandable FEC Scheme in Figure 4.

6.2.2.3.  Scheme-Specific

  The Scheme-Specific FEC Object Transmission Information format
  defined in Section 4.2.2.3 SHALL be used.

6.3.  Procedures

  The algorithm defined in Section 9.1. of [RFC5052] MUST be used to
  partition the file into source blocks.




Watson                      Standards Track                    [Page 15]

RFC 5445                   Basic FEC Schemes                  March 2009


6.4.  FEC Code Specification

  The FEC code specification and the correspondence of Encoding Symbols
  IDs to encoding symbols are defined by specific instances of this
  scheme and so are out of scope of this document.

7.  Security Considerations

  This specification does not introduce any further security
  considerations beyond those described in [RFC5052].

8.  Acknowledgements

  This document is substantially based on [RFC3695] by Michael Luby and
  Lorenzo Vicisano and [RFC3452] by Michael Luby, Lorenzo Vicisano, Jim
  Gemmell, Luigi Rizzo, Mark Handley, and Jon Crowcroft.

9.  IANA Considerations

  FEC Encoding IDs 0 and 130 were first defined and registered in the
  ietf:rmt:fec:encoding namespace by [RFC3695].  This document updates
  and obsoletes the definitions from that specification.  References to
  that specification should be replaced with references to this
  document.

  FEC Encoding IDs 128 and 129 were first defined and registered in the
  ietf:rmt:fec:encoding namespace by [RFC3452].  This document updates
  and obsoletes the definitions from that specification.  References to
  that specification should be replaced with references to this
  document.

  Values of FEC Encoding IDs and FEC Instance IDs are subject to IANA
  registration.  For general guidelines on IANA considerations as they
  apply to this document, see [RFC5052].

  This document assigns the Fully-Specified FEC Encoding ID 0 under the
  ietf:rmt:fec:encoding name-space (which was previously assigned by
  [RFC3695], which is obsoleted by this document) to "Compact No-Code"
  as specified in Section 3 above.

  This document assigns the Under-Specified FEC Encoding ID 128 under
  the ietf:rmt:fec:encoding name-space (which was previously assigned
  by [RFC3452]) to "Small Block, Large Block, and Please note that we
  have added a comma between large block and expandable throughout this
  document (RFC Editor style is to include a comme before the last item
  of a series).  If you do not object, we will ask IANA to include this
  comma in their registry for consistency. --> Expandable FEC Codes" as
  specified in Section 4 above.



Watson                      Standards Track                    [Page 16]

RFC 5445                   Basic FEC Schemes                  March 2009


  This document assigns the Under-Specified FEC Encoding ID 129 under
  the ietf:rmt:fec:encoding name-space (which was previously assigned
  by [RFC3452]) to "Small Block Systematic FEC Codes" as specified in
  Section 5 above.

  This document assigns the Under-Specified FEC Encoding ID 130 under
  the ietf:rmt:fec:encoding name-space (which was previously assigned
  by [RFC3695], which is obsoleted by this document) to "Compact FEC"
  as specified in Section 6 above.

  As FEC Encoding IDs 128, 129, and 130 are Under-Specified, "FEC
  Instance ID" sub-name-spaces must be established, in accordance to
  [RFC5052].  Hence, this document also assumes responsibility for the
  "FEC Instance ID" registries named.

     ietf:rmt:fec:encoding:instance:128, scoped by ietf:rmt:fec:
     encoding = 128

     ietf:rmt:fec:encoding:instance:129, scoped by ietf:rmt:fec:
     encoding = 129

     ietf:rmt:fec:encoding:instance:130, scoped by ietf:rmt:fec:
     encoding = 130

  The values that can be assigned within these namespaces are non-
  negative numeric indices.  Assignment requests are granted on a
  "First Come First Served" basis.  [RFC5052] specifies additional
  criteria that MUST be met for the assignment within the generic ietf:
  rmt:fec:encoding:instance name-space.  These criteria also apply to
  ietf:rmt:fec:encoding:instance:128, ietf:rmt:fec:encoding:instance:
  129, and ietf:rmt:fec:encoding:instance:130.

10.  Changes from Schemes Defined in RFC 3452 and RFC 3695

  This section describes the changes between the Experimental versions
  of these FEC Scheme specifications contained in RFC 3452 [RFC3452]
  and RFC 3695 [RFC3695] and those defined in this specification:

  o  Scheme definitions have been updated to meet the requirements of
     [RFC5052].

  o  Complete encoding formats for the FEC Object Transmission
     Information for each scheme are defined here, instead of within
     content delivery protocol specifications, since the exact format
     depends on the FEC Scheme.






Watson                      Standards Track                    [Page 17]

RFC 5445                   Basic FEC Schemes                  March 2009


  o  The previous specifications for the Compact No-Code and Small
     Block Systematic FEC Schemes did not require that all encoding
     symbols of the object should have the same length.  This
     requirement is introduced in this specification.  Since no
     protocols have been defined that support variation of the encoding
     symbol length within an object this should not cause backwards
     compatibility issues.

11.  References

11.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC5052]  Watson, M., Luby, M., and L. Vicisano, "Forward Error
             Correction (FEC) Building Block", RFC 5052, August 2007.

11.2.  Informative References

  [RFC3452]  Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley,
             M., and J. Crowcroft, "Forward Error Correction (FEC)
             Building Block", RFC 3452, December 2002.

  [RFC3453]  Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley,
             M., and J. Crowcroft, "The Use of Forward Error Correction
             (FEC) in Reliable Multicast", RFC 3453, December 2002.

  [RFC3269]  Kermode, R. and L. Vicisano, "Author Guidelines for
             Reliable Multicast Transport (RMT) Building Blocks and
             Protocol Instantiation documents", RFC 3269, April 2002.

  [RFC3048]  Whetten, B., Vicisano, L., Kermode, R., Handley, M.,
             Floyd, S., and M. Luby, "Reliable Multicast Transport
             Building Blocks for One-to-Many Bulk-Data Transfer",
             RFC 3048, January 2001.

  [RFC3695]  Luby, M. and L. Vicisano, "Compact Forward Error
             Correction (FEC) Schemes", RFC 3695, February 2004.












Watson                      Standards Track                    [Page 18]

RFC 5445                   Basic FEC Schemes                  March 2009


Author's Address

  Mark Watson
  Digital Fountain
  39141 Civic Center Drive
  Suite 300
  Fremont, CA  94538
  USA

  EMail: [email protected]









































Watson                      Standards Track                    [Page 19]