Network Working Group                                            M. Chen
Request for Comments: 5316                                      R. Zhang
Category: Standards Track                   Huawei Technologies Co., Ltd
                                                                X. Duan
                                                           China Mobile
                                                          December 2008


     ISIS Extensions in Support of Inter-Autonomous System (AS)
                  MPLS and GMPLS Traffic Engineering

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2008 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents (http://trustee.ietf.org/
  license-info) in effect on the date of publication of this document.
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

Abstract

  This document describes extensions to the ISIS (ISIS) protocol to
  support Multiprotocol Label Switching (MPLS) and Generalized MPLS
  (GMPLS) Traffic Engineering (TE) for multiple Autonomous Systems
  (ASes).  It defines ISIS-TE extensions for the flooding of TE
  information about inter-AS links, which can be used to perform inter-
  AS TE path computation.

  No support for flooding information from within one AS to another AS
  is proposed or defined in this document.










Chen, et al.                Standards Track                     [Page 1]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


Table of Contents

  1. Introduction ....................................................2
     1.1. Conventions Used in This Document ..........................3
  2. Problem Statement ...............................................3
     2.1. A Note on Non-Objectives ...................................4
     2.2. Per-Domain Path Determination ..............................4
     2.3. Backward Recursive Path Computation ........................6
  3. Extensions to ISIS-TE ...........................................7
     3.1. Inter-AS Reachability TLV ..................................7
     3.2. TE Router ID ...............................................9
     3.3. Sub-TLV Detail .............................................9
          3.3.1. Remote AS Number Sub-TLV ............................9
          3.3.2. IPv4 Remote ASBR ID Sub-TLV ........................10
          3.3.3. IPv6 Remote ASBR ID Sub-TLV ........................11
          3.3.4. IPv4 TE Router ID sub-TLV ..........................11
          3.3.5. IPv6 TE Router ID sub-TLV ..........................12
  4. Procedure for Inter-AS TE Links ................................12
     4.1. Origin of Proxied TE Information ..........................14
  5. Security Considerations ........................................14
  6. IANA Considerations ............................................15
     6.1. Inter-AS Reachability TLV .................................15
     6.2. Sub-TLVs for the Inter-AS Reachability TLV ................15
     6.3. Sub-TLVs for the IS-IS Router Capability TLV ..............17
  7. Acknowledgments ................................................17
  8. References .....................................................17
     8.1. Normative References ......................................17
     8.2. Informative References ....................................17

1.  Introduction

  [ISIS-TE] defines extensions to the ISIS protocol [ISIS] to support
  intra-area Traffic Engineering (TE).  The extensions provide a way of
  encoding the TE information for TE-enabled links within the network
  (TE links) and flooding this information within an area.  The
  extended IS reachability TLV and traffic engineering router ID TLV,
  which are defined in [ISIS-TE], are used to carry such TE
  information.  The extended IS reachability TLV has several nested
  sub-TLVs that describe the TE attributes for a TE link.

  [ISIS-TE-V3] and [GMPLS-TE] define similar extensions to ISIS [ISIS]
  in support of IPv6 and GMPLS traffic engineering, respectively.

  Requirements for establishing Multiprotocol Label Switching (MPLS) TE
  Label Switched Paths (LSPs) that cross multiple Autonomous Systems
  (ASes) are described in [INTER-AS-TE-REQ].  As described in [INTER-
  AS-TE-REQ], a method SHOULD provide the ability to compute a path
  spanning multiple ASes.  So a path computation entity that may be the



Chen, et al.                Standards Track                     [Page 2]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


  head-end Label Switching Router (LSR), an AS Border Router (ASBR), or
  a Path Computation Element (PCE [PCE]) needs to know the TE
  information not only of the links within an AS, but also of the links
  that connect to other ASes.

  In this document, a new TLV, which is referred to as the inter-AS
  reachability TLV, is defined to advertise inter-AS TE information,
  and three new sub-TLVs are defined for inclusion in the inter-AS
  reachability TLV to carry the information about the remote AS number
  and remote ASBR ID.  The sub-TLVs defined in [ISIS-TE], [ISIS-TE-V3],
  and other documents for inclusion in the extended IS reachability TLV
  for describing the TE properties of a TE link are applicable to be
  included in the inter-AS reachability TLV for describing the TE
  properties of an inter-AS TE link as well.  Also, two more new sub-
  TLVs are defined for inclusion in the IS-IS router capability TLV to
  carry the TE Router ID when the TE Router ID needs to reach all
  routers within an entire ISIS routing domain.  The extensions are
  equally applicable to IPv4 and IPv6 as identical extensions to
  [ISIS-TE] and [ISIS-TE-V3].  Detailed definitions and procedures are
  discussed in the following sections.

  This document does not propose or define any mechanisms to advertise
  any other extra-AS TE information within ISIS.  See Section 2.1 for a
  full list of non-objectives for this work.

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC-2119 [RFC2119].

2.  Problem Statement

  As described in [INTER-AS-TE-REQ], in the case of establishing an
  inter-AS TE LSP that traverses multiple ASes, the Path message
  [RFC3209] may include the following elements in the Explicit Route
  Object (ERO) in order to describe the path of the LSP:

  -  a set of AS numbers as loose hops, and/or

  -  a set of LSRs including ASBRs as loose hops.

  Two methods for determining inter-AS paths are currently being
  discussed.  The per-domain method [PD-PATH] determines the path one
  domain at a time.  The backward recursive method [BRPC] uses
  cooperation between PCEs to determine an optimum inter-domain path.
  The sections that follow examine how inter-AS TE link information
  could be useful in both cases.



Chen, et al.                Standards Track                     [Page 3]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


2.1.  A Note on Non-Objectives

  It is important to note that this document does not make any change
  to the confidentiality and scaling assumptions surrounding the use of
  ASes in the Internet.  In particular, this document is conformant to
  the requirements set out in [INTER-AS-TE-REQ].

  The following features are explicitly excluded:

  o  There is no attempt to distribute TE information from within one
     AS to another AS.

  o  There is no mechanism proposed to distribute any form of TE
     reachability information for destinations outside the AS.

  o  There is no proposed change to the PCE architecture or usage.

  o  TE aggregation is not supported or recommended.

  o  There is no exchange of private information between ASes.

  o  No ISIS adjacencies are formed on the inter-AS link.

2.2.  Per-Domain Path Determination

  In the per-domain method of determining an inter-AS path for an
  MPLS-TE LSP, when an LSR that is an entry-point to an AS receives a
  Path message from an upstream AS with an ERO containing a next hop
  that is an AS number, it needs to find which LSRs (ASBRs) within the
  local AS are connected to the downstream AS.  That way, it can
  compute a TE LSP segment across the local AS to one of those LSRs and
  forward the Path message to that LSR and hence into the next AS.  See
  Figure 1 for an example.

               R1------R3----R5-----R7------R9-----R11
                       |     | \    |      / |
                       |     |  \   |  ----  |
                       |     |   \  | /      |
               R2------R4----R6   --R8------R10----R12
                          :              :
               <-- AS1 -->:<---- AS2 --->:<--- AS3 --->

                   Figure 1: Inter-AS Reference Model

  The figure shows three ASes (AS1, AS2, and AS3) and twelve LSRs (R1
  through R12).  R3 and R4 are ASBRs in AS1.  R5, R6, R7, and R8 are
  ASBRs in AS2.  R9 and R10 are ASBRs in AS3.




Chen, et al.                Standards Track                     [Page 4]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


  If an inter-AS TE LSP is planned to be established from R1 to R12,
  the AS sequence will be: AS1, AS2, AS3.

  Suppose that the Path message enters AS2 from R3.  The next hop in
  the ERO shows AS3, and R5 must determine a path segment across AS2 to
  reach AS3.  It has a choice of three exit points from AS2 (R6, R7,
  and R8), and it needs to know which of these provide TE connectivity
  to AS3, and whether the TE connectivity (for example, available
  bandwidth) is adequate for the requested LSP.

  Alternatively, if the next hop in the ERO is the entry ASBR for AS3
  (say R9), R5 needs to know which of its exit ASBRs has a TE link that
  connects to R9.  Since there may be multiple ASBRs that are connected
  to R9 (both R7 and R8 in this example), R5 also needs to know the TE
  properties of the inter-AS TE links so that it can select the correct
  exit ASBR.

  Once the Path message reaches the exit ASBR, any choice of inter-AS
  TE link can be made by the ASBR if not already made by the entry ASBR
  that computed the segment.

  More details can be found in Section 4 of [PD-PATH], which clearly
  points out why advertising of inter-AS links is desired.

  To enable R5 to make the correct choice of exit ASBR, the following
  information is needed:

  o  List of all inter-AS TE links for the local AS.

  o  TE properties of each inter-AS TE link.

  o  AS number of the neighboring AS connected to by each inter-AS TE
     link.

  o  Identity (TE Router ID) of the neighboring ASBR connected to by
     each inter-AS TE link.

  In GMPLS networks, further information may also be required to select
  the correct TE links as defined in [GMPLS-TE].

  The example above shows how this information is needed at the entry-
  point ASBRs for each AS (or the PCEs that provide computation
  services for the ASBRs).  However, this information is also needed
  throughout the local AS if path computation functionality is fully
  distributed among LSRs in the local AS, for example to support LSPs
  that have start points (ingress nodes) within the AS.





Chen, et al.                Standards Track                     [Page 5]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


2.3.  Backward Recursive Path Computation

  Another scenario using PCE techniques has the same problem.  [BRPC]
  defines a PCE-based TE LSP computation method (called Backward
  Recursive Path Computation) to compute optimal inter-domain
  constrained MPLS-TE or GMPLS LSPs.  In this path computation method,
  a specific set of traversed domains (ASes) are assumed to be selected
  before computation starts.  Each downstream PCE in domain(i) returns
  to its upstream neighbor PCE in domain(i-1) a multipoint-to-point
  tree of potential paths.  Each tree consists of the set of paths from
  all boundary nodes located in domain(i) to the destination where each
  path satisfies the set of required constraints for the TE LSP
  (bandwidth, affinities, etc.).

  So a PCE needs to select boundary nodes (that is, ASBRs) that provide
  connectivity from the upstream AS.  In order for the tree of paths
  provided by one PCE to its neighbor to be correlated, the identities
  of the ASBRs for each path need to be referenced.  Thus, the PCE must
  know the identities of the ASBRs in the remote AS that are reached by
  any inter-AS TE link, and, in order to provide only suitable paths in
  the tree, the PCE must know the TE properties of the inter-AS TE
  links.  See the following figure as an example.

                  PCE1<------>PCE2<-------->PCE3
                  /       :             :
                 /        :             :
               R1------R3----R5-----R7------R9-----R11
                       |     | \    |      / |
                       |     |  \   |  ----  |
                       |     |   \  | /      |
               R2------R4----R6   --R8------R10----R12
                          :              :
               <-- AS1 -->:<---- AS2 --->:<--- AS3 --->

              Figure 2: BRPC for Inter-AS Reference Model

  The figure shows three ASes (AS1, AS2, and AS3), three PCEs (PCE1,
  PCE2, and PCE3), and twelve LSRs (R1 through R12).  R3 and R4 are
  ASBRs in AS1.  R5, R6, R7, and R8 are ASBRs in AS2.  R9 and R10 are
  ASBRs in AS3.  PCE1, PCE2, and PCE3 cooperate to perform inter-AS
  path computation and are responsible for path segment computation
  within their own domain(s).

  If an inter-AS TE LSP is planned to be established from R1 to R12,
  the traversed domains are assumed to be selected: AS1->AS2->AS3, and
  the PCE chain is: PCE1->PCE2->PCE3.  First, the path computation
  request originated from the PCC (R1) is relayed by PCE1 and PCE2
  along the PCE chain to PCE3.  Then, PCE3 begins to compute the path



Chen, et al.                Standards Track                     [Page 6]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


  segments from the entry boundary nodes that provide connection from
  AS2 to the destination (R12).  But, to provide suitable path
  segments, PCE3 must determine which entry boundary nodes provide
  connectivity to its upstream neighbor AS (identified by its AS
  number), and must know the TE properties of the inter-AS TE links.
  In the same way, PCE2 also needs to determine the entry boundary
  nodes according to its upstream neighbor AS and the inter-AS TE link
  capabilities.

  Thus, to support Backward Recursive Path Computation, the same
  information listed in Section 2.2 is required.  The AS number of the
  neighboring AS connected to by each inter-AS TE link is particularly
  important.

3.  Extensions to ISIS-TE

  Note that this document does not define mechanisms for distribution
  of TE information from one AS to another, does not distribute any
  form of TE reachability information for destinations outside the AS,
  does not change the PCE architecture or usage, does not suggest or
  recommend any form of TE aggregation, and does not feed private
  information between ASes.  See Section 2.1.

  In this document, for the advertisement of inter-AS TE links, a new
  TLV, which is referred to as the inter-AS reachability TLV, is
  defined.  Three new sub-TLVs are also defined for inclusion in the
  inter-AS reachability TLV to carry the information about the
  neighboring AS number and the remote ASBR ID of an inter-AS link.
  The sub-TLVs defined in [ISIS-TE], [ISIS-TE-V3], and other documents
  for inclusion in the extended IS reachability TLV are applicable to
  be included in the inter-AS reachability TLV for inter-AS TE links
  advertisement.  Also, two other new sub-TLVs are defined for
  inclusion in the IS-IS router capability TLV to carry the TE Router
  ID when the TE Router ID is needed to reach all routers within an
  entire ISIS routing domain.

  While some of the TE information of an inter-AS TE link may be
  available within the AS from other protocols, in order to avoid any
  dependency on where such protocols are processed, this mechanism
  carries all the information needed for the required TE operations.

3.1.  Inter-AS Reachability TLV

  The inter-AS reachability TLV has type 141 (see Section 6.1) and
  contains a data structure consisting of:






Chen, et al.                Standards Track                     [Page 7]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


     o  4 octets of Router ID
     o  3 octets of default metric
     o  1 octet of control information, consisting of:
        -  1 bit of flooding-scope information (S bit)
        -  1 bit of up/down information (D bit)
        -  6 bits reserved
     o  1 octet of length of sub-TLVs
     o  0-246 octets of sub-TLVs, where each sub-TLV consists of a
        sequence of:
        -  1 octet of sub-type
        -  1 octet of length of the value field of the sub-TLV
        -  0-244 octets of value

  Compared to the extended reachability TLV, which is defined in
  [ISIS-TE], the inter-AS reachability TLV replaces the "7 octets of
  System ID and Pseudonode Number" field with a "4 octets of Router ID"
  field and introduces an extra "control information" field, which
  consists of a flooding-scope bit (S bit), an up/down bit (D bit), and
  6 reserved bits.

  The Router ID field of the inter-AS reachability TLV is 4 octets in
  length, which contains the Router ID of the router who generates the
  inter-AS reachability TLV.  The Router ID MUST be unique within the
  ISIS area.  If the router generates inter-AS reachability TLV with
  entire ISIS routing domain flooding scope, then the Router ID MUST
  also be unique within the entire ISIS routing domain.  The Router ID
  could be used to indicate the source of the inter-AS reachability
  TLV.

  The flooding procedures for inter-AS reachability TLV are identical
  to the flooding procedures for the GENINFO TLV, which are defined in
  Section 4 of [GENINFO].  These procedures have been previously
  discussed in [ISIS-CAP].  The flooding-scope bit (S bit) SHOULD be
  set to 0 if the flooding scope is to be limited to within the single
  IGP area to which the ASBR belongs.  It MAY be set to 1 if the
  information is intended to reach all routers (including area border
  routers, ASBRs, and PCEs) in the entire ISIS routing domain.  The
  choice between the use of 0 or 1 is an AS-wide policy choice, and
  configuration control SHOULD be provided in ASBR implementations that
  support the advertisement of inter-AS TE links.

  The sub-TLVs defined in [ISIS-TE], [ISIS-TE-V3], and other documents
  for describing the TE properties of a TE link are also applicable to
  the inter-AS reachability TLV for describing the TE properties of an
  inter-AS TE link.  Apart from these sub-TLVs, three new sub-TLVs are
  defined for inclusion in the inter-AS reachability TLV defined in
  this document:




Chen, et al.                Standards Track                     [Page 8]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


  Sub-TLV type    Length  Name
  ------------    ------  ---------------------------
            24        4   remote AS number
            25        4   IPv4 remote ASBR identifier
            26       16   IPv6 remote ASBR identifier

  The detailed definitions of the three new sub-TLVs are described in
  Section 3.3.

3.2.  TE Router ID

  The IPv4 TE Router ID TLV and IPv6 TE Router ID TLV, which are
  defined in [ISIS-TE] and [ISIS-TE-V3] respectively, only have area
  flooding-scope.  When performing inter-AS TE, the TE Router ID MAY be
  needed to reach all routers within an entire ISIS routing domain and
  it MUST have the same flooding scope as the inter-AS reachability TLV
  does.

  [ISIS-CAP] defines a generic advertisement mechanism for ISIS, which
  allows a router to advertise its capabilities within an ISIS area or
  an entire ISIS routing domain.  [ISIS-CAP] also points out that the
  TE Router ID is a candidate to be carried in the IS-IS router
  capability TLV when performing inter-area TE.

  This document uses such mechanism for TE Router ID advertisement when
  the TE Router ID is needed to reach all routers within an entire ISIS
  Routing domain.  Two new sub-TLVs are defined for inclusion in the
  IS-IS router capability TLV to carry the IPv4 and IPv6 TE Router IDs,
  respectively:

  Sub-TLV type   Length  Name
  ------------    ------  -----------------
            11        4   IPv4 TE Router ID
            12       16   IPv6 TE Router ID

  Detailed definitions of the two new sub-TLVs are described in Section
  3.3.

3.3.  Sub-TLV Detail

3.3.1.  Remote AS Number Sub-TLV

  A new sub-TLV, the remote AS number sub-TLV, is defined for inclusion
  in the inter-AS reachability TLV when advertising inter-AS links.
  The remote AS number sub-TLV specifies the AS number of the
  neighboring AS to which the advertised link connects.





Chen, et al.                Standards Track                     [Page 9]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


  The remote AS number sub-TLV is TLV type 24 (see Section 6.2) and is
  4 octets in length.  The format is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Remote AS Number                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Remote AS number field has 4 octets.  When only 2 octets are used
  for the AS number, as in current deployments, the left (high-order) 2
  octets MUST be set to 0.  The remote AS number sub-TLV MUST be
  included when a router advertises an inter-AS TE link.

3.3.2.  IPv4 Remote ASBR ID Sub-TLV

  A new sub-TLV, which is referred to as the IPv4 remote ASBR ID sub-
  TLV, is defined for inclusion in the inter-AS reachability TLV when
  advertising inter-AS links.  The IPv4 remote ASBR ID sub-TLV
  specifies the IPv4 identifier of the remote ASBR to which the
  advertised inter-AS link connects.  This could be any stable and
  routable IPv4 address of the remote ASBR.  Use of the TE Router ID as
  specified in the Traffic Engineering router ID TLV [ISIS-TE] is
  RECOMMENDED.

  The IPv4 remote ASBR ID sub-TLV is TLV type 25 (see Section 6.2) and
  is 4 octets in length.  The format of the IPv4 remote ASBR ID sub-TLV
  is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Remote ASBR ID                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The IPv4 remote ASBR ID sub-TLV MUST be included if the neighboring
  ASBR has an IPv4 address.  If the neighboring ASBR does not have an
  IPv4 address (not even an IPv4 TE Router ID), the IPv6 remote ASBR ID
  sub-TLV MUST be included instead.  An IPv4 remote ASBR ID sub-TLV and
  IPv6 remote ASBR ID sub-TLV MAY both be present in an extended IS
  reachability TLV.






Chen, et al.                Standards Track                    [Page 10]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


3.3.3.  IPv6 Remote ASBR ID Sub-TLV

  A new sub-TLV, which is referred to as the IPv6 remote ASBR ID sub-
  TLV, is defined for inclusion in the inter-AS reachability TLV when
  advertising inter-AS links.  The IPv6 remote ASBR ID sub-TLV
  specifies the IPv6 identifier of the remote ASBR to which the
  advertised inter-AS link connects.  This could be any stable and
  routable IPv6 address of the remote ASBR.  Use of the TE Router ID as
  specified in the IPv6 Traffic Engineering router ID TLV [ISIS-TE-V3]
  is RECOMMENDED.

  The IPv6 remote ASBR ID sub-TLV is TLV type 26 (see Section 6.2) and
  is 16 octets in length.  The format of the IPv6 remote ASBR ID sub-
  TLV is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Remote ASBR ID                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Remote ASBR ID (continued)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Remote ASBR ID (continued)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Remote ASBR ID (continued)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The IPv6 remote ASBR ID sub-TLV MUST be included if the neighboring
  ASBR has an IPv6 address.  If the neighboring ASBR does not have an
  IPv6 address, the IPv4 remote ASBR ID sub-TLV MUST be included
  instead.  An IPv4 remote ASBR ID sub-TLV and IPv6 remote ASBR ID
  sub-TLV MAY both be present in an extended IS reachability TLV.

3.3.4.  IPv4 TE Router ID sub-TLV

  The IPv4 TE Router ID sub-TLV is TLV type 11 (see Section 6.3) and is
  4 octets in length.  The format of the IPv4 TE Router ID sub-TLV is
  as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       TE Router ID                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Chen, et al.                Standards Track                    [Page 11]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008



  When the TE Router ID is needed to reach all routers within an entire
  ISIS routing domain, the IS-IS Router capability TLV MUST be included
  in its LSP.  If an ASBR supports Traffic Engineering for IPv4 and if
  the ASBR has an IPv4 TE Router ID, the IPv4 TE Router ID sub-TLV MUST
  be included.  If the ASBR does not have an IPv4 TE Router ID, the
  IPv6 TE Router sub-TLV MUST be included instead.  An IPv4 TE Router
  ID sub-TLV and IPv6 TE Router ID sub-TLV MAY both be present in an
  IS-IS router capability TLV.

3.3.5.  IPv6 TE Router ID sub-TLV

  The IPv6 TE Router ID sub-TLV is TLV type 12 (see Section 6.3) and is
  4 octets in length.  The format of the IPv6 TE Router ID sub-TLV is
  as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       TE Router ID                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       TE Router ID   (continued)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       TE Router ID   (continued)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       TE Router ID   (continued)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  When the TE Router ID is needed to reach all routers within an entire
  ISIS routing domain, the IS-IS router capability TLV MUST be included
  in its LSP.  If an ASBR supports Traffic Engineering for IPv6 and if
  the ASBR has an IPv6 TE Router ID, the IPv6 TE Router ID sub-TLV MUST
  be included.  If the ASBR does not have an IPv6 TE Router ID, the
  IPv4 TE Router sub-TLV MUST be included instead.  An IPv4 TE Router
  ID sub-TLV and IPv6 TE Router ID sub-TLV MAY both be present in an
  IS-IS router capability TLV.

4.  Procedure for Inter-AS TE Links

  When TE is enabled on an inter-AS link and the link is up, the ASBR
  SHOULD advertise this link using the normal procedures for ISIS-TE
  [ISIS-TE].  When either the link is down or TE is disabled on the
  link, the ASBR SHOULD withdraw the advertisement.  When there are
  changes to the TE parameters for the link (for example, when the
  available bandwidth changes), the ASBR SHOULD re-advertise the link
  but MUST take precautions against excessive re-advertisements.



Chen, et al.                Standards Track                    [Page 12]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


  Hellos MUST NOT be exchanged over the inter-AS link, and
  consequently, an ISIS adjacency MUST NOT be formed.

  The information advertised comes from the ASBR's knowledge of the TE
  capabilities of the link, the ASBR's knowledge of the current status
  and usage of the link, and configuration at the ASBR of the remote AS
  number and remote ASBR TE Router ID.

  Legacy routers receiving an advertisement for an inter-AS TE link are
  able to ignore it because they do not know the new TLV and sub-TLVs
  that are defined in Section 3 of this document.  They will continue
  to flood the LSP, but will not attempt to use the information
  received.

  In the current operation of ISIS TE, the LSRs at each end of a TE
  link emit LSAs describing the link.  The databases in the LSRs then
  have two entries (one locally generated, the other from the peer)
  that describe the different 'directions' of the link.  This enables
  Constrained Shortest Path First (CSPF) to do a two-way check on the
  link when performing path computation and eliminate it from
  consideration unless both directions of the link satisfy the required
  constraints.

  In the case we are considering here (i.e., of a TE link to another
  AS), there is, by definition, no IGP peering and hence no
  bidirectional TE link information.  In order for the CSPF route
  computation entity to include the link as a candidate path, we have
  to find a way to get LSAs describing its (bidirectional) TE
  properties into the TE database.

  This is achieved by the ASBR advertising, internally to its AS,
  information about both directions of the TE link to the next AS.  The
  ASBR will normally generate an LSA describing its own side of a link;
  here we have it 'proxy' for the ASBR at the edge of the other AS and
  generate an additional LSA that describes that device's 'view' of the
  link.

  Only some essential TE information for the link needs to be
  advertised; i.e., the Interface Address, the remote AS number, and
  the remote ASBR ID of an inter-AS TE link.

  Routers or PCEs that are capable of processing advertisements of
  inter-AS TE links SHOULD NOT use such links to compute paths that
  exit an AS to a remote ASBR and then immediately re-enter the AS
  through another TE link.  Such paths would constitute extremely rare
  occurrences and SHOULD NOT be allowed except as the result of
  specific policy configurations at the router or PCE computing the
  path.



Chen, et al.                Standards Track                    [Page 13]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


4.1.  Origin of Proxied TE Information

  Section 4 describes how an ASBR advertises TE link information as a
  proxy for its neighbor ASBR, but does not describe where this
  information comes from.

  Although the source of this information is outside the scope of this
  document, it is possible that it will be a configuration requirement
  at the ASBR, as are other local properties of the TE link.  Further,
  where BGP is used to exchange IP routing information between the
  ASBRs, a certain amount of additional local configuration about the
  link and the remote ASBR is likely to be available.

  We note further that it is possible, and may be operationally
  advantageous, to obtain some of the required configuration
  information from BGP.  Whether and how to utilize these possibilities
  is an implementation matter.

5.  Security Considerations

  The protocol extensions defined in this document are relatively minor
  and can be secured within the AS in which they are used by the
  existing ISIS security mechanisms (e.g., using the cleartext
  passwords or Hashed Message Authentication Codes - Message Digest 5
  (HMAC-MD5) algorithm, which are defined in [ISIS] and [RFC5304],
  respectively).

  There is no exchange of information between ASes, and no change to
  the ISIS security relationship between the ASes.  In particular,
  since no ISIS adjacency is formed on the inter-AS links, there is no
  requirement for ISIS security between the ASes.

  Some of the information included in these new advertisements (e.g.,
  the remote AS number and the remote ASBR ID) is obtained manually
  from a neighboring administration as part of a commercial
  relationship.  The source and content of this information should be
  carefully checked before it is entered as configuration information
  at the ASBR responsible for advertising the inter-AS TE links.

  It is worth noting that in the scenario we are considering, a Border
  Gateway Protocol (BGP) peering may exist between the two ASBRs and
  that this could be used to detect inconsistencies in configuration
  (e.g., the administration that originally supplied the information
  may be lying, or some manual mis-configurations or mistakes may be
  made by the operators).  For example, if a different remote AS number
  is received in a BGP OPEN [BGP] from that locally configured to
  ISIS-TE, as we describe here, then local policy SHOULD be applied to
  determine whether to alert the operator to a potential mis-



Chen, et al.                Standards Track                    [Page 14]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


  configuration or to suppress the ISIS advertisement of the inter-AS
  TE link.  Note further that if BGP is used to exchange TE information
  as described in Section 4.1, the inter-AS BGP session SHOULD be
  secured using mechanisms as described in [BGP] to provide
  authentication and integrity checks.

  For a discussion of general security considerations for IS-IS, see
  [RFC5304].

6.  IANA Considerations

  IANA has made the following allocations from registries under its
  control.

6.1.  Inter-AS Reachability TLV

  This document defines the following new ISIS TLV type, described in
  Section 3.1, which has been registered in the ISIS TLV codepoint
  registry:

             Type        Description              IIH   LSP   SNP
             ----        ----------------------   ---   ---   ---
              141        inter-AS reachability     n     y     n
                               information

6.2.  Sub-TLVs for the Inter-AS Reachability TLV

  This document defines the following new sub-TLV types (described in
  Sections 3.3.1, 3.3.2, and 3.3.3) of top-level TLV 141 (see Section
  6.1 above), which have been registered in the ISIS sub-TLV registry
  for TLV 141.  Note that these three new sub-TLVs SHOULD NOT appear in
  TLV 22 (or TLV 222) and MUST be ignored in TLV 22 (or TLV 222).

    Type        Description
    ----        ------------------------------
      24        remote AS number
      25        IPv4 remote ASBR Identifier
      26        IPv6 remote ASBR Identifier

  As described above in Section 3.1, the sub-TLVs defined in [ISIS-TE],
  [ISIS-TE-V3], and other documents for describing the TE properties of
  a TE link are applicable to describe an inter-AS TE link and MAY be
  included in the inter-AS reachability TLV when adverting inter-AS TE
  links.

  IANA has updated the registry that was specified as "Sub-TLVs for TLV
  22" to be named "Sub-TLVs for TLVs 22, 141, and 222".  Three new
  columns have been added to the registry to show in which TLVs the



Chen, et al.                Standards Track                    [Page 15]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


  sub-TLVs may be present.  All sub-TLVs currently defined may be
  present in all three TLVs, hence the registry (with the definition of
  the new sub-TLVs defined here) should read as follows.

                                              TLV TLV TLV
  Type    Description                          22  141 222 Reference
  ------- ------------------------------------ --- --- --- ---------
     0    Unassigned                            y   y   y
     1    Unassigned                            y   y   y
     2    Unassigned                            y   y   y
     3    Administrative group (color)          y   y   y  [RFC5305]
     4    Link Local/Remote Identifiers         y   y   y
                                                  [RFC4205][RFC5307]
     5    Unassigned                            y   y   y
     6    IPv4 interface address                y   y   y  [RFC5305]
     7    Unassigned                            y   y   y
     8    IPv4 neighbor address                 y   y   y  [RFC5305]
     9    Maximum link bandwidth                y   y   y  [RFC5305]
    10    Maximum reservable link bandwidth     y   y   y  [RFC5305]
    11    Unreserved bandwidth                  y   y   y  [RFC5305]
    12    Unassigned                            y   y   y
    13    Unassigned                            y   y   y
    14    Unassigned                            y   y   y
    15    Unassigned                            y   y   y
    16    Unassigned                            y   y   y
    17    Unassigned                            y   y   y
    18    TE Default metric                     y   y   y  [RFC5305]
    19    Link-attributes                       y   y   y  [RFC5029]
    20    Link Protection Type                  y   y   y
                                                     [RFC4205][RFC5307]
    21    Interface Switching Capability Desc   y   y   y
                                                     [RFC4205][RFC5307]
    22    Bandwidth Constraints                 y   y   y  [RFC4124]
    23    Unconstrained TE LSP Count (sub-)TLV  y   y   y  [RFC5330]
    24    remote AS number                      n   y   n  [RFC5316]
    25    IPv4 remote ASBR identifier           n   y   n  [RFC5316]
    26    IPv6 remote ASBR identifier           n   y   n  [RFC5316]
  27-249  Unassigned
  250-254 Reserved for Cisco-specific exts
  255     Reserved for future expansion

  Further sub-TLVs may be defined in the future for inclusion in any of
  the TLVs 22, 141, or 222.  The re-naming of the registry as above
  ensures that there is no accidental overlap of sub-TLV codepoints.
  The introduction of the columns within the registry clarify the use
  of the sub-TLVs.





Chen, et al.                Standards Track                    [Page 16]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


6.3.  Sub-TLVs for the IS-IS Router Capability TLV

  This document defines the following new sub-TLV types, described in
  Sections 3.3.4 and 3.3.5, of top-level TLV 242 (which is defined in
  [ISIS-CAP]) that have been registered in the ISIS sub-TLV registry
  for TLV 242:

     Type        Description                        Length
     ----        ------------------------------   --------
       11        IPv4 TE Router ID                       4
       12        IPv6 TE Router ID                      16

7.  Acknowledgments

  The authors would like to thank Adrian Farrel, Jean-Louis Le Roux,
  Christian Hopps, Les Ginsberg, and Hannes Gredler for their review
  and comments on this document.

8.  References

8.1.  Normative References

  [RFC2119]         Bradner, S., "Key words for use in RFCs to Indicate
                    Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3209]         Awduche, D., Berger, L., Gan, D., Li, T.,
                    Srinivasan, V., and G. Swallow, "RSVP-TE:
                    Extensions to RSVP for LSP Tunnels", RFC 3209,
                    December 2001.

  [RFC5304]         Li, T. and R. Atkinson, "IS-IS Cryptographic
                    Authentication", RFC 5304, October 2008.

  [ISIS]            Callon, R., "Use of OSI IS-IS for routing in TCP/IP
                    and dual environments", RFC 1195, December 1990.

  [ISIS-CAP]        Vasseur, JP., Ed., Shen, N., Ed., and R. Aggarwal,
                    Ed., "Intermediate System to Intermediate System
                    (IS-IS) Extensions for Advertising Router
                    Information", RFC 4971, July 2007.

8.2.  Informative References

  [INTER-AS-TE-REQ] Zhang, R., Ed., and J.-P. Vasseur, Ed., "MPLS
                    Inter-Autonomous System (AS) Traffic Engineering
                    (TE) Requirements", RFC 4216, November 2005.





Chen, et al.                Standards Track                    [Page 17]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


  [PD-PATH]         Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang,
                    "A Per-Domain Path Computation Method for
                    Establishing Inter-Domain Traffic Engineering (TE)
                    Label Switched Paths (LSPs)", RFC 5152, February
                    2008.

  [BRPC]            Vasseur, JP., Ed., Zhang, R., Bitar, N., JL. Le
                    Roux, "A Backward Recursive PCE-Based Computation
                    (BRPC) Procedure to Compute Shortest Inter-Domain
                    Traffic Engineering Label Switched Paths", Work in
                    Progress, April 2008.

  [PCE]             Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
                    Computation Element (PCE)-Based Architecture", RFC
                    4655, August 2006.

  [ISIS-TE]         Li, T. and H. Smit, "IS-IS Extensions for Traffic
                    Engineering", RFC 5305, October 2008.

  [ISIS-TE-V3]      Harrison, J., Berger, J., and Bartlett, M., "IPv6
                    Traffic Engineering in IS-IS", Work in Progress,
                    June 2008.

  [GMPLS-TE]        Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS
                    Extensions in Support of Generalized Multi-Protocol
                    Label Switching (GMPLS)", RFC 5307, October 2008.

  [BGP]             Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed.,
                    "A Border Gateway Protocol 4 (BGP-4)", RFC 4271,
                    January 2006.

  [GENINFO]         L. Ginsberg., Previdi, S., and M. Shand,
                    "Advertising Generic Information in IS-IS", Work in
                    Progress, June 2008.

















Chen, et al.                Standards Track                    [Page 18]

RFC 5316            ISIS Extensions for Inter-AS TE        December 2008


Authors' Addresses

  Mach (Guoyi) Chen
  Huawei Technologies Co., Ltd
  KuiKe Building, No.9 Xinxi Rd.
  Hai-Dian District
  Beijing, 100085
  P.R. China

  EMail: [email protected]


  Renhai Zhang
  Huawei Technologies Co., Ltd
  KuiKe Building, No.9 Xinxi Rd.
  Hai-Dian District
  Beijing, 100085
  P.R. China

  EMail: [email protected]


  Xiaodong Duan
  China Mobile
  53A, Xibianmennei Ave.
  Xunwu District
  Beijing, China

  EMail: [email protected]






















Chen, et al.                Standards Track                    [Page 19]