Network Working Group                                      N. Cam-Winget
Request for Comments: 5422                                     D. McGrew
Category: Informational                                       J. Salowey
                                                                H. Zhou
                                                          Cisco Systems
                                                             March 2009


       Dynamic Provisioning Using Flexible Authentication via
    Secure Tunneling Extensible Authentication Protocol (EAP-FAST)

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

IESG Note

  EAP-FAST has been implemented by many vendors and it is used in the
  Internet.  Publication of this specification is intended to promote
  interoperability by documenting current use of existing EAP methods
  within EAP-FAST.





Cam-Winget, et al.           Informational                      [Page 1]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  The EAP method EAP-FAST-MSCHAPv2 reuses the EAP type code assigned to
  EAP-MSCHAPv2 (26) for authentication within an anonymous TLS tunnel.
  In order to minimize the risk associated with an anonymous tunnel,
  changes to the method were made that are not interoperable with EAP-
  MSCHAPv2.  Since EAP-MSCHAPv2 does not support method-specific
  version negotiation, the use of EAP-FAST-MSCHAPv2 is implied by the
  use of an anonymous EAP-FAST tunnel.  This behavior may cause
  problems in implementations where the use of unaltered EAP-MSCHAPv2
  is needed inside an anonymous EAP-FAST tunnel.  Since such support
  requires special case execution of a method within a tunnel, it also
  complicates implementations that use the same method code both within
  and outside of the tunnel method.  If EAP-FAST were to be designed
  today, these difficulties could be avoided by utilization of unique
  EAP Type codes.  Given these issues, assigned method types must not
  be re-used with different meaning inside tunneled methods in the
  future.

Abstract

  The Flexible Authentication via Secure Tunneling Extensible
  Authentication Protocol (EAP-FAST) method enables secure
  communication between a peer and a server by using Transport Layer
  Security (TLS) to establish a mutually authenticated tunnel.  EAP-
  FAST also enables the provisioning credentials or other information
  through this protected tunnel.  This document describes the use of
  EAP-FAST for dynamic provisioning.

Table of Contents

  1. Introduction ....................................................4
     1.1. Specification Requirements .................................4
     1.2. Terminology ................................................4
  2. EAP-FAST Provisioning Modes .....................................5
  3. Dynamic Provisioning Using EAP-FAST Conversation ................6
     3.1. Phase 1 TLS Tunnel .........................................7
          3.1.1. Server-Authenticated Tunnel .........................7
          3.1.2. Server-Unauthenticated Tunnel .......................7
     3.2. Phase 2 - Tunneled Authentication and Provisioning .........7
          3.2.1. Server-Authenticated Tunneled Authentication ........8
          3.2.2. Server-Unauthenticated Tunneled Authentication ......8
          3.2.3. Authenticating Using EAP-FAST-MSCHAPv2 ..............8
          3.2.4. Use of Other Inner EAP Methods for EAP-FAST
                 Provisioning ........................................9
     3.3. Key Derivations Used in the EAP-FAST Provisioning
          Exchange ..................................................10
     3.4. Peer-Id, Server-Id, and Session-Id ........................11
     3.5. Network Access after EAP-FAST Provisioning ................11
  4. Information Provisioned in EAP-FAST ............................12



Cam-Winget, et al.           Informational                      [Page 2]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


     4.1. Protected Access Credential ...............................12
          4.1.1. Tunnel PAC .........................................13
          4.1.2. Machine Authentication PAC .........................13
          4.1.3. User Authorization PAC .............................13
          4.1.4. PAC Provisioning ...................................14
     4.2. PAC TLV Format ............................................15
          4.2.1. Formats for PAC Attributes .........................16
          4.2.2. PAC-Key ............................................16
          4.2.3. PAC-Opaque .........................................17
          4.2.4. PAC-Info ...........................................18
          4.2.5. PAC-Acknowledgement TLV ............................20
          4.2.6. PAC-Type TLV .......................................21
     4.3. Trusted Server Root Certificate ...........................21
          4.3.1. Server-Trusted-Root TLV ............................22
          4.3.2. PKCS#7 TLV .........................................23
  5. IANA Considerations ............................................24
  6. Security Considerations ........................................25
     6.1. Provisioning Modes and Man-in-the-Middle Attacks ..........25
          6.1.1. Server-Authenticated Provisioning Mode and
                 Man-in-the-Middle Attacks ..........................26
          6.1.2. Server-Unauthenticated Provisioning Mode
                 and Man-in-the-Middle Attacks ......................26
     6.2. Dictionary Attacks ........................................27
     6.3. Considerations in Selecting a Provisioning Mode ...........28
     6.4. Diffie-Hellman Groups .....................................28
     6.5. Tunnel PAC Usage ..........................................28
     6.6. Machine Authentication PAC Usage ..........................29
     6.7. User Authorization PAC Usage ..............................29
     6.8. PAC Storage Considerations ................................29
     6.9. Security Claims ...........................................31
  7. Acknowledgements ...............................................31
  8. References .....................................................31
     8.1. Normative References ......................................31
     8.2. Informative References ....................................32
  Appendix A.  Examples .............................................33
    A.1.  Example 1: Successful Tunnel PAC Provisioning .............33
    A.2.  Example 2: Failed Provisioning ............................35
    A.3.  Example 3: Provisioning an Authentication Server's
          Trusted Root Certificate ..................................37












Cam-Winget, et al.           Informational                      [Page 3]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


1.  Introduction

  EAP-FAST [RFC4851] is an EAP method that can be used to mutually
  authenticate the peer and server.  Credentials such as a pre-shared
  key, certificate trust anchor, or a Protected Access Credential (PAC)
  must be provisioned to the peer before it can establish mutual
  authentication with the server.  In many cases, the provisioning of
  such information presents deployment hurdles.  Through the use of the
  protected TLS [RFC5246] tunnel, EAP-FAST can enable dynamic in-band
  provisioning to address such deployment obstacles.

1.1.  Specification Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

1.2.  Terminology

  Much of the terminology used in this document comes from [RFC3748].
  The terms "peer" and "server" are used interchangeably with the terms
  "EAP peer" and "EAP server", respectively.  Additional terms are
  defined below:

  Man in the Middle (MITM)

     An adversary that can successfully inject itself between a peer
     and EAP server.  The MITM succeeds by impersonating a valid peer
     or server.

  Provisioning

     Providing a peer with a trust anchor, shared secret, or other
     appropriate information needed to establish a security
     association.

  Protected Access Credential (PAC)

     Credentials distributed to a peer for future optimized network
     authentication.  The PAC consists of at most three components: a
     shared secret, an opaque element, and optional information.  The
     shared secret part contains the secret key shared between the peer
     and server.  The opaque part contains the shared secret encrypted
     by a private key only known to the server.  It is provided to the
     peer and is presented back to the server when the peer wishes to
     obtain access to network resources.  Finally, a PAC may optionally
     include other information that may be useful to the peer.




Cam-Winget, et al.           Informational                      [Page 4]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  Tunnel PAC

     A set of credentials stored by the peer and consumed by both the
     peer and the server to establish a TLS tunnel.

  User Authorization PAC

     A User Authorization PAC is server-encrypted data containing
     authorization information associated with a previously
     authenticated user.  The User Authorization PAC does not contain a
     key, but rather it is generally bound to a Tunnel PAC, which is
     used with the User Authorization PAC.

  Machine Authentication PAC

     A Machine Authentication PAC contains server-encrypted data
     containing authorization information associated with a device.  A
     Machine Authentication PAC may be used instead of a Tunnel PAC to
     establish the TLS tunnel to provide machine authentication and
     authorization information.  The Machine Authentication PAC is
     useful in cases where the machine needs to be authenticated and
     authorized to access a network before a user has logged in.

2.  EAP-FAST Provisioning Modes

  EAP-FAST supports two modes for provisioning:

  1.  Server-Authenticated Provisioning Mode - Provisioning inside a
      TLS tunnel that provides server-side authentication.

  2.  Server-Unauthenticated Provisioning Mode - Provisioning inside an
      anonymous TLS tunnel.

  The EAP-FAST provisioning modes use EAP-FAST phase 2 inside a secure
  TLS tunnel established during phase 1.  [RFC4851] describes the EAP-
  FAST phases in greater detail.

  In the Server-Authenticated Provisioning Mode, the peer has
  successfully authenticated the EAP server as part of EAP-FAST phase 1
  (i.e., TLS tunnel establishment).  Additional exchanges MAY occur
  inside the tunnel to allow the EAP server to authenticate the EAP
  peer before provisioning any information.

  In the Server-Unauthenticated Provisioning Mode, an unauthenticated
  TLS tunnel is established in the EAP-FAST phase 1.  The peer MUST
  negotiate a TLS anonymous Diffie-Hellman-based ciphersuite to signal





Cam-Winget, et al.           Informational                      [Page 5]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  that it wishes to use Server-Unauthenticateded Provisioning Mode.
  This provisioning mode enables the bootstrapping of peers where the
  peer lacks strong credentials usable for mutual authentication with
  the server.

  Since the server is not authenticated in the Server-Unauthenticated
  Provisioning Mode, it is possible that an attacker may intercept the
  TLS tunnel.  If an anonymous tunnel is used, then the peer and server
  MUST negotiate and successfully complete an EAP method supporting
  mutual authentication and key derivation as described in Section 6.
  The peer then uses the Crypto-Binding TLV to validate the integrity
  of the TLS tunnel, thereby verifying that the exchange was not
  subject to a man-in-the-middle attack.

  Server-Authenticated Provisioning Mode protects against the man-in-
  the-middle attack; however, it requires provisioning the peer with
  the credentials necessary to authenticate the server.  Environments
  willing to trade off the security risk of a man-in-the-middle attack
  for ease of deployment can choose to use the Server-Unauthenticated
  Provisioning Mode.

  Assuming that an inner EAP method and Crypto-Binding TLV exchange is
  successful, the server will subsequently provide credential
  information, such as a shared key using a PAC TLV or the trusted
  certificate root(s) of the server using a Server-Trusted-Root TLV.
  Once the EAP-FAST Provisioning conversation completes, the peer is
  expected to use the provisioned credentials in subsequent EAP-FAST
  authentications.

3.  Dynamic Provisioning Using EAP-FAST Conversation

  The provisioning occurs in the following steps, which are detailed in
  the subsequent sections and in RFC 4851.  First, the EAP-FAST phase 1
  TLS tunnel is established.  During this process, extra material is
  extracted from the TLS key derivation for use as challenges in the
  subsequent authentication exchange.  Next, an inner EAP method, such
  as EAP-FAST-MSCHAPv2 (Microsoft Challenge Handshake Authentication
  Protocol version 2), is executed within the EAP-FAST phase 2 TLS
  tunnel to authenticate the client using the challenges derived from
  the phase 1 TLS exchange.  Following successful authentication and
  Crypto-Binding TLV exchange, the server provisions the peer with PAC
  information including the secret PAC-Key and the PAC-Opaque.
  Finally, the EAP-FAST conversation completes with Result TLV
  exchanges defined in RFC 4851.  The exported EAP Master Session Key
  (MSK) and Extended MSK (EMSK) are derived from a combination of the
  tunnel key material and key material from the inner EAP method
  exchange.




Cam-Winget, et al.           Informational                      [Page 6]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


3.1.  Phase 1 TLS Tunnel

3.1.1.  Server-Authenticated Tunnel

  The provisioning EAP-FAST exchange uses the same sequence as the EAP-
  FAST authentication phase 1 to establish a protected TLS tunnel.
  Implementations supporting this version of the Sever-Authenticated
  Provisioning Mode MUST support the following TLS ciphersuites defined
  in [RFC5246]:

        TLS_RSA_WITH_RC4_128_SHA
        TLS_RSA_WITH_AES_128_CBC_SHA
        TLS_DHE_RSA_WITH_AES_128_CBC_SHA

  Other TLS ciphersuites that provide server authentication and
  encryption MAY be supported.  The server MAY authenticate the peer
  during the TLS handshake in Server-Authenticated Provisioning Mode.
  To adhere to best security practices, the peer MUST validate the
  server's certificate chain when performing server-side authentication
  to obtain the full security benefits of Server-Authenticated
  provisioning.

3.1.2.  Server-Unauthenticated Tunnel

  Implementations supporting this version of the Sever-Unauthenticated
  Provisioning Mode MUST support the following TLS ciphersuite defined
  in [RFC5246]:

     TLS_DH_anon_WITH_AES_128_CBC_SHA

  Anonymous ciphersuites SHOULD NOT be allowed outside of EAP-FAST
  Server-Unauthenticated Provisioning Mode.  Any ciphersuites that are
  used for Server-Unauthenticated Provisioning Mode MUST provide a key
  agreement contributed by both parties.  Therefore, ciphersuites based
  on RSA key transport MUST NOT be used for this mode.  Ciphersuites
  that are used for provisioning MUST provide encryption.

3.2.  Phase 2 - Tunneled Authentication and Provisioning

  Once a protected tunnel is established and the server is
  unauthenticated, the peer and server MUST execute additional
  authentication and perform integrity checks of the TLS tunnel.  Even
  if both parties are authenticated during TLS tunnel establishment,
  the peer and server MAY wish to perform additional authentication
  within the tunnel.  As defined in [RFC4851], the authentication
  exchange will be followed by an Intermediate-Result TLV and a Crypto-
  Binding TLV, if the EAP method succeeded.  The Crypto-Binding TLV




Cam-Winget, et al.           Informational                      [Page 7]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  provides a check on the integrity of the tunnel with respect to the
  endpoints of the EAP method.  If the preceding is successful, then a
  provisioning exchange MAY take place.  The provisioning exchange will
  use a PAC TLV exchange if a PAC is being provisioned and a Server-
  Trusted-Root TLV if a trusted root certificate is being provisioned.
  The provisioning MAY be solicited by the peer or it MAY be
  unsolicited.  The PAC TLV exchange consists of the server
  distributing the PAC in a corresponding PAC TLV to the peer and the
  peer confirming its receipt in a final PAC TLV Acknowledgement
  message.  The peer may also use the PAC TLV to request that the
  server send a PAC.  The provisioning TLVs MAY be piggybacked onto the
  Result TLV.  Many implementations process TLVs in the order they are
  received; thus, for proper provisioning to occur, the Result TLV MUST
  precede the TLVs to be provisioned (e.g., Tunnel PAC, Machine
  Authentication PAC, and User Authorization PAC).  A PAC TLV MUST NOT
  be accepted if it is not encapsulated in an encrypted TLS tunnel.

  A fresh PAC MAY be distributed if the server detects that the PAC is
  expiring soon.  In-band PAC refreshing is through the PAC TLV
  mechanism.  The decision of whether or not to refresh the PAC is
  determined by the server.  Based on the PAC-Opaque information, the
  server MAY determine not to refresh a peer's PAC, even if the PAC-Key
  has expired.

3.2.1.  Server-Authenticated Tunneled Authentication

  If Server-Authenticated Provisioning Mode is in use, then any EAP
  method may be used within the TLS tunnel to authenticate the peer
  that is allowed by the peer's policy.

3.2.2.  Server-Unauthenticated Tunneled Authentication

  If Server-Unauthenticated Provisioning Mode is in use, then peer
  authenticates the server and the server authenticates the peer within
  the tunnel.  The only method for performing authentication defined in
  this version of EAP-FAST is EAP-FAST-MSCHAPv2 (in a special way as
  described in the following section).  It is possible for other
  methods to be defined to perform this authentication in the future.

3.2.3.  Authenticating Using EAP-FAST-MSCHAPv2

  EAP-FAST-MSCHAPv2 is a specific instantiation of EAP-MSCHAPv2
  [EAP-MSCHAPv2] defined for use within EAP-FAST.  The 256-bit inner
  session key (ISK) is generated from EAP-FAST-MSCHAPv2 by combining
  the 128-bit master keys derived according to RFC 3079 [RFC3079], with
  the MasterSendKey taking the first 16 octets and MasterReceiveKey
  taking the last 16 octets.




Cam-Winget, et al.           Informational                      [Page 8]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  Implementations of this version of the EAP-FAST Server-
  Unauthenticated Provisioning Mode MUST support EAP-FAST-MSCHAPv2 as
  the inner authentication method.  While other authentication methods
  exist, EAP-FAST-MSCHAPv2 was chosen for several reasons:

  o  It provides the ability to slow an active attack by using a hash-
     based challenge-response protocol.

  o  Its use of a challenge-response protocol, such as MSCHAPv2,
     provides some ability to detect a man-in-the-middle attack during
     Server-Unauthenticated Provisioning Mode.

  o  It is already supported by a large deployed base.

  o  It allows support for password change during the EAP-FAST
     provisioning modes.

  When using an anonymous Diffie-Hellman (DH) key agreement, the
  challenges MUST be generated as defined in Section 3.3.  This forms a
  binding between the tunnel and the EAP-FAST-MSCHAPv2 exchanges by
  using keying material generated during the EAP-FAST tunnel
  establishment as the EAP-FAST-MSCHAPv2 challenges instead of using
  the challenges exchanged within the protocol itself.  The exchanged
  challenges are zeroed upon transmission, ignored upon reception, and
  the challenges derived from the TLS key exchange are used in the
  calculations.  When EAP-FAST-MSCHAPv2 is used within a tunnel
  established using a ciphersuite other than one that provides
  anonymous key agreement, the randomly generated EAP-FAST-MSCHAPv2
  challenges MUST be exchanged and used.

  The EAP-FAST-MSCHAPv2 exchange forces the server to provide a valid
  ServerChallengeResponse, which must be a function of the server
  challenge, peer challenge, and password as part of its response.
  This reduces the window of vulnerability of a man-in-the-middle
  attack spoofing the server by requiring the attacker to successfully
  break the password within the peer's challenge-response time limit.

3.2.4.  Use of Other Inner EAP Methods for EAP-FAST Provisioning

  Once a protected tunnel is established, typically the peer
  authenticates itself to the server before the server can provision
  the peer.  If the authentication mechanism does not support mutual
  authentication and protection from man-in-the-middle attacks, then
  Server-Authenticated Provisioning Mode MUST be used.  Within a server
  side, authenticated tunnel authentication mechanisms such as EAP-
  FAST-GTC (Generic Token Card) [RFC5421] MAY be used.  This will
  enable peers using other authentication mechanisms such as password
  database and one-time passwords to be provisioned in-band as well.



Cam-Winget, et al.           Informational                      [Page 9]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  This version of the EAP-FAST provisioning mode implementation MUST
  support both EAP-FAST-GTC and EAP-FAST-MSCHAPv2 within the tunnel in
  Server-Authenticated Provisioning Mode.

  It should be noted that Server-Authenticated Provisioning Mode
  provides significant security advantages over Server-Unauthenticated
  Provisioning Mode even when EAP-FAST-MSCHAPv2 is being used as the
  inner method.  It protects the EAP-FAST-MSCHAPv2 exchanges from
  potential active MITM attacks by verifying the server's authenticity
  before executing EAP-FAST-MSCHAPv2.  Server-Authenticated
  Provisioning Mode is the recommended provisioning mode.  The EAP-FAST
  peer MUST use the Server- Authenticated Provisioning Mode whenever it
  is configured with a valid trust root for a particular server.

3.3.  Key Derivations Used in the EAP-FAST Provisioning Exchange

  The TLS tunnel key is calculated according to the TLS version with an
  extra 72 octets of key material derived from the end of the
  key_block.  Portions of the extra 72 octets are used for the EAP-FAST
  provisioning exchange session key seed and as the random challenges
  in the EAP-FAST-MSCHAPv2 exchange.

  To generate the key material, compute:

               key_block = PRF(master_secret,
                              "key expansion",
                              server_random +
                              client_random);

  until enough output has been generated.

  For example, the key_block for TLS 1.0 [RFC2246] is partitioned as
  follows:

               client_write_MAC_secret[hash_size]
               server_write_MAC_secret[hash_size]
               client_write_key[Key_material_length]
               server_write_key[key_material_length]
               client_write_IV[IV_size]
               server_write_IV[IV_size]
               session_key_seed[40]
               ServerChallenge[16]
               ClientChallenge[16]








Cam-Winget, et al.           Informational                     [Page 10]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  and the key_block for subsequent versions is partitioned as follows:

               client_write_MAC_secret[hash_size]
               server_write_MAC_secret[hash_size]
               client_write_key[Key_material_length]
               server_write_key[key_material_length]
               session_key_seed[40]
               ServerChallenge[16]
               ClientChallenge[16]

  In the extra key material, session_key_seed is used for the EAP-FAST
  Crypto-Binding TLV exchange while the ServerChallenge and
  ClientChallenge correspond to the authentication server's EAP-FAST-
  MSCHAPv2 challenge and the peer's EAP-FAST-MSCHAPv2 challenge,
  respectively.  The ServerChallenge and ClientChallenge are only used
  for the EAP-FAST-MSCHAPv2 exchange when Diffie-Hellman anonymous key
  agreement is used in the EAP-FAST tunnel establishment.

3.4.  Peer-Id, Server-Id, and Session-Id

  The provisioning modes of EAP-FAST do not change the general EAP-
  FAST protocol and thus how the Peer-Id, Server-Id, and Session-Id are
  determined is based on the [RFC4851] techniques.

  Section 3.4 of [RFC4851] describes how the Peer-Id and Server-Id are
  determined; Section 3.5 describes how the Session-Id is generated.

3.5.  Network Access after EAP-FAST Provisioning

  After successful provisioning, network access MAY be granted or
  denied depending upon the server policy.  For example, in the Server-
  Authenticated Provisioning Mode, access can be granted after the EAP
  server has authenticated the peer and provisioned it with a Tunnel
  PAC (i.e., a PAC used to mutually authenticate and establish the EAP-
  FAST tunnel).  Additionally, peer policy MAY instruct the peer to
  disconnect the current provisioning connection and initiate a new
  EAP-FAST exchange for authentication utilizing the newly provisioned
  information.  At the end of the Server-Unauthenticated Provisioning
  Mode, network access SHOULD NOT be granted as this conversation is
  intended for provisioning only and thus no network access is
  authorized.  The server MAY grant access at the end of a successful
  Server-Authenticated provisioning exchange.

  If after successful provisioning access to the network is denied, the
  EAP Server SHOULD conclude with an EAP Failure.  The EAP server SHALL
  NOT grant network access or distribute any session keys to the
  Network Access Server (NAS) if this exchange is not intended to
  provide network access.  Even though the provisioning mode completes



Cam-Winget, et al.           Informational                     [Page 11]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  with a successful inner termination (e.g., a successful Result TLV),
  the server policy defines whether or not the peer gains network
  access.  Thus, it is feasible that the server, while providing a
  successful Result TLV, may conclude that its authentication policy
  was not satisfied and terminate the conversation with an EAP Failure.

  Denying network access after EAP-FAST Provisioning may cause
  disruption in scenarios such as wireless devices (e.g., in IEEE
  802.11 devices, an EAP Failure may trigger a full 802.11
  disassociation).  While a full EAP restart can be performed, a smooth
  transition to the subsequent EAP-FAST authentications to enable
  network access can be achieved by the peer or server initiating TLS
  renegotiation, where the newly provisioned credentials can be used to
  establish a server-authenticated or mutually authenticated TLS tunnel
  for authentication.  Either the peer or server may reject the request
  for TLS renegotiation.  Upon completion of the TLS negotiation and
  subsequent authentication, normal network access policy on EAP-FAST
  authentication can be applied.

4.  Information Provisioned in EAP-FAST

  Multiple types of credentials MAY be provisioned within EAP-FAST.
  The most common credential is the Tunnel PAC that is used to
  establish the EAP-FAST phase 1 tunnel.  In addition to the Tunnel
  PAC, other types of credentials and information can also be
  provisioned through EAP-FAST.  They may include trusted root
  certificates, PACs for specific purposes, and user identities, to
  name a few.  Typically, provisioning is invoked after both the peer
  and server authenticate each other and after a successful Crypto-
  Binding TLV exchange.  However, depending on the information being
  provisioned, mutual authentication MAY not be needed.

  At a minimum, either the peer or server must prove authenticity
  before credentials are provisioned to ensure that information is not
  freely provisioned to or by adversaries.  For example, the EAP server
  may not need to authenticate the peer to provision it with trusted
  root certificates.  However, the peer SHOULD authenticate the server
  before it can accept a trusted server root certificate.

4.1.  Protected Access Credential

  A Protected Access Credential (PAC) is a security credential
  generated by the server that holds information specific to a peer.
  The server distributes all PAC information through the use of a PAC
  TLV.  Different types of PAC information are identified through the
  PAC Type and other PAC attributes defined in this section.  This
  document defines three types of PACs: a Tunnel PAC, a Machine
  Authentication PAC, and a User Authorization PAC.



Cam-Winget, et al.           Informational                     [Page 12]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


4.1.1.  Tunnel PAC

  The server distributes the Tunnel PAC to the peer, which uses it in
  subsequent attempts to establish a secure EAP-FAST TLS tunnel with
  the server.  The Tunnel PAC includes a secret key (PAC-Key), data
  that is opaque to the peer (PAC-Opaque), and other information (PAC-
  Info) that the peer can interpret.  The opaque data is generated by
  the server and cryptographically protected so it cannot be modified
  or interpreted by the peer.  The Tunnel PAC conveys the server policy
  of what must and can occur in the protected phase 2 tunnel.  It is up
  to the server policy to include what is necessary in a PAC-Opaque to
  enforce the policy in subsequent TLS handshakes.  For example, user
  identity, I-ID, can be included as the part of the server policy.
  This I-ID information limits the inner EAP methods to be carried only
  on the specified user identity.  Other types of information can also
  be included, such as which EAP method(s) and which TLS ciphersuites
  are allowed.  If the server policy is not included in a PAC-Opaque,
  then there is no limitation imposed by the PAC on the usage of the
  inner EAP methods or user identities inside the tunnel established by
  the use of that PAC.

4.1.2.  Machine Authentication PAC

  The Machine Authentication PAC contains information in the PAC-Opaque
  that identifies the machine.  It is meant to be used by a machine
  when network access is required and no user is logged in.  Typically,
  a server will only grant the minimal amount of access required for a
  machine without a user present based on the Machine Authentication
  PAC.  The Machine Authentication PAC MAY be provisioned during the
  authentication of a user.  It SHOULD be stored by the peer in a
  location that is only accessible to the machine.  This type of PAC
  typically persists across sessions.

  The peer can use the Machine Authentication PAC as the Tunnel PAC to
  establish the TLS tunnel.  The EAP server MAY have a policy to bypass
  additional inner EAP method and grant limited network access based on
  information in the Machine Authentication PAC.  The server MAY
  request additional exchanges to validate machine's other
  authorization criteria, such as posture information etc., before
  granting network access.

4.1.3.  User Authorization PAC

  The User Authorization PAC contains information in the PAC-Opaque
  that identifies a user and provides authorization information.  This
  type of PAC does not contain a PAC-Key.  The PAC-Opaque portion of
  the User Authorization PAC is presented within the protected EAP-FAST
  TLS tunnel to provide user information during stateless session



Cam-Winget, et al.           Informational                     [Page 13]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  resume so user authentication MAY be skipped.  The User Authorization
  PAC MAY be provisioned after user authentication.  It is meant to be
  short lived and not persisted across logon sessions.  The User
  Authorization PAC SHOULD only be available to the user for which it
  is provisioned.  The User Authorization PAC SHOULD be deleted from
  the peer when the local authorization state of a user's session
  changes, such as upon the user logs out.

  Once the EAP-FAST phase 1 TLS tunnel is established, the peer MAY
  present a User Authorization PAC to the server in a PAC TLV.  This is
  sent as TLS application data, but it MAY be included in the same
  message as the Finished Handshake message sent by the peer.  The User
  Authorization PAC MUST only be sent within the protection of an
  encrypted tunnel to an authenticated entity.  The server will decrypt
  the PAC and evaluate the contents.  If the contents are valid and the
  server policy allows the session to be resumed based on this
  information, then the server will complete the session resumption and
  grant access to the peer without requiring an inner authentication
  method.  This is called stateless session resume in EAP-FAST.  In
  this case, the server sends the Result TLV indicating success without
  the Crypto-Binding TLV and the peer sends back a Result TLV
  indicating success.  If the User Authorization PAC fails the server
  validation or the server policy, the server MAY either reject the
  request or continue with performing full user authentication within
  the tunnel.

4.1.4.  PAC Provisioning

  To request provisioning of a PAC, a peer sends a PAC TLV containing a
  PAC attribute of PAC Type set to the appropriate value.  For a Tunnel
  PAC, the value is '1'; for a Machine Authentication PAC, the value is
  '2'; and for a User Authorization PAC, the value is '3'.  The request
  MAY be issued after the peer has determined that it has successfully
  authenticated the EAP server and validated the Crypto-Binding TLV to
  ensure that the TLS tunnel's integrity is intact.  Since anonymous DH
  ciphersuites are only allowed for provisioning a Tunnel PAC, if an
  anonymous ciphersuite is negotiated, the Tunnel PAC MAY be
  provisioned automatically by the server.  The peer MUST send separate
  PAC TLVs for each type of PAC it wants to provision.  Multiple PAC
  TLVs can be sent in the same packet or different packets.  When
  requesting the Machine Authentication PAC, the peer SHOULD include an
  I-ID TLV containing the machine name prefixed by "host/".  The EAP
  server will send the PACs after its internal policy has been
  satisfied, or it MAY ignore the request or request additional
  authentications if its policy dictates.  If a peer receives a PAC
  with an unknown type, it MUST ignore it.





Cam-Winget, et al.           Informational                     [Page 14]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  A PAC-TLV containing PAC-Acknowledge attribute MUST be sent by the
  peer to acknowledge the receipt of the Tunnel PAC.  A PAC-Acknowledge
  TLV MUST NOT be used by the peer to acknowledge the receipt of other
  types of PACs.

  Please see Appendix A.1 for an example of packet exchanges to
  provision a Tunnel PAC.

4.2.  PAC TLV Format

  The PAC TLV provides support for provisioning the Protected Access
  Credential (PAC) defined within [RFC4851].  The PAC TLV carries the
  PAC and related information within PAC attribute fields.
  Additionally, the PAC TLV MAY be used by the peer to request
  provisioning of a PAC of the type specified in the PAC Type PAC
  attribute.  The PAC TLV MUST only be used in a protected tunnel
  providing encryption and integrity protection.  A general PAC TLV
  format is defined as follows:

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |M|R|         TLV Type          |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        PAC Attributes...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       M

            0 - Non-mandatory TLV
            1 - Mandatory TLV

       R

            Reserved, set to zero (0)

       TLV Type

                 11 - PAC TLV

       Length

               Two octets containing the length of the PAC attributes
               field in octets.

       PAC Attributes

                       A list of PAC attributes in the TLV format.



Cam-Winget, et al.           Informational                     [Page 15]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


4.2.1.  Formats for PAC Attributes

  Each PAC attribute in a PAC TLV is formatted as a TLV defined as
  follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Type               |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              Value...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Type

            The Type field is two octets, denoting the attribute type.
            Allocated Types include:

                    1 - PAC-Key
                    2 - PAC-Opaque
                    3 - PAC-Lifetime
                    4 - A-ID
                    5 - I-ID
                    6 - Reserved
                    7 - A-ID-Info
                    8 - PAC-Acknowledgement
                    9 - PAC-Info
                    10 - PAC-Type

       Length

               Two octets containing the length of the Value field in
               octets.

       Value

              The value of the PAC attribute.

4.2.2.  PAC-Key

  The PAC-Key is a secret key distributed in a PAC attribute of type
  PAC-Key.  The PAC-Key attribute is included within the PAC TLV
  whenever the server wishes to issue or renew a PAC that is bound to a
  key such as a Tunnel PAC.  The key is a randomly generated octet
  string, which is 32 octets in length.  The generator of this key is
  the issuer of the credential, which is identified by the Authority
  Identifier (A-ID).




Cam-Winget, et al.           Informational                     [Page 16]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Type               |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                              Key                              ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type

        1 - PAC-Key

     Length

        2-octet length indicating a 32-octet key

     Key

        The value of the PAC-Key.

4.2.3.  PAC-Opaque

  The PAC-Opaque attribute is included within the PAC TLV whenever the
  server wishes to issue or renew a PAC or the client wishes to present
  a User Authorization PAC to the server.

  The PAC-Opaque is opaque to the peer and thus the peer MUST NOT
  attempt to interpret it.  A peer that has been issued a PAC-Opaque by
  a server stores that data and presents it back to the server
  according to its PAC Type.  The Tunnel PAC is used in the ClientHello
  SessionTicket extension field defined in [RFC5077].  If a peer has
  opaque data issued to it by multiple servers, then it stores the data
  issued by each server separately according to the A-ID.  This
  requirement allows the peer to maintain and use each opaque datum as
  an independent PAC pairing, with a PAC-Key mapping to a PAC-Opaque
  identified by the A-ID.  As there is a one-to-one correspondence
  between the PAC-Key and PAC-Opaque, the peer determines the PAC-Key
  and corresponding PAC-Opaque based on the A-ID provided in the EAP-
  FAST/Start message and the A-ID provided in the PAC-Info when it was
  provisioned with a PAC-Opaque.

  The PAC-Opaque attribute format is summarized as follows:







Cam-Winget, et al.           Informational                     [Page 17]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Type               |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              Value ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type

        2 - PAC-Opaque

     Length

        The Length filed is two octets, which contains the length of
        the Value field in octets.

     Value

        The Value field contains the actual data for the PAC-Opaque.
        It is specific to the server implementation.

4.2.4.  PAC-Info

  The PAC-Info is comprised of a set of PAC attributes as defined in
  Section 4.2.1.  The PAC-Info attribute MUST contain the A-ID, A-ID-
  Info, and PAC-Type attributes.  Other attributes MAY be included in
  the PAC-Info to provide more information to the peer.  The PAC-Info
  attribute MUST NOT contain the PAC-Key, PAC-Acknowledgement, PAC-
  Info, or PAC-Opaque attributes.  The PAC-Info attribute is included
  within the PAC TLV whenever the server wishes to issue or renew a
  PAC.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Type               |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Attributes...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type

        9 - PAC-Info







Cam-Winget, et al.           Informational                     [Page 18]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


     Length

        2-octet Length field containing the length of the attributes
        field in octets.

     Attributes

        The attributes field contains a list of PAC attributes.  Each
        mandatory and optional field type is defined as follows:

        3 - PAC-LIFETIME

           This is a 4-octet quantity representing the expiration time
           of the credential expressed as the number of seconds,
           excluding leap seconds, after midnight UTC, January 1, 1970.
           This attribute MAY be provided to the peer as part of the
           PAC-Info.

        4 - A-ID

           The A-ID is the identity of the authority that issued the
           PAC.  The A-ID is intended to be unique across all issuing
           servers to avoid namespace collisions.  The A-ID is used by
           the peer to determine which PAC to employ.  The A-ID is
           treated as an opaque octet string.  This attribute MUST be
           included in the PAC-Info attribute.  The A-ID MUST match the
           A-ID the server used to establish the tunnel.  Since many
           existing implementations expect the A-ID to be 16 octets in
           length, it is RECOMMENDED that the length of an A-ID be 16
           octets for maximum interoperability.  One method for
           generating the A-ID is to use a high-quality random number
           generator to generate a 16-octet random number.  An
           alternate method would be to take the hash of the public key
           or public key certificate belonging a server represented by
           the A-ID.

        5 - I-ID

           Initiator identifier (I-ID) is the peer identity associated
           with the credential.  This identity is derived from the
           inner EAP exchange or from the client-side authentication
           during tunnel establishment if inner EAP method
           authentication is not used.  The server employs the I-ID in
           the EAP-FAST phase 2 conversation to validate that the same
           peer identity used to execute EAP-FAST phase 1 is also used
           in at minimum one inner EAP method in EAP-FAST phase 2.  If
           the server is enforcing the I-ID validation on the inner EAP
           method, then the I-ID MUST be included in the PAC-Info, to



Cam-Winget, et al.           Informational                     [Page 19]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


           enable the peer to also enforce a unique PAC for each unique
           user.  If the I-ID is missing from the PAC-Info, it is
           assumed that the Tunnel PAC can be used for multiple users
           and the peer will not enforce the unique-Tunnel-PAC-per-user
           policy.

        7 - A-ID-Info

           Authority Identifier Information is intended to provide a
           user-friendly name for the A-ID.  It may contain the
           enterprise name and server name in a human-readable format.
           This TLV serves as an aid to the peer to better inform the
           end-user about the A-ID.  The name is encoded in UTF-8
           [RFC3629] format.  This attribute MUST be included in the
           PAC-Info.

        10 - PAC-type

           The PAC-Type is intended to provide the type of PAC.  This
           attribute SHOULD be included in the PAC-Info.  If the PAC-
           Type is not present, then it defaults to a Tunnel PAC (Type
           1).

4.2.5.  PAC-Acknowledgement TLV

  The PAC-Acknowledgement is used to acknowledge the receipt of the
  Tunnel PAC by the peer.  The peer includes the PAC-Acknowledgement
  TLV in a PAC-TLV sent to the server to indicate the result of the
  processing and storing of a newly provisioned Tunnel PAC.  This TLV
  is only used when Tunnel PAC is provisioned.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Type               |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Result             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type

        8 - PAC-Acknowledgement

     Length

        The length of this field is two octets containing a value of 2.





Cam-Winget, et al.           Informational                     [Page 20]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


     Result

        The resulting value MUST be one of the following:

              1 - Success
              2 - Failure

4.2.6.  PAC-Type TLV

  The PAC-Type TLV is a TLV intended to specify the PAC type.  It is
  included in a PAC-TLV sent by the peer to request PAC provisioning
  from the server.  Its format is described below:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Type               |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         PAC Type              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type

        10 - PAC-Type

     Length

        2-octet Length field with a value of 2

     PAC Type

        This 2-octet field defines the type of PAC being requested or
        provisioned.  The following values are defined:

              1 - Tunnel PAC
              2 - Machine Authentication PAC
              3 - User Authorization PAC

4.3.  Trusted Server Root Certificate

  Server-Trusted-Root TLV facilitates the request and delivery of a
  trusted server root certificate.  The Server-Trusted-Root TLV can be
  exchanged in regular EAP-FAST authentication mode or provisioning
  mode.  The Server-Trusted-Root TLV is always marked as optional, and







Cam-Winget, et al.           Informational                     [Page 21]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  cannot be responded to with a Negative Acknowledgement (NAK) TLV.
  The Server-Trusted-Root TLV MUST only be sent as an inner TLV (inside
  the protection of the tunnel).

  After the peer has determined that it has successfully authenticated
  the EAP server and validated the Crypto-Binding TLV, it MAY send one
  or more Server-Trusted-Root TLVs (marked as optional) to request the
  trusted server root certificates from the EAP server.  The EAP server
  MAY send one or more root certificates with a Public Key
  Cryptographic System #7 (PKCS#7) TLV inside Server-Trusted-Root TLV.
  The EAP server MAY also choose not to honor the request.  Please see
  Appendix A.3 for an example of a server provisioning a server trusted
  root certificate.

4.3.1.  Server-Trusted-Root TLV

  The Server-Trusted-Root TLV allows the peer to send a request to the
  EAP server for a list of trusted roots.  The server may respond with
  one or more root certificates in PKCS#7 [RFC2315] format.

  If the EAP server sets the credential format to PKCS#7-Server-
  Certificate-Root, then the Server-Trusted-Root TLV should contain the
  root of the certificate chain of the certificate issued to the EAP
  server packaged in a PKCS#7 TLV.  If the Server certificate is a
  self-signed certificate, then the root is the self-signed
  certificate.

  If the Server-Trusted-Root TLV credential format contains a value
  unknown to the peer, then the EAP peer should ignore the TLV.

  The Server-Trusted-Root TLV is defined as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |M|R|         TLV Type          |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Credential-Format   |     Cred TLVs...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

       M

            0 - Non-mandatory TLV

       R

            Reserved, set to zero (0)




Cam-Winget, et al.           Informational                     [Page 22]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


       TLV Type

                 18 - Server-Trusted-Root TLV [RFC4851]

       Length

               >=2 octets

       Credential-Format

                          The Credential-Format field is two octets.
                          Values include:

            1 - PKCS#7-Server-Certificate-Root

       Cred TLVs

                  This field is of indefinite length.  It contains TLVs
                  associated with the credential format.  The peer may
                  leave this field empty when using this TLV to request
                  server trust roots.

4.3.2.  PKCS#7 TLV

  The PKCS#7 TLV is sent by the EAP server to the peer inside the
  Server-Trusted-Root TLV.  It contains PKCS#7-wrapped [RFC2315] X.509
  certificates.  The format consists of a certificate or certificate
  chain in a Certificates-Only PKCS#7 SignedData message as defined in
  [RFC2311].

  The PKCS#7 TLV is always marked as optional, which cannot be
  responded to with a NAK TLV.  EAP-FAST server implementations that
  claim to support the dynamic provisioning defined in this document
  SHOULD support this TLV.  EAP-FAST peer implementations MAY support
  this TLV.

  If the PKCS#7 TLV contains a certificate or certificate chain that is
  not acceptable to the peer, then the peer MUST ignore the TLV.

  The PKCS#7 TLV is defined as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |M|R|         TLV Type          |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           PKCS #7 Data...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-



Cam-Winget, et al.           Informational                     [Page 23]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


     M

        0 - Optional TLV

     R

        Reserved, set to zero (0)

     TLV Type

        20 - PKCS#7 TLV [RFC4851]

     Length

        The length of the PKCS #7 Data field.

     PKCS #7 Data

        This field contains the X.509 certificate or certificate chain
        in a Certificates-Only PKCS#7 SignedData message.

5.  IANA Considerations

  This section explains the criteria to be used by the IANA for
  assignment of Type value in the PAC attribute, the PAC Type value in
  the PAC- Type TLV, and the Credential-Format value in the Server-
  Trusted-Root TLV.  The "Specification Required" policy is used here
  with the meaning defined in BCP 26 [RFC5226].

  A registry of values, named "EAP-FAST PAC Attribute Types", has been
  created for the PAC attribute types.  The initial values that
  populate the registry are:

        1 - PAC-Key
        2 - PAC-Opaque
        3 - PAC-Lifetime
        4 - A-ID
        5 - I-ID
        6 - Reserved
        7 - A-ID-Info
        8 - PAC-Acknowledgement
        9 - PAC-Info
       10 - PAC-Type

  Values from 11 to 63 are allocated for management by Cisco.  Values
  64 to 255 are assigned with a "Specification Required" policy.





Cam-Winget, et al.           Informational                     [Page 24]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  A registry of values, named "EAP-FAST PAC Types", has been created
  for PAC-Type values used in the PAC-Type TLV.  The initial values
  that populate the registry are:

        1 - Tunnel PAC
        2 - Machine Authentication PAC
        3 - User Authorization PAC

  Values from 4 to 63 are allocated for management by Cisco.  Values 64
  to 255 are assigned with a "Specification Required" policy.

  A registry of values, named "EAP-FAST Server-Trusted-Root Credential
  Format Types", has been created for Credential-Format values used in
  the Server-Trusted-Root TLV.  The initial values that populate the
  registry are:

        1 - PKCS#7-Server-Certificate-Root

  Values from 2 to 63 are allocated for management by Cisco.  Values 64
  to 255 are assigned with a "Specification Required" policy.

6.  Security Considerations

  The Dynamic Provisioning EAP-FAST protocol shares the same security
  considerations outlined in [RFC4851].  Additionally, it also has its
  unique security considerations described below:

6.1.  Provisioning Modes and Man-in-the-Middle Attacks

  EAP-FAST can be invoked in two different provisioning modes: Server-
  Authenticated Provisioning Mode and Server-Unauthenticated
  Provisioning Mode.  Each mode provides different levels of resistance
  to man-in-the-middle attacks.  The following list identifies some of
  the problems associated with a man-in-the-middle attack:

  o  Disclosure of secret information such as keys, identities, and
     credentials to an attacker

  o  Spoofing of a valid server to a peer and the distribution of false
     credentials

  o  Spoofing of a valid peer and receiving credentials generated for
     that peer

  o  Denial of service






Cam-Winget, et al.           Informational                     [Page 25]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


6.1.1.  Server-Authenticated Provisioning Mode and Man-in-the-Middle
       Attacks

  In Server-Authenticated Provisioning Mode, the TLS handshake assures
  protected communications with the server because the peer must have
  been securely pre-provisioned with the trust roots and/or other
  authentication information necessary to authenticate the server
  during the handshake.  This pre-provisioning step prevents an
  attacker from inserting themselves as a man-in-the-middle of the
  communications.  Unfortunately, secure pre-provisioning can be
  difficult to achieve in many environments.

  Cryptographic binding of inner authentication mechanisms to the TLS
  tunnel provides additional protection from man-in-the-middle attacks
  resulting from the tunneling of authentication mechanisms.

  Server-Authenticated Provisioning Mode provides a high degree of
  protection from man-in-the-middle attacks.

6.1.2.  Server-Unauthenticated Provisioning Mode and Man-in-the-Middle
       Attacks

  In Server-Unauthenticated Provisioning Mode, the TLS handshake does
  not assure protected communications with the server because either an
  anonymous handshake is negotiated or the peer lacks the necessary
  information to complete the authentication of the server.  This
  allows an attacker to insert itself in the middle of the TLS
  communications.

  EAP-FAST Server-Unauthenticated Provisioning Mode mitigates the man-
  in-the-middle attack through the following techniques:

  o  Binding the phase 2 authentication method to secret values derived
     from the phase 1 TLS exchange:

     In the case of EAP-FAST-MSCHAPv2 used with an anonymous Diffie-
     Hellman ciphersuite, the challenges for the EAP-FAST-MSCHAPv2
     exchange are derived from the TLS handshake and are not
     transmitted within the EAP-FAST-MSCHAPv2 exchange.  Since the man-
     in-the-middle attack does not know these challenges, it cannot
     successfully impersonate the server without cracking the EAP-FAST-
     MSCHAPv2 message from the peer before the peer times out.

  o  Cryptographic binding of secret values derived from the phase 2
     authentication exchange with secret values derived from the phase
     1 TLS exchange:





Cam-Winget, et al.           Informational                     [Page 26]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


     This makes use of the cryptographic binding exchange defined
     within EAP-FAST to discover the presence of a man-in-the-middle
     attack by binding secret information obtained from the phase 2
     EAP-FAST-MSCHAPv2 exchange with secret information from the phase
     1 TLS exchange.

  While it would be sufficient to only support the cryptographic
  binding to mitigate the MITM, the binding of the EAP-FAST-MSCHAPv2
  random challenge derivations to the TLS key agreement protocol
  enables early detection of a man-in-the-middle attack.  This guards
  against adversaries who may otherwise relay the inner EAP
  authentication messages between the true peer and server, and it
  enforces that the adversary successfully respond with a valid
  challenge response.

  The ciphersuite used to establish phase 1 of the Server-
  Unauthenticated Provisioning Mode MUST be one in which both the peer
  and server provide contribution to the derived TLS master key.
  Ciphersuites that use RSA key transport do not meet this requirement.
  The authenticated and anonymous ephemeral Diffie-Hellman ciphersuites
  provide this type of key agreement.

  This document specifies EAP-FAST-MSCHAPv2 as the inner authentication
  exchange; however, it is possible that other inner authentication
  mechanisms to authenticate the tunnel may be developed in the future.
  Since the strength of the man-in-the-middle protection is directly
  dependent on the strength of the inner method, it is RECOMMENDED that
  any inner method used provide at least as much resistance to attack
  as EAP-FAST-MSCHAPv2.  Cleartext passwords MUST NOT be used in
  Server-Unauthenticated Provisioning Mode.  Note that an active man-
  in-the-middle attack may observe phase 2 authentication method
  exchange until the point that the peer determines that authentication
  mechanism fails or is aborted.  This allows for the disclosure of
  sensitive information such as identity or authentication protocol
  exchanges to the man-in-the-middle attack.

6.2.  Dictionary Attacks

  It is often the case that phase 2 authentication mechanisms are based
  on password credentials.  These exchanges may be vulnerable to both
  online and off-line dictionary attacks.  The two provisioning modes
  provide various degrees of protection from these attacks.

  In online dictionary attacks, the attacker attempts to discover the
  password by repeated attempts at authentication using a guessed
  password.  Neither mode prevents this type of attack by itself.
  Implementations should provide controls that limit how often an
  attacker can execute authentication attempts.



Cam-Winget, et al.           Informational                     [Page 27]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  In off-line dictionary attacks, the attacker captures information
  that can be processed off-line to recover the password.  Server-
  Authenticated Provisioning Mode provides effecting mitigation because
  the peer will not engage in phase 2 authentication without first
  authenticating the server during phase 1.  Server-Unauthenticated
  Provisioning Mode is vulnerable to this type of attack.  If, during
  phase 2 authentication, a peer receives no response or an invalid
  response from the server, then there is a possibility there is a man-
  in-the-middle attack in progress.  Implementations SHOULD log these
  events and, if possible, provide warnings to the user.
  Implementations are also encouraged to provide controls, which are
  appropriate to their environment, that limit how and where Server-
  Unauthenticated Provisioning Mode can be performed.  For example, an
  implementation may limit this mode to be used only on certain
  interfaces or require user intervention before allowing this mode if
  provisioning has succeeded in the past.

  Another mitigation technique that should not be overlooked is the
  choice of good passwords that have sufficient complexity and length
  and a password-changing policy that requires regular password
  changes.

6.3.  Considerations in Selecting a Provisioning Mode

  Since Server-Authenticated Provisioning Mode provides much better
  protection from attacks than Server-Unauthenticated Provisioning
  Mode, Server-Authenticated Provisioning Mode SHOULD be used whenever
  possible.  The Server-Unauthenticated Provisioning Mode provides a
  viable option as there may be deployments that can physically confine
  devices during the provisioning or are willing to accept the risk of
  an active dictionary attack.  Further, it is the only option that
  enables zero-touch provisioning and facilitates simpler deployments
  requiring little to no peer configuration.  The peer MAY choose to
  use alternative secure out-of-band mechanisms for PAC provisioning
  that afford better security than the Server Unauthenticated
  Provisioning Mode.

6.4.  Diffie-Hellman Groups

  To encourage interoperability implementations of EAP-FAST, anonymous
  provisioning modes MUST support the 2048-bit group "14" in [RFC3526].

6.5.  Tunnel PAC Usage

  The basic usage of the Tunnel PAC is to establish the TLS tunnel.  In
  this operation, it does not have to provide user authentication as
  user authentication is expected to be carried out in phase 2 of EAP-
  FAST.  The EAP-FAST Tunnel PAC MAY contain information about the



Cam-Winget, et al.           Informational                     [Page 28]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  identity of a peer to prevent a particular Tunnel PAC from being used
  to establish a tunnel that can perform phase 2 authentication other
  peers.  While it is possible for the server to accept the Tunnel PAC
  as authentication for the peer, many current implementations do not
  do this.  The ability to use PAC to authenticate peers and provide
  authorizations will be the subject of a future document.  [RFC5077]
  gives an example PAC-Opaque format in the Recommended Ticket
  Construction section.

6.6.  Machine Authentication PAC Usage

  In general, the Machine Authorization PAC is expected to provide the
  minimum access required by a machine without a user.  This will
  typically be a subset of the privilege a registered user has.  The
  server provisioning the PAC should include information necessary to
  validate it at a later point in time.  This would include expiration
  information.  The Machine Authentication PAC includes a key so it can
  be used as a Tunnel PAC.  The PAC-Key MUST be kept secret by the
  peer.

6.7.  User Authorization PAC Usage

  The User Authorization PAC provides the privilege associated with a
  user.  The server provisioning the PAC should include the information
  necessary to validate it at a later point in time.  This includes
  expiration and other information associated with the PAC.  The User
  Authorization PAC is a bearer credential such that it does not have a
  key that used to authenticate its ownership.  For this reason, this
  type of PAC MUST NOT be sent in the clear.  For additional
  protection, the PAC MAY be bound to a Tunnel PAC used to establish
  the TLS tunnel.  On the peer, the User Authorization PAC SHOULD only
  be accessible by the user for which it is provisioned.

6.8.  PAC Storage Considerations

  The main goal of EAP-FAST is to protect the authentication stream
  over the media link.  However, host security is still an issue.  Some
  care should be taken to protect the PAC on both the peer and server.
  The peer must securely store both the PAC-Key and PAC-Opaque, while
  the server must secure storage of its security association context
  used to consume the PAC-Opaque.  Additionally, if alternate
  provisioning is employed, the transportation mechanism used to
  distribute the PAC must also be secured.








Cam-Winget, et al.           Informational                     [Page 29]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  Most of the attacks described here would require some level of effort
  to execute: conceivably greater than their value.  The main focus
  therefore, should be to ensure that proper protections are used on
  both the peer and server.  There are a number of potential attacks
  that can be considered against secure key storage such as:

  o  Weak Passphrases

     On the peer side, keys are usually protected by a passphrase.  In
     some environments, this passphrase may be associated with the
     user's password.  In either case, if an attacker can obtain the
     encrypted key for a range of users, he may be able to successfully
     attack a weak passphrase.  The tools are already in place today to
     enable an attacker to easily attack all users in an enterprise
     environment through the use of email viruses and other techniques.

  o  Key Finding Attacks

     Key finding attacks are usually mentioned in reference to web
     servers where the private Secure Socket Layer (SSL) key may be
     stored securely, but at some point, it must be decrypted and
     stored in system memory.  An attacker with access to system memory
     can actually find the key by identifying their mathematical
     properties.  To date, this attack appears to be purely theoretical
     and primarily acts to argue strongly for secure access controls on
     the server itself to prevent such unauthorized code from
     executing.

  o  Key duplication, Key substitution, Key modification

     Once keys are accessible to an attacker on either the peer or
     server, they fall under three forms of attack: key duplication,
     key substitution, and key modification.  The first option would be
     the most common, allowing the attacker to masquerade as the user
     in question.  The second option could have some use if an attacker
     could implement it on the server.  Alternatively, an attacker
     could use one of the latter two attacks on either the peer or
     server to force a PAC re-key, and take advantage of the potential
     MITM/dictionary attack vulnerability of the EAP-FAST Server-
     Unauthenticated Provisioning Mode.

  Another consideration is the use of secure mechanisms afforded by the
  particular device.  For instance, some laptops enable secure key
  storage through a special chip.  It would be worthwhile for
  implementations to explore the use of such a mechanism.






Cam-Winget, et al.           Informational                     [Page 30]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


6.9.  Security Claims

  The [RFC3748] security claims for EAP-FAST are given in Section 7.8
  of [RFC4851].  When using anonymous provisioning mode, there is a
  greater risk of off-line dictionary attack since it is possible for a
  man-in-the-middle attack to capture the beginning of the inner EAP-
  FAST-MSCHAPv2 conversation.  However, as noted previously, it is
  possible to detect the man-in-the-middle attack.

7.  Acknowledgements

  The EAP-FAST design and protocol specification is based on the ideas
  and contributions from Pad Jakkahalli, Mark Krischer, Doug Smith,
  Ilan Frenkel, Max Pritikin, Jan Vilhuber, and Jeremy Steiglitz.  The
  authors would also like to thank Jouni Malinen, Pasi Eronen, Jari
  Arkko, Chris Newman, Ran Canetti, and Vijay Gurbani for reviewing
  this document.

8.  References

8.1.  Normative References

  [EAP-MSCHAPv2]  Microsoft Corporation, "MS-CHAP: Extensible
                  Authentication Protocol Method for Microsoft
                  Challenge Handshake Authentication Protocol (CHAP)
                  Specification", January 2009.
                  http://msdn2.microsoft.com/
                  en-us/library/cc224612.aspx

  [RFC2119]       Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2246]       Dierks, T. and C. Allen, "The TLS Protocol Version
                  1.0", RFC 2246, January 1999.

  [RFC2311]       Dusse, S., Hoffman, P., Ramsdell, B., Lundblade, L.,
                  and L. Repka, "S/MIME Version 2 Message
                  Specification", RFC 2311, March 1998.

  [RFC2315]       Kaliski, B., "PKCS #7: Cryptographic Message Syntax
                  Version 1.5", RFC 2315, March 1998.

  [RFC3079]       Zorn, G., "Deriving Keys for use with Microsoft
                  Point-to-Point Encryption (MPPE)", RFC 3079,
                  March 2001.






Cam-Winget, et al.           Informational                     [Page 31]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


  [RFC3526]       Kivinen, T. and M. Kojo, "More Modular Exponential
                  (MODP) Diffie-Hellman groups for Internet Key
                  Exchange (IKE)", RFC 3526, May 2003.

  [RFC3629]       Yergeau, F., "UTF-8, a transformation format of ISO
                  10646", STD 63, RFC 3629, November 2003.

  [RFC3748]       Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J.,
                  and H. Levkowetz, "Extensible Authentication Protocol
                  (EAP)", RFC 3748, June 2004.

  [RFC4851]       Cam-Winget, N., McGrew, D., Salowey, J., and H. Zhou,
                  "The Flexible Authentication via Secure Tunneling
                  Extensible Authentication Protocol Method (EAP-
                  FAST)", RFC 4851, May 2007.

  [RFC5077]       Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
                  "Transport Layer Security (TLS) Session Resumption
                  without Server-Side State", RFC 5077, January 2008.

  [RFC5246]       Dierks, T. and E. Rescorla, "The Transport Layer
                  Security (TLS) Protocol Version 1.2", RFC 5246,
                  August 2008.

  [RFC5421]       Cam-Winget, N. and H. Zhou, "Basic Password Exchange
                  within the Flexible Authentication via Secure
                  Tunneling Extensible Authentication Protocol (EAP-
                  FAST)", RFC 5421, March 2009.

8.2.  Informative References

  [RFC5226]       Narten, T. and H. Alvestrand, "Guidelines for Writing
                  an IANA Considerations Section in RFCs", BCP 26,
                  RFC 5226, May 2008.

















Cam-Winget, et al.           Informational                     [Page 32]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


Appendix A.  Examples

A.1.  Example 1: Successful Tunnel PAC Provisioning

  The following exchanges show anonymous DH with a successful EAP-FAST-
  MSCHAPv2 exchange within phase 2 to provision a Tunnel PAC.  The
  conversation will appear as follows:

         Authenticating Peer     Authenticator
         -------------------     -------------
                                 <- EAP-Request/Identity
         EAP-Response/
         Identity (MyID1) ->
                                 <- EAP-Request/EAP-FAST,
                                (S=1, A-ID)

         EAP-Response/EAP-FAST
         (TLS Client Hello without
         PAC-Opaque in SessionTicket extension)->

                                 <- EAP-Request/EAP-FAST
                                   (TLS Server Hello,
                                    TLS Server Key Exchange
                                  TLS Server Hello Done)

         EAP-Response/EAP-FAST
         (TLS Client Key Exchange
          TLS Change Cipher Spec
          TLS Finished)   ->

                                 <- EAP-Request/EAP-FAST
                                ( TLS change_cipher_spec,
                                 TLS finished,
                                EAP-Payload-TLV
                                (EAP-Request/Identity))

        // TLS channel established
           (Subsequent messages sent within the TLS channel,
                                    encapsulated within EAP-FAST)

        // First EAP Payload TLV is piggybacked on the TLS Finished as
           Application Data and protected by the TLS tunnel









Cam-Winget, et al.           Informational                     [Page 33]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


         EAP Payload TLV
         (EAP-Response/Identity) ->

                                <-  EAP Payload TLV
                                    (EAP-Request/EAP-FAST-MSCHAPv2
                                     (Challenge))

         EAP Payload TLV
         (EAP-Response/EAP-FAST-MSCHAPv2
          (Response)) ->

                                <-  EAP Payload TLV
                                    (EAP-Request/EAP-FAST-MSCHAPv2)
                                    (Success))
         EAP Payload TLV
         (EAP-Response/EAP-FAST-MSCHAPv2
          (Success)) ->
                                 <- Intermediate Result TLV(Success)
                                    Crypto-Binding-TLV (Version=1,
                                    EAP-FAST Version=1, Nonce,
                                    CompoundMAC)

         Intermediate Result TLV (Success)
         Crypto-Binding-TLV (Version=1,
         EAP-FAST Version=1, Nonce,
         CompoundMAC)
         PAC-TLV (Type=1)
                                 <- Result TLV (Success)
                                    PAC TLV

         Result TLV (Success)
         PAC Acknowledgment ->

         TLS channel torn down
         (messages sent in cleartext)

                                 <- EAP-Failure














Cam-Winget, et al.           Informational                     [Page 34]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


A.2.  Example 2: Failed Provisioning

  The following exchanges show a failed EAP-FAST-MSCHAPv2 exchange
  within phase 2, where the peer failed to authenticate the server.
  The conversation will appear as follows:

       Authenticating Peer     Authenticator
       -------------------     -------------
                               <- EAP-Request/Identity
       EAP-Response/
       Identity (MyID1) ->
                               <- EAP-Request/EAP-FAST
                                  (s=1, A-ID)

       EAP-Response/EAP-FAST
       (TLS Client Hello without
       SessionTicket extension)->

                               <- EAP-Request/EAP-FAST
                               (TLS Server Hello
                               TLS Server Key Exchange
                               TLS Server Hello Done)
       EAP-Response/EAP-FAST
       (TLS Client Key Exchange
        TLS Change Cipher Spec,
        TLS Finished)   ->

                                                <- EAP-Request/EAP-FAST
                              ( TLS change_cipher_spec,
                               TLS finished,
                              EAP-Payload-TLV
                              (EAP-Request/Identity))

      // TLS channel established
         (Subsequent messages sent within the TLS channel,
                                  encapsulated within EAP-FAST)

      // First EAP Payload TLV is piggybacked on the TLS Finished as
         Application Data and protected by the TLS tunnel


       EAP Payload TLV
       (EAP-Response/Identity)->

                              <-  EAP Payload TLV
                                 (EAP-Request/EAP-FAST-MSCHAPv2
                                   (Challenge))




Cam-Winget, et al.           Informational                     [Page 35]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


       EAP Payload TLV
       (EAP-Response/EAP-FAST-MSCHAPv2
        (Response)) ->

                              <-  EAP Payload TLV
                                  (EAP-Request EAP-FAST-MSCHAPv2
                                   (Success))

       // peer failed to verify server MSCHAPv2 response
       EAP Payload TLV
       (EAP-Response/EAP-FAST-MSCHAPv2
        (Failure)) ->

                              <-  Result TLV (Failure)

       Result TLV (Failure) ->
       TLS channel torn down
       (messages sent in cleartext)

                               <- EAP-Failure































Cam-Winget, et al.           Informational                     [Page 36]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


A.3.  Example 3: Provisioning an Authentication Server's Trusted Root
     Certificate

  The following exchanges show a successful provisioning of a server
  trusted root certificate using anonymous DH and EAP-FAST-MSCHAPv2
  exchange within phase 2.  The conversation will appear as follows:

     Authenticating Peer     Authenticator
     -------------------     -------------
                             <- EAP-Request/
                             Identity
     EAP-Response/
     Identity (MyID1) ->
                             <- EAP-Requese/EAP-FAST
                             (s=1, A-ID)

     EAP-Response/EAP-FAST
     (TLS Client Hello without
     SessionTicket extension)->
                             <- EAP-Request/EAP-FAST
                             (TLS Server Hello,
                             (TLS Server Key Exchange
                              TLS Server Hello Done)

     EAP-Response/EAP-FAST
     (TLS Client Key Exchange
      TLS Change Cipher Spec,
      TLS Finished)  ->

                             <- EAP-Request/EAP-FAST
                             (TLS Change Cipher Spec
                              TLS Finished)
                              (EAP-Payload-TLV(
                              EAP-Request/Identity))

     // TLS channel established
        (messages sent within the TLS channel)

     // First EAP Payload TLV is piggybacked on the TLS Finished as
        Application Data and protected by the TLS tunnel

     EAP-Payload TLV
     (EAP-Response/Identity) ->

                             <- EAP Payload TLV
                                (EAP-Request/EAP-FAST-MSCHAPv2
                                (Challenge))




Cam-Winget, et al.           Informational                     [Page 37]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


     EAP Payload TLV
     (EAP-Response/EAP-FAST-MSCHAPv2
      (Response)) ->

                            <-  EAP Payload TLV
                                (EAP-Request/EAP-FAST-MSCHAPv2
                                 (success))

     EAP Payload TLV
     (EAP-Response/EAP-FAST-MSCHAPv2
      (Success) ->

                             <- Intermediate Result TLV(Success)
                                Crypto-Binding TLV (Version=1,
                                EAP-FAST Version=1, Nonce,
                                CompoundMAC),

     Intermediate Result TLV(Success)
     Crypto-Binding TLV (Version=1
     EAP-FAST Version=1, Nonce,
     CompoundMAC)
     Server-Trusted-Root TLV
     (Type = PKCS#7) ->
                             <- Result TLV (Success)
                                Server-Trusted-Root TLV
                                (PKCS#7 TLV)

     Result TLV (Success) ->

     // TLS channel torn down
        (messages sent in cleartext)

                             <- EAP-Failure


















Cam-Winget, et al.           Informational                     [Page 38]

RFC 5422          Dynamic Provisioning Using EAP-FAST         March 2009


Authors' Addresses

  Nancy Cam-Winget
  Cisco Systems
  3625 Cisco Way
  San Jose, CA  95134
  US

  EMail: [email protected]


  David McGrew
  Cisco Systems
  3625 Cisco Way
  San Jose, CA  95134
  US

  EMail: [email protected]


  Joseph Salowey
  Cisco Systems
  2901 3rd Ave
  Seattle, WA  98121
  US

  EMail: [email protected]


  Hao Zhou
  Cisco Systems
  4125 Highlander Parkway
  Richfield, OH  44286
  US

  EMail: [email protected]















Cam-Winget, et al.           Informational                     [Page 39]