Network Working Group                                          M. Bhatia
Request for Comments: 5310                                Alcatel-Lucent
Category: Standards Track                                      V. Manral
                                                            IP Infusion
                                                                  T. Li
                                                  Redback Networks Inc.
                                                            R. Atkinson
                                                       Extreme Networks
                                                               R. White
                                                          Cisco Systems
                                                               M. Fanto
                                                    Aegis Data Security
                                                          February 2009


              IS-IS Generic Cryptographic Authentication

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents (http://trustee.ietf.org/
  license-info) in effect on the date of publication of this document.
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

Abstract

  This document proposes an extension to Intermediate System to
  Intermediate System (IS-IS) to allow the use of any cryptographic
  authentication algorithm in addition to the already-documented
  authentication schemes, described in the base specification and RFC
  5304.  IS-IS is specified in International Standards Organization
  (ISO) 10589, with extensions to support Internet Protocol version 4
  (IPv4) described in RFC 1195.






Bhatia, et al.              Standards Track                     [Page 1]

RFC 5310          IS-IS Generic Crypto Authentication      February 2009


  Although this document has been written specifically for using the
  Hashed Message Authentication Code (HMAC) construct along with the
  Secure Hash Algorithm (SHA) family of cryptographic hash functions,
  the method described in this document is generic and can be used to
  extend IS-IS to support any cryptographic hash function in the
  future.

Table of Contents

  1. Introduction ....................................................2
     1.1. Conventions Used in This Document ..........................3
  2. IS-IS Security Association ......................................3
  3. Authentication Procedures .......................................4
     3.1. Authentication TLV .........................................4
     3.2. Authentication Process .....................................5
     3.3. Cryptographic Aspects ......................................5
     3.4. Procedures at the Sending Side .............................7
     3.5. Procedure at the Receiving Side ............................8
  4. Security Considerations .........................................8
  5. Acknowledgments .................................................9
  6. IANA Considerations ............................................10
  7. References .....................................................10
     7.1. Normative References ......................................10
     7.2. Informative References ....................................11

1.  Introduction

  The Intermediate System to Intermediate System (IS-IS) specification
  ([ISO], [RFC1195]) allows for authentication of its Protocol Data
  Units (PDUs) via the authentication TLV 10 that is carried as a part
  of the PDU.  The base specification has provision for only cleartext
  passwords and RFC 5304 [RFC5304] augments this to provide the
  capability to use Hashed Message Authentication Code - Message Digest
  5 (HMAC-MD5) authentication for its PDUs.

  The first octet of the value field of TLV 10 specifies the type of
  authentication to be carried out.  Type 0 is reserved, Type 1
  indicates a cleartext password, Type 54 indicates HMAC MD5, and Type
  255 is used for routing domain private authentication methods.  The
  remainder of the value field contains the actual authentication data,
  determined by the value of the authentication type.

  This document proposes a new authentication type to be carried in TLV
  10, called the generic cryptographic authentication (CRYPTO_AUTH).
  This can be used to specify any authentication algorithm for
  authenticating and verifying IS-IS PDUs.





Bhatia, et al.              Standards Track                     [Page 2]

RFC 5310          IS-IS Generic Crypto Authentication      February 2009


  This document also explains how HMAC-SHA authentication can be used
  in IS-IS.

  By definition, HMAC ([RFC2104], [FIPS-198]) requires a cryptographic
  hash function.  We propose to use any one of SHA-1, SHA-224, SHA-256,
  SHA-384, or SHA-512 [FIPS-180-3] to authenticate the IS-IS PDUs.

  We propose to do away with the per-interface keys and instead have
  Key IDs that map to unique IS-IS Security Associations (SAs).

  While at the time of this writing there are no openly published
  attacks on the HMAC-MD5 mechanism, some reports ([Dobb96a],
  [Dobb96b]) create concern about the ultimate strength of the MD5
  cryptographic hash function.

  The mechanism described in this document does not provide
  confidentiality, since PDUs are sent in the clear.  However, the
  objective of a routing protocol is to advertise the routing topology,
  and confidentiality is not normally required for routing protocols.

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  IS-IS Security Association

  An IS-IS Security Association contains a set of parameters shared
  between any two legitimate IS-IS speakers.

  Parameters associated with an IS-IS SA:

  o  Key Identifier (Key ID): This is a two-octet unsigned integer used
     to uniquely identify an IS-IS SA, as manually configured by the
     network operator.

     The receiver determines the active SA by looking at the Key ID
     field in the incoming PDU.

     The sender, based on the active configuration, selects the
     Security Association to use and puts the correct Key ID value
     associated with the Security Association in the IS-IS PDU.  If
     multiple valid and active IS-IS Security Associations exist for a
     given outbound interface at the time an IS-IS PDU is sent, the
     sender may use any of those Security Associations to protect the
     packet.




Bhatia, et al.              Standards Track                     [Page 3]

RFC 5310          IS-IS Generic Crypto Authentication      February 2009


     Using Key IDs makes changing keys while maintaining protocol
     operation convenient.  Each Key ID specifies two independent
     parts: the authentication protocol and the authentication key,
     explained below.  Normally, an implementation would allow the
     network operator to configure a set of keys in a key chain, with
     each key in the chain having a fixed lifetime.  The actual
     operation of these mechanisms is outside the scope of this
     document.

     Note that each Key ID can indicate a key with a different
     authentication protocol.  This allows multiple authentication
     mechanisms to be used at various times without disrupting an IS-IS
     peering, including the introduction of new authentication
     mechanisms.

  o  Authentication Algorithm: This signifies the authentication
     algorithm to be used with the IS-IS SA.  This information is never
     sent in cleartext over the wire.  Because this information is not
     sent on the wire, the implementer chooses an implementation-
     specific representation for this information.  At present, the
     following values are possible: HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-
     256, HMAC-SHA-384, and HMAC-SHA-512.

  o  Authentication Key: This value denotes the cryptographic
     authentication key associated with the IS-IS SA.  The length of
     this key is variable and depends upon the authentication algorithm
     specified by the IS-IS SA.

3.  Authentication Procedures

3.1.  Authentication TLV

  A new authentication code, 3, indicates that the CRYPTO_AUTH
  mechanism described in this document is in use and is inserted in the
  first octet of the existing IS-IS Authentication TLV (10).
















Bhatia, et al.              Standards Track                     [Page 4]

RFC 5310          IS-IS Generic Crypto Authentication      February 2009


                     0                   1
                     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
                     +-+-+-+-+-+-+-+-+
                     |    Type 10    |
                     +-+-+-+-+-+-+-+-+
                     |    Length     |
                     +-+-+-+-+-+-+-+-+
                     |  Auth Type 3  |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |     Key ID                    |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
                     |                               |
                     +                               +
                     | Authentication Data (Variable)|
                     +                               +
                     |                               |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                Figure 1

3.2.  Authentication Process

  When calculating the CRYPTO_AUTH result for Sequence Number PDUs,
  Level 1 Sequence Number PDUs SHALL use the Area Authentication
  string, as in Level 1 Link State PDUs.  Level 2 Sequence Number PDUs
  shall use the domain authentication string, as in Level 2 Link State
  PDUs.

  IS-IS HELLO PDUs SHALL use the Link Level Authentication string,
  which MAY be different from that of Link State PDUs.  The CRYPTO_AUTH
  result for the IS-IS HELLO PDUs SHALL be calculated after the PDU is
  padded to the MTU size, if padding is not disabled.  Implementations
  that support the optional checksum for the Sequence Number PDUs and
  IS-IS HELLO PDUs MUST NOT include the Checksum TLV.

3.3.  Cryptographic Aspects

  In the algorithm description below, the following nomenclature, which
  is consistent with [FIPS-198] is used:


   H    is the specific hashing algorithm (e.g., SHA-256).
   K    is the password for the PDU type as per the International
        Standard ISO/IEC 10589 [ISO].
   Ko   is the cryptographic key used with the hash algorithm.






Bhatia, et al.              Standards Track                     [Page 5]

RFC 5310          IS-IS Generic Crypto Authentication      February 2009


   B    is the block size of H, measured in octets rather than bits.
        Note that B is the internal block size, not the hash size.
             For SHA-1 and SHA-256:   B == 64
             For SHA-384 and SHA-512: B == 128

   L    is the length of the hash, measured in octets rather than bits.

   XOR  is the exclusive-or operation.

   Opad is the hexadecimal value 0x5c repeated B times.
   Ipad is the hexadecimal value 0x36 repeated B times.
   Apad is the hexadecimal value 0x878FE1F3 repeated (L/4) times.

  (1)  Preparation of the Key

       In this application, Ko is always L octets long.

       If the Authentication Key (K) is L octets long, then Ko is equal
       to K.  If the Authentication Key (K) is more than L octets long,
       then Ko is set to H(K).  If the Authentication Key (K) is less
       than L octets long, then Ko is set to the Authentication Key (K)
       with zeros appended to the end of the Authentication Key (K)
       such that Ko is L octets long.

  (2)  First Hash

       First, the IS-IS packet's Authentication Data field is filled
       with the value Apad, and the Authentication Type field is set to
       0x3.

       Then, a first hash, also known as the inner hash, is computed as
       follows:

                First-Hash = H(Ko XOR Ipad || (IS-IS PDU))

  (3)  Second Hash

       Then a second hash, also known as the outer hash, is computed as
       follows:

                Second-Hash = H(Ko XOR Opad || First-Hash)










Bhatia, et al.              Standards Track                     [Page 6]

RFC 5310          IS-IS Generic Crypto Authentication      February 2009


  (4)  Result

       The resulting second hash becomes the authentication data that
       is sent in the Authentication Data field of the IS-IS PDU.  The
       length of the Authentication Data field is always identical to
       the message digest size of the specific hash function H that is
       being used.

       This also means that the use of hash functions with larger
       output sizes will also increase the size of the IS-IS PDU as
       transmitted on the wire.

3.4.  Procedures at the Sending Side

  An appropriate IS-IS SA is selected for use with an outgoing IS-IS
  PDU.  This is done based on the active key at that instant.  If IS-IS
  is unable to find an active key, then the PDU is discarded.

  If IS-IS is able to find the active key, then the key provides the
  authentication algorithm (HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256,
  HMAC-SHA-384, or HMAC-SHA-512) that needs to be applied on the PDU.

  An implementation MUST fill the authentication type and the length
  before the authentication data is computed.  The authentication data
  is computed as explained in the previous section.  The length of the
  TLV is set as per the authentication algorithm that is being used.

  The length is set to 23 for HMAC-SHA-1, 31 for HMAC-SHA-224, 35 for
  HMAC-SHA-256, 51 for HMAC-SHA-384, and 67 for HMAC-SHA-512.  Note
  that two octets have been added to account for the Key ID and one
  octet for the authentication type.

  The Key ID is filled.

  The Checksum and Remaining Lifetime fields are set to zero for the
  Link State Packets (LSPs) before authentication is calculated.

  The result of the authentication algorithm is placed in the
  authentication data, following the Key ID.

  The authentication data for the IS-IS IIH PDUs MUST be computed after
  the IS-IS Hello (IIH) has been padded to the MTU size, if padding is
  not explicitly disabled.








Bhatia, et al.              Standards Track                     [Page 7]

RFC 5310          IS-IS Generic Crypto Authentication      February 2009


3.5.  Procedure at the Receiving Side

  The appropriate IS-IS SA is identified by looking at the Key ID from
  the Authentication TLV 10 from the incoming IS-IS PDU.

  Authentication-algorithm-dependent processing needs to be performed,
  using the algorithm specified by the appropriate IS-IS SA for the
  received packet.

  Before an implementation performs any processing, it needs to save
  the values of the Authentication Value, the Checksum, and the
  Remaining Lifetime fields.

  It should then set the Authentication Value field with Apad and the
  Checksum and Remaining Lifetime fields with zero before the
  authentication data is computed.  The calculated data is compared
  with the received authentication data in the PDU, and the PDU is
  discarded if the two do not match.  In such a case, an error event
  SHOULD be logged.

  An implementation MAY have a transition mode where it includes
  CRYPTO_AUTH information in the PDUs but does not verify this
  information.  This is provided as a transition aid for networks in
  the process of migrating to the new CRYPTO_AUTH-based authentication
  schemes.

4.  Security Considerations

  This document proposes extensions to IS-IS that make it more secure
  than what it is today.  It does not provide confidentiality as a
  routing protocol contains information that does not need to be kept
  secret.  It does, however, provide means to authenticate the sender
  of the PDUs, which is of interest to us.

  It should be noted that authentication method described in this
  document is not being used to authenticate the specific originator of
  a PDU, but is rather being used to confirm that the PDU has indeed
  been issued by an intermediate system that had access to either the
  area or domain password, depending upon the kind of PDU it is.

  The mechanism described here is not perfect and does not need to be
  perfect.  Instead, this mechanism represents a significant increase
  in the work function of an adversary attacking the IS-IS protocol,
  while not causing undue implementation, deployment, or operational
  complexity.






Bhatia, et al.              Standards Track                     [Page 8]

RFC 5310          IS-IS Generic Crypto Authentication      February 2009


  The mechanism detailed in this document does not protect IS-IS
  against replay attacks.  An adversary could in theory replay old IIHs
  and bring down the adjacency [CRYPTO] or replay old Complete Sequence
  Number PDUs (CSNPs) and Partial Sequence Number PDUs (PSNPs) that
  would cause a flood of LSPs in the network.  Using some sort of
  crypto sequence numbers in IS-IS IIHs and CSNP/PSNPs is an option to
  solve this problem.  Discussing this is beyond the scope of this
  document.

  This document states that the remaining lifetime of the LSP MUST be
  set to zero before computing the authentication, thus this field is
  not authenticated.  This field is excluded so that the LSPs may be
  aged by the ISes in between, without requiring re-computation of the
  authentication data.  This can be exploited by an attacker.

  There is a transition mode suggested where routers can ignore the
  CRYPTO_AUTH information carried in the PDUs.  The operator must
  ensure that this mode is only used when migrating to the new
  CRYPTO_AUTH-based authentication scheme, as this leaves the router
  vulnerable to an attack.

  To ensure greater security, the keys used should be changed
  periodically, and implementations MUST be able to store and use more
  than one key at the same time.  Operators should ensure that the
  authentication key is never sent over the network in cleartext via
  any protocol.  Care should also be taken to ensure that the selected
  key is unpredictable, avoiding any keys known to be weak for the
  algorithm in use.  [RFC4086] contains helpful information on both key
  generation techniques and cryptographic randomness.

  It should be noted that the cryptographic strength of the HMAC
  depends upon the cryptographic strength of the underlying hash
  function and on the size and quality of the key.

  If a stronger authentication were believed to be required, then the
  use of a full digital signature [RFC2154] would be an approach that
  should be seriously considered.  It was rejected for this purpose at
  this time because the computational burden of full digital signatures
  is believed to be much higher than is reasonable given the current
  threat environment in operational commercial networks.

5.  Acknowledgments

  The authors would like to thank Hugo Krawczyk, Arjen K. Lenstra (Bell
  Labs), and Eric Grosse (Bell Labs) for educating us on some of the
  finer points related to Crypto Mathematics.





Bhatia, et al.              Standards Track                     [Page 9]

RFC 5310          IS-IS Generic Crypto Authentication      February 2009


  We would also like to thank Bill Burr, Tim Polk, John Kelsey, and
  Morris Dworkin of (US) NIST for review of portions of this document
  that are directly derived from the closely related work on RIPv2
  Cryptographic Authentication [RFC4822].

  We would also like to mention Alfred Hoenes for his careful and
  detailed review during the last call.

  Lastly, we would like to acknowledge Brian and Stephen Eisenberg for
  their continued support.

6.  IANA Considerations

  IANA has registered the value for the CRYPTO_AUTH method in the
  "IS-IS Authentication Type Codes for TLV 10" subregistry established
  by [RFC5304].  The value 3 denotes the CRYPTO_AUTH mechanism for
  authenticating IS-IS PDUs.

   +--------------------------------------------+-------+-------------+
   | Authentication Type Code                   | Value | Reference   |
   +--------------------------------------------+-------+-------------+
   | Cryptographic Authentication (CRYPTO_AUTH) |   3   |  [RFC5310]  |
   +--------------------------------------------+-------+-------------+

7.  References

7.1.  Normative References

  [FIPS-180-3]  US National Institute of Standards & Technology,
                "Secure Hash Standard (SHS)", FIPS PUB 180-3,
                October 2008.

  [FIPS-198]    US National Institute of Standards & Technology, "The
                Keyed-Hash Message Authentication Code (HMAC)", FIPS
                PUB 198, March 2002.

  [ISO]         "Intermediate system to Intermediate system routeing
                information exchange protocol for use in conjunction
                with the Protocol for providing the Connectionless-mode
                Network Service (ISO 8473)", ISO/IEC 10589:1992.

  [RFC1195]     Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
                dual environments", RFC 1195, December 1990.

  [RFC2104]     Krawczk, H., "HMAC: Keyed-Hashing for Message
                Authentication", RFC 2104, February 1997.





Bhatia, et al.              Standards Track                    [Page 10]

RFC 5310          IS-IS Generic Crypto Authentication      February 2009


  [RFC2119]     Bradner, S., "Key words for use in RFCs to Indicate
                Requirement Levels", BCP 14, RFC 2119, February 2001.

  [RFC5304]     Li, T. and R. Atkinson, "Intermediate System to
                Intermediate System (IS-IS) Cryptographic
                Authentication", RFC 5304, October 2008.

7.2.  Informative References

  [CRYPTO]      Vishwas, M., White, R., and M. Bhatia, "Issues with
                existing Cryptographic Protection Methods for Routing
                Protocols", Work in Progress, February 2008.

  [Dobb96a]     Dobbertin, H., "Cryptanalysis of MD5 Compress",
                Technical Report, May 1996.

  [Dobb96b]     Dobbertin, H., "The Status of MD5 After a Recent
                Attack", Cryptobytes, Volume 2, No 2, Summer 1996.

  [RFC2154]     Murphy, S., Badger, M., and B. Wellington, "OSPF with
                Digital Signatures", RFC 2154, June 1997.

  [RFC4086]     Eastlake, D., Schiller, J., and S. Crocker, "Randomness
                Requirements for Security", RFC 4086, June 2005.

  [RFC4822]     Atkinson, R. and M. Fanto, "RIPv2 Cryptographic
                Authentication", RFC 4822, February 2007.

Authors' Addresses

  Manav Bhatia
  Alcatel-Lucent
  Bangalore,
  India

  EMail: [email protected]


  Vishwas Manral
  IP Infusion
  Almora, Uttarakhand
  India

  EMail: [email protected]







Bhatia, et al.              Standards Track                    [Page 11]

RFC 5310          IS-IS Generic Crypto Authentication      February 2009


  Tony Li
  Redback Networks Inc.
  300 Holger Way
  San Jose, CA  95134
  USA

  EMail: [email protected]


  Randall J. Atkinson
  Extreme Networks
  3585  Monroe Street
  Santa Clara, CA  95051
  USA

  EMail: [email protected]


  Russ White
  Cisco Systems
  RTP North Carolina
  USA

  EMail: [email protected]


  Matthew J. Fanto
  Aegis Data Security
  Dearborn, MI
  USA

  EMail: [email protected]



















Bhatia, et al.              Standards Track                    [Page 12]