Network Working Group                                         D. Harkins
Request for Comments: 5297                                Aruba Networks
Category: Informational                                     October 2008


   Synthetic Initialization Vector (SIV) Authenticated Encryption
             Using the Advanced Encryption Standard (AES)

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Abstract

  This memo describes SIV (Synthetic Initialization Vector), a block
  cipher mode of operation.  SIV takes a key, a plaintext, and multiple
  variable-length octet strings that will be authenticated but not
  encrypted.  It produces a ciphertext having the same length as the
  plaintext and a synthetic initialization vector.  Depending on how it
  is used, SIV achieves either the goal of deterministic authenticated
  encryption or the goal of nonce-based, misuse-resistant authenticated
  encryption.



























Hawkins                      Informational                      [Page 1]

RFC 5297                        SIV-AES                     October 2008


Table of Contents

  1. Introduction ....................................................3
     1.1. Background .................................................3
     1.2. Definitions ................................................4
     1.3. Motivation .................................................4
          1.3.1. Key Wrapping ........................................4
          1.3.2. Resistance to Nonce Misuse/Reuse ....................4
          1.3.3. Key Derivation ......................................5
          1.3.4. Robustness versus Performance .......................6
          1.3.5. Conservation of Cryptographic Primitives ............6
  2. Specification of SIV ............................................6
     2.1. Notation ...................................................6
     2.2. Overview ...................................................7
     2.3. Doubling ...................................................7
     2.4. S2V ........................................................8
     2.5. CTR .......................................................10
     2.6. SIV Encrypt ...............................................10
     2.7. SIV Decrypt ...............................................12
  3. Nonce-Based Authenticated Encryption with SIV ..................14
  4. Deterministic Authenticated Encryption with SIV ................15
  5. Optimizations ..................................................15
  6. IANA Considerations ............................................15
     6.1. AEAD_AES_SIV_CMAC_256 .....................................17
     6.2. AEAD_AES_SIV_CMAC_384 .....................................17
     6.3. AEAD_AES_SIV_CMAC_512 .....................................18
  7. Security Considerations ........................................18
  8. Acknowledgments ................................................19
  9. References .....................................................19
     9.1. Normative References ......................................19
     9.2. Informative References ....................................19
  Appendix A.  Test Vectors  ....................................... 22
    A.1.  Deterministic Authenticated Encryption Example ........... 22
    A.2.  Nonce-Based Authenticated Encryption Example ............. 23

















Hawkins                      Informational                      [Page 2]

RFC 5297                        SIV-AES                     October 2008


1.  Introduction

1.1.  Background

  Various attacks have been described (e.g., [BADESP]) when data is
  merely privacy protected and not additionally authenticated or
  integrity protected.  Therefore, combined modes of encryption and
  authentication have been developed ([RFC5116], [RFC3610], [GCM],
  [JUTLA], [OCB]).  These provide conventional authenticated encryption
  when used with a nonce ("a number used once") and typically accept
  additional inputs that are authenticated but not encrypted,
  hereinafter referred to as "associated data" or AD.

  A deterministic, nonce-less, form of authenticated encryption has
  been used to protect the transportation of cryptographic keys (e.g.,
  [X9F1], [RFC3217], [RFC3394]).  This is generally referred to as "Key
  Wrapping".

  This memo describes a new block cipher mode, SIV, that provides both
  nonce-based authenticated encryption as well as deterministic, nonce-
  less key wrapping.  It contains a Pseudo-Random Function (PRF)
  construction called S2V and an encryption/decryption construction,
  called CTR.  SIV was specified by Phillip Rogaway and Thomas
  Shrimpton in [DAE].  The underlying block cipher used herein for both
  S2V and CTR is AES with key lengths of 128 bits, 192 bits, or 256
  bits.  S2V uses AES in Cipher-based Message Authentication Code
  ([CMAC]) mode, CTR uses AES in counter ([MODES]) mode.

  Associated data is data input to an authenticated-encryption mode
  that will be authenticated but not encrypted.  [RFC5116] says that
  associated data can include "addresses, ports, sequence numbers,
  protocol version numbers, and other fields that indicate how the
  plaintext or ciphertext should be handled, forwarded, or processed".
  These are multiple, distinct inputs and may not be contiguous.  Other
  authenticated-encryption cipher modes allow only a single associated
  data input.  Such a limitation may require implementation of a
  scatter/gather form of data marshalling to combine the multiple
  components of the associated data into a single input or may require
  a pre-processing step where the associated data inputs are
  concatenated together.  SIV accepts multiple variable-length octet
  strings (hereinafter referred to as a "vector of strings") as
  associated data inputs.  This obviates the need for data marshalling
  or pre-processing of associated data to package it into a single
  input.

  By allowing associated data to consist of a vector of strings SIV
  also obviates the requirement to encode the length of component
  fields of the associated data when those fields have variable length.



Hawkins                      Informational                      [Page 3]

RFC 5297                        SIV-AES                     October 2008


1.2.  Definitions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

1.3.  Motivation

1.3.1.  Key Wrapping

  A key distribution protocol must protect keys it is distributing.
  This has not always been done correctly.  For example, RADIUS
  [RFC2865] uses Microsoft Point-to-Point Encryption (MPPE) [RFC2548]
  to encrypt a key prior to transmission from server to client.  It
  provides no integrity checking of the encrypted key.  [RADKEY]
  specifies the use of [RFC3394] to wrap a key in a RADIUS request but
  because of the inability to pass associated data, a Hashed Message
  Authentication Code (HMAC) [RFC2104] is necessary to provide
  authentication of the entire request.

  SIV can be used as a drop-in replacement for any specification that
  uses [RFC3394] or [RFC3217], including the aforementioned use.  It is
  a more general purpose solution as it allows for associated data to
  be specified.

1.3.2.  Resistance to Nonce Misuse/Reuse

  The nonce-based authenticated encryption schemes described above are
  susceptible to reuse and/or misuse of the nonce.  Depending on the
  specific scheme there are subtle and critical requirements placed on
  the nonce (see [SP800-38D]).  [GCM] states that it provides
  "excellent security" if its nonce is guaranteed to be distinct but
  provides "no security" otherwise.  Confidentiality guarantees are
  voided if a counter in [RFC3610] is reused.  In many cases,
  guaranteeing no reuse of a nonce/counter/IV is not a problem, but in
  others it will be.

  For example, many applications obtain access to cryptographic
  functions via an application program interface to a cryptographic
  library.  These libraries are typically not stateful and any nonce,
  initialization vector, or counter required by the cipher mode is
  passed to the cryptographic library by the application.  Putting the
  construction of a security-critical datum outside the control of the
  encryption engine places an onerous burden on the application writer
  who may not provide the necessary cryptographic hygiene.  Perhaps his
  random number generator is not very good or maybe an application
  fault causes a counter to be reset.  The fragility of the cipher mode
  may result in its inadvertent misuse.  Also, if one's environment is



Hawkins                      Informational                      [Page 4]

RFC 5297                        SIV-AES                     October 2008


  (knowingly or unknowingly) a virtual machine, it may be possible to
  roll back a virtual state machine and cause nonce reuse thereby
  gutting the security of the authenticated encryption scheme (see
  [VIRT]).

  If the nonce is random, a requirement that it never repeat will limit
  the amount of data that can be safely protected with a single key to
  one block.  More sensibly, a random nonce is required to "almost
  always" be non-repeating, but that will drastically limit the amount
  of data that can be safely protected.

  SIV provides a level of resistance to nonce reuse and misuse.  If the
  nonce is never reused, then the usual notion of nonce-based security
  of an authenticated encryption mode is achieved.  If, however, the
  nonce is reused, authenticity is retained and confidentiality is only
  compromised to the extent that an attacker can determine that the
  same plaintext (and same associated data) was protected with the same
  nonce and key.  See Security Considerations (Section 7).

1.3.3.  Key Derivation

  A PRF is frequently used as a key derivation function (e.g., [WLAN])
  by passing it a key and a single string.  Typically, this single
  string is the concatenation of a series of smaller strings -- for
  example, a label and some context to bind into the derived string.

  These are usually multiple strings but are mapped to a single string
  because of the way PRFs are typically defined -- two inputs: a key
  and data.  Such a crude mapping is inefficient because additional
  data must be included -- the length of variable-length inputs must be
  encoded separately -- and, depending on the PRF, memory allocation
  and copying may be needed.  Also, if only one or two of the inputs
  changed when deriving a new key, it may still be necessary to process
  all of the other constants that preceded it every time the PRF is
  invoked.

  When a PRF is used in this manner its input is a vector of strings
  and not a single string and the PRF should handle the data as such.
  The S2V ("string to vector") PRF construction accepts a vector of
  inputs and provides a more natural mapping of input that does not
  require additional lengths encodings and obviates the memory and
  processing overhead to marshal inputs and their encoded lengths into
  a single string.  Constant inputs to the PRF need only be computed
  once.







Hawkins                      Informational                      [Page 5]

RFC 5297                        SIV-AES                     October 2008


1.3.4.  Robustness versus Performance

  SIV cannot perform at the same high throughput rates that other
  authenticated encryption schemes can (e.g., [GCM] or [OCB]) due to
  the requirement for two passes of the data, but for situations where
  performance is not a limiting factor -- e.g., control plane
  applications -- it can provide a robust alternative, especially when
  considering its resistance to nonce reuse.

1.3.5.  Conservation of Cryptographic Primitives

  The cipher mode described herein can do authenticated encryption, key
  wrapping, key derivation, and serve as a generic message
  authentication algorithm.  It is therefore possible to implement all
  these functions with a single tool, instead of one tool for each
  function.  This is extremely attractive for devices that are memory
  and/or processor constrained and that cannot afford to implement
  multiple cryptographic primitives to accomplish these functions.

2.  Specification of SIV

2.1.  Notation

  SIV and S2V use the following notation:

  len(A)
     returns the number of bits in A.

  pad(X)
     indicates padding of string X, len(X) < 128, out to 128 bits by
     the concatenation of a single bit of 1 followed by as many 0 bits
     as are necessary.

  leftmost(A,n)
     the n most significant bits of A.

  rightmost(A,n)
     the n least significant bits of A.

  A || B
     means concatenation of string A with string B.

  A xor B
     is the exclusive OR operation on two equal length strings, A and
     B.






Hawkins                      Informational                      [Page 6]

RFC 5297                        SIV-AES                     October 2008


  A xorend B
     where len(A) >= len(B), means xoring a string B onto the end of
     string A -- i.e., leftmost(A, len(A)-len(B)) || (rightmost(A,
     len(B)) xor B).

  A bitand B
     is the logical AND operation on two equal length strings, A and B.

  dbl(S)
     is the multiplication of S and 0...010 in the finite field
     represented using the primitive polynomial
     x^128 + x^7 + x^2 + x + 1.  See Doubling (Section 2.3).

  a^b
     indicates a string that is "b" bits, each having the value "a".

  <zero>
     indicates a string that is 128 zero bits.

  <one>
     indicates a string that is 127 zero bits concatenated with a
     single one bit, that is 0^127 || 1^1.

  A/B
     indicates the greatest integer less than or equal to the real-
     valued quotient of A and B.

  E(K,X)
     indicates AES encryption of string X using key K.

2.2.  Overview

  SIV-AES uses AES in CMAC mode (S2V) and in counter mode (CTR).  SIV-
  AES takes either a 256-, 384-, or 512-bit key (which is broken up
  into two equal-sized keys, one for S2V and the other for CTR), a
  variable length plaintext, and multiple variable-length strings
  representing associated data.  Its output is a ciphertext that
  comprises a synthetic initialization vector concatenated with the
  encrypted plaintext.

2.3.  Doubling

  The doubling operation on a 128-bit input string is performed using a
  left-shift of the input followed by a conditional xor operation on
  the result with the constant:

                   00000000 00000000 00000000 00000087




Hawkins                      Informational                      [Page 7]

RFC 5297                        SIV-AES                     October 2008


  The condition under which the xor operation is performed is when the
  bit being shifted off is one.

  Note that this is the same operation used to generate sub-keys for
  CMAC-AES.

2.4.  S2V

  The S2V operation consists of the doubling and xoring of the outputs
  of a pseudo-random function, CMAC, operating over individual strings
  in the input vector: S1, S2, ... , Sn.  It is bootstrapped by
  performing CMAC on a 128-bit string of zeros.  If the length of the
  final string in the vector is greater than or equal to 128 bits, the
  output of the double/xor chain is xored onto the end of the final
  input string.  That result is input to a final CMAC operation to
  produce the output V.  If the length of the final string is less than
  128 bits, the output of the double/xor chain is doubled once more and
  it is xored with the final string padded using the padding function
  pad(X).  That result is input to a final CMAC operation to produce
  the output V.

  S2V with key K on a vector of n inputs S1, S2, ..., Sn-1, Sn, and
  len(Sn) >= 128:

                 +----+       +----+       +------+      +----+
                 | S1 |       | S2 | . . . | Sn-1 |      | Sn |
                 +----+       +----+       +------+      +----+
    <zero>   K     |            |             |             |
      |      |     |            |             |             V
      V      |     V            V             V    /----> xorend
  +-----+    |  +-----+      +-----+       +-----+ |        |
  | AES-|<----->| AES-|  K-->| AES-|  K--->| AES-| |        |
  | CMAC|       | CMAC|      | CMAC|       | CMAC| |        |
  +-----+       +-----+      +-----+       +-----+ |        V
      |           |             |             |    |     +-----+
      |           |             |             |    | K-->| AES-|
      |           |             |             |    |     | CMAC|
      |           |             |             |    |     +-----+
      \-> dbl -> xor -> dbl -> xor -> dbl -> xor---/        |
                                                            V
                                                          +---+
                                                          | V |
                                                          +---+

                                Figure 2






Hawkins                      Informational                      [Page 8]

RFC 5297                        SIV-AES                     October 2008


  S2V with key K on a vector of n inputs S1, S2, ..., Sn-1, Sn, and
  len(Sn) < 128:

               +----+       +----+       +------+      +---------+
               | S1 |       | S2 | . . . | Sn-1 |      | pad(Sn) |
               +----+       +----+       +------+      +---------+
   <zero>  K     |            |             |               |
     |     |     |            |             |               V
     V     |     V            V             V     /------> xor
  +-----+  |  +-----+      +-----+       +-----+  |         |
  | AES-|<--->| AES-|  K-->| AES-|   K-->| AES-|  |         |
  | CMAC|     | CMAC|      | CMAC|       | CMAC|  |         |
  +-----+     +-----+      +-----+       +-----+  |         V
    |           |             |             |     |      +-----+
    |           |             |             |     |  K-->| AES-|
    |           |             |             |     |      | CMAC|
    |           |             |             |     |      +-----+
    \-> dbl -> xor -> dbl -> xor -> dbl -> xor-> dbl        |
                                                            V
                                                          +---+
                                                          | V |
                                                          +---+

                                Figure 3

  Algorithmically S2V can be described as:

     S2V(K, S1, ..., Sn) {
       if n = 0 then
         return V = AES-CMAC(K, <one>)
       fi
       D = AES-CMAC(K, <zero>)
       for i = 1 to n-1 do
         D = dbl(D) xor AES-CMAC(K, Si)
       done
       if len(Sn) >= 128 then
         T = Sn xorend D
       else
         T = dbl(D) xor pad(Sn)
       fi
       return V = AES-CMAC(K, T)
     }









Hawkins                      Informational                      [Page 9]

RFC 5297                        SIV-AES                     October 2008


2.5.  CTR

  CTR is a counter mode of AES.  It takes as input a plaintext P of
  arbitrary length, a key K of length 128, 192, or 256 bits, and a
  counter X that is 128 bits in length, and outputs Z, which represents
  a concatenation of a synthetic initialization vector V and the
  ciphertext C, which is the same length as the plaintext.

  The ciphertext is produced by xoring the plaintext with the first
  len(P) bits of the following string:

                E(K, X) || E(K, X+1) || E(K, X+2) || ...

  Before beginning counter mode, the 31st and 63rd bits (where the
  rightmost bit is the 0th bit) of the counter are cleared.  This
  enables implementations that support native 32-bit (64-bit) addition
  to increment the counter modulo 2^32 (2^64) in a manner that cannot
  be distinguished from 128-bit increments, as long as the number of
  increment operations is limited by an upper bound that safely avoids
  carry to occur out of the respective pre-cleared bit.  More formally,
  for 32-bit addition, the counter is incremented as:

     SALT=leftmost(X,96)

     n=rightmost(X,32)

     X+i = SALT || (n + i mod 2^32).

  For 64-bit addition, the counter is incremented as:

     SALT=leftmost(X,64)

     n=rightmost(X,64)

     X+i = SALT || (n + i mod 2^64).

  Performing 32-bit or 64-bit addition on the counter will limit the
  amount of plaintext that can be safely protected by SIV-AES to 2^39 -
  128 bits or 2^71 - 128 bits, respectively.

2.6.  SIV Encrypt

  SIV-encrypt takes as input a key K of length 256, 384, or 512 bits,
  plaintext of arbitrary length, and a vector of associated data AD[ ]
  where the number of components in the vector is not greater than 126
  (see Section 7).  It produces output, Z, which is the concatenation
  of a 128-bit synthetic initialization vector and ciphertext whose
  length is equal to the length of the plaintext.



Hawkins                      Informational                     [Page 10]

RFC 5297                        SIV-AES                     October 2008


  The key is split into equal halves, K1 = leftmost(K, len(K)/2) and K2
  = rightmost(K, len(K)/2).  K1 is used for S2V and K2 is used for CTR.

  In the encryption mode, the associated data and plaintext represent
  the vector of inputs to S2V, with the plaintext being the last string
  in the vector.  The output of S2V is a synthetic IV that represents
  the initial counter to CTR.

  The encryption construction of SIV is as follows:

   +------+ +------+   +------+              +---+
   | AD 1 | | AD 2 |...| AD n |              | P |
   +------+ +------+   +------+              +---+
      |         |         |                    |
      |         |   ...   |  ------------------|
      \         |        /  /                  |
       \        |       /  / +------------+    |
        \       |      /  /  | K = K1||K2 |    |
         \      |     /  /   +------------+    V
          \     |    /  /      |     |       +-----+
           \    |   /  /   K1  |     |  K2   |     |
            \   |  /  /  ------/     \------>| CTR |
             \  | /  /  /            ------->|     |
              | | | |  |             |       +-----+
              V V V V  V             |          |
            +------------+       +--------+     V
            |    S2V     |------>|   V    |   +----+
            +------------+       +--------+   | C  |
                                     |        +----+
                                     |          |
                                     -----\     |
                                           \    |
                                            \   |
                                             V  V
                                            +-----+
                                            |  Z  |
                                            +-----+

  where the plaintext is P, the associated data is AD1 through ADn, V
  is the synthetic IV, the ciphertext is C, and Z is the output.

                                Figure 8









Hawkins                      Informational                     [Page 11]

RFC 5297                        SIV-AES                     October 2008


  Algorithmically, SIV Encrypt can be described as:

     SIV-ENCRYPT(K, P, AD1, ..., ADn) {
       K1 = leftmost(K, len(K)/2)
       K2 = rightmost(K, len(K)/2)
       V = S2V(K1, AD1, ..., ADn, P)
       Q = V bitand (1^64 || 0^1 || 1^31 || 0^1 || 1^31)
       m = (len(P) + 127)/128

       for i = 0 to m-1 do
         Xi = AES(K2, Q+i)
       done
       X = leftmost(X0 || ... || Xm-1, len(P))
       C = P xor X

       return V || C
     }

  where the key length used by AES in CTR and S2V is len(K)/2 and will
  each be either 128 bits, 192 bits, or 256 bits.

  The 31st and 63rd bit (where the rightmost bit is the 0th) of the
  counter are zeroed out just prior to being used by CTR for
  optimization purposes, see Section 5.

2.7.  SIV Decrypt

  SIV-decrypt takes as input a key K of length 256, 384, or 512 bits,
  Z, which represents a synthetic initialization vector V concatenated
  with a ciphertext C, and a vector of associated data AD[ ] where the
  number of components in the vector is not greater than 126 (see
  Section 7).  It produces either the original plaintext or the special
  symbol FAIL.

  The key is split as specified in Section 2.6

  The synthetic initialization vector acts as the initial counter to
  CTR to decrypt the ciphertext.  The associated data and the output of
  CTR represent a vector of strings that is passed to S2V, with the CTR
  output being the last string in the vector.  The output of S2V is
  then compared against the synthetic IV that accompanied the original
  ciphertext.  If they match, the output from CTR is returned as the
  decrypted and authenticated plaintext; otherwise, the special symbol
  FAIL is returned.







Hawkins                      Informational                     [Page 12]

RFC 5297                        SIV-AES                     October 2008


  The decryption construction of SIV is as follows:

  +------+ +------+   +------+           +---+
  | AD 1 | | AD 2 |...| AD n |           | P |
  +------+ +------+   +------+           +---+
     |        |         |                  ^
     |        |    ...  /                  |
     |        |        /  /----------------|
     |        |       /  /                 |
     \        |      /  /  +------------+  |
      \       |     /  /   | K = K1||k2 |  |
       \      |    /  /    +------------+  |
        \     |   /  /       |   |      +-----+
         \    |  /  /     K1 |   |  K2  |     |
          \   | |  |   /-----/   \----->| CTR |
           \  | |  |  |         ------->|     |
            | | |  |  |         |       +-----+
            V V V  V  V         |         ^
          +-------------+   +--------+    |
          |    S2V      |   |   V    |  +---+
          +-------------+   +--------+  | C |
                |               | ^     +---+
                |               | |       ^
                |               |  \      |
                |               |   \___  |
                V               V       \ |
            +-------+      +---------+ +---+
            |   T   |----->|  if !=  | | Z |
            +-------+      +---------+ +---+
                                |
                                |
                                V
                               FAIL

                                Figure 10
















Hawkins                      Informational                     [Page 13]

RFC 5297                        SIV-AES                     October 2008


  Algorithmically, SIV-Decrypt can be described as:

     SIV-DECRYPT(K, Z, AD1, ..., ADn) {
       V = leftmost(Z, 128)
       C = rightmost(Z, len(Z)-128)
       K1 = leftmost(K, len(K)/2)
       K2 = rightmost(K, len(K)/2)
       Q = V bitand (1^64 || 0^1 || 1^31 || 0^1 || 1^31)

       m = (len(C) + 127)/128
       for i = 0 to m-1 do
         Xi = AES(K2, Q+i)
       done
       X = leftmost(X0 || ... || Xm-1, len(C))
       P = C xor X
       T = S2V(K1, AD1, ..., ADn, P)

       if T = V then
         return P
       else
         return FAIL
       fi
     }

  where the key length used by AES in CTR and S2V is len(K)/2 and will
  each be either 128 bits, 192 bits, or 256 bits.

  The 31st and 63rd bit (where the rightmost bit is the 0th) of the
  counter are zeroed out just prior to being used in CTR mode for
  optimization purposes, see Section 5.

3.  Nonce-Based Authenticated Encryption with SIV

  SIV performs nonce-based authenticated encryption when a component of
  the associated data is a nonce.  For purposes of interoperability the
  final component -- i.e., the string immediately preceding the
  plaintext in the vector input to S2V -- is used for the nonce.  Other
  associated data are optional.  It is up to the specific application
  of SIV to specify how the rest of the associated data are input.

  If the nonce is random, it SHOULD be at least 128 bits in length and
  be harvested from a pool having at least 128 bits of entropy.  A non-
  random source MAY also be used, for instance, a time stamp, or a
  counter.  The definition of a nonce precludes reuse, but SIV is
  resistant to nonce reuse.  See Section 1.3.2 for a discussion on the
  security implications of nonce reuse.





Hawkins                      Informational                     [Page 14]

RFC 5297                        SIV-AES                     October 2008


  It MAY be necessary to transport this nonce with the output generated
  by S2V.

4.  Deterministic Authenticated Encryption with SIV

  When the plaintext to encrypt and authenticate contains data that is
  unpredictable to an adversary -- for example, a secret key -- SIV can
  be used in a deterministic mode to perform "key wrapping".  Because
  S2V allows for associated data and imposes no unnatural size
  restrictions on the data it is protecting, it is a more useful and
  general purpose solution than [RFC3394].  Protocols that use SIV for
  deterministic authenticated encryption (i.e., for more than just
  wrapping of keys) MAY define associated data inputs to SIV.  It is
  not necessary to add a nonce component to the AD in this case.

5.  Optimizations

  Implementations that cannot or do not wish to support addition modulo
  2^128 can take advantage of the fact that the 31st and 63rd bits
  (where the rightmost bit is the 0th bit) in the counter are cleared
  before being used by CTR.  This allows implementations that natively
  support 32-bit or 64-bit addition to increment the counter naturally.
  Of course, in this case, the amount of plaintext that can be safely
  protected by SIV is reduced by a commensurate amount -- addition
  modulo 2^32 limits plaintext to (2^39 - 128) bits, addition modulo
  2^64 limits plaintext to (2^71 - 128) bits.

  It is possible to optimize an implementation of S2V when it is being
  used as a key derivation function (KDF), for example in [WLAN].  This
  is because S2V operates on a vector of distinct strings and typically
  the data passed to a KDF contains constant strings.  Depending on the
  location of variant components of the input different optimizations
  are possible.  The CMACed output of intermediate and invariant
  components can be computed once and cached.  This can then be doubled
  and xored with the running sum to produce the output.  Or an
  intermediate value that represents the doubled and xored output of
  multiple components, up to the variant component, can be computed
  once and cached.

6.  IANA Considerations

  [RFC5116] defines a uniform interface to cipher modes that provide
  nonce-based Authenticated Encryption with Associated Data (AEAD).  It
  does this via a registry of AEAD algorithms.

  The Internet Assigned Numbers Authority (IANA) assigned three entries
  from the AEAD Registry for AES-SIV-CMAC-256 (15), AES-SIV-CMAC-384
  (16), and AES-SIV-CMAC-512 (17) based upon the following AEAD



Hawkins                      Informational                     [Page 15]

RFC 5297                        SIV-AES                     October 2008


  algorithm definitions.  [RFC5116] defines operations in octets, not
  bits.  Limits in this section will therefore be specified in octets.
  The security analysis for each of these algorithms is in [DAE].

  Unfortunately, [RFC5116] restricts AD input to a single component and
  limits the benefit SIV offers for dealing in a natural fashion with
  AD consisting of multiple distinct components.  Therefore, when it is
  required to access SIV through the interface defined in [RFC5116], it
  is necessary to marshal multiple AD inputs into a single string (see
  Section 1.1) prior to invoking SIV.  Note that this requirement is
  not unique to SIV.  All cipher modes using [RFC5116] MUST similarly
  marshal multiple AD inputs into a single string, and any technique
  used for any other AEAD mode (e.g., a scatter/gather technique) can
  be used with SIV.

  [RFC5116] requires AEAD algorithm specifications to include maximal
  limits to the amount of plaintext, the amount of associated data, and
  the size of a nonce that the AEAD algorithm can accept.

  SIV uses AES in counter mode and the security guarantees of SIV would
  be lost if the counter was allowed to repeat.  Since the counter is
  128 bits, a limit to the amount of plaintext that can be safely
  protected by a single invocation of SIV is 2^128 blocks.

  To prevent the possibility of collisions, [CMAC] recommends that no
  more than 2^48 invocations be made to CMAC with the same key.  This
  is not a limit on the amount of data that can be passed to CMAC,
  though.  There is no practical limit to the amount of data that can
  be made to a single invocation of CMAC, and likewise, there is no
  practical limit to the amount of associated data or nonce material
  that can be passed to SIV.

  A collision in the output of S2V would mean the same counter would be
  used with different plaintext in counter mode.  This would void the
  security guarantees of SIV.  The "Birthday Paradox" (see [APPCRY])
  would imply that no more than 2^64 distinct invocations to SIV be
  made with the same key.  It is prudent to follow the example of
  [CMAC] though, and further limit the number of distinct invocations
  of SIV using the same key to 2^48.  Note that [RFC5116] does not
  provide a variable to describe this limit.

  The counter-space for SIV is 2^128.  Each invocation of SIV consumes
  a portion of that counter-space and the amount consumed depends on
  the amount of plaintext being passed to that single invocation.
  Multiple invocations of SIV with the same key can increase the
  possibility of distinct invocations overlapping the counter-space.
  The total amount of plaintext that can be safely protected with a




Hawkins                      Informational                     [Page 16]

RFC 5297                        SIV-AES                     October 2008


  single key is, therefore, a function of the number of distinct
  invocations and the amount of plaintext protected with each
  invocation.

6.1.  AEAD_AES_SIV_CMAC_256

  The AES-SIV-CMAC-256 AEAD algorithm works as specified in Sections
  2.6 and 2.7.  The input and output lengths for AES-SIV-CMAC-256 as
  defined by [RFC5116] are:

  K_LEN  is 32 octets.

  P_MAX  is 2^132 octets.

  A_MAX  is unlimited.

  N_MIN  is 1 octet.

  N_MAX  is unlimited.

  C_MAX  is 2^132 + 16 octets.

  The security implications of nonce reuse and/or misuse are described
  in Section 1.3.2.

6.2.  AEAD_AES_SIV_CMAC_384

  The AES-SIV-CMAC-384 AEAD algorithm works as specified in Sections
  2.6 and 2.7.  The input and output lengths for AES-SIV-CMAC-384 as
  defined by [RFC5116] are:

  K_LEN  is 48 octets.

  P_MAX  is 2^132 octets.

  A_MAX  is unlimited.

  N_MIN  is 1 octet.

  N_MAX  is unlimited.

  C_MAX  is 2^132 + 16 octets.

  The security implications of nonce reuse and/or misuse are described
  in Section 1.3.2.






Hawkins                      Informational                     [Page 17]

RFC 5297                        SIV-AES                     October 2008


6.3.  AEAD_AES_SIV_CMAC_512

  The AES-SIV-CMAC-512 AEAD algorithm works as specified in Sections
  2.6 and 2.7.  The input and output lengths for AES-SIV-CMAC-512 as
  defined by [RFC5116] are:

  K_LEN  is 64 octets.

  P_MAX  is 2^132 octets.

  A_MAX  is unlimited.

  N_MIN  is 1 octet.

  N_MAX  is unlimited.

  C_MAX  is 2^132 + 16 octets.

  The security implications of nonce reuse and/or misuse are described
  in Section 1.3.2.

7.  Security Considerations

  SIV provides confidentiality in the sense that the output of SIV-
  Encrypt is indistinguishable from a random string of bits.  It
  provides authenticity in the sense that an attacker is unable to
  construct a string of bits that will return other than FAIL when
  input to SIV-Decrypt.  A proof of the security of SIV with an "all-
  in-one" notion of security for an authenticated encryption scheme is
  provided in [DAE].

  SIV provides deterministic "key wrapping" when the plaintext contains
  data that is unpredictable to an adversary (for instance, a
  cryptographic key).  Even when this key is made available to an
  attacker the output of SIV-Encrypt is indistinguishable from random
  bits.  Similarly, even when this key is made available to an
  attacker, she is unable to construct a string of bits that when input
  to SIV-Decrypt will return anything other than FAIL.

  When the nonce used in the nonce-based authenticated encryption mode
  of SIV-AES is treated with the care afforded a nonce or counter in
  other conventional nonce-based authenticated encryption schemes --
  i.e., guarantee that it will never be used with the same key for two
  distinct invocations -- then SIV achieves the level of security
  described above.  If, however, the nonce is reused SIV continues to
  provide the level of authenticity described above but with a slightly
  reduced amount of privacy (see Section 1.3.2).




Hawkins                      Informational                     [Page 18]

RFC 5297                        SIV-AES                     October 2008


  If S2V is used as a key derivation function, the secret input MUST be
  generated uniformly at random.  S2V is a pseudo-random function and
  is not suitable for use as a random oracle as defined in [RANDORCL].

  The security bound set by the proof of security of S2V in [DAE]
  depends on the number of vector-based queries made by an adversary
  and the total number of all components in those queries.  The
  security is only proven when the number of components in each query
  is limited to n-1, where n is the blocksize of the underlying pseudo-
  random function.  The underlying pseudo-random function used here is
  based on AES whose blocksize is 128 bits.  Therefore, S2V must not be
  passed more than 127 components.  Since SIV includes the plaintext as
  a component to S2V, that limits the number of components of
  associated data that can be safely passed to SIV to 126.

8.  Acknowledgments

  Thanks to Phil Rogaway for patiently answering numerous questions on
  SIV and S2V and for useful critiques of earlier versions of this
  paper.  Thanks also to David McGrew for numerous helpful comments and
  suggestions for improving this paper.  Thanks to Jouni Malinen for
  reviewing this paper and producing another independent implementation
  of SIV, thereby confirming the correctness of the test vectors.

9.  References

9.1.  Normative References

  [CMAC]      Dworkin, M., "Recommendation for Block Cipher Modes of
              Operation: The CMAC Mode for Authentication", NIST
              Special Pulication 800-38B, May 2005.

  [MODES]     Dworkin, M., "Recommendation for Block Cipher Modes of
              Operation: Methods and Techniques", NIST Special
              Pulication 800-38A, 2001 edition.

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC5116]    McGrew, D., "An Interface and Algorithms for
              Authenticated Encryption", RFC 5116, January 2008.

9.2.  Informative References

  [APPCRY]    Menezes, A., van Oorshot, P., and S. Vanstone, "Handbook
              of Applied Cryptography", CRC Press Series on Discrete
              Mathematics and Its Applications, 1996.




Hawkins                      Informational                     [Page 19]

RFC 5297                        SIV-AES                     October 2008


  [BADESP]    Bellovin, S., "Problem Areas for the IP Security
              Protocols", Proceedings from the 6th Usenix UNIX Security
              Symposium, July 22-25 1996.

  [RFC3610]   Whiting, D., Housley, R., and N. Ferguson, "Counter with
              CBC-MAC (CCM)", RFC 3610, September 2003.

  [DAE]       Rogaway, P. and T. Shrimpton, "Deterministic
              Authenticated Encryption, A Provable-Security Treatment
              of the Key-Wrap Problem", Advances in Cryptology --
              EUROCRYPT '06 St. Petersburg, Russia, 2006.

  [GCM]       McGrew, D. and J. Viega, "The Galois/Counter Mode of
              Operation (GCM)".

  [JUTLA]     Jutla, C., "Encryption Modes With Almost Free Message
              Integrity", Proceedings of the International Conference
              on the Theory and Application of Cryptographic
              Techniques:  Advances in Cryptography.

  [OCB]       Krovetz, T. and P. Rogaway, "The OCB Authenticated
              Encryption Algorithm", Work in Progress, March 2005.

  [RADKEY]    Zorn, G., Zhang, T., Walker, J., and J. Salowey, "RADIUS
              Attributes for the Delivery of Keying Material", Work in
              Progress, April 2007.

  [RANDORCL]  Bellare, M. and P. Rogaway, "Random Oracles are
              Practical:  A Paradigm for Designing Efficient
              Protocols", Proceeding of the First ACM Conference on
              Computer and Communications Security, November 1993.

  [RFC2104]   Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
              Hashing for Message Authentication", RFC 2104, February
              1997.

  [RFC2548]   Zorn, G., "Microsoft Vendor-specific RADIUS Attributes",
              RFC 2548, March 1999.

  [RFC2865]   Rigney, C., Willens, S., Rubens, A., and W. Simpson,
              "Remote Authentication Dial In User Service (RADIUS)",
              RFC 2865, June 2000.

  [RFC3217]   Housley, R., "Triple-DES and RC2 Key Wrapping", RFC 3217,
              December 2001.






Hawkins                      Informational                     [Page 20]

RFC 5297                        SIV-AES                     October 2008


  [RFC3394]   Schaad, J. and R. Housley, "Advanced Encryption Standard
              (AES) Key Wrap Algorithm", RFC 3394, September 2002.

  [SP800-38D] Dworkin, M., "Recommendations for Block Cipher Modes of
              Operation: Galois Counter Mode (GCM) and GMAC", NIST
              Special Pulication 800-38D, June 2007.

  [VIRT]      Garfinkel, T. and M. Rosenblum, "When Virtual is Harder
              than Real: Security Challenges in Virtual Machine Based
              Computing Environments" In 10th Workshop on Hot Topics in
              Operating Systems, May 2005.

  [WLAN]      "Draft Standard for IEEE802.11: Wireless LAN Medium
              Access Control (MAC) and Physical Layer (PHY)
              Specification", 2007.

  [X9F1]      Dworkin, M., "Wrapping of Keys and Associated Data",
              Request for review of key wrap algorithms. Cryptology
              ePrint report 2004/340, 2004. Contents are excerpts from
              a draft standard of the Accredited Standards Committee,
              X9, entitled ANS X9.102.






























Hawkins                      Informational                     [Page 21]

RFC 5297                        SIV-AES                     October 2008


Appendix A.  Test Vectors

  The following test vectors are for the mode defined in Section 6.1.

A.1.  Deterministic Authenticated Encryption Example

  Input:
  -----
  Key:
          fffefdfc fbfaf9f8 f7f6f5f4 f3f2f1f0
          f0f1f2f3 f4f5f6f7 f8f9fafb fcfdfeff

  AD:
          10111213 14151617 18191a1b 1c1d1e1f
          20212223 24252627

  Plaintext:
          11223344 55667788 99aabbcc ddee

  S2V-CMAC-AES
  ------------
  CMAC(zero):
          0e04dfaf c1efbf04 01405828 59bf073a

  double():
          1c09bf5f 83df7e08 0280b050 b37e0e74

  CMAC(ad):
          f1f922b7 f5193ce6 4ff80cb4 7d93f23b

  xor:
          edf09de8 76c642ee 4d78bce4 ceedfc4f

  double():
          dbe13bd0 ed8c85dc 9af179c9 9ddbf819

  pad:
          11223344 55667788 99aabbcc ddee8000

  xor:
          cac30894 b8eaf254 035bc205 40357819

  CMAC(final):
          85632d07 c6e8f37f 950acd32 0a2ecc93







Hawkins                      Informational                     [Page 22]

RFC 5297                        SIV-AES                     October 2008


  CTR-AES
  -------
  CTR:
          85632d07 c6e8f37f 150acd32 0a2ecc93

  E(K,CTR):
          51e218d2 c5a2ab8c 4345c4a6 23b2f08f

  ciphertext:
          40c02b96 90c4dc04 daef7f6a fe5c

  output
  ------
  IV || C:
          85632d07 c6e8f37f 950acd32 0a2ecc93
          40c02b96 90c4dc04 daef7f6a fe5c

A.2.  Nonce-Based Authenticated Encryption Example

  Input:
  -----
  Key:
          7f7e7d7c 7b7a7978 77767574 73727170
          40414243 44454647 48494a4b 4c4d4e4f

  AD1:
          00112233 44556677 8899aabb ccddeeff
          deaddada deaddada ffeeddcc bbaa9988
          77665544 33221100

  AD2:
          10203040 50607080 90a0

  Nonce:
          09f91102 9d74e35b d84156c5 635688c0

  Plaintext:
          74686973 20697320 736f6d65 20706c61
          696e7465 78742074 6f20656e 63727970
          74207573 696e6720 5349562d 414553











Hawkins                      Informational                     [Page 23]

RFC 5297                        SIV-AES                     October 2008


  S2V-CMAC-AES
  ------------
  CMAC(zero):
          c8b43b59 74960e7c e6a5dd85 231e591a

  double():
          916876b2 e92c1cf9 cd4bbb0a 463cb2b3

  CMAC(ad1)
          3c9b689a b41102e4 80954714 1dd0d15a

  xor:
          adf31e28 5d3d1e1d 4ddefc1e 5bec63e9

  double():
          5be63c50 ba7a3c3a 9bbdf83c b7d8c755

  CMAC(ad2)
          d98c9b0b e42cb2d7 aa98478e d11eda1b

  xor:
          826aa75b 5e568eed 3125bfb2 66c61d4e

  double():
          04d54eb6 bcad1dda 624b7f64 cd8c3a1b

  CMAC(nonce)
          128c62a1 ce3747a8 372c1c05 a538b96d

  xor:
          16592c17 729a5a72 55676361 68b48376

  xorend:
          74686973 20697320 736f6d65 20706c61
          696e7465 78742074 6f20656e 63727966
          2d0c6201 f3341575 342a3745 f5c625

  CMAC(final)
          7bdb6e3b 432667eb 06f4d14b ff2fbd0f












Hawkins                      Informational                     [Page 24]

RFC 5297                        SIV-AES                     October 2008


  CTR-AES
  -------
  CTR:
          7bdb6e3b 432667eb 06f4d14b 7f2fbd0f

  E(K,CTR):
          bff8665c fdd73363 550f7400 e8f9d376

  CTR+1:
          7bdb6e3b 432667eb 06f4d14b 7f2fbd10

  E(K,CTR+1):
          b2c9088e 713b8617 d8839226 d9f88159

  CTR+2
          7bdb6e3b 432667eb 06f4d14b 7f2fbd11

  E(K,CTR+2):
          9e44d827 234949bc 1b12348e bc195ec7

  ciphertext:
          cb900f2f ddbe4043 26601965 c889bf17
          dba77ceb 094fa663 b7a3f748 ba8af829
          ea64ad54 4a272e9c 485b62a3 fd5c0d

  output
  ------
  IV || C:
          7bdb6e3b 432667eb 06f4d14b ff2fbd0f
          cb900f2f ddbe4043 26601965 c889bf17
          dba77ceb 094fa663 b7a3f748 ba8af829
          ea64ad54 4a272e9c 485b62a3 fd5c0d

Author's Address

  Dan Harkins
  Aruba Networks

  EMail: [email protected]












Hawkins                      Informational                     [Page 25]

RFC 5297                        SIV-AES                     October 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Hawkins                      Informational                     [Page 26]