Network Working Group                                          D. Cooper
Request for Comments: 5280                                          NIST
Obsoletes: 3280, 4325, 4630                                 S. Santesson
Category: Standards Track                                      Microsoft
                                                             S. Farrell
                                                 Trinity College Dublin
                                                              S. Boeyen
                                                                Entrust
                                                             R. Housley
                                                         Vigil Security
                                                                W. Polk
                                                                   NIST
                                                               May 2008


        Internet X.509 Public Key Infrastructure Certificate
            and Certificate Revocation List (CRL) Profile

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This memo profiles the X.509 v3 certificate and X.509 v2 certificate
  revocation list (CRL) for use in the Internet.  An overview of this
  approach and model is provided as an introduction.  The X.509 v3
  certificate format is described in detail, with additional
  information regarding the format and semantics of Internet name
  forms.  Standard certificate extensions are described and two
  Internet-specific extensions are defined.  A set of required
  certificate extensions is specified.  The X.509 v2 CRL format is
  described in detail along with standard and Internet-specific
  extensions.  An algorithm for X.509 certification path validation is
  described.  An ASN.1 module and examples are provided in the
  appendices.











Cooper, et al.              Standards Track                     [Page 1]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


Table of Contents

  1. Introduction ....................................................4
  2. Requirements and Assumptions ....................................6
     2.1. Communication and Topology .................................7
     2.2. Acceptability Criteria .....................................7
     2.3. User Expectations ..........................................7
     2.4. Administrator Expectations .................................8
  3. Overview of Approach ............................................8
     3.1. X.509 Version 3 Certificate ................................9
     3.2. Certification Paths and Trust .............................10
     3.3. Revocation ................................................13
     3.4. Operational Protocols .....................................14
     3.5. Management Protocols ......................................14
  4. Certificate and Certificate Extensions Profile .................16
     4.1. Basic Certificate Fields ..................................16
          4.1.1. Certificate Fields .................................17
                 4.1.1.1. tbsCertificate ............................18
                 4.1.1.2. signatureAlgorithm ........................18
                 4.1.1.3. signatureValue ............................18
          4.1.2. TBSCertificate .....................................18
                 4.1.2.1. Version ...................................19
                 4.1.2.2. Serial Number .............................19
                 4.1.2.3. Signature .................................19
                 4.1.2.4. Issuer ....................................20
                 4.1.2.5. Validity ..................................22
                          4.1.2.5.1. UTCTime ........................23
                          4.1.2.5.2. GeneralizedTime ................23
                 4.1.2.6. Subject ...................................23
                 4.1.2.7. Subject Public Key Info ...................25
                 4.1.2.8. Unique Identifiers ........................25
                 4.1.2.9. Extensions ................................26
     4.2. Certificate Extensions ....................................26
          4.2.1. Standard Extensions ................................27
                 4.2.1.1. Authority Key Identifier ..................27
                 4.2.1.2. Subject Key Identifier ....................28
                 4.2.1.3. Key Usage .................................29
                 4.2.1.4. Certificate Policies ......................32
                 4.2.1.5. Policy Mappings ...........................35
                 4.2.1.6. Subject Alternative Name ..................35
                 4.2.1.7. Issuer Alternative Name ...................38
                 4.2.1.8. Subject Directory Attributes ..............39
                 4.2.1.9. Basic Constraints .........................39
                 4.2.1.10. Name Constraints .........................40
                 4.2.1.11. Policy Constraints .......................43
                 4.2.1.12. Extended Key Usage .......................44
                 4.2.1.13. CRL Distribution Points ..................45
                 4.2.1.14. Inhibit anyPolicy ........................48



Cooper, et al.              Standards Track                     [Page 2]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


                 4.2.1.15. Freshest CRL (a.k.a. Delta CRL
                           Distribution Point) ......................48
          4.2.2. Private Internet Extensions ........................49
                 4.2.2.1. Authority Information Access ..............49
                 4.2.2.2. Subject Information Access ................51
  5. CRL and CRL Extensions Profile .................................54
     5.1. CRL Fields ................................................55
          5.1.1. CertificateList Fields .............................56
                 5.1.1.1. tbsCertList ...............................56
                 5.1.1.2. signatureAlgorithm ........................57
                 5.1.1.3. signatureValue ............................57
          5.1.2. Certificate List "To Be Signed" ....................58
                 5.1.2.1. Version ...................................58
                 5.1.2.2. Signature .................................58
                 5.1.2.3. Issuer Name ...............................58
                 5.1.2.4. This Update ...............................58
                 5.1.2.5. Next Update ...............................59
                 5.1.2.6. Revoked Certificates ......................59
                 5.1.2.7. Extensions ................................60
     5.2. CRL Extensions ............................................60
          5.2.1. Authority Key Identifier ...........................60
          5.2.2. Issuer Alternative Name ............................60
          5.2.3. CRL Number .........................................61
          5.2.4. Delta CRL Indicator ................................62
          5.2.5. Issuing Distribution Point .........................65
          5.2.6. Freshest CRL (a.k.a. Delta CRL Distribution
                 Point) .............................................67
          5.2.7. Authority Information Access .......................67
     5.3. CRL Entry Extensions ......................................69
          5.3.1. Reason Code ........................................69
          5.3.2. Invalidity Date ....................................70
          5.3.3. Certificate Issuer .................................70
  6. Certification Path Validation ..................................71
     6.1. Basic Path Validation .....................................72
          6.1.1. Inputs .............................................75
          6.1.2. Initialization .....................................77
          6.1.3. Basic Certificate Processing .......................80
          6.1.4. Preparation for Certificate i+1 ....................84
          6.1.5. Wrap-Up Procedure ..................................87
          6.1.6. Outputs ............................................89
     6.2. Using the Path Validation Algorithm .......................89
     6.3. CRL Validation ............................................90
          6.3.1. Revocation Inputs ..................................91
          6.3.2. Initialization and Revocation State Variables ......91
          6.3.3. CRL Processing .....................................92
  7. Processing Rules for Internationalized Names ...................95
     7.1. Internationalized Names in Distinguished Names ............96
     7.2. Internationalized Domain Names in GeneralName .............97



Cooper, et al.              Standards Track                     [Page 3]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     7.3. Internationalized Domain Names in Distinguished Names .....98
     7.4. Internationalized Resource Identifiers ....................98
     7.5. Internationalized Electronic Mail Addresses ..............100
  8. Security Considerations .......................................100
  9. IANA Considerations ...........................................105
  10. Acknowledgments ..............................................105
  11. References ...................................................105
     11.1. Normative References ....................................105
     11.2. Informative References ..................................107
  Appendix A.  Pseudo-ASN.1 Structures and OIDs ....................110
     A.1. Explicitly Tagged Module, 1988 Syntax ....................110
     A.2. Implicitly Tagged Module, 1988 Syntax ....................125
  Appendix B. ASN.1 Notes ..........................................133
  Appendix C. Examples .............................................136
     C.1. RSA Self-Signed Certificate ..............................137
     C.2. End Entity Certificate Using RSA .........................140
     C.3. End Entity Certificate Using DSA .........................143
     C.4. Certificate Revocation List ..............................147

1.  Introduction

  This specification is one part of a family of standards for the X.509
  Public Key Infrastructure (PKI) for the Internet.

  This specification profiles the format and semantics of certificates
  and certificate revocation lists (CRLs) for the Internet PKI.
  Procedures are described for processing of certification paths in the
  Internet environment.  Finally, ASN.1 modules are provided in the
  appendices for all data structures defined or referenced.

  Section 2 describes Internet PKI requirements and the assumptions
  that affect the scope of this document.  Section 3 presents an
  architectural model and describes its relationship to previous IETF
  and ISO/IEC/ITU-T standards.  In particular, this document's
  relationship with the IETF PEM specifications and the ISO/IEC/ITU-T
  X.509 documents is described.

  Section 4 profiles the X.509 version 3 certificate, and Section 5
  profiles the X.509 version 2 CRL.  The profiles include the
  identification of ISO/IEC/ITU-T and ANSI extensions that may be
  useful in the Internet PKI.  The profiles are presented in the 1988
  Abstract Syntax Notation One (ASN.1) rather than the 1997 ASN.1
  syntax used in the most recent ISO/IEC/ITU-T standards.

  Section 6 includes certification path validation procedures.  These
  procedures are based upon the ISO/IEC/ITU-T definition.
  Implementations are REQUIRED to derive the same results but are not
  required to use the specified procedures.



Cooper, et al.              Standards Track                     [Page 4]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  Procedures for identification and encoding of public key materials
  and digital signatures are defined in [RFC3279], [RFC4055], and
  [RFC4491].  Implementations of this specification are not required to
  use any particular cryptographic algorithms.  However, conforming
  implementations that use the algorithms identified in [RFC3279],
  [RFC4055], and [RFC4491] MUST identify and encode the public key
  materials and digital signatures as described in those
  specifications.

  Finally, three appendices are provided to aid implementers.  Appendix
  A contains all ASN.1 structures defined or referenced within this
  specification.  As above, the material is presented in the 1988
  ASN.1.  Appendix B contains notes on less familiar features of the
  ASN.1 notation used within this specification.  Appendix C contains
  examples of conforming certificates and a conforming CRL.

  This specification obsoletes [RFC3280].  Differences from RFC 3280
  are summarized below:

     * Enhanced support for internationalized names is specified in
       Section 7, with rules for encoding and comparing
       Internationalized Domain Names, Internationalized Resource
       Identifiers (IRIs), and distinguished names.  These rules are
       aligned with comparison rules established in current RFCs,
       including [RFC3490], [RFC3987], and [RFC4518].

     * Sections 4.1.2.4 and 4.1.2.6 incorporate the conditions for
       continued use of legacy text encoding schemes that were
       specified in [RFC4630].  Where in use by an established PKI,
       transition to UTF8String could cause denial of service based on
       name chaining failures or incorrect processing of name
       constraints.

     * Section 4.2.1.4 in RFC 3280, which specified the
       privateKeyUsagePeriod certificate extension but deprecated its
       use, was removed.  Use of this ISO standard extension is neither
       deprecated nor recommended for use in the Internet PKI.

     * Section 4.2.1.5 recommends marking the policy mappings extension
       as critical.  RFC 3280 required that the policy mappings
       extension be marked as non-critical.

     * Section 4.2.1.11 requires marking the policy constraints
       extension as critical.  RFC 3280 permitted the policy
       constraints extension to be marked as critical or non-critical.

     * The Authority Information Access (AIA) CRL extension, as
       specified in [RFC4325], was added as Section 5.2.7.



Cooper, et al.              Standards Track                     [Page 5]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     * Sections 5.2 and 5.3 clarify the rules for handling unrecognized
       CRL extensions and CRL entry extensions, respectively.

     * Section 5.3.2 in RFC 3280, which specified the
       holdInstructionCode CRL entry extension, was removed.

     * The path validation algorithm specified in Section 6 no longer
       tracks the criticality of the certificate policies extensions in
       a chain of certificates.  In RFC 3280, this information was
       returned to a relying party.

     * The Security Considerations section addresses the risk of
       circular dependencies arising from the use of https or similar
       schemes in the CRL distribution points, authority information
       access, or subject information access extensions.

     * The Security Considerations section addresses risks associated
       with name ambiguity.

     * The Security Considerations section references RFC 4210 for
       procedures to signal changes in CA operations.

  The ASN.1 modules in Appendix A are unchanged from RFC 3280, except
  that ub-emailaddress-length was changed from 128 to 255 in order to
  align with PKCS #9 [RFC2985].

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  Requirements and Assumptions

  The goal of this specification is to develop a profile to facilitate
  the use of X.509 certificates within Internet applications for those
  communities wishing to make use of X.509 technology.  Such
  applications may include WWW, electronic mail, user authentication,
  and IPsec.  In order to relieve some of the obstacles to using X.509
  certificates, this document defines a profile to promote the
  development of certificate management systems, development of
  application tools, and interoperability determined by policy.

  Some communities will need to supplement, or possibly replace, this
  profile in order to meet the requirements of specialized application
  domains or environments with additional authorization, assurance, or
  operational requirements.  However, for basic applications, common
  representations of frequently used attributes are defined so that





Cooper, et al.              Standards Track                     [Page 6]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  application developers can obtain necessary information without
  regard to the issuer of a particular certificate or certificate
  revocation list (CRL).

  A certificate user should review the certificate policy generated by
  the certification authority (CA) before relying on the authentication
  or non-repudiation services associated with the public key in a
  particular certificate.  To this end, this standard does not
  prescribe legally binding rules or duties.

  As supplemental authorization and attribute management tools emerge,
  such as attribute certificates, it may be appropriate to limit the
  authenticated attributes that are included in a certificate.  These
  other management tools may provide more appropriate methods of
  conveying many authenticated attributes.

2.1.  Communication and Topology

  The users of certificates will operate in a wide range of
  environments with respect to their communication topology, especially
  users of secure electronic mail.  This profile supports users without
  high bandwidth, real-time IP connectivity, or high connection
  availability.  In addition, the profile allows for the presence of
  firewall or other filtered communication.

  This profile does not assume the deployment of an X.500 directory
  system [X.500] or a Lightweight Directory Access Protocol (LDAP)
  directory system [RFC4510].  The profile does not prohibit the use of
  an X.500 directory or an LDAP directory; however, any means of
  distributing certificates and certificate revocation lists (CRLs) may
  be used.

2.2.  Acceptability Criteria

  The goal of the Internet Public Key Infrastructure (PKI) is to meet
  the needs of deterministic, automated identification, authentication,
  access control, and authorization functions.  Support for these
  services determines the attributes contained in the certificate as
  well as the ancillary control information in the certificate such as
  policy data and certification path constraints.

2.3.  User Expectations

  Users of the Internet PKI are people and processes who use client
  software and are the subjects named in certificates.  These uses
  include readers and writers of electronic mail, the clients for WWW
  browsers, WWW servers, and the key manager for IPsec within a router.
  This profile recognizes the limitations of the platforms these users



Cooper, et al.              Standards Track                     [Page 7]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  employ and the limitations in sophistication and attentiveness of the
  users themselves.  This manifests itself in minimal user
  configuration responsibility (e.g., trusted CA keys, rules), explicit
  platform usage constraints within the certificate, certification path
  constraints that shield the user from many malicious actions, and
  applications that sensibly automate validation functions.

2.4.  Administrator Expectations

  As with user expectations, the Internet PKI profile is structured to
  support the individuals who generally operate CAs.  Providing
  administrators with unbounded choices increases the chances that a
  subtle CA administrator mistake will result in broad compromise.
  Also, unbounded choices greatly complicate the software that process
  and validate the certificates created by the CA.

3.  Overview of Approach

  Following is a simplified view of the architectural model assumed by
  the Public-Key Infrastructure using X.509 (PKIX) specifications.

  The components in this model are:

  end entity: user of PKI certificates and/or end user system that is
              the subject of a certificate;

  CA:         certification authority;

  RA:         registration authority, i.e., an optional system to which
              a CA delegates certain management functions;

  CRL issuer: a system that generates and signs CRLs; and

  repository: a system or collection of distributed systems that stores
              certificates and CRLs and serves as a means of
              distributing these certificates and CRLs to end entities.

  CAs are responsible for indicating the revocation status of the
  certificates that they issue.  Revocation status information may be
  provided using the Online Certificate Status Protocol (OCSP)
  [RFC2560], certificate revocation lists (CRLs), or some other
  mechanism.  In general, when revocation status information is
  provided using CRLs, the CA is also the CRL issuer.  However, a CA
  may delegate the responsibility for issuing CRLs to a different
  entity.

  Note that an Attribute Authority (AA) might also choose to delegate
  the publication of CRLs to a CRL issuer.



Cooper, et al.              Standards Track                     [Page 8]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  +---+
  | C |                       +------------+
  | e | <-------------------->| End entity |
  | r |       Operational     +------------+
  | t |       transactions          ^
  | i |      and management         |  Management
  | f |       transactions          |  transactions        PKI
  | i |                             |                     users
  | c |                             v
  | a | =======================  +--+------------+  ==============
  | t |                          ^               ^
  | e |                          |               |         PKI
  |   |                          v               |      management
  | & |                       +------+           |       entities
  |   | <---------------------|  RA  |<----+     |
  | C |  Publish certificate  +------+     |     |
  | R |                                    |     |
  | L |                                    |     |
  |   |                                    v     v
  | R |                                +------------+
  | e | <------------------------------|     CA     |
  | p |   Publish certificate          +------------+
  | o |   Publish CRL                     ^      ^
  | s |                                   |      |  Management
  | i |                +------------+     |      |  transactions
  | t | <--------------| CRL Issuer |<----+      |
  | o |   Publish CRL  +------------+            v
  | r |                                      +------+
  | y |                                      |  CA  |
  +---+                                      +------+

                     Figure 1. PKI Entities

3.1.  X.509 Version 3 Certificate

  Users of a public key require confidence that the associated private
  key is owned by the correct remote subject (person or system) with
  which an encryption or digital signature mechanism will be used.
  This confidence is obtained through the use of public key
  certificates, which are data structures that bind public key values
  to subjects.  The binding is asserted by having a trusted CA
  digitally sign each certificate.  The CA may base this assertion upon
  technical means (a.k.a., proof of possession through a challenge-
  response protocol), presentation of the private key, or on an
  assertion by the subject.  A certificate has a limited valid
  lifetime, which is indicated in its signed contents.  Because a
  certificate's signature and timeliness can be independently checked
  by a certificate-using client, certificates can be distributed via



Cooper, et al.              Standards Track                     [Page 9]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  untrusted communications and server systems, and can be cached in
  unsecured storage in certificate-using systems.

  ITU-T X.509 (formerly CCITT X.509) or ISO/IEC 9594-8, which was first
  published in 1988 as part of the X.500 directory recommendations,
  defines a standard certificate format [X.509].  The certificate
  format in the 1988 standard is called the version 1 (v1) format.
  When X.500 was revised in 1993, two more fields were added, resulting
  in the version 2 (v2) format.

  The Internet Privacy Enhanced Mail (PEM) RFCs, published in 1993,
  include specifications for a public key infrastructure based on X.509
  v1 certificates [RFC1422].  The experience gained in attempts to
  deploy RFC 1422 made it clear that the v1 and v2 certificate formats
  were deficient in several respects.  Most importantly, more fields
  were needed to carry information that PEM design and implementation
  experience had proven necessary.  In response to these new
  requirements, the ISO/IEC, ITU-T, and ANSI X9 developed the X.509
  version 3 (v3) certificate format.  The v3 format extends the v2
  format by adding provision for additional extension fields.
  Particular extension field types may be specified in standards or may
  be defined and registered by any organization or community.  In June
  1996, standardization of the basic v3 format was completed [X.509].

  ISO/IEC, ITU-T, and ANSI X9 have also developed standard extensions
  for use in the v3 extensions field [X.509][X9.55].  These extensions
  can convey such data as additional subject identification
  information, key attribute information, policy information, and
  certification path constraints.

  However, the ISO/IEC, ITU-T, and ANSI X9 standard extensions are very
  broad in their applicability.  In order to develop interoperable
  implementations of X.509 v3 systems for Internet use, it is necessary
  to specify a profile for use of the X.509 v3 extensions tailored for
  the Internet.  It is one goal of this document to specify a profile
  for Internet WWW, electronic mail, and IPsec applications.
  Environments with additional requirements may build on this profile
  or may replace it.

3.2.  Certification Paths and Trust

  A user of a security service requiring knowledge of a public key
  generally needs to obtain and validate a certificate containing the
  required public key.  If the public key user does not already hold an
  assured copy of the public key of the CA that signed the certificate,
  the CA's name, and related information (such as the validity period
  or name constraints), then it might need an additional certificate to
  obtain that public key.  In general, a chain of multiple certificates



Cooper, et al.              Standards Track                    [Page 10]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  may be needed, comprising a certificate of the public key owner (the
  end entity) signed by one CA, and zero or more additional
  certificates of CAs signed by other CAs.  Such chains, called
  certification paths, are required because a public key user is only
  initialized with a limited number of assured CA public keys.

  There are different ways in which CAs might be configured in order
  for public key users to be able to find certification paths.  For
  PEM, RFC 1422 defined a rigid hierarchical structure of CAs.  There
  are three types of PEM certification authority:

     (a)  Internet Policy Registration Authority (IPRA):  This
          authority, operated under the auspices of the Internet
          Society, acts as the root of the PEM certification hierarchy
          at level 1.  It issues certificates only for the next level
          of authorities, PCAs.  All certification paths start with the
          IPRA.

     (b)  Policy Certification Authorities (PCAs):  PCAs are at level 2
          of the hierarchy, each PCA being certified by the IPRA.  A
          PCA shall establish and publish a statement of its policy
          with respect to certifying users or subordinate certification
          authorities.  Distinct PCAs aim to satisfy different user
          needs.  For example, one PCA (an organizational PCA) might
          support the general electronic mail needs of commercial
          organizations, and another PCA (a high-assurance PCA) might
          have a more stringent policy designed for satisfying legally
          binding digital signature requirements.

     (c)  Certification Authorities (CAs):  CAs are at level 3 of the
          hierarchy and can also be at lower levels.  Those at level 3
          are certified by PCAs.  CAs represent, for example,
          particular organizations, particular organizational units
          (e.g., departments, groups, sections), or particular
          geographical areas.

  RFC 1422 furthermore has a name subordination rule, which requires
  that a CA can only issue certificates for entities whose names are
  subordinate (in the X.500 naming tree) to the name of the CA itself.
  The trust associated with a PEM certification path is implied by the
  PCA name.  The name subordination rule ensures that CAs below the PCA
  are sensibly constrained as to the set of subordinate entities they
  can certify (e.g., a CA for an organization can only certify entities
  in that organization's name tree).  Certificate user systems are able
  to mechanically check that the name subordination rule has been
  followed.





Cooper, et al.              Standards Track                    [Page 11]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  RFC 1422 uses the X.509 v1 certificate format.  The limitations of
  X.509 v1 required imposition of several structural restrictions to
  clearly associate policy information or restrict the utility of
  certificates.  These restrictions included:

     (a)  a pure top-down hierarchy, with all certification paths
          starting from IPRA;

     (b)  a naming subordination rule restricting the names of a CA's
          subjects; and

     (c)  use of the PCA concept, which requires knowledge of
          individual PCAs to be built into certificate chain
          verification logic.  Knowledge of individual PCAs was
          required to determine if a chain could be accepted.

  With X.509 v3, most of the requirements addressed by RFC 1422 can be
  addressed using certificate extensions, without a need to restrict
  the CA structures used.  In particular, the certificate extensions
  relating to certificate policies obviate the need for PCAs and the
  constraint extensions obviate the need for the name subordination
  rule.  As a result, this document supports a more flexible
  architecture, including:

     (a)  Certification paths start with a public key of a CA in a
          user's own domain, or with the public key of the top of a
          hierarchy.  Starting with the public key of a CA in a user's
          own domain has certain advantages.  In some environments, the
          local domain is the most trusted.

     (b)  Name constraints may be imposed through explicit inclusion of
          a name constraints extension in a certificate, but are not
          required.

     (c)  Policy extensions and policy mappings replace the PCA
          concept, which permits a greater degree of automation.  The
          application can determine if the certification path is
          acceptable based on the contents of the certificates instead
          of a priori knowledge of PCAs.  This permits automation of
          certification path processing.

  X.509 v3 also includes an extension that identifies the subject of a
  certificate as being either a CA or an end entity, reducing the
  reliance on out-of-band information demanded in PEM.

  This specification covers two classes of certificates: CA
  certificates and end entity certificates.  CA certificates may be
  further divided into three classes: cross-certificates, self-issued



Cooper, et al.              Standards Track                    [Page 12]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  certificates, and self-signed certificates.  Cross-certificates are
  CA certificates in which the issuer and subject are different
  entities.  Cross-certificates describe a trust relationship between
  the two CAs.  Self-issued certificates are CA certificates in which
  the issuer and subject are the same entity.  Self-issued certificates
  are generated to support changes in policy or operations.  Self-
  signed certificates are self-issued certificates where the digital
  signature may be verified by the public key bound into the
  certificate.  Self-signed certificates are used to convey a public
  key for use to begin certification paths.  End entity certificates
  are issued to subjects that are not authorized to issue certificates.

3.3.  Revocation

  When a certificate is issued, it is expected to be in use for its
  entire validity period.  However, various circumstances may cause a
  certificate to become invalid prior to the expiration of the validity
  period.  Such circumstances include change of name, change of
  association between subject and CA (e.g., an employee terminates
  employment with an organization), and compromise or suspected
  compromise of the corresponding private key.  Under such
  circumstances, the CA needs to revoke the certificate.

  X.509 defines one method of certificate revocation.  This method
  involves each CA periodically issuing a signed data structure called
  a certificate revocation list (CRL).  A CRL is a time-stamped list
  identifying revoked certificates that is signed by a CA or CRL issuer
  and made freely available in a public repository.  Each revoked
  certificate is identified in a CRL by its certificate serial number.
  When a certificate-using system uses a certificate (e.g., for
  verifying a remote user's digital signature), that system not only
  checks the certificate signature and validity but also acquires a
  suitably recent CRL and checks that the certificate serial number is
  not on that CRL.  The meaning of "suitably recent" may vary with
  local policy, but it usually means the most recently issued CRL.  A
  new CRL is issued on a regular periodic basis (e.g., hourly, daily,
  or weekly).  An entry is added to the CRL as part of the next update
  following notification of revocation.  An entry MUST NOT be removed
  from the CRL until it appears on one regularly scheduled CRL issued
  beyond the revoked certificate's validity period.

  An advantage of this revocation method is that CRLs may be
  distributed by exactly the same means as certificates themselves,
  namely, via untrusted servers and untrusted communications.

  One limitation of the CRL revocation method, using untrusted
  communications and servers, is that the time granularity of
  revocation is limited to the CRL issue period.  For example, if a



Cooper, et al.              Standards Track                    [Page 13]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  revocation is reported now, that revocation will not be reliably
  notified to certificate-using systems until all currently issued CRLs
  are scheduled to be updated -- this may be up to one hour, one day,
  or one week depending on the frequency that CRLs are issued.

  As with the X.509 v3 certificate format, in order to facilitate
  interoperable implementations from multiple vendors, the X.509 v2 CRL
  format needs to be profiled for Internet use.  It is one goal of this
  document to specify that profile.  However, this profile does not
  require the issuance of CRLs.  Message formats and protocols
  supporting on-line revocation notification are defined in other PKIX
  specifications.  On-line methods of revocation notification may be
  applicable in some environments as an alternative to the X.509 CRL.
  On-line revocation checking may significantly reduce the latency
  between a revocation report and the distribution of the information
  to relying parties.  Once the CA accepts a revocation report as
  authentic and valid, any query to the on-line service will correctly
  reflect the certificate validation impacts of the revocation.
  However, these methods impose new security requirements: the
  certificate validator needs to trust the on-line validation service
  while the repository does not need to be trusted.

3.4.  Operational Protocols

  Operational protocols are required to deliver certificates and CRLs
  (or status information) to certificate-using client systems.
  Provisions are needed for a variety of different means of certificate
  and CRL delivery, including distribution procedures based on LDAP,
  HTTP, FTP, and X.500.  Operational protocols supporting these
  functions are defined in other PKIX specifications.  These
  specifications may include definitions of message formats and
  procedures for supporting all of the above operational environments,
  including definitions of or references to appropriate MIME content
  types.

3.5.  Management Protocols

  Management protocols are required to support on-line interactions
  between PKI user and management entities.  For example, a management
  protocol might be used between a CA and a client system with which a
  key pair is associated, or between two CAs that cross-certify each
  other.  The set of functions that potentially need to be supported by
  management protocols include:

     (a)  registration:  This is the process whereby a user first makes
          itself known to a CA (directly, or through an RA), prior to
          that CA issuing a certificate or certificates for that user.




Cooper, et al.              Standards Track                    [Page 14]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (b)  initialization:  Before a client system can operate securely,
          it is necessary to install key materials that have the
          appropriate relationship with keys stored elsewhere in the
          infrastructure.  For example, the client needs to be securely
          initialized with the public key and other assured information
          of the trusted CA(s), to be used in validating certificate
          paths.

          Furthermore, a client typically needs to be initialized with
          its own key pair(s).

     (c)  certification:  This is the process in which a CA issues a
          certificate for a user's public key, and returns that
          certificate to the user's client system and/or posts that
          certificate in a repository.

     (d)  key pair recovery:  As an option, user client key materials
          (e.g., a user's private key used for encryption purposes) may
          be backed up by a CA or a key backup system.  If a user needs
          to recover these backed-up key materials (e.g., as a result
          of a forgotten password or a lost key chain file), an on-line
          protocol exchange may be needed to support such recovery.

     (e)  key pair update:  All key pairs need to be updated regularly,
          i.e., replaced with a new key pair, and new certificates
          issued.

     (f)  revocation request:  An authorized person advises a CA of an
          abnormal situation requiring certificate revocation.

     (g)  cross-certification:  Two CAs exchange information used in
          establishing a cross-certificate.  A cross-certificate is a
          certificate issued by one CA to another CA that contains a CA
          signature key used for issuing certificates.

  Note that on-line protocols are not the only way of implementing the
  above functions.  For all functions, there are off-line methods of
  achieving the same result, and this specification does not mandate
  use of on-line protocols.  For example, when hardware tokens are
  used, many of the functions may be achieved as part of the physical
  token delivery.  Furthermore, some of the above functions may be
  combined into one protocol exchange.  In particular, two or more of
  the registration, initialization, and certification functions can be
  combined into one protocol exchange.







Cooper, et al.              Standards Track                    [Page 15]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  The PKIX series of specifications defines a set of standard message
  formats supporting the above functions.  The protocols for conveying
  these messages in different environments (e.g., email, file transfer,
  and WWW) are described in those specifications.

4.  Certificate and Certificate Extensions Profile

  This section presents a profile for public key certificates that will
  foster interoperability and a reusable PKI.  This section is based
  upon the X.509 v3 certificate format and the standard certificate
  extensions defined in [X.509].  The ISO/IEC and ITU-T documents use
  the 1997 version of ASN.1; while this document uses the 1988 ASN.1
  syntax, the encoded certificate and standard extensions are
  equivalent.  This section also defines private extensions required to
  support a PKI for the Internet community.

  Certificates may be used in a wide range of applications and
  environments covering a broad spectrum of interoperability goals and
  a broader spectrum of operational and assurance requirements.  The
  goal of this document is to establish a common baseline for generic
  applications requiring broad interoperability and limited special
  purpose requirements.  In particular, the emphasis will be on
  supporting the use of X.509 v3 certificates for informal Internet
  electronic mail, IPsec, and WWW applications.

4.1.  Basic Certificate Fields

  The X.509 v3 certificate basic syntax is as follows.  For signature
  calculation, the data that is to be signed is encoded using the ASN.1
  distinguished encoding rules (DER) [X.690].  ASN.1 DER encoding is a
  tag, length, value encoding system for each element.

  Certificate  ::=  SEQUENCE  {
       tbsCertificate       TBSCertificate,
       signatureAlgorithm   AlgorithmIdentifier,
       signatureValue       BIT STRING  }

  TBSCertificate  ::=  SEQUENCE  {
       version         [0]  EXPLICIT Version DEFAULT v1,
       serialNumber         CertificateSerialNumber,
       signature            AlgorithmIdentifier,
       issuer               Name,
       validity             Validity,
       subject              Name,
       subjectPublicKeyInfo SubjectPublicKeyInfo,
       issuerUniqueID  [1]  IMPLICIT UniqueIdentifier OPTIONAL,
                            -- If present, version MUST be v2 or v3




Cooper, et al.              Standards Track                    [Page 16]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


       subjectUniqueID [2]  IMPLICIT UniqueIdentifier OPTIONAL,
                            -- If present, version MUST be v2 or v3
       extensions      [3]  EXPLICIT Extensions OPTIONAL
                            -- If present, version MUST be v3
       }

  Version  ::=  INTEGER  {  v1(0), v2(1), v3(2)  }

  CertificateSerialNumber  ::=  INTEGER

  Validity ::= SEQUENCE {
       notBefore      Time,
       notAfter       Time }

  Time ::= CHOICE {
       utcTime        UTCTime,
       generalTime    GeneralizedTime }

  UniqueIdentifier  ::=  BIT STRING

  SubjectPublicKeyInfo  ::=  SEQUENCE  {
       algorithm            AlgorithmIdentifier,
       subjectPublicKey     BIT STRING  }

  Extensions  ::=  SEQUENCE SIZE (1..MAX) OF Extension

  Extension  ::=  SEQUENCE  {
       extnID      OBJECT IDENTIFIER,
       critical    BOOLEAN DEFAULT FALSE,
       extnValue   OCTET STRING
                   -- contains the DER encoding of an ASN.1 value
                   -- corresponding to the extension type identified
                   -- by extnID
       }

  The following items describe the X.509 v3 certificate for use in the
  Internet.

4.1.1.  Certificate Fields

  The Certificate is a SEQUENCE of three required fields.  The fields
  are described in detail in the following subsections.









Cooper, et al.              Standards Track                    [Page 17]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


4.1.1.1.  tbsCertificate

  The field contains the names of the subject and issuer, a public key
  associated with the subject, a validity period, and other associated
  information.  The fields are described in detail in Section 4.1.2;
  the tbsCertificate usually includes extensions, which are described
  in Section 4.2.

4.1.1.2.  signatureAlgorithm

  The signatureAlgorithm field contains the identifier for the
  cryptographic algorithm used by the CA to sign this certificate.
  [RFC3279], [RFC4055], and [RFC4491] list supported signature
  algorithms, but other signature algorithms MAY also be supported.

  An algorithm identifier is defined by the following ASN.1 structure:

  AlgorithmIdentifier  ::=  SEQUENCE  {
       algorithm               OBJECT IDENTIFIER,
       parameters              ANY DEFINED BY algorithm OPTIONAL  }

  The algorithm identifier is used to identify a cryptographic
  algorithm.  The OBJECT IDENTIFIER component identifies the algorithm
  (such as DSA with SHA-1).  The contents of the optional parameters
  field will vary according to the algorithm identified.

  This field MUST contain the same algorithm identifier as the
  signature field in the sequence tbsCertificate (Section 4.1.2.3).

4.1.1.3.  signatureValue

  The signatureValue field contains a digital signature computed upon
  the ASN.1 DER encoded tbsCertificate.  The ASN.1 DER encoded
  tbsCertificate is used as the input to the signature function.  This
  signature value is encoded as a BIT STRING and included in the
  signature field.  The details of this process are specified for each
  of the algorithms listed in [RFC3279], [RFC4055], and [RFC4491].

  By generating this signature, a CA certifies the validity of the
  information in the tbsCertificate field.  In particular, the CA
  certifies the binding between the public key material and the subject
  of the certificate.

4.1.2.  TBSCertificate

  The sequence TBSCertificate contains information associated with the
  subject of the certificate and the CA that issued it.  Every
  TBSCertificate contains the names of the subject and issuer, a public



Cooper, et al.              Standards Track                    [Page 18]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  key associated with the subject, a validity period, a version number,
  and a serial number; some MAY contain optional unique identifier
  fields.  The remainder of this section describes the syntax and
  semantics of these fields.  A TBSCertificate usually includes
  extensions.  Extensions for the Internet PKI are described in Section
  4.2.

4.1.2.1.  Version

  This field describes the version of the encoded certificate.  When
  extensions are used, as expected in this profile, version MUST be 3
  (value is 2).  If no extensions are present, but a UniqueIdentifier
  is present, the version SHOULD be 2 (value is 1); however, the
  version MAY be 3.  If only basic fields are present, the version
  SHOULD be 1 (the value is omitted from the certificate as the default
  value); however, the version MAY be 2 or 3.

  Implementations SHOULD be prepared to accept any version certificate.
  At a minimum, conforming implementations MUST recognize version 3
  certificates.

  Generation of version 2 certificates is not expected by
  implementations based on this profile.

4.1.2.2.  Serial Number

  The serial number MUST be a positive integer assigned by the CA to
  each certificate.  It MUST be unique for each certificate issued by a
  given CA (i.e., the issuer name and serial number identify a unique
  certificate).  CAs MUST force the serialNumber to be a non-negative
  integer.

  Given the uniqueness requirements above, serial numbers can be
  expected to contain long integers.  Certificate users MUST be able to
  handle serialNumber values up to 20 octets.  Conforming CAs MUST NOT
  use serialNumber values longer than 20 octets.

  Note: Non-conforming CAs may issue certificates with serial numbers
  that are negative or zero.  Certificate users SHOULD be prepared to
  gracefully handle such certificates.

4.1.2.3.  Signature

  This field contains the algorithm identifier for the algorithm used
  by the CA to sign the certificate.

  This field MUST contain the same algorithm identifier as the
  signatureAlgorithm field in the sequence Certificate (Section



Cooper, et al.              Standards Track                    [Page 19]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  4.1.1.2).  The contents of the optional parameters field will vary
  according to the algorithm identified.  [RFC3279], [RFC4055], and
  [RFC4491] list supported signature algorithms, but other signature
  algorithms MAY also be supported.

4.1.2.4.  Issuer

  The issuer field identifies the entity that has signed and issued the
  certificate.  The issuer field MUST contain a non-empty distinguished
  name (DN).  The issuer field is defined as the X.501 type Name
  [X.501].  Name is defined by the following ASN.1 structures:

  Name ::= CHOICE { -- only one possibility for now --
    rdnSequence  RDNSequence }

  RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

  RelativeDistinguishedName ::=
    SET SIZE (1..MAX) OF AttributeTypeAndValue

  AttributeTypeAndValue ::= SEQUENCE {
    type     AttributeType,
    value    AttributeValue }

  AttributeType ::= OBJECT IDENTIFIER

  AttributeValue ::= ANY -- DEFINED BY AttributeType

  DirectoryString ::= CHOICE {
        teletexString           TeletexString (SIZE (1..MAX)),
        printableString         PrintableString (SIZE (1..MAX)),
        universalString         UniversalString (SIZE (1..MAX)),
        utf8String              UTF8String (SIZE (1..MAX)),
        bmpString               BMPString (SIZE (1..MAX)) }

  The Name describes a hierarchical name composed of attributes, such
  as country name, and corresponding values, such as US.  The type of
  the component AttributeValue is determined by the AttributeType; in
  general it will be a DirectoryString.

  The DirectoryString type is defined as a choice of PrintableString,
  TeletexString, BMPString, UTF8String, and UniversalString.  CAs
  conforming to this profile MUST use either the PrintableString or
  UTF8String encoding of DirectoryString, with two exceptions.  When
  CAs have previously issued certificates with issuer fields with
  attributes encoded using TeletexString, BMPString, or
  UniversalString, then the CA MAY continue to use these encodings of
  the DirectoryString to preserve backward compatibility.  Also, new



Cooper, et al.              Standards Track                    [Page 20]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  CAs that are added to a domain where existing CAs issue certificates
  with issuer fields with attributes encoded using TeletexString,
  BMPString, or UniversalString MAY encode attributes that they share
  with the existing CAs using the same encodings as the existing CAs
  use.

  As noted above, distinguished names are composed of attributes.  This
  specification does not restrict the set of attribute types that may
  appear in names.  However, conforming implementations MUST be
  prepared to receive certificates with issuer names containing the set
  of attribute types defined below.  This specification RECOMMENDS
  support for additional attribute types.

  Standard sets of attributes have been defined in the X.500 series of
  specifications [X.520].  Implementations of this specification MUST
  be prepared to receive the following standard attribute types in
  issuer and subject (Section 4.1.2.6) names:

     * country,
     * organization,
     * organizational unit,
     * distinguished name qualifier,
     * state or province name,
     * common name (e.g., "Susan Housley"), and
     * serial number.

  In addition, implementations of this specification SHOULD be prepared
  to receive the following standard attribute types in issuer and
  subject names:

     * locality,
     * title,
     * surname,
     * given name,
     * initials,
     * pseudonym, and
     * generation qualifier (e.g., "Jr.", "3rd", or "IV").

  The syntax and associated object identifiers (OIDs) for these
  attribute types are provided in the ASN.1 modules in Appendix A.

  In addition, implementations of this specification MUST be prepared
  to receive the domainComponent attribute, as defined in [RFC4519].
  The Domain Name System (DNS) provides a hierarchical resource
  labeling system.  This attribute provides a convenient mechanism for
  organizations that wish to use DNs that parallel their DNS names.
  This is not a replacement for the dNSName component of the
  alternative name extensions.  Implementations are not required to



Cooper, et al.              Standards Track                    [Page 21]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  convert such names into DNS names.  The syntax and associated OID for
  this attribute type are provided in the ASN.1 modules in Appendix A.
  Rules for encoding internationalized domain names for use with the
  domainComponent attribute type are specified in Section 7.3.

  Certificate users MUST be prepared to process the issuer
  distinguished name and subject distinguished name (Section 4.1.2.6)
  fields to perform name chaining for certification path validation
  (Section 6).  Name chaining is performed by matching the issuer
  distinguished name in one certificate with the subject name in a CA
  certificate.  Rules for comparing distinguished names are specified
  in Section 7.1.  If the names in the issuer and subject field in a
  certificate match according to the rules specified in Section 7.1,
  then the certificate is self-issued.

4.1.2.5.  Validity

  The certificate validity period is the time interval during which the
  CA warrants that it will maintain information about the status of the
  certificate.  The field is represented as a SEQUENCE of two dates:
  the date on which the certificate validity period begins (notBefore)
  and the date on which the certificate validity period ends
  (notAfter).  Both notBefore and notAfter may be encoded as UTCTime or
  GeneralizedTime.

  CAs conforming to this profile MUST always encode certificate
  validity dates through the year 2049 as UTCTime; certificate validity
  dates in 2050 or later MUST be encoded as GeneralizedTime.
  Conforming applications MUST be able to process validity dates that
  are encoded in either UTCTime or GeneralizedTime.

  The validity period for a certificate is the period of time from
  notBefore through notAfter, inclusive.

  In some situations, devices are given certificates for which no good
  expiration date can be assigned.  For example, a device could be
  issued a certificate that binds its model and serial number to its
  public key; such a certificate is intended to be used for the entire
  lifetime of the device.

  To indicate that a certificate has no well-defined expiration date,
  the notAfter SHOULD be assigned the GeneralizedTime value of
  99991231235959Z.

  When the issuer will not be able to maintain status information until
  the notAfter date (including when the notAfter date is
  99991231235959Z), the issuer MUST ensure that no valid certification
  path exists for the certificate after maintenance of status



Cooper, et al.              Standards Track                    [Page 22]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  information is terminated.  This may be accomplished by expiration or
  revocation of all CA certificates containing the public key used to
  verify the signature on the certificate and discontinuing use of the
  public key used to verify the signature on the certificate as a trust
  anchor.

4.1.2.5.1.  UTCTime

  The universal time type, UTCTime, is a standard ASN.1 type intended
  for representation of dates and time.  UTCTime specifies the year
  through the two low-order digits and time is specified to the
  precision of one minute or one second.  UTCTime includes either Z
  (for Zulu, or Greenwich Mean Time) or a time differential.

  For the purposes of this profile, UTCTime values MUST be expressed in
  Greenwich Mean Time (Zulu) and MUST include seconds (i.e., times are
  YYMMDDHHMMSSZ), even where the number of seconds is zero.  Conforming
  systems MUST interpret the year field (YY) as follows:

     Where YY is greater than or equal to 50, the year SHALL be
     interpreted as 19YY; and

     Where YY is less than 50, the year SHALL be interpreted as 20YY.

4.1.2.5.2.  GeneralizedTime

  The generalized time type, GeneralizedTime, is a standard ASN.1 type
  for variable precision representation of time.  Optionally, the
  GeneralizedTime field can include a representation of the time
  differential between local and Greenwich Mean Time.

  For the purposes of this profile, GeneralizedTime values MUST be
  expressed in Greenwich Mean Time (Zulu) and MUST include seconds
  (i.e., times are YYYYMMDDHHMMSSZ), even where the number of seconds
  is zero.  GeneralizedTime values MUST NOT include fractional seconds.

4.1.2.6.  Subject

  The subject field identifies the entity associated with the public
  key stored in the subject public key field.  The subject name MAY be
  carried in the subject field and/or the subjectAltName extension.  If
  the subject is a CA (e.g., the basic constraints extension, as
  discussed in Section 4.2.1.9, is present and the value of cA is
  TRUE), then the subject field MUST be populated with a non-empty
  distinguished name matching the contents of the issuer field (Section
  4.1.2.4) in all certificates issued by the subject CA.  If the
  subject is a CRL issuer (e.g., the key usage extension, as discussed
  in Section 4.2.1.3, is present and the value of cRLSign is TRUE),



Cooper, et al.              Standards Track                    [Page 23]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  then the subject field MUST be populated with a non-empty
  distinguished name matching the contents of the issuer field (Section
  5.1.2.3) in all CRLs issued by the subject CRL issuer.  If subject
  naming information is present only in the subjectAltName extension
  (e.g., a key bound only to an email address or URI), then the subject
  name MUST be an empty sequence and the subjectAltName extension MUST
  be critical.

  Where it is non-empty, the subject field MUST contain an X.500
  distinguished name (DN).  The DN MUST be unique for each subject
  entity certified by the one CA as defined by the issuer field.  A CA
  MAY issue more than one certificate with the same DN to the same
  subject entity.

  The subject field is defined as the X.501 type Name.  Implementation
  requirements for this field are those defined for the issuer field
  (Section 4.1.2.4).  Implementations of this specification MUST be
  prepared to receive subject names containing the attribute types
  required for the issuer field.  Implementations of this specification
  SHOULD be prepared to receive subject names containing the
  recommended attribute types for the issuer field.  The syntax and
  associated object identifiers (OIDs) for these attribute types are
  provided in the ASN.1 modules in Appendix A.  Implementations of this
  specification MAY use the comparison rules in Section 7.1 to process
  unfamiliar attribute types (i.e., for name chaining) whose attribute
  values use one of the encoding options from DirectoryString.  Binary
  comparison should be used when unfamiliar attribute types include
  attribute values with encoding options other than those found in
  DirectoryString.  This allows implementations to process certificates
  with unfamiliar attributes in the subject name.

  When encoding attribute values of type DirectoryString, conforming
  CAs MUST use PrintableString or UTF8String encoding, with the
  following exceptions:

     (a)  When the subject of the certificate is a CA, the subject
          field MUST be encoded in the same way as it is encoded in the
          issuer field (Section 4.1.2.4) in all certificates issued by
          the subject CA.  Thus, if the subject CA encodes attributes
          in the issuer fields of certificates that it issues using the
          TeletexString, BMPString, or UniversalString encodings, then
          the subject field of certificates issued to that CA MUST use
          the same encoding.

     (b)  When the subject of the certificate is a CRL issuer, the
          subject field MUST be encoded in the same way as it is
          encoded in the issuer field (Section 5.1.2.3) in all CRLs
          issued by the subject CRL issuer.



Cooper, et al.              Standards Track                    [Page 24]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (c)  TeletexString, BMPString, and UniversalString are included
          for backward compatibility, and SHOULD NOT be used for
          certificates for new subjects.  However, these types MAY be
          used in certificates where the name was previously
          established, including cases in which a new certificate is
          being issued to an existing subject or a certificate is being
          issued to a new subject where the attributes being encoded
          have been previously established in certificates issued to
          other subjects.  Certificate users SHOULD be prepared to
          receive certificates with these types.

  Legacy implementations exist where an electronic mail address is
  embedded in the subject distinguished name as an emailAddress
  attribute [RFC2985].  The attribute value for emailAddress is of type
  IA5String to permit inclusion of the character '@', which is not part
  of the PrintableString character set.  emailAddress attribute values
  are not case-sensitive (e.g., "[email protected]" is the same as
  "[email protected]").

  Conforming implementations generating new certificates with
  electronic mail addresses MUST use the rfc822Name in the subject
  alternative name extension (Section 4.2.1.6) to describe such
  identities.  Simultaneous inclusion of the emailAddress attribute in
  the subject distinguished name to support legacy implementations is
  deprecated but permitted.

4.1.2.7.  Subject Public Key Info

  This field is used to carry the public key and identify the algorithm
  with which the key is used (e.g., RSA, DSA, or Diffie-Hellman).  The
  algorithm is identified using the AlgorithmIdentifier structure
  specified in Section 4.1.1.2.  The object identifiers for the
  supported algorithms and the methods for encoding the public key
  materials (public key and parameters) are specified in [RFC3279],
  [RFC4055], and [RFC4491].

4.1.2.8.  Unique Identifiers

  These fields MUST only appear if the version is 2 or 3 (Section
  4.1.2.1).  These fields MUST NOT appear if the version is 1.  The
  subject and issuer unique identifiers are present in the certificate
  to handle the possibility of reuse of subject and/or issuer names
  over time.  This profile RECOMMENDS that names not be reused for
  different entities and that Internet certificates not make use of
  unique identifiers.  CAs conforming to this profile MUST NOT generate
  certificates with unique identifiers.  Applications conforming to





Cooper, et al.              Standards Track                    [Page 25]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  this profile SHOULD be capable of parsing certificates that include
  unique identifiers, but there are no processing requirements
  associated with the unique identifiers.

4.1.2.9.  Extensions

  This field MUST only appear if the version is 3 (Section 4.1.2.1).
  If present, this field is a SEQUENCE of one or more certificate
  extensions.  The format and content of certificate extensions in the
  Internet PKI are defined in Section 4.2.

4.2.  Certificate Extensions

  The extensions defined for X.509 v3 certificates provide methods for
  associating additional attributes with users or public keys and for
  managing relationships between CAs.  The X.509 v3 certificate format
  also allows communities to define private extensions to carry
  information unique to those communities.  Each extension in a
  certificate is designated as either critical or non-critical.  A
  certificate-using system MUST reject the certificate if it encounters
  a critical extension it does not recognize or a critical extension
  that contains information that it cannot process.  A non-critical
  extension MAY be ignored if it is not recognized, but MUST be
  processed if it is recognized.  The following sections present
  recommended extensions used within Internet certificates and standard
  locations for information.  Communities may elect to use additional
  extensions; however, caution ought to be exercised in adopting any
  critical extensions in certificates that might prevent use in a
  general context.

  Each extension includes an OID and an ASN.1 structure.  When an
  extension appears in a certificate, the OID appears as the field
  extnID and the corresponding ASN.1 DER encoded structure is the value
  of the octet string extnValue.  A certificate MUST NOT include more
  than one instance of a particular extension.  For example, a
  certificate may contain only one authority key identifier extension
  (Section 4.2.1.1).  An extension includes the boolean critical, with
  a default value of FALSE.  The text for each extension specifies the
  acceptable values for the critical field for CAs conforming to this
  profile.

  Conforming CAs MUST support key identifiers (Sections 4.2.1.1 and
  4.2.1.2), basic constraints (Section 4.2.1.9), key usage (Section
  4.2.1.3), and certificate policies (Section 4.2.1.4) extensions.  If
  the CA issues certificates with an empty sequence for the subject
  field, the CA MUST support the subject alternative name extension
  (Section 4.2.1.6).  Support for the remaining extensions is OPTIONAL.
  Conforming CAs MAY support extensions that are not identified within



Cooper, et al.              Standards Track                    [Page 26]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  this specification; certificate issuers are cautioned that marking
  such extensions as critical may inhibit interoperability.

  At a minimum, applications conforming to this profile MUST recognize
  the following extensions: key usage (Section 4.2.1.3), certificate
  policies (Section 4.2.1.4), subject alternative name (Section
  4.2.1.6), basic constraints (Section 4.2.1.9), name constraints
  (Section 4.2.1.10), policy constraints (Section 4.2.1.11), extended
  key usage (Section 4.2.1.12), and inhibit anyPolicy (Section
  4.2.1.14).

  In addition, applications conforming to this profile SHOULD recognize
  the authority and subject key identifier (Sections 4.2.1.1 and
  4.2.1.2) and policy mappings (Section 4.2.1.5) extensions.

4.2.1.  Standard Extensions

  This section identifies standard certificate extensions defined in
  [X.509] for use in the Internet PKI.  Each extension is associated
  with an OID defined in [X.509].  These OIDs are members of the id-ce
  arc, which is defined by the following:

  id-ce   OBJECT IDENTIFIER ::=  { joint-iso-ccitt(2) ds(5) 29 }

4.2.1.1.  Authority Key Identifier

  The authority key identifier extension provides a means of
  identifying the public key corresponding to the private key used to
  sign a certificate.  This extension is used where an issuer has
  multiple signing keys (either due to multiple concurrent key pairs or
  due to changeover).  The identification MAY be based on either the
  key identifier (the subject key identifier in the issuer's
  certificate) or the issuer name and serial number.

  The keyIdentifier field of the authorityKeyIdentifier extension MUST
  be included in all certificates generated by conforming CAs to
  facilitate certification path construction.  There is one exception;
  where a CA distributes its public key in the form of a "self-signed"
  certificate, the authority key identifier MAY be omitted.  The
  signature on a self-signed certificate is generated with the private
  key associated with the certificate's subject public key.  (This
  proves that the issuer possesses both the public and private keys.)
  In this case, the subject and authority key identifiers would be
  identical, but only the subject key identifier is needed for
  certification path building.

  The value of the keyIdentifier field SHOULD be derived from the
  public key used to verify the certificate's signature or a method



Cooper, et al.              Standards Track                    [Page 27]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  that generates unique values.  Two common methods for generating key
  identifiers from the public key are described in Section 4.2.1.2.
  Where a key identifier has not been previously established, this
  specification RECOMMENDS use of one of these methods for generating
  keyIdentifiers or use of a similar method that uses a different hash
  algorithm.  Where a key identifier has been previously established,
  the CA SHOULD use the previously established identifier.

  This profile RECOMMENDS support for the key identifier method by all
  certificate users.

  Conforming CAs MUST mark this extension as non-critical.

  id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::=  { id-ce 35 }

  AuthorityKeyIdentifier ::= SEQUENCE {
     keyIdentifier             [0] KeyIdentifier           OPTIONAL,
     authorityCertIssuer       [1] GeneralNames            OPTIONAL,
     authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL  }

  KeyIdentifier ::= OCTET STRING

4.2.1.2.  Subject Key Identifier

  The subject key identifier extension provides a means of identifying
  certificates that contain a particular public key.

  To facilitate certification path construction, this extension MUST
  appear in all conforming CA certificates, that is, all certificates
  including the basic constraints extension (Section 4.2.1.9) where the
  value of cA is TRUE.  In conforming CA certificates, the value of the
  subject key identifier MUST be the value placed in the key identifier
  field of the authority key identifier extension (Section 4.2.1.1) of
  certificates issued by the subject of this certificate.  Applications
  are not required to verify that key identifiers match when performing
  certification path validation.

  For CA certificates, subject key identifiers SHOULD be derived from
  the public key or a method that generates unique values.  Two common
  methods for generating key identifiers from the public key are:

     (1) The keyIdentifier is composed of the 160-bit SHA-1 hash of the
          value of the BIT STRING subjectPublicKey (excluding the tag,
          length, and number of unused bits).







Cooper, et al.              Standards Track                    [Page 28]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (2) The keyIdentifier is composed of a four-bit type field with
          the value 0100 followed by the least significant 60 bits of
          the SHA-1 hash of the value of the BIT STRING
          subjectPublicKey (excluding the tag, length, and number of
          unused bits).

  Other methods of generating unique numbers are also acceptable.

  For end entity certificates, the subject key identifier extension
  provides a means for identifying certificates containing the
  particular public key used in an application.  Where an end entity
  has obtained multiple certificates, especially from multiple CAs, the
  subject key identifier provides a means to quickly identify the set
  of certificates containing a particular public key.  To assist
  applications in identifying the appropriate end entity certificate,
  this extension SHOULD be included in all end entity certificates.

  For end entity certificates, subject key identifiers SHOULD be
  derived from the public key.  Two common methods for generating key
  identifiers from the public key are identified above.

  Where a key identifier has not been previously established, this
  specification RECOMMENDS use of one of these methods for generating
  keyIdentifiers or use of a similar method that uses a different hash
  algorithm.  Where a key identifier has been previously established,
  the CA SHOULD use the previously established identifier.

  Conforming CAs MUST mark this extension as non-critical.

  id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::=  { id-ce 14 }

  SubjectKeyIdentifier ::= KeyIdentifier

4.2.1.3.  Key Usage

  The key usage extension defines the purpose (e.g., encipherment,
  signature, certificate signing) of the key contained in the
  certificate.  The usage restriction might be employed when a key that
  could be used for more than one operation is to be restricted.  For
  example, when an RSA key should be used only to verify signatures on
  objects other than public key certificates and CRLs, the
  digitalSignature and/or nonRepudiation bits would be asserted.
  Likewise, when an RSA key should be used only for key management, the
  keyEncipherment bit would be asserted.







Cooper, et al.              Standards Track                    [Page 29]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  Conforming CAs MUST include this extension in certificates that
  contain public keys that are used to validate digital signatures on
  other public key certificates or CRLs.  When present, conforming CAs
  SHOULD mark this extension as critical.

     id-ce-keyUsage OBJECT IDENTIFIER ::=  { id-ce 15 }

     KeyUsage ::= BIT STRING {
          digitalSignature        (0),
          nonRepudiation          (1), -- recent editions of X.509 have
                               -- renamed this bit to contentCommitment
          keyEncipherment         (2),
          dataEncipherment        (3),
          keyAgreement            (4),
          keyCertSign             (5),
          cRLSign                 (6),
          encipherOnly            (7),
          decipherOnly            (8) }

  Bits in the KeyUsage type are used as follows:

     The digitalSignature bit is asserted when the subject public key
     is used for verifying digital signatures, other than signatures on
     certificates (bit 5) and CRLs (bit 6), such as those used in an
     entity authentication service, a data origin authentication
     service, and/or an integrity service.

     The nonRepudiation bit is asserted when the subject public key is
     used to verify digital signatures, other than signatures on
     certificates (bit 5) and CRLs (bit 6), used to provide a non-
     repudiation service that protects against the signing entity
     falsely denying some action.  In the case of later conflict, a
     reliable third party may determine the authenticity of the signed
     data.  (Note that recent editions of X.509 have renamed the
     nonRepudiation bit to contentCommitment.)

     The keyEncipherment bit is asserted when the subject public key is
     used for enciphering private or secret keys, i.e., for key
     transport.  For example, this bit shall be set when an RSA public
     key is to be used for encrypting a symmetric content-decryption
     key or an asymmetric private key.

     The dataEncipherment bit is asserted when the subject public key
     is used for directly enciphering raw user data without the use of
     an intermediate symmetric cipher.  Note that the use of this bit
     is extremely uncommon; almost all applications use key transport
     or key agreement to establish a symmetric key.




Cooper, et al.              Standards Track                    [Page 30]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     The keyAgreement bit is asserted when the subject public key is
     used for key agreement.  For example, when a Diffie-Hellman key is
     to be used for key management, then this bit is set.

     The keyCertSign bit is asserted when the subject public key is
     used for verifying signatures on public key certificates.  If the
     keyCertSign bit is asserted, then the cA bit in the basic
     constraints extension (Section 4.2.1.9) MUST also be asserted.

     The cRLSign bit is asserted when the subject public key is used
     for verifying signatures on certificate revocation lists (e.g.,
     CRLs, delta CRLs, or ARLs).

     The meaning of the encipherOnly bit is undefined in the absence of
     the keyAgreement bit.  When the encipherOnly bit is asserted and
     the keyAgreement bit is also set, the subject public key may be
     used only for enciphering data while performing key agreement.

     The meaning of the decipherOnly bit is undefined in the absence of
     the keyAgreement bit.  When the decipherOnly bit is asserted and
     the keyAgreement bit is also set, the subject public key may be
     used only for deciphering data while performing key agreement.

  If the keyUsage extension is present, then the subject public key
  MUST NOT be used to verify signatures on certificates or CRLs unless
  the corresponding keyCertSign or cRLSign bit is set.  If the subject
  public key is only to be used for verifying signatures on
  certificates and/or CRLs, then the digitalSignature and
  nonRepudiation bits SHOULD NOT be set.  However, the digitalSignature
  and/or nonRepudiation bits MAY be set in addition to the keyCertSign
  and/or cRLSign bits if the subject public key is to be used to verify
  signatures on certificates and/or CRLs as well as other objects.

  Combining the nonRepudiation bit in the keyUsage certificate
  extension with other keyUsage bits may have security implications
  depending on the context in which the certificate is to be used.
  Further distinctions between the digitalSignature and nonRepudiation
  bits may be provided in specific certificate policies.

  This profile does not restrict the combinations of bits that may be
  set in an instantiation of the keyUsage extension.  However,
  appropriate values for keyUsage extensions for particular algorithms
  are specified in [RFC3279], [RFC4055], and [RFC4491].  When the
  keyUsage extension appears in a certificate, at least one of the bits
  MUST be set to 1.






Cooper, et al.              Standards Track                    [Page 31]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


4.2.1.4.  Certificate Policies

  The certificate policies extension contains a sequence of one or more
  policy information terms, each of which consists of an object
  identifier (OID) and optional qualifiers.  Optional qualifiers, which
  MAY be present, are not expected to change the definition of the
  policy.  A certificate policy OID MUST NOT appear more than once in a
  certificate policies extension.

  In an end entity certificate, these policy information terms indicate
  the policy under which the certificate has been issued and the
  purposes for which the certificate may be used.  In a CA certificate,
  these policy information terms limit the set of policies for
  certification paths that include this certificate.  When a CA does
  not wish to limit the set of policies for certification paths that
  include this certificate, it MAY assert the special policy anyPolicy,
  with a value of { 2 5 29 32 0 }.

  Applications with specific policy requirements are expected to have a
  list of those policies that they will accept and to compare the
  policy OIDs in the certificate to that list.  If this extension is
  critical, the path validation software MUST be able to interpret this
  extension (including the optional qualifier), or MUST reject the
  certificate.

  To promote interoperability, this profile RECOMMENDS that policy
  information terms consist of only an OID.  Where an OID alone is
  insufficient, this profile strongly recommends that the use of
  qualifiers be limited to those identified in this section.  When
  qualifiers are used with the special policy anyPolicy, they MUST be
  limited to the qualifiers identified in this section.  Only those
  qualifiers returned as a result of path validation are considered.

  This specification defines two policy qualifier types for use by
  certificate policy writers and certificate issuers.  The qualifier
  types are the CPS Pointer and User Notice qualifiers.

  The CPS Pointer qualifier contains a pointer to a Certification
  Practice Statement (CPS) published by the CA.  The pointer is in the
  form of a URI.  Processing requirements for this qualifier are a
  local matter.  No action is mandated by this specification regardless
  of the criticality value asserted for the extension.

  User notice is intended for display to a relying party when a
  certificate is used.  Only user notices returned as a result of path
  validation are intended for display to the user.  If a notice is





Cooper, et al.              Standards Track                    [Page 32]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  duplicated, only one copy need be displayed.  To prevent such
  duplication, this qualifier SHOULD only be present in end entity
  certificates and CA certificates issued to other organizations.

  The user notice has two optional fields: the noticeRef field and the
  explicitText field.  Conforming CAs SHOULD NOT use the noticeRef
  option.

     The noticeRef field, if used, names an organization and
     identifies, by number, a particular textual statement prepared by
     that organization.  For example, it might identify the
     organization "CertsRUs" and notice number 1.  In a typical
     implementation, the application software will have a notice file
     containing the current set of notices for CertsRUs; the
     application will extract the notice text from the file and display
     it.  Messages MAY be multilingual, allowing the software to select
     the particular language message for its own environment.

     An explicitText field includes the textual statement directly in
     the certificate.  The explicitText field is a string with a
     maximum size of 200 characters.  Conforming CAs SHOULD use the
     UTF8String encoding for explicitText, but MAY use IA5String.
     Conforming CAs MUST NOT encode explicitText as VisibleString or
     BMPString.  The explicitText string SHOULD NOT include any control
     characters (e.g., U+0000 to U+001F and U+007F to U+009F).  When
     the UTF8String encoding is used, all character sequences SHOULD be
     normalized according to Unicode normalization form C (NFC) [NFC].

  If both the noticeRef and explicitText options are included in the
  one qualifier and if the application software can locate the notice
  text indicated by the noticeRef option, then that text SHOULD be
  displayed; otherwise, the explicitText string SHOULD be displayed.

  Note: While the explicitText has a maximum size of 200 characters,
  some non-conforming CAs exceed this limit.  Therefore, certificate
  users SHOULD gracefully handle explicitText with more than 200
  characters.














Cooper, et al.              Standards Track                    [Page 33]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  id-ce-certificatePolicies OBJECT IDENTIFIER ::=  { id-ce 32 }

  anyPolicy OBJECT IDENTIFIER ::= { id-ce-certificatePolicies 0 }

  certificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

  PolicyInformation ::= SEQUENCE {
       policyIdentifier   CertPolicyId,
       policyQualifiers   SEQUENCE SIZE (1..MAX) OF
                               PolicyQualifierInfo OPTIONAL }

  CertPolicyId ::= OBJECT IDENTIFIER

  PolicyQualifierInfo ::= SEQUENCE {
       policyQualifierId  PolicyQualifierId,
       qualifier          ANY DEFINED BY policyQualifierId }

  -- policyQualifierIds for Internet policy qualifiers

  id-qt          OBJECT IDENTIFIER ::=  { id-pkix 2 }
  id-qt-cps      OBJECT IDENTIFIER ::=  { id-qt 1 }
  id-qt-unotice  OBJECT IDENTIFIER ::=  { id-qt 2 }

  PolicyQualifierId ::= OBJECT IDENTIFIER ( id-qt-cps | id-qt-unotice )

  Qualifier ::= CHOICE {
       cPSuri           CPSuri,
       userNotice       UserNotice }

  CPSuri ::= IA5String

  UserNotice ::= SEQUENCE {
       noticeRef        NoticeReference OPTIONAL,
       explicitText     DisplayText OPTIONAL }

  NoticeReference ::= SEQUENCE {
       organization     DisplayText,
       noticeNumbers    SEQUENCE OF INTEGER }

  DisplayText ::= CHOICE {
       ia5String        IA5String      (SIZE (1..200)),
       visibleString    VisibleString  (SIZE (1..200)),
       bmpString        BMPString      (SIZE (1..200)),
       utf8String       UTF8String     (SIZE (1..200)) }







Cooper, et al.              Standards Track                    [Page 34]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


4.2.1.5.  Policy Mappings

  This extension is used in CA certificates.  It lists one or more
  pairs of OIDs; each pair includes an issuerDomainPolicy and a
  subjectDomainPolicy.  The pairing indicates the issuing CA considers
  its issuerDomainPolicy equivalent to the subject CA's
  subjectDomainPolicy.

  The issuing CA's users might accept an issuerDomainPolicy for certain
  applications.  The policy mapping defines the list of policies
  associated with the subject CA that may be accepted as comparable to
  the issuerDomainPolicy.

  Each issuerDomainPolicy named in the policy mappings extension SHOULD
  also be asserted in a certificate policies extension in the same
  certificate.  Policies MUST NOT be mapped either to or from the
  special value anyPolicy (Section 4.2.1.4).

  In general, certificate policies that appear in the
  issuerDomainPolicy field of the policy mappings extension are not
  considered acceptable policies for inclusion in subsequent
  certificates in the certification path.  In some circumstances, a CA
  may wish to map from one policy (p1) to another (p2), but still wants
  the issuerDomainPolicy (p1) to be considered acceptable for inclusion
  in subsequent certificates.  This may occur, for example, if the CA
  is in the process of transitioning from the use of policy p1 to the
  use of policy p2 and has valid certificates that were issued under
  each of the policies.  A CA may indicate this by including two policy
  mappings in the CA certificates that it issues.  Each policy mapping
  would have an issuerDomainPolicy of p1; one policy mapping would have
  a subjectDomainPolicy of p1 and the other would have a
  subjectDomainPolicy of p2.

  This extension MAY be supported by CAs and/or applications.
  Conforming CAs SHOULD mark this extension as critical.

  id-ce-policyMappings OBJECT IDENTIFIER ::=  { id-ce 33 }

  PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
       issuerDomainPolicy      CertPolicyId,
       subjectDomainPolicy     CertPolicyId }

4.2.1.6.  Subject Alternative Name

  The subject alternative name extension allows identities to be bound
  to the subject of the certificate.  These identities may be included
  in addition to or in place of the identity in the subject field of
  the certificate.  Defined options include an Internet electronic mail



Cooper, et al.              Standards Track                    [Page 35]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  address, a DNS name, an IP address, and a Uniform Resource Identifier
  (URI).  Other options exist, including completely local definitions.
  Multiple name forms, and multiple instances of each name form, MAY be
  included.  Whenever such identities are to be bound into a
  certificate, the subject alternative name (or issuer alternative
  name) extension MUST be used; however, a DNS name MAY also be
  represented in the subject field using the domainComponent attribute
  as described in Section 4.1.2.4.  Note that where such names are
  represented in the subject field implementations are not required to
  convert them into DNS names.

  Because the subject alternative name is considered to be definitively
  bound to the public key, all parts of the subject alternative name
  MUST be verified by the CA.

  Further, if the only subject identity included in the certificate is
  an alternative name form (e.g., an electronic mail address), then the
  subject distinguished name MUST be empty (an empty sequence), and the
  subjectAltName extension MUST be present.  If the subject field
  contains an empty sequence, then the issuing CA MUST include a
  subjectAltName extension that is marked as critical.  When including
  the subjectAltName extension in a certificate that has a non-empty
  subject distinguished name, conforming CAs SHOULD mark the
  subjectAltName extension as non-critical.

  When the subjectAltName extension contains an Internet mail address,
  the address MUST be stored in the rfc822Name.  The format of an
  rfc822Name is a "Mailbox" as defined in Section 4.1.2 of [RFC2821].
  A Mailbox has the form "Local-part@Domain".  Note that a Mailbox has
  no phrase (such as a common name) before it, has no comment (text
  surrounded in parentheses) after it, and is not surrounded by "<" and
  ">".  Rules for encoding Internet mail addresses that include
  internationalized domain names are specified in Section 7.5.

  When the subjectAltName extension contains an iPAddress, the address
  MUST be stored in the octet string in "network byte order", as
  specified in [RFC791].  The least significant bit (LSB) of each octet
  is the LSB of the corresponding byte in the network address.  For IP
  version 4, as specified in [RFC791], the octet string MUST contain
  exactly four octets.  For IP version 6, as specified in
  [RFC2460], the octet string MUST contain exactly sixteen octets.

  When the subjectAltName extension contains a domain name system
  label, the domain name MUST be stored in the dNSName (an IA5String).
  The name MUST be in the "preferred name syntax", as specified by
  Section 3.5 of [RFC1034] and as modified by Section 2.1 of
  [RFC1123].  Note that while uppercase and lowercase letters are
  allowed in domain names, no significance is attached to the case.  In



Cooper, et al.              Standards Track                    [Page 36]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  addition, while the string " " is a legal domain name, subjectAltName
  extensions with a dNSName of " " MUST NOT be used.  Finally, the use
  of the DNS representation for Internet mail addresses
  (subscriber.example.com instead of [email protected]) MUST NOT
  be used; such identities are to be encoded as rfc822Name.  Rules for
  encoding internationalized domain names are specified in Section 7.2.

  When the subjectAltName extension contains a URI, the name MUST be
  stored in the uniformResourceIdentifier (an IA5String).  The name
  MUST NOT be a relative URI, and it MUST follow the URI syntax and
  encoding rules specified in [RFC3986].  The name MUST include both a
  scheme (e.g., "http" or "ftp") and a scheme-specific-part.  URIs that
  include an authority ([RFC3986], Section 3.2) MUST include a fully
  qualified domain name or IP address as the host.  Rules for encoding
  Internationalized Resource Identifiers (IRIs) are specified in
  Section 7.4.

  As specified in [RFC3986], the scheme name is not case-sensitive
  (e.g., "http" is equivalent to "HTTP").  The host part, if present,
  is also not case-sensitive, but other components of the scheme-
  specific-part may be case-sensitive.  Rules for comparing URIs are
  specified in Section 7.4.

  When the subjectAltName extension contains a DN in the directoryName,
  the encoding rules are the same as those specified for the issuer
  field in Section 4.1.2.4.  The DN MUST be unique for each subject
  entity certified by the one CA as defined by the issuer field.  A CA
  MAY issue more than one certificate with the same DN to the same
  subject entity.

  The subjectAltName MAY carry additional name types through the use of
  the otherName field.  The format and semantics of the name are
  indicated through the OBJECT IDENTIFIER in the type-id field.  The
  name itself is conveyed as value field in otherName.  For example,
  Kerberos [RFC4120] format names can be encoded into the otherName,
  using a Kerberos 5 principal name OID and a SEQUENCE of the Realm and
  the PrincipalName.

  Subject alternative names MAY be constrained in the same manner as
  subject distinguished names using the name constraints extension as
  described in Section 4.2.1.10.

  If the subjectAltName extension is present, the sequence MUST contain
  at least one entry.  Unlike the subject field, conforming CAs MUST
  NOT issue certificates with subjectAltNames containing empty
  GeneralName fields.  For example, an rfc822Name is represented as an
  IA5String.  While an empty string is a valid IA5String, such an
  rfc822Name is not permitted by this profile.  The behavior of clients



Cooper, et al.              Standards Track                    [Page 37]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  that encounter such a certificate when processing a certification
  path is not defined by this profile.

  Finally, the semantics of subject alternative names that include
  wildcard characters (e.g., as a placeholder for a set of names) are
  not addressed by this specification.  Applications with specific
  requirements MAY use such names, but they must define the semantics.

  id-ce-subjectAltName OBJECT IDENTIFIER ::=  { id-ce 17 }

  SubjectAltName ::= GeneralNames

  GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

  GeneralName ::= CHOICE {
       otherName                       [0]     OtherName,
       rfc822Name                      [1]     IA5String,
       dNSName                         [2]     IA5String,
       x400Address                     [3]     ORAddress,
       directoryName                   [4]     Name,
       ediPartyName                    [5]     EDIPartyName,
       uniformResourceIdentifier       [6]     IA5String,
       iPAddress                       [7]     OCTET STRING,
       registeredID                    [8]     OBJECT IDENTIFIER }

  OtherName ::= SEQUENCE {
       type-id    OBJECT IDENTIFIER,
       value      [0] EXPLICIT ANY DEFINED BY type-id }

  EDIPartyName ::= SEQUENCE {
       nameAssigner            [0]     DirectoryString OPTIONAL,
       partyName               [1]     DirectoryString }

4.2.1.7.  Issuer Alternative Name

  As with Section 4.2.1.6, this extension is used to associate Internet
  style identities with the certificate issuer.  Issuer alternative
  name MUST be encoded as in 4.2.1.6.  Issuer alternative names are not
  processed as part of the certification path validation algorithm in
  Section 6.  (That is, issuer alternative names are not used in name
  chaining and name constraints are not enforced.)

  Where present, conforming CAs SHOULD mark this extension as non-
  critical.

  id-ce-issuerAltName OBJECT IDENTIFIER ::=  { id-ce 18 }

  IssuerAltName ::= GeneralNames



Cooper, et al.              Standards Track                    [Page 38]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


4.2.1.8.  Subject Directory Attributes

  The subject directory attributes extension is used to convey
  identification attributes (e.g., nationality) of the subject.  The
  extension is defined as a sequence of one or more attributes.
  Conforming CAs MUST mark this extension as non-critical.

  id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::=  { id-ce 9 }

  SubjectDirectoryAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute

4.2.1.9.  Basic Constraints

  The basic constraints extension identifies whether the subject of the
  certificate is a CA and the maximum depth of valid certification
  paths that include this certificate.

  The cA boolean indicates whether the certified public key may be used
  to verify certificate signatures.  If the cA boolean is not asserted,
  then the keyCertSign bit in the key usage extension MUST NOT be
  asserted.  If the basic constraints extension is not present in a
  version 3 certificate, or the extension is present but the cA boolean
  is not asserted, then the certified public key MUST NOT be used to
  verify certificate signatures.

  The pathLenConstraint field is meaningful only if the cA boolean is
  asserted and the key usage extension, if present, asserts the
  keyCertSign bit (Section 4.2.1.3).  In this case, it gives the
  maximum number of non-self-issued intermediate certificates that may
  follow this certificate in a valid certification path.  (Note: The
  last certificate in the certification path is not an intermediate
  certificate, and is not included in this limit.  Usually, the last
  certificate is an end entity certificate, but it can be a CA
  certificate.)  A pathLenConstraint of zero indicates that no non-
  self-issued intermediate CA certificates may follow in a valid
  certification path.  Where it appears, the pathLenConstraint field
  MUST be greater than or equal to zero.  Where pathLenConstraint does
  not appear, no limit is imposed.

  Conforming CAs MUST include this extension in all CA certificates
  that contain public keys used to validate digital signatures on
  certificates and MUST mark the extension as critical in such
  certificates.  This extension MAY appear as a critical or non-
  critical extension in CA certificates that contain public keys used
  exclusively for purposes other than validating digital signatures on
  certificates.  Such CA certificates include ones that contain public
  keys used exclusively for validating digital signatures on CRLs and
  ones that contain key management public keys used with certificate



Cooper, et al.              Standards Track                    [Page 39]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  enrollment protocols.  This extension MAY appear as a critical or
  non-critical extension in end entity certificates.

  CAs MUST NOT include the pathLenConstraint field unless the cA
  boolean is asserted and the key usage extension asserts the
  keyCertSign bit.

  id-ce-basicConstraints OBJECT IDENTIFIER ::=  { id-ce 19 }

  BasicConstraints ::= SEQUENCE {
       cA                      BOOLEAN DEFAULT FALSE,
       pathLenConstraint       INTEGER (0..MAX) OPTIONAL }

4.2.1.10.  Name Constraints

  The name constraints extension, which MUST be used only in a CA
  certificate, indicates a name space within which all subject names in
  subsequent certificates in a certification path MUST be located.
  Restrictions apply to the subject distinguished name and apply to
  subject alternative names.  Restrictions apply only when the
  specified name form is present.  If no name of the type is in the
  certificate, the certificate is acceptable.

  Name constraints are not applied to self-issued certificates (unless
  the certificate is the final certificate in the path).  (This could
  prevent CAs that use name constraints from employing self-issued
  certificates to implement key rollover.)

  Restrictions are defined in terms of permitted or excluded name
  subtrees.  Any name matching a restriction in the excludedSubtrees
  field is invalid regardless of information appearing in the
  permittedSubtrees.  Conforming CAs MUST mark this extension as
  critical and SHOULD NOT impose name constraints on the x400Address,
  ediPartyName, or registeredID name forms.  Conforming CAs MUST NOT
  issue certificates where name constraints is an empty sequence.  That
  is, either the permittedSubtrees field or the excludedSubtrees MUST
  be present.

  Applications conforming to this profile MUST be able to process name
  constraints that are imposed on the directoryName name form and
  SHOULD be able to process name constraints that are imposed on the
  rfc822Name, uniformResourceIdentifier, dNSName, and iPAddress name
  forms.  If a name constraints extension that is marked as critical
  imposes constraints on a particular name form, and an instance of
  that name form appears in the subject field or subjectAltName
  extension of a subsequent certificate, then the application MUST
  either process the constraint or reject the certificate.




Cooper, et al.              Standards Track                    [Page 40]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  Within this profile, the minimum and maximum fields are not used with
  any name forms, thus, the minimum MUST be zero, and maximum MUST be
  absent.  However, if an application encounters a critical name
  constraints extension that specifies other values for minimum or
  maximum for a name form that appears in a subsequent certificate, the
  application MUST either process these fields or reject the
  certificate.

  For URIs, the constraint applies to the host part of the name.  The
  constraint MUST be specified as a fully qualified domain name and MAY
  specify a host or a domain.  Examples would be "host.example.com" and
  ".example.com".  When the constraint begins with a period, it MAY be
  expanded with one or more labels.  That is, the constraint
  ".example.com" is satisfied by both host.example.com and
  my.host.example.com.  However, the constraint ".example.com" is not
  satisfied by "example.com".  When the constraint does not begin with
  a period, it specifies a host.  If a constraint is applied to the
  uniformResourceIdentifier name form and a subsequent certificate
  includes a subjectAltName extension with a uniformResourceIdentifier
  that does not include an authority component with a host name
  specified as a fully qualified domain name (e.g., if the URI either
  does not include an authority component or includes an authority
  component in which the host name is specified as an IP address), then
  the application MUST reject the certificate.

  A name constraint for Internet mail addresses MAY specify a
  particular mailbox, all addresses at a particular host, or all
  mailboxes in a domain.  To indicate a particular mailbox, the
  constraint is the complete mail address.  For example,
  "[email protected]" indicates the root mailbox on the host
  "example.com".  To indicate all Internet mail addresses on a
  particular host, the constraint is specified as the host name.  For
  example, the constraint "example.com" is satisfied by any mail
  address at the host "example.com".  To specify any address within a
  domain, the constraint is specified with a leading period (as with
  URIs).  For example, ".example.com" indicates all the Internet mail
  addresses in the domain "example.com", but not Internet mail
  addresses on the host "example.com".

  DNS name restrictions are expressed as host.example.com.  Any DNS
  name that can be constructed by simply adding zero or more labels to
  the left-hand side of the name satisfies the name constraint.  For
  example, www.host.example.com would satisfy the constraint but
  host1.example.com would not.

  Legacy implementations exist where an electronic mail address is
  embedded in the subject distinguished name in an attribute of type
  emailAddress (Section 4.1.2.6).  When constraints are imposed on the



Cooper, et al.              Standards Track                    [Page 41]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  rfc822Name name form, but the certificate does not include a subject
  alternative name, the rfc822Name constraint MUST be applied to the
  attribute of type emailAddress in the subject distinguished name.
  The ASN.1 syntax for emailAddress and the corresponding OID are
  supplied in Appendix A.

  Restrictions of the form directoryName MUST be applied to the subject
  field in the certificate (when the certificate includes a non-empty
  subject field) and to any names of type directoryName in the
  subjectAltName extension.  Restrictions of the form x400Address MUST
  be applied to any names of type x400Address in the subjectAltName
  extension.

  When applying restrictions of the form directoryName, an
  implementation MUST compare DN attributes.  At a minimum,
  implementations MUST perform the DN comparison rules specified in
  Section 7.1.  CAs issuing certificates with a restriction of the form
  directoryName SHOULD NOT rely on implementation of the full ISO DN
  name comparison algorithm.  This implies name restrictions MUST be
  stated identically to the encoding used in the subject field or
  subjectAltName extension.

  The syntax of iPAddress MUST be as described in Section 4.2.1.6 with
  the following additions specifically for name constraints.  For IPv4
  addresses, the iPAddress field of GeneralName MUST contain eight (8)
  octets, encoded in the style of RFC 4632 (CIDR) to represent an
  address range [RFC4632].  For IPv6 addresses, the iPAddress field
  MUST contain 32 octets similarly encoded.  For example, a name
  constraint for "class C" subnet 192.0.2.0 is represented as the
  octets C0 00 02 00 FF FF FF 00, representing the CIDR notation
  192.0.2.0/24 (mask 255.255.255.0).

  Additional rules for encoding and processing name constraints are
  specified in Section 7.

  The syntax and semantics for name constraints for otherName,
  ediPartyName, and registeredID are not defined by this specification,
  however, syntax and semantics for name constraints for other name
  forms may be specified in other documents.

     id-ce-nameConstraints OBJECT IDENTIFIER ::=  { id-ce 30 }

     NameConstraints ::= SEQUENCE {
          permittedSubtrees       [0]     GeneralSubtrees OPTIONAL,
          excludedSubtrees        [1]     GeneralSubtrees OPTIONAL }

     GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree




Cooper, et al.              Standards Track                    [Page 42]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     GeneralSubtree ::= SEQUENCE {
          base                    GeneralName,
          minimum         [0]     BaseDistance DEFAULT 0,
          maximum         [1]     BaseDistance OPTIONAL }

     BaseDistance ::= INTEGER (0..MAX)

4.2.1.11.  Policy Constraints

  The policy constraints extension can be used in certificates issued
  to CAs.  The policy constraints extension constrains path validation
  in two ways.  It can be used to prohibit policy mapping or require
  that each certificate in a path contain an acceptable policy
  identifier.

  If the inhibitPolicyMapping field is present, the value indicates the
  number of additional certificates that may appear in the path before
  policy mapping is no longer permitted.  For example, a value of one
  indicates that policy mapping may be processed in certificates issued
  by the subject of this certificate, but not in additional
  certificates in the path.

  If the requireExplicitPolicy field is present, the value of
  requireExplicitPolicy indicates the number of additional certificates
  that may appear in the path before an explicit policy is required for
  the entire path.  When an explicit policy is required, it is
  necessary for all certificates in the path to contain an acceptable
  policy identifier in the certificate policies extension.  An
  acceptable policy identifier is the identifier of a policy required
  by the user of the certification path or the identifier of a policy
  that has been declared equivalent through policy mapping.

  Conforming applications MUST be able to process the
  requireExplicitPolicy field and SHOULD be able to process the
  inhibitPolicyMapping field.  Applications that support the
  inhibitPolicyMapping field MUST also implement support for the
  policyMappings extension.  If the policyConstraints extension is
  marked as critical and the inhibitPolicyMapping field is present,
  applications that do not implement support for the
  inhibitPolicyMapping field MUST reject the certificate.

  Conforming CAs MUST NOT issue certificates where policy constraints
  is an empty sequence.  That is, either the inhibitPolicyMapping field
  or the requireExplicitPolicy field MUST be present.  The behavior of
  clients that encounter an empty policy constraints field is not
  addressed in this profile.

  Conforming CAs MUST mark this extension as critical.



Cooper, et al.              Standards Track                    [Page 43]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  id-ce-policyConstraints OBJECT IDENTIFIER ::=  { id-ce 36 }

  PolicyConstraints ::= SEQUENCE {
       requireExplicitPolicy           [0] SkipCerts OPTIONAL,
       inhibitPolicyMapping            [1] SkipCerts OPTIONAL }

  SkipCerts ::= INTEGER (0..MAX)

4.2.1.12.  Extended Key Usage

  This extension indicates one or more purposes for which the certified
  public key may be used, in addition to or in place of the basic
  purposes indicated in the key usage extension.  In general, this
  extension will appear only in end entity certificates.  This
  extension is defined as follows:

  id-ce-extKeyUsage OBJECT IDENTIFIER ::= { id-ce 37 }

  ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId

  KeyPurposeId ::= OBJECT IDENTIFIER

  Key purposes may be defined by any organization with a need.  Object
  identifiers used to identify key purposes MUST be assigned in
  accordance with IANA or ITU-T Recommendation X.660 [X.660].

  This extension MAY, at the option of the certificate issuer, be
  either critical or non-critical.

  If the extension is present, then the certificate MUST only be used
  for one of the purposes indicated.  If multiple purposes are
  indicated the application need not recognize all purposes indicated,
  as long as the intended purpose is present.  Certificate using
  applications MAY require that the extended key usage extension be
  present and that a particular purpose be indicated in order for the
  certificate to be acceptable to that application.

  If a CA includes extended key usages to satisfy such applications,
  but does not wish to restrict usages of the key, the CA can include
  the special KeyPurposeId anyExtendedKeyUsage in addition to the
  particular key purposes required by the applications.  Conforming CAs
  SHOULD NOT mark this extension as critical if the anyExtendedKeyUsage
  KeyPurposeId is present.  Applications that require the presence of a
  particular purpose MAY reject certificates that include the
  anyExtendedKeyUsage OID but not the particular OID expected for the
  application.





Cooper, et al.              Standards Track                    [Page 44]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  If a certificate contains both a key usage extension and an extended
  key usage extension, then both extensions MUST be processed
  independently and the certificate MUST only be used for a purpose
  consistent with both extensions.  If there is no purpose consistent
  with both extensions, then the certificate MUST NOT be used for any
  purpose.

  The following key usage purposes are defined:

  anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 }

  id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }

  id-kp-serverAuth             OBJECT IDENTIFIER ::= { id-kp 1 }
  -- TLS WWW server authentication
  -- Key usage bits that may be consistent: digitalSignature,
  -- keyEncipherment or keyAgreement

  id-kp-clientAuth             OBJECT IDENTIFIER ::= { id-kp 2 }
  -- TLS WWW client authentication
  -- Key usage bits that may be consistent: digitalSignature
  -- and/or keyAgreement

  id-kp-codeSigning             OBJECT IDENTIFIER ::= { id-kp 3 }
  -- Signing of downloadable executable code
  -- Key usage bits that may be consistent: digitalSignature

  id-kp-emailProtection         OBJECT IDENTIFIER ::= { id-kp 4 }
  -- Email protection
  -- Key usage bits that may be consistent: digitalSignature,
  -- nonRepudiation, and/or (keyEncipherment or keyAgreement)

  id-kp-timeStamping            OBJECT IDENTIFIER ::= { id-kp 8 }
  -- Binding the hash of an object to a time
  -- Key usage bits that may be consistent: digitalSignature
  -- and/or nonRepudiation

  id-kp-OCSPSigning            OBJECT IDENTIFIER ::= { id-kp 9 }
  -- Signing OCSP responses
  -- Key usage bits that may be consistent: digitalSignature
  -- and/or nonRepudiation

4.2.1.13.  CRL Distribution Points

  The CRL distribution points extension identifies how CRL information
  is obtained.  The extension SHOULD be non-critical, but this profile
  RECOMMENDS support for this extension by CAs and applications.
  Further discussion of CRL management is contained in Section 5.



Cooper, et al.              Standards Track                    [Page 45]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  The cRLDistributionPoints extension is a SEQUENCE of
  DistributionPoint.  A DistributionPoint consists of three fields,
  each of which is optional: distributionPoint, reasons, and cRLIssuer.
  While each of these fields is optional, a DistributionPoint MUST NOT
  consist of only the reasons field; either distributionPoint or
  cRLIssuer MUST be present.  If the certificate issuer is not the CRL
  issuer, then the cRLIssuer field MUST be present and contain the Name
  of the CRL issuer.  If the certificate issuer is also the CRL issuer,
  then conforming CAs MUST omit the cRLIssuer field and MUST include
  the distributionPoint field.

  When the distributionPoint field is present, it contains either a
  SEQUENCE of general names or a single value, nameRelativeToCRLIssuer.
  If the DistributionPointName contains multiple values, each name
  describes a different mechanism to obtain the same CRL.  For example,
  the same CRL could be available for retrieval through both LDAP and
  HTTP.

  If the distributionPoint field contains a directoryName, the entry
  for that directoryName contains the current CRL for the associated
  reasons and the CRL is issued by the associated cRLIssuer.  The CRL
  may be stored in either the certificateRevocationList or
  authorityRevocationList attribute.  The CRL is to be obtained by the
  application from whatever directory server is locally configured.
  The protocol the application uses to access the directory (e.g., DAP
  or LDAP) is a local matter.

  If the DistributionPointName contains a general name of type URI, the
  following semantics MUST be assumed: the URI is a pointer to the
  current CRL for the associated reasons and will be issued by the
  associated cRLIssuer.  When the HTTP or FTP URI scheme is used, the
  URI MUST point to a single DER encoded CRL as specified in
  [RFC2585].  HTTP server implementations accessed via the URI SHOULD
  specify the media type application/pkix-crl in the content-type
  header field of the response.  When the LDAP URI scheme [RFC4516] is
  used, the URI MUST include a <dn> field containing the distinguished
  name of the entry holding the CRL, MUST include a single <attrdesc>
  that contains an appropriate attribute description for the attribute
  that holds the CRL [RFC4523], and SHOULD include a <host>
  (e.g., <ldap://ldap.example.com/cn=example%20CA,dc=example,dc=com?
  certificateRevocationList;binary>).  Omitting the <host> (e.g.,
  <ldap:///cn=CA,dc=example,dc=com?authorityRevocationList;binary>) has
  the effect of relying on whatever a priori knowledge the client might
  have to contact an appropriate server.  When present,
  DistributionPointName SHOULD include at least one LDAP or HTTP URI.

  If the DistributionPointName contains the single value
  nameRelativeToCRLIssuer, the value provides a distinguished name



Cooper, et al.              Standards Track                    [Page 46]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  fragment.  The fragment is appended to the X.500 distinguished name
  of the CRL issuer to obtain the distribution point name.  If the
  cRLIssuer field in the DistributionPoint is present, then the name
  fragment is appended to the distinguished name that it contains;
  otherwise, the name fragment is appended to the certificate issuer
  distinguished name.  Conforming CAs SHOULD NOT use
  nameRelativeToCRLIssuer to specify distribution point names.  The
  DistributionPointName MUST NOT use the nameRelativeToCRLIssuer
  alternative when cRLIssuer contains more than one distinguished name.

  If the DistributionPoint omits the reasons field, the CRL MUST
  include revocation information for all reasons.  This profile
  RECOMMENDS against segmenting CRLs by reason code.  When a conforming
  CA includes a cRLDistributionPoints extension in a certificate, it
  MUST include at least one DistributionPoint that points to a CRL that
  covers the certificate for all reasons.

  The cRLIssuer identifies the entity that signs and issues the CRL.
  If present, the cRLIssuer MUST only contain the distinguished name
  (DN) from the issuer field of the CRL to which the DistributionPoint
  is pointing.  The encoding of the name in the cRLIssuer field MUST be
  exactly the same as the encoding in issuer field of the CRL.  If the
  cRLIssuer field is included and the DN in that field does not
  correspond to an X.500 or LDAP directory entry where CRL is located,
  then conforming CAs MUST include the distributionPoint field.

  id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::=  { id-ce 31 }

  CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

  DistributionPoint ::= SEQUENCE {
       distributionPoint       [0]     DistributionPointName OPTIONAL,
       reasons                 [1]     ReasonFlags OPTIONAL,
       cRLIssuer               [2]     GeneralNames OPTIONAL }

  DistributionPointName ::= CHOICE {
       fullName                [0]     GeneralNames,
       nameRelativeToCRLIssuer [1]     RelativeDistinguishedName }













Cooper, et al.              Standards Track                    [Page 47]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  ReasonFlags ::= BIT STRING {
       unused                  (0),
       keyCompromise           (1),
       cACompromise            (2),
       affiliationChanged      (3),
       superseded              (4),
       cessationOfOperation    (5),
       certificateHold         (6),
       privilegeWithdrawn      (7),
       aACompromise            (8) }

4.2.1.14.  Inhibit anyPolicy

  The inhibit anyPolicy extension can be used in certificates issued to
  CAs.  The inhibit anyPolicy extension indicates that the special
  anyPolicy OID, with the value { 2 5 29 32 0 }, is not considered an
  explicit match for other certificate policies except when it appears
  in an intermediate self-issued CA certificate.  The value indicates
  the number of additional non-self-issued certificates that may appear
  in the path before anyPolicy is no longer permitted.  For example, a
  value of one indicates that anyPolicy may be processed in
  certificates issued by the subject of this certificate, but not in
  additional certificates in the path.

  Conforming CAs MUST mark this extension as critical.

  id-ce-inhibitAnyPolicy OBJECT IDENTIFIER ::=  { id-ce 54 }

  InhibitAnyPolicy ::= SkipCerts

  SkipCerts ::= INTEGER (0..MAX)

4.2.1.15.  Freshest CRL (a.k.a. Delta CRL Distribution Point)

  The freshest CRL extension identifies how delta CRL information is
  obtained.  The extension MUST be marked as non-critical by conforming
  CAs.  Further discussion of CRL management is contained in Section 5.

  The same syntax is used for this extension and the
  cRLDistributionPoints extension, and is described in Section
  4.2.1.13.  The same conventions apply to both extensions.

  id-ce-freshestCRL OBJECT IDENTIFIER ::=  { id-ce 46 }

  FreshestCRL ::= CRLDistributionPoints






Cooper, et al.              Standards Track                    [Page 48]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


4.2.2.  Private Internet Extensions

  This section defines two extensions for use in the Internet Public
  Key Infrastructure.  These extensions may be used to direct
  applications to on-line information about the issuer or the subject.
  Each extension contains a sequence of access methods and access
  locations.  The access method is an object identifier that indicates
  the type of information that is available.  The access location is a
  GeneralName that implicitly specifies the location and format of the
  information and the method for obtaining the information.

  Object identifiers are defined for the private extensions.  The
  object identifiers associated with the private extensions are defined
  under the arc id-pe within the arc id-pkix.  Any future extensions
  defined for the Internet PKI are also expected to be defined under
  the arc id-pe.

     id-pkix  OBJECT IDENTIFIER  ::=
              { iso(1) identified-organization(3) dod(6) internet(1)
                      security(5) mechanisms(5) pkix(7) }

     id-pe  OBJECT IDENTIFIER  ::=  { id-pkix 1 }

4.2.2.1.  Authority Information Access

  The authority information access extension indicates how to access
  information and services for the issuer of the certificate in which
  the extension appears.  Information and services may include on-line
  validation services and CA policy data.  (The location of CRLs is not
  specified in this extension; that information is provided by the
  cRLDistributionPoints extension.)  This extension may be included in
  end entity or CA certificates.  Conforming CAs MUST mark this
  extension as non-critical.

  id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }

  AuthorityInfoAccessSyntax  ::=
          SEQUENCE SIZE (1..MAX) OF AccessDescription

  AccessDescription  ::=  SEQUENCE {
          accessMethod          OBJECT IDENTIFIER,
          accessLocation        GeneralName  }

  id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }

  id-ad-caIssuers OBJECT IDENTIFIER ::= { id-ad 2 }

  id-ad-ocsp OBJECT IDENTIFIER ::= { id-ad 1 }



Cooper, et al.              Standards Track                    [Page 49]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  Each entry in the sequence AuthorityInfoAccessSyntax describes the
  format and location of additional information provided by the issuer
  of the certificate in which this extension appears.  The type and
  format of the information are specified by the accessMethod field;
  the accessLocation field specifies the location of the information.
  The retrieval mechanism may be implied by the accessMethod or
  specified by accessLocation.

  This profile defines two accessMethod OIDs: id-ad-caIssuers and
  id-ad-ocsp.

  In a public key certificate, the id-ad-caIssuers OID is used when the
  additional information lists certificates that were issued to the CA
  that issued the certificate containing this extension.  The
  referenced CA issuers description is intended to aid certificate
  users in the selection of a certification path that terminates at a
  point trusted by the certificate user.

  When id-ad-caIssuers appears as accessMethod, the accessLocation
  field describes the referenced description server and the access
  protocol to obtain the referenced description.  The accessLocation
  field is defined as a GeneralName, which can take several forms.

  When the accessLocation is a directoryName, the information is to be
  obtained by the application from whatever directory server is locally
  configured.  The entry for the directoryName contains CA certificates
  in the crossCertificatePair and/or cACertificate attributes as
  specified in [RFC4523].  The protocol that application uses to access
  the directory (e.g., DAP or LDAP) is a local matter.

  Where the information is available via LDAP, the accessLocation
  SHOULD be a uniformResourceIdentifier.  The LDAP URI [RFC4516] MUST
  include a <dn> field containing the distinguished name of the entry
  holding the certificates, MUST include an <attributes> field that
  lists appropriate attribute descriptions for the attributes that hold
  the DER encoded certificates or cross-certificate pairs [RFC4523],
  and SHOULD include a <host> (e.g., <ldap://ldap.example.com/cn=CA,
  dc=example,dc=com?cACertificate;binary,crossCertificatePair;binary>).
  Omitting the <host> (e.g., <ldap:///cn=exampleCA,dc=example,dc=com?
  cACertificate;binary>) has the effect of relying on whatever a priori
  knowledge the client might have to contact an appropriate server.

  Where the information is available via HTTP or FTP, accessLocation
  MUST be a uniformResourceIdentifier and the URI MUST point to either
  a single DER encoded certificate as specified in [RFC2585] or a
  collection of certificates in a BER or DER encoded "certs-only" CMS
  message as specified in [RFC2797].




Cooper, et al.              Standards Track                    [Page 50]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  Conforming applications that support HTTP or FTP for accessing
  certificates MUST be able to accept individual DER encoded
  certificates and SHOULD be able to accept "certs-only" CMS messages.

  HTTP server implementations accessed via the URI SHOULD specify the
  media type application/pkix-cert [RFC2585] in the content-type header
  field of the response for a single DER encoded certificate and SHOULD
  specify the media type application/pkcs7-mime [RFC2797] in the
  content-type header field of the response for "certs-only" CMS
  messages.  For FTP, the name of a file that contains a single DER
  encoded certificate SHOULD have a suffix of ".cer" [RFC2585] and the
  name of a file that contains a "certs-only" CMS message SHOULD have a
  suffix of ".p7c" [RFC2797].  Consuming clients may use the media type
  or file extension as a hint to the content, but should not depend
  solely on the presence of the correct media type or file extension in
  the server response.

  The semantics of other id-ad-caIssuers accessLocation name forms are
  not defined.

  An authorityInfoAccess extension may include multiple instances of
  the id-ad-caIssuers accessMethod.  The different instances may
  specify different methods for accessing the same information or may
  point to different information.  When the id-ad-caIssuers
  accessMethod is used, at least one instance SHOULD specify an
  accessLocation that is an HTTP [RFC2616] or LDAP [RFC4516] URI.

  The id-ad-ocsp OID is used when revocation information for the
  certificate containing this extension is available using the Online
  Certificate Status Protocol (OCSP) [RFC2560].

  When id-ad-ocsp appears as accessMethod, the accessLocation field is
  the location of the OCSP responder, using the conventions defined in
  [RFC2560].

  Additional access descriptors may be defined in other PKIX
  specifications.

4.2.2.2.  Subject Information Access

  The subject information access extension indicates how to access
  information and services for the subject of the certificate in which
  the extension appears.  When the subject is a CA, information and
  services may include certificate validation services and CA policy
  data.  When the subject is an end entity, the information describes
  the type of services offered and how to access them.  In this case,
  the contents of this extension are defined in the protocol




Cooper, et al.              Standards Track                    [Page 51]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  specifications for the supported services.  This extension may be
  included in end entity or CA certificates.  Conforming CAs MUST mark
  this extension as non-critical.

  id-pe-subjectInfoAccess OBJECT IDENTIFIER ::= { id-pe 11 }

  SubjectInfoAccessSyntax  ::=
          SEQUENCE SIZE (1..MAX) OF AccessDescription

  AccessDescription  ::=  SEQUENCE {
          accessMethod          OBJECT IDENTIFIER,
          accessLocation        GeneralName  }

  Each entry in the sequence SubjectInfoAccessSyntax describes the
  format and location of additional information provided by the subject
  of the certificate in which this extension appears.  The type and
  format of the information are specified by the accessMethod field;
  the accessLocation field specifies the location of the information.
  The retrieval mechanism may be implied by the accessMethod or
  specified by accessLocation.

  This profile defines one access method to be used when the subject is
  a CA and one access method to be used when the subject is an end
  entity.  Additional access methods may be defined in the future in
  the protocol specifications for other services.

  The id-ad-caRepository OID is used when the subject is a CA that
  publishes certificates it issues in a repository.  The accessLocation
  field is defined as a GeneralName, which can take several forms.

  When the accessLocation is a directoryName, the information is to be
  obtained by the application from whatever directory server is locally
  configured.  When the extension is used to point to CA certificates,
  the entry for the directoryName contains CA certificates in the
  crossCertificatePair and/or cACertificate attributes as specified in
  [RFC4523].  The protocol the application uses to access the directory
  (e.g., DAP or LDAP) is a local matter.

  Where the information is available via LDAP, the accessLocation
  SHOULD be a uniformResourceIdentifier.  The LDAP URI [RFC4516] MUST
  include a <dn> field containing the distinguished name of the entry
  holding the certificates, MUST include an <attributes> field that
  lists appropriate attribute descriptions for the attributes that hold
  the DER encoded certificates or cross-certificate pairs [RFC4523],
  and SHOULD include a <host> (e.g., <ldap://ldap.example.com/cn=CA,
  dc=example,dc=com?cACertificate;binary,crossCertificatePair;binary>).





Cooper, et al.              Standards Track                    [Page 52]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  Omitting the <host> (e.g., <ldap:///cn=exampleCA,dc=example,dc=com?
  cACertificate;binary>) has the effect of relying on whatever a priori
  knowledge the client might have to contact an appropriate server.

  Where the information is available via HTTP or FTP, accessLocation
  MUST be a uniformResourceIdentifier and the URI MUST point to either
  a single DER encoded certificate as specified in [RFC2585] or a
  collection of certificates in a BER or DER encoded "certs-only" CMS
  message as specified in [RFC2797].

  Conforming applications that support HTTP or FTP for accessing
  certificates MUST be able to accept individual DER encoded
  certificates and SHOULD be able to accept "certs-only" CMS messages.

  HTTP server implementations accessed via the URI SHOULD specify the
  media type application/pkix-cert [RFC2585] in the content-type header
  field of the response for a single DER encoded certificate and SHOULD
  specify the media type application/pkcs7-mime [RFC2797] in the
  content-type header field of the response for "certs-only" CMS
  messages.  For FTP, the name of a file that contains a single DER
  encoded certificate SHOULD have a suffix of ".cer" [RFC2585] and the
  name of a file that contains a "certs-only" CMS message SHOULD have a
  suffix of ".p7c" [RFC2797].  Consuming clients may use the media type
  or file extension as a hint to the content, but should not depend
  solely on the presence of the correct media type or file extension in
  the server response.

  The semantics of other id-ad-caRepository accessLocation name forms
  are not defined.

  A subjectInfoAccess extension may include multiple instances of the
  id-ad-caRepository accessMethod.  The different instances may specify
  different methods for accessing the same information or may point to
  different information.  When the id-ad-caRepository accessMethod is
  used, at least one instance SHOULD specify an accessLocation that is
  an HTTP [RFC2616] or LDAP [RFC4516] URI.

  The id-ad-timeStamping OID is used when the subject offers
  timestamping services using the Time Stamp Protocol defined in
  [RFC3161].  Where the timestamping services are available via HTTP or
  FTP, accessLocation MUST be a uniformResourceIdentifier.  Where the
  timestamping services are available via electronic mail,
  accessLocation MUST be an rfc822Name.  Where timestamping services
  are available using TCP/IP, the dNSName or iPAddress name forms may
  be used.  The semantics of other name forms of accessLocation (when
  accessMethod is id-ad-timeStamping) are not defined by this
  specification.




Cooper, et al.              Standards Track                    [Page 53]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  Additional access descriptors may be defined in other PKIX
  specifications.

  id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }

  id-ad-caRepository OBJECT IDENTIFIER ::= { id-ad 5 }

  id-ad-timeStamping OBJECT IDENTIFIER ::= { id-ad 3 }

5.  CRL and CRL Extensions Profile

  As discussed above, one goal of this X.509 v2 CRL profile is to
  foster the creation of an interoperable and reusable Internet PKI.
  To achieve this goal, guidelines for the use of extensions are
  specified, and some assumptions are made about the nature of
  information included in the CRL.

  CRLs may be used in a wide range of applications and environments
  covering a broad spectrum of interoperability goals and an even
  broader spectrum of operational and assurance requirements.  This
  profile establishes a common baseline for generic applications
  requiring broad interoperability.  The profile defines a set of
  information that can be expected in every CRL.  Also, the profile
  defines common locations within the CRL for frequently used
  attributes as well as common representations for these attributes.

  CRL issuers issue CRLs.  The CRL issuer is either the CA or an entity
  that has been authorized by the CA to issue CRLs.  CAs publish CRLs
  to provide status information about the certificates they issued.
  However, a CA may delegate this responsibility to another trusted
  authority.

  Each CRL has a particular scope.  The CRL scope is the set of
  certificates that could appear on a given CRL.  For example, the
  scope could be "all certificates issued by CA X", "all CA
  certificates issued by CA X", "all certificates issued by CA X that
  have been revoked for reasons of key compromise and CA compromise",
  or a set of certificates based on arbitrary local information, such
  as "all certificates issued to the NIST employees located in
  Boulder".

  A complete CRL lists all unexpired certificates, within its scope,
  that have been revoked for one of the revocation reasons covered by
  the CRL scope.  A full and complete CRL lists all unexpired
  certificates issued by a CA that have been revoked for any reason.
  (Note that since CAs and CRL issuers are identified by name, the
  scope of a CRL is not affected by the key used to sign the CRL or the
  key(s) used to sign certificates.)



Cooper, et al.              Standards Track                    [Page 54]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  If the scope of the CRL includes one or more certificates issued by
  an entity other than the CRL issuer, then it is an indirect CRL.  The
  scope of an indirect CRL may be limited to certificates issued by a
  single CA or may include certificates issued by multiple CAs.  If the
  issuer of the indirect CRL is a CA, then the scope of the indirect
  CRL MAY also include certificates issued by the issuer of the CRL.

  The CRL issuer MAY also generate delta CRLs.  A delta CRL only lists
  those certificates, within its scope, whose revocation status has
  changed since the issuance of a referenced complete CRL.  The
  referenced complete CRL is referred to as a base CRL.  The scope of a
  delta CRL MUST be the same as the base CRL that it references.

  This profile defines one private Internet CRL extension but does not
  define any private CRL entry extensions.

  Environments with additional or special purpose requirements may
  build on this profile or may replace it.

  Conforming CAs are not required to issue CRLs if other revocation or
  certificate status mechanisms are provided.  When CRLs are issued,
  the CRLs MUST be version 2 CRLs, include the date by which the next
  CRL will be issued in the nextUpdate field (Section 5.1.2.5), include
  the CRL number extension (Section 5.2.3), and include the authority
  key identifier extension (Section 5.2.1).  Conforming applications
  that support CRLs are REQUIRED to process both version 1 and version
  2 complete CRLs that provide revocation information for all
  certificates issued by one CA.  Conforming applications are not
  required to support processing of delta CRLs, indirect CRLs, or CRLs
  with a scope other than all certificates issued by one CA.

5.1.  CRL Fields

  The X.509 v2 CRL syntax is as follows.  For signature calculation,
  the data that is to be signed is ASN.1 DER encoded.  ASN.1 DER
  encoding is a tag, length, value encoding system for each element.















Cooper, et al.              Standards Track                    [Page 55]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  CertificateList  ::=  SEQUENCE  {
       tbsCertList          TBSCertList,
       signatureAlgorithm   AlgorithmIdentifier,
       signatureValue       BIT STRING  }

  TBSCertList  ::=  SEQUENCE  {
       version                 Version OPTIONAL,
                                    -- if present, MUST be v2
       signature               AlgorithmIdentifier,
       issuer                  Name,
       thisUpdate              Time,
       nextUpdate              Time OPTIONAL,
       revokedCertificates     SEQUENCE OF SEQUENCE  {
            userCertificate         CertificateSerialNumber,
            revocationDate          Time,
            crlEntryExtensions      Extensions OPTIONAL
                                     -- if present, version MUST be v2
                                 }  OPTIONAL,
       crlExtensions           [0]  EXPLICIT Extensions OPTIONAL
                                     -- if present, version MUST be v2
                                 }

  -- Version, Time, CertificateSerialNumber, and Extensions
  -- are all defined in the ASN.1 in Section 4.1

  -- AlgorithmIdentifier is defined in Section 4.1.1.2

  The following items describe the use of the X.509 v2 CRL in the
  Internet PKI.

5.1.1.  CertificateList Fields

  The CertificateList is a SEQUENCE of three required fields.  The
  fields are described in detail in the following subsections.

5.1.1.1.  tbsCertList

  The first field in the sequence is the tbsCertList.  This field is
  itself a sequence containing the name of the issuer, issue date,
  issue date of the next list, the optional list of revoked
  certificates, and optional CRL extensions.  When there are no revoked
  certificates, the revoked certificates list is absent.  When one or
  more certificates are revoked, each entry on the revoked certificate
  list is defined by a sequence of user certificate serial number,
  revocation date, and optional CRL entry extensions.






Cooper, et al.              Standards Track                    [Page 56]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


5.1.1.2.  signatureAlgorithm

  The signatureAlgorithm field contains the algorithm identifier for
  the algorithm used by the CRL issuer to sign the CertificateList.
  The field is of type AlgorithmIdentifier, which is defined in Section
  4.1.1.2.  [RFC3279], [RFC4055], and [RFC4491] list supported
  algorithms for this specification, but other signature algorithms MAY
  also be supported.

  This field MUST contain the same algorithm identifier as the
  signature field in the sequence tbsCertList (Section 5.1.2.2).

5.1.1.3.  signatureValue

  The signatureValue field contains a digital signature computed upon
  the ASN.1 DER encoded tbsCertList.  The ASN.1 DER encoded tbsCertList
  is used as the input to the signature function.  This signature value
  is encoded as a BIT STRING and included in the CRL signatureValue
  field.  The details of this process are specified for each of the
  supported algorithms in [RFC3279], [RFC4055], and [RFC4491].

  CAs that are also CRL issuers MAY use one private key to digitally
  sign certificates and CRLs, or MAY use separate private keys to
  digitally sign certificates and CRLs.  When separate private keys are
  employed, each of the public keys associated with these private keys
  is placed in a separate certificate, one with the keyCertSign bit set
  in the key usage extension, and one with the cRLSign bit set in the
  key usage extension (Section 4.2.1.3).  When separate private keys
  are employed, certificates issued by the CA contain one authority key
  identifier, and the corresponding CRLs contain a different authority
  key identifier.  The use of separate CA certificates for validation
  of certificate signatures and CRL signatures can offer improved
  security characteristics; however, it imposes a burden on
  applications, and it might limit interoperability.  Many applications
  construct a certification path, and then validate the certification
  path (Section 6).  CRL checking in turn requires a separate
  certification path to be constructed and validated for the CA's CRL
  signature validation certificate.  Applications that perform CRL
  checking MUST support certification path validation when certificates
  and CRLs are digitally signed with the same CA private key.  These
  applications SHOULD support certification path validation when
  certificates and CRLs are digitally signed with different CA private
  keys.








Cooper, et al.              Standards Track                    [Page 57]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


5.1.2.  Certificate List "To Be Signed"

  The certificate list to be signed, or TBSCertList, is a sequence of
  required and optional fields.  The required fields identify the CRL
  issuer, the algorithm used to sign the CRL, and the date and time the
  CRL was issued.

  Optional fields include the date and time by which the CRL issuer
  will issue the next CRL, lists of revoked certificates, and CRL
  extensions.  The revoked certificate list is optional to support the
  case where a CA has not revoked any unexpired certificates that it
  has issued.  This profile requires conforming CRL issuers to include
  the nextUpdate field and the CRL number and authority key identifier
  CRL extensions in all CRLs issued.

5.1.2.1.  Version

  This optional field describes the version of the encoded CRL.  When
  extensions are used, as required by this profile, this field MUST be
  present and MUST specify version 2 (the integer value is 1).

5.1.2.2.  Signature

  This field contains the algorithm identifier for the algorithm used
  to sign the CRL.  [RFC3279], [RFC4055], and [RFC4491] list OIDs for
  the most popular signature algorithms used in the Internet PKI.

  This field MUST contain the same algorithm identifier as the
  signatureAlgorithm field in the sequence CertificateList (Section
  5.1.1.2).

5.1.2.3.  Issuer Name

  The issuer name identifies the entity that has signed and issued the
  CRL.  The issuer identity is carried in the issuer field.
  Alternative name forms may also appear in the issuerAltName extension
  (Section 5.2.2).  The issuer field MUST contain a non-empty X.500
  distinguished name (DN).  The issuer field is defined as the X.501
  type Name, and MUST follow the encoding rules for the issuer name
  field in the certificate (Section 4.1.2.4).

5.1.2.4.  This Update

  This field indicates the issue date of this CRL.  thisUpdate may be
  encoded as UTCTime or GeneralizedTime.

  CRL issuers conforming to this profile MUST encode thisUpdate as
  UTCTime for dates through the year 2049.  CRL issuers conforming to



Cooper, et al.              Standards Track                    [Page 58]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  this profile MUST encode thisUpdate as GeneralizedTime for dates in
  the year 2050 or later.  Conforming applications MUST be able to
  process dates that are encoded in either UTCTime or GeneralizedTime.

  Where encoded as UTCTime, thisUpdate MUST be specified and
  interpreted as defined in Section 4.1.2.5.1.  Where encoded as
  GeneralizedTime, thisUpdate MUST be specified and interpreted as
  defined in Section 4.1.2.5.2.

5.1.2.5.  Next Update

  This field indicates the date by which the next CRL will be issued.
  The next CRL could be issued before the indicated date, but it will
  not be issued any later than the indicated date.  CRL issuers SHOULD
  issue CRLs with a nextUpdate time equal to or later than all previous
  CRLs.  nextUpdate may be encoded as UTCTime or GeneralizedTime.

  Conforming CRL issuers MUST include the nextUpdate field in all CRLs.
  Note that the ASN.1 syntax of TBSCertList describes this field as
  OPTIONAL, which is consistent with the ASN.1 structure defined in
  [X.509].  The behavior of clients processing CRLs that omit
  nextUpdate is not specified by this profile.

  CRL issuers conforming to this profile MUST encode nextUpdate as
  UTCTime for dates through the year 2049.  CRL issuers conforming to
  this profile MUST encode nextUpdate as GeneralizedTime for dates in
  the year 2050 or later.  Conforming applications MUST be able to
  process dates that are encoded in either UTCTime or GeneralizedTime.

  Where encoded as UTCTime, nextUpdate MUST be specified and
  interpreted as defined in Section 4.1.2.5.1.  Where encoded as
  GeneralizedTime, nextUpdate MUST be specified and interpreted as
  defined in Section 4.1.2.5.2.

5.1.2.6.  Revoked Certificates

  When there are no revoked certificates, the revoked certificates list
  MUST be absent.  Otherwise, revoked certificates are listed by their
  serial numbers.  Certificates revoked by the CA are uniquely
  identified by the certificate serial number.  The date on which the
  revocation occurred is specified.  The time for revocationDate MUST
  be expressed as described in Section 5.1.2.4.  Additional information
  may be supplied in CRL entry extensions; CRL entry extensions are
  discussed in Section 5.3.







Cooper, et al.              Standards Track                    [Page 59]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


5.1.2.7.  Extensions

  This field may only appear if the version is 2 (Section 5.1.2.1).  If
  present, this field is a sequence of one or more CRL extensions.  CRL
  extensions are discussed in Section 5.2.

5.2.  CRL Extensions

  The extensions defined by ANSI X9, ISO/IEC, and ITU-T for X.509 v2
  CRLs [X.509] [X9.55] provide methods for associating additional
  attributes with CRLs.  The X.509 v2 CRL format also allows
  communities to define private extensions to carry information unique
  to those communities.  Each extension in a CRL may be designated as
  critical or non-critical.  If a CRL contains a critical extension
  that the application cannot process, then the application MUST NOT
  use that CRL to determine the status of certificates.  However,
  applications may ignore unrecognized non-critical extensions.  The
  following subsections present those extensions used within Internet
  CRLs.  Communities may elect to include extensions in CRLs that are
  not defined in this specification.  However, caution should be
  exercised in adopting any critical extensions in CRLs that might be
  used in a general context.

  Conforming CRL issuers are REQUIRED to include the authority key
  identifier (Section 5.2.1) and the CRL number (Section 5.2.3)
  extensions in all CRLs issued.

5.2.1.  Authority Key Identifier

  The authority key identifier extension provides a means of
  identifying the public key corresponding to the private key used to
  sign a CRL.  The identification can be based on either the key
  identifier (the subject key identifier in the CRL signer's
  certificate) or the issuer name and serial number.  This extension is
  especially useful where an issuer has more than one signing key,
  either due to multiple concurrent key pairs or due to changeover.

  Conforming CRL issuers MUST use the key identifier method, and MUST
  include this extension in all CRLs issued.

  The syntax for this CRL extension is defined in Section 4.2.1.1.

5.2.2.  Issuer Alternative Name

  The issuer alternative name extension allows additional identities to
  be associated with the issuer of the CRL.  Defined options include an
  electronic mail address (rfc822Name), a DNS name, an IP address, and
  a URI.  Multiple instances of a name form and multiple name forms may



Cooper, et al.              Standards Track                    [Page 60]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  be included.  Whenever such identities are used, the issuer
  alternative name extension MUST be used; however, a DNS name MAY be
  represented in the issuer field using the domainComponent attribute
  as described in Section 4.1.2.4.

  Conforming CRL issuers SHOULD mark the issuerAltName extension as
  non-critical.

  The OID and syntax for this CRL extension are defined in Section
  4.2.1.7.

5.2.3.  CRL Number

  The CRL number is a non-critical CRL extension that conveys a
  monotonically increasing sequence number for a given CRL scope and
  CRL issuer.  This extension allows users to easily determine when a
  particular CRL supersedes another CRL.  CRL numbers also support the
  identification of complementary complete CRLs and delta CRLs.  CRL
  issuers conforming to this profile MUST include this extension in all
  CRLs and MUST mark this extension as non-critical.

  If a CRL issuer generates delta CRLs in addition to complete CRLs for
  a given scope, the complete CRLs and delta CRLs MUST share one
  numbering sequence.  If a delta CRL and a complete CRL that cover the
  same scope are issued at the same time, they MUST have the same CRL
  number and provide the same revocation information.  That is, the
  combination of the delta CRL and an acceptable complete CRL MUST
  provide the same revocation information as the simultaneously issued
  complete CRL.

  If a CRL issuer generates two CRLs (two complete CRLs, two delta
  CRLs, or a complete CRL and a delta CRL) for the same scope at
  different times, the two CRLs MUST NOT have the same CRL number.
  That is, if the this update field (Section 5.1.2.4) in the two CRLs
  are not identical, the CRL numbers MUST be different.

  Given the requirements above, CRL numbers can be expected to contain
  long integers.  CRL verifiers MUST be able to handle CRLNumber values
  up to 20 octets.  Conforming CRL issuers MUST NOT use CRLNumber
  values longer than 20 octets.

  id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }

  CRLNumber ::= INTEGER (0..MAX)







Cooper, et al.              Standards Track                    [Page 61]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


5.2.4.  Delta CRL Indicator

  The delta CRL indicator is a critical CRL extension that identifies a
  CRL as being a delta CRL.  Delta CRLs contain updates to revocation
  information previously distributed, rather than all the information
  that would appear in a complete CRL.  The use of delta CRLs can
  significantly reduce network load and processing time in some
  environments.  Delta CRLs are generally smaller than the CRLs they
  update, so applications that obtain delta CRLs consume less network
  bandwidth than applications that obtain the corresponding complete
  CRLs.  Applications that store revocation information in a format
  other than the CRL structure can add new revocation information to
  the local database without reprocessing information.

  The delta CRL indicator extension contains the single value of type
  BaseCRLNumber.  The CRL number identifies the CRL, complete for a
  given scope, that was used as the starting point in the generation of
  this delta CRL.  A conforming CRL issuer MUST publish the referenced
  base CRL as a complete CRL.  The delta CRL contains all updates to
  the revocation status for that same scope.  The combination of a
  delta CRL plus the referenced base CRL is equivalent to a complete
  CRL, for the applicable scope, at the time of publication of the
  delta CRL.

  When a conforming CRL issuer generates a delta CRL, the delta CRL
  MUST include a critical delta CRL indicator extension.

  When a delta CRL is issued, it MUST cover the same set of reasons and
  the same set of certificates that were covered by the base CRL it
  references.  That is, the scope of the delta CRL MUST be the same as
  the scope of the complete CRL referenced as the base.  The referenced
  base CRL and the delta CRL MUST omit the issuing distribution point
  extension or contain identical issuing distribution point extensions.
  Further, the CRL issuer MUST use the same private key to sign the
  delta CRL and any complete CRL that it can be used to update.

  An application that supports delta CRLs can construct a CRL that is
  complete for a given scope by combining a delta CRL for that scope
  with either an issued CRL that is complete for that scope or a
  locally constructed CRL that is complete for that scope.

  When a delta CRL is combined with a complete CRL or a locally
  constructed CRL, the resulting locally constructed CRL has the CRL
  number specified in the CRL number extension found in the delta CRL
  used in its construction.  In addition, the resulting locally
  constructed CRL has the thisUpdate and nextUpdate times specified in





Cooper, et al.              Standards Track                    [Page 62]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  the corresponding fields of the delta CRL used in its construction.
  In addition, the locally constructed CRL inherits the issuing
  distribution point from the delta CRL.

  A complete CRL and a delta CRL MAY be combined if the following four
  conditions are satisfied:

     (a)  The complete CRL and delta CRL have the same issuer.

     (b)  The complete CRL and delta CRL have the same scope.  The two
          CRLs have the same scope if either of the following
          conditions are met:

        (1)  The issuingDistributionPoint extension is omitted from
             both the complete CRL and the delta CRL.

        (2)  The issuingDistributionPoint extension is present in both
             the complete CRL and the delta CRL, and the values for
             each of the fields in the extensions are the same in both
             CRLs.

     (c)  The CRL number of the complete CRL is equal to or greater
          than the BaseCRLNumber specified in the delta CRL.  That is,
          the complete CRL contains (at a minimum) all the revocation
          information held by the referenced base CRL.

     (d)  The CRL number of the complete CRL is less than the CRL
          number of the delta CRL.  That is, the delta CRL follows the
          complete CRL in the numbering sequence.

  CRL issuers MUST ensure that the combination of a delta CRL and any
  appropriate complete CRL accurately reflects the current revocation
  status.  The CRL issuer MUST include an entry in the delta CRL for
  each certificate within the scope of the delta CRL whose status has
  changed since the generation of the referenced base CRL:

     (a)  If the certificate is revoked for a reason included in the
          scope of the CRL, list the certificate as revoked.

     (b)  If the certificate is valid and was listed on the referenced
          base CRL or any subsequent CRL with reason code
          certificateHold, and the reason code certificateHold is
          included in the scope of the CRL, list the certificate with
          the reason code removeFromCRL.







Cooper, et al.              Standards Track                    [Page 63]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (c)  If the certificate is revoked for a reason outside the scope
          of the CRL, but the certificate was listed on the referenced
          base CRL or any subsequent CRL with a reason code included in
          the scope of this CRL, list the certificate as revoked but
          omit the reason code.

     (d)  If the certificate is revoked for a reason outside the scope
          of the CRL and the certificate was neither listed on the
          referenced base CRL nor any subsequent CRL with a reason code
          included in the scope of this CRL, do not list the
          certificate on this CRL.

  The status of a certificate is considered to have changed if it is
  revoked (for any revocation reason, including certificateHold), if it
  is released from hold, or if its revocation reason changes.

  It is appropriate to list a certificate with reason code
  removeFromCRL on a delta CRL even if the certificate was not on hold
  in the referenced base CRL.  If the certificate was placed on hold in
  any CRL issued after the base but before this delta CRL and then
  released from hold, it MUST be listed on the delta CRL with
  revocation reason removeFromCRL.

  A CRL issuer MAY optionally list a certificate on a delta CRL with
  reason code removeFromCRL if the notAfter time specified in the
  certificate precedes the thisUpdate time specified in the delta CRL
  and the certificate was listed on the referenced base CRL or in any
  CRL issued after the base but before this delta CRL.

  If a certificate revocation notice first appears on a delta CRL, then
  it is possible for the certificate validity period to expire before
  the next complete CRL for the same scope is issued.  In this case,
  the revocation notice MUST be included in all subsequent delta CRLs
  until the revocation notice is included on at least one explicitly
  issued complete CRL for this scope.

  An application that supports delta CRLs MUST be able to construct a
  current complete CRL by combining a previously issued complete CRL
  and the most current delta CRL.  An application that supports delta
  CRLs MAY also be able to construct a current complete CRL by
  combining a previously locally constructed complete CRL and the
  current delta CRL.  A delta CRL is considered to be the current one
  if the current time is between the times contained in the thisUpdate
  and nextUpdate fields.  Under some circumstances, the CRL issuer may
  publish one or more delta CRLs before the time indicated by the
  nextUpdate field.  If more than one current delta CRL for a given
  scope is encountered, the application SHOULD consider the one with
  the latest value in thisUpdate to be the most current one.



Cooper, et al.              Standards Track                    [Page 64]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= { id-ce 27 }

  BaseCRLNumber ::= CRLNumber

5.2.5.  Issuing Distribution Point

  The issuing distribution point is a critical CRL extension that
  identifies the CRL distribution point and scope for a particular CRL,
  and it indicates whether the CRL covers revocation for end entity
  certificates only, CA certificates only, attribute certificates only,
  or a limited set of reason codes.  Although the extension is
  critical, conforming implementations are not required to support this
  extension.  However, implementations that do not support this
  extension MUST either treat the status of any certificate not listed
  on this CRL as unknown or locate another CRL that does not contain
  any unrecognized critical extensions.

  The CRL is signed using the CRL issuer's private key.  CRL
  distribution points do not have their own key pairs.  If the CRL is
  stored in the X.500 directory, it is stored in the directory entry
  corresponding to the CRL distribution point, which may be different
  from the directory entry of the CRL issuer.

  The reason codes associated with a distribution point MUST be
  specified in onlySomeReasons.  If onlySomeReasons does not appear,
  the distribution point MUST contain revocations for all reason codes.
  CAs may use CRL distribution points to partition the CRL on the basis
  of compromise and routine revocation.  In this case, the revocations
  with reason code keyCompromise (1), cACompromise (2), and
  aACompromise (8) appear in one distribution point, and the
  revocations with other reason codes appear in another distribution
  point.

  If a CRL includes an issuingDistributionPoint extension with
  onlySomeReasons present, then every certificate in the scope of the
  CRL that is revoked MUST be assigned a revocation reason other than
  unspecified.  The assigned revocation reason is used to determine on
  which CRL(s) to list the revoked certificate, however, there is no
  requirement to include the reasonCode CRL entry extension in the
  corresponding CRL entry.

  The syntax and semantics for the distributionPoint field are the same
  as for the distributionPoint field in the cRLDistributionPoints
  extension (Section 4.2.1.13).  If the distributionPoint field is
  present, then it MUST include at least one of names from the
  corresponding distributionPoint field of the cRLDistributionPoints





Cooper, et al.              Standards Track                    [Page 65]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  extension of every certificate that is within the scope of this CRL.
  The identical encoding MUST be used in the distributionPoint fields
  of the certificate and the CRL.

  If the distributionPoint field is absent, the CRL MUST contain
  entries for all revoked unexpired certificates issued by the CRL
  issuer, if any, within the scope of the CRL.

  If the scope of the CRL only includes certificates issued by the CRL
  issuer, then the indirectCRL boolean MUST be set to FALSE.
  Otherwise, if the scope of the CRL includes certificates issued by
  one or more authorities other than the CRL issuer, the indirectCRL
  boolean MUST be set to TRUE.  The authority responsible for each
  entry is indicated by the certificate issuer CRL entry extension
  (Section 5.3.3).

  If the scope of the CRL only includes end entity public key
  certificates, then onlyContainsUserCerts MUST be set to TRUE.  If the
  scope of the CRL only includes CA certificates, then
  onlyContainsCACerts MUST be set to TRUE.  If either
  onlyContainsUserCerts or onlyContainsCACerts is set to TRUE, then the
  scope of the CRL MUST NOT include any version 1 or version 2
  certificates.  Conforming CRLs issuers MUST set the
  onlyContainsAttributeCerts boolean to FALSE.

  Conforming CRLs issuers MUST NOT issue CRLs where the DER encoding of
  the issuing distribution point extension is an empty sequence.  That
  is, if onlyContainsUserCerts, onlyContainsCACerts, indirectCRL, and
  onlyContainsAttributeCerts are all FALSE, then either the
  distributionPoint field or the onlySomeReasons field MUST be present.

  id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= { id-ce 28 }

  IssuingDistributionPoint ::= SEQUENCE {
       distributionPoint          [0] DistributionPointName OPTIONAL,
       onlyContainsUserCerts      [1] BOOLEAN DEFAULT FALSE,
       onlyContainsCACerts        [2] BOOLEAN DEFAULT FALSE,
       onlySomeReasons            [3] ReasonFlags OPTIONAL,
       indirectCRL                [4] BOOLEAN DEFAULT FALSE,
       onlyContainsAttributeCerts [5] BOOLEAN DEFAULT FALSE }

       -- at most one of onlyContainsUserCerts, onlyContainsCACerts,
       -- and onlyContainsAttributeCerts may be set to TRUE.








Cooper, et al.              Standards Track                    [Page 66]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


5.2.6.  Freshest CRL (a.k.a. Delta CRL Distribution Point)

  The freshest CRL extension identifies how delta CRL information for
  this complete CRL is obtained.  Conforming CRL issuers MUST mark this
  extension as non-critical.  This extension MUST NOT appear in delta
  CRLs.

  The same syntax is used for this extension as the
  cRLDistributionPoints certificate extension, and is described in
  Section 4.2.1.13.  However, only the distribution point field is
  meaningful in this context.  The reasons and cRLIssuer fields MUST be
  omitted from this CRL extension.

  Each distribution point name provides the location at which a delta
  CRL for this complete CRL can be found.  The scope of these delta
  CRLs MUST be the same as the scope of this complete CRL.  The
  contents of this CRL extension are only used to locate delta CRLs;
  the contents are not used to validate the CRL or the referenced delta
  CRLs.  The encoding conventions defined for distribution points in
  Section 4.2.1.13 apply to this extension.

  id-ce-freshestCRL OBJECT IDENTIFIER ::=  { id-ce 46 }

  FreshestCRL ::= CRLDistributionPoints

5.2.7.  Authority Information Access

  This section defines the use of the Authority Information Access
  extension in a CRL.  The syntax and semantics defined in Section
  4.2.2.1 for the certificate extension are also used for the CRL
  extension.

  This CRL extension MUST be marked as non-critical.

  When present in a CRL, this extension MUST include at least one
  AccessDescription specifying id-ad-caIssuers as the accessMethod.
  The id-ad-caIssuers OID is used when the information available lists
  certificates that can be used to verify the signature on the CRL
  (i.e., certificates that have a subject name that matches the issuer
  name on the CRL and that have a subject public key that corresponds
  to the private key used to sign the CRL).  Access method types other
  than id-ad-caIssuers MUST NOT be included.  At least one instance of
  AccessDescription SHOULD specify an accessLocation that is an HTTP
  [RFC2616] or LDAP [RFC4516] URI.







Cooper, et al.              Standards Track                    [Page 67]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  Where the information is available via HTTP or FTP, accessLocation
  MUST be a uniformResourceIdentifier and the URI MUST point to either
  a single DER encoded certificate as specified in [RFC2585] or a
  collection of certificates in a BER or DER encoded "certs-only" CMS
  message as specified in [RFC2797].

  Conforming applications that support HTTP or FTP for accessing
  certificates MUST be able to accept individual DER encoded
  certificates and SHOULD be able to accept "certs-only" CMS messages.

  HTTP server implementations accessed via the URI SHOULD specify the
  media type application/pkix-cert [RFC2585] in the content-type header
  field of the response for a single DER encoded certificate and SHOULD
  specify the media type application/pkcs7-mime [RFC2797] in the
  content-type header field of the response for "certs-only" CMS
  messages.  For FTP, the name of a file that contains a single DER
  encoded certificate SHOULD have a suffix of ".cer" [RFC2585] and the
  name of a file that contains a "certs-only" CMS message SHOULD have a
  suffix of ".p7c" [RFC2797].  Consuming clients may use the media type
  or file extension as a hint to the content, but should not depend
  solely on the presence of the correct media type or file extension in
  the server response.

  When the accessLocation is a directoryName, the information is to be
  obtained by the application from whatever directory server is locally
  configured.  When one CA public key is used to validate signatures on
  certificates and CRLs, the desired CA certificate is stored in the
  crossCertificatePair and/or cACertificate attributes as specified in
  [RFC4523].  When different public keys are used to validate
  signatures on certificates and CRLs, the desired certificate is
  stored in the userCertificate attribute as specified in [RFC4523].
  Thus, implementations that support the directoryName form of
  accessLocation MUST be prepared to find the needed certificate in any
  of these three attributes.  The protocol that an application uses to
  access the directory (e.g., DAP or LDAP) is a local matter.

  Where the information is available via LDAP, the accessLocation
  SHOULD be a uniformResourceIdentifier.  The LDAP URI [RFC4516] MUST
  include a <dn> field containing the distinguished name of the entry
  holding the certificates, MUST include an <attributes> field that
  lists appropriate attribute descriptions for the attributes that hold
  the DER encoded certificates or cross-certificate pairs [RFC4523],
  and SHOULD include a <host> (e.g., <ldap://ldap.example.com/cn=CA,
  dc=example,dc=com?cACertificate;binary,crossCertificatePair;binary>).
  Omitting the <host> (e.g., <ldap:///cn=exampleCA,dc=example,dc=com?
  cACertificate;binary>) has the effect of relying on whatever a priori
  knowledge the client might have to contact an appropriate server.




Cooper, et al.              Standards Track                    [Page 68]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


5.3.  CRL Entry Extensions

  The CRL entry extensions defined by ISO/IEC, ITU-T, and ANSI X9 for
  X.509 v2 CRLs provide methods for associating additional attributes
  with CRL entries [X.509] [X9.55].  The X.509 v2 CRL format also
  allows communities to define private CRL entry extensions to carry
  information unique to those communities.  Each extension in a CRL
  entry may be designated as critical or non-critical.  If a CRL
  contains a critical CRL entry extension that the application cannot
  process, then the application MUST NOT use that CRL to determine the
  status of any certificates.  However, applications may ignore
  unrecognized non-critical CRL entry extensions.

  The following subsections present recommended extensions used within
  Internet CRL entries and standard locations for information.
  Communities may elect to use additional CRL entry extensions;
  however, caution should be exercised in adopting any critical CRL
  entry extensions in CRLs that might be used in a general context.

  Support for the CRL entry extensions defined in this specification is
  optional for conforming CRL issuers and applications.  However, CRL
  issuers SHOULD include reason codes (Section 5.3.1) and invalidity
  dates (Section 5.3.2) whenever this information is available.

5.3.1.  Reason Code

  The reasonCode is a non-critical CRL entry extension that identifies
  the reason for the certificate revocation.  CRL issuers are strongly
  encouraged to include meaningful reason codes in CRL entries;
  however, the reason code CRL entry extension SHOULD be absent instead
  of using the unspecified (0) reasonCode value.

  The removeFromCRL (8) reasonCode value may only appear in delta CRLs
  and indicates that a certificate is to be removed from a CRL because
  either the certificate expired or was removed from hold.  All other
  reason codes may appear in any CRL and indicate that the specified
  certificate should be considered revoked.














Cooper, et al.              Standards Track                    [Page 69]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  id-ce-cRLReasons OBJECT IDENTIFIER ::= { id-ce 21 }

  -- reasonCode ::= { CRLReason }

  CRLReason ::= ENUMERATED {
       unspecified             (0),
       keyCompromise           (1),
       cACompromise            (2),
       affiliationChanged      (3),
       superseded              (4),
       cessationOfOperation    (5),
       certificateHold         (6),
            -- value 7 is not used
       removeFromCRL           (8),
       privilegeWithdrawn      (9),
       aACompromise           (10) }

5.3.2.  Invalidity Date

  The invalidity date is a non-critical CRL entry extension that
  provides the date on which it is known or suspected that the private
  key was compromised or that the certificate otherwise became invalid.
  This date may be earlier than the revocation date in the CRL entry,
  which is the date at which the CA processed the revocation.  When a
  revocation is first posted by a CRL issuer in a CRL, the invalidity
  date may precede the date of issue of earlier CRLs, but the
  revocation date SHOULD NOT precede the date of issue of earlier CRLs.
  Whenever this information is available, CRL issuers are strongly
  encouraged to share it with CRL users.

  The GeneralizedTime values included in this field MUST be expressed
  in Greenwich Mean Time (Zulu), and MUST be specified and interpreted
  as defined in Section 4.1.2.5.2.

  id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 }

  InvalidityDate ::=  GeneralizedTime

5.3.3.  Certificate Issuer

  This CRL entry extension identifies the certificate issuer associated
  with an entry in an indirect CRL, that is, a CRL that has the
  indirectCRL indicator set in its issuing distribution point
  extension.  When present, the certificate issuer CRL entry extension
  includes one or more names from the issuer field and/or issuer
  alternative name extension of the certificate that corresponds to the
  CRL entry.  If this extension is not present on the first entry in an
  indirect CRL, the certificate issuer defaults to the CRL issuer.  On



Cooper, et al.              Standards Track                    [Page 70]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  subsequent entries in an indirect CRL, if this extension is not
  present, the certificate issuer for the entry is the same as that for
  the preceding entry.  This field is defined as follows:

  id-ce-certificateIssuer   OBJECT IDENTIFIER ::= { id-ce 29 }

  CertificateIssuer ::=     GeneralNames

  Conforming CRL issuers MUST include in this extension the
  distinguished name (DN) from the issuer field of the certificate that
  corresponds to this CRL entry.  The encoding of the DN MUST be
  identical to the encoding used in the certificate.

  CRL issuers MUST mark this extension as critical since an
  implementation that ignored this extension could not correctly
  attribute CRL entries to certificates.  This specification RECOMMENDS
  that implementations recognize this extension.

6.  Certification Path Validation

  Certification path validation procedures for the Internet PKI are
  based on the algorithm supplied in [X.509].  Certification path
  processing verifies the binding between the subject distinguished
  name and/or subject alternative name and subject public key.  The
  binding is limited by constraints that are specified in the
  certificates that comprise the path and inputs that are specified by
  the relying party.  The basic constraints and policy constraints
  extensions allow the certification path processing logic to automate
  the decision making process.

  This section describes an algorithm for validating certification
  paths.  Conforming implementations of this specification are not
  required to implement this algorithm, but MUST provide functionality
  equivalent to the external behavior resulting from this procedure.
  Any algorithm may be used by a particular implementation so long as
  it derives the correct result.

  In Section 6.1, the text describes basic path validation.  Valid
  paths begin with certificates issued by a trust anchor.  The
  algorithm requires the public key of the CA, the CA's name, and any
  constraints upon the set of paths that may be validated using this
  key.

  The selection of a trust anchor is a matter of policy: it could be
  the top CA in a hierarchical PKI, the CA that issued the verifier's
  own certificate(s), or any other CA in a network PKI.  The path





Cooper, et al.              Standards Track                    [Page 71]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  validation procedure is the same regardless of the choice of trust
  anchor.  In addition, different applications may rely on different
  trust anchors, or may accept paths that begin with any of a set of
  trust anchors.

  Section 6.2 describes methods for using the path validation algorithm
  in specific implementations.

  Section 6.3 describes the steps necessary to determine if a
  certificate is revoked when CRLs are the revocation mechanism used by
  the certificate issuer.

6.1.  Basic Path Validation

  This text describes an algorithm for X.509 path processing.  A
  conforming implementation MUST include an X.509 path processing
  procedure that is functionally equivalent to the external behavior of
  this algorithm.  However, support for some of the certificate
  extensions processed in this algorithm are OPTIONAL for compliant
  implementations.  Clients that do not support these extensions MAY
  omit the corresponding steps in the path validation algorithm.

  For example, clients are not required to support the policy mappings
  extension.  Clients that do not support this extension MAY omit the
  path validation steps where policy mappings are processed.  Note that
  clients MUST reject the certificate if it contains an unsupported
  critical extension.

  While the certificate and CRL profiles specified in Sections 4 and 5
  of this document specify values for certificate and CRL fields and
  extensions that are considered to be appropriate for the Internet
  PKI, the algorithm presented in this section is not limited to
  accepting certificates and CRLs that conform to these profiles.
  Therefore, the algorithm only includes checks to verify that the
  certification path is valid according to X.509 and does not include
  checks to verify that the certificates and CRLs conform to this
  profile.  While the algorithm could be extended to include checks for
  conformance to the profiles in Sections 4 and 5, this profile
  RECOMMENDS against including such checks.

  The algorithm presented in this section validates the certificate
  with respect to the current date and time.  A conforming
  implementation MAY also support validation with respect to some point
  in the past.  Note that mechanisms are not available for validating a
  certificate with respect to a time outside the certificate validity
  period.





Cooper, et al.              Standards Track                    [Page 72]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  The trust anchor is an input to the algorithm.  There is no
  requirement that the same trust anchor be used to validate all
  certification paths.  Different trust anchors MAY be used to validate
  different paths, as discussed further in Section 6.2.

  The primary goal of path validation is to verify the binding between
  a subject distinguished name or a subject alternative name and
  subject public key, as represented in the target certificate, based
  on the public key of the trust anchor.  In most cases, the target
  certificate will be an end entity certificate, but the target
  certificate may be a CA certificate as long as the subject public key
  is to be used for a purpose other than verifying the signature on a
  public key certificate.  Verifying the binding between the name and
  subject public key requires obtaining a sequence of certificates that
  support that binding.  The procedure performed to obtain this
  sequence of certificates is outside the scope of this specification.

  To meet this goal, the path validation process verifies, among other
  things, that a prospective certification path (a sequence of n
  certificates) satisfies the following conditions:

     (a)  for all x in {1, ..., n-1}, the subject of certificate x is
          the issuer of certificate x+1;

     (b)  certificate 1 is issued by the trust anchor;

     (c)  certificate n is the certificate to be validated (i.e., the
          target certificate); and

     (d)  for all x in {1, ..., n}, the certificate was valid at the
          time in question.

  A certificate MUST NOT appear more than once in a prospective
  certification path.

  When the trust anchor is provided in the form of a self-signed
  certificate, this self-signed certificate is not included as part of
  the prospective certification path.  Information about trust anchors
  is provided as inputs to the certification path validation algorithm
  (Section 6.1.1).

  A particular certification path may not, however, be appropriate for
  all applications.  Therefore, an application MAY augment this
  algorithm to further limit the set of valid paths.  The path
  validation process also determines the set of certificate policies
  that are valid for this path, based on the certificate policies
  extension, policy mappings extension, policy constraints extension,
  and inhibit anyPolicy extension.  To achieve this, the path



Cooper, et al.              Standards Track                    [Page 73]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  validation algorithm constructs a valid policy tree.  If the set of
  certificate policies that are valid for this path is not empty, then
  the result will be a valid policy tree of depth n, otherwise the
  result will be a null valid policy tree.

  A certificate is self-issued if the same DN appears in the subject
  and issuer fields (the two DNs are the same if they match according
  to the rules specified in Section 7.1).  In general, the issuer and
  subject of the certificates that make up a path are different for
  each certificate.  However, a CA may issue a certificate to itself to
  support key rollover or changes in certificate policies.  These
  self-issued certificates are not counted when evaluating path length
  or name constraints.

  This section presents the algorithm in four basic steps: (1)
  initialization, (2) basic certificate processing, (3) preparation for
  the next certificate, and (4) wrap-up.  Steps (1) and (4) are
  performed exactly once.  Step (2) is performed for all certificates
  in the path.  Step (3) is performed for all certificates in the path
  except the final certificate.  Figure 2 provides a high-level
  flowchart of this algorithm.






























Cooper, et al.              Standards Track                    [Page 74]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


                          +-------+
                          | START |
                          +-------+
                              |
                              V
                      +----------------+
                      | Initialization |
                      +----------------+
                              |
                              +<--------------------+
                              |                     |
                              V                     |
                      +----------------+            |
                      |  Process Cert  |            |
                      +----------------+            |
                              |                     |
                              V                     |
                      +================+            |
                      |  IF Last Cert  |            |
                      |    in Path     |            |
                      +================+            |
                        |            |              |
                   THEN |            | ELSE         |
                        V            V              |
             +----------------+ +----------------+  |
             |    Wrap up     | |  Prepare for   |  |
             +----------------+ |   Next Cert    |  |
                     |          +----------------+  |
                     V               |              |
                 +-------+           +--------------+
                 | STOP  |
                 +-------+

        Figure 2.  Certification Path Processing Flowchart

6.1.1.  Inputs

  This algorithm assumes that the following nine inputs are provided to
  the path processing logic:

     (a)  a prospective certification path of length n.

     (b)  the current date/time.








Cooper, et al.              Standards Track                    [Page 75]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (c)  user-initial-policy-set:  A set of certificate policy
          identifiers naming the policies that are acceptable to the
          certificate user.  The user-initial-policy-set contains the
          special value any-policy if the user is not concerned about
          certificate policy.

     (d)  trust anchor information, describing a CA that serves as a
          trust anchor for the certification path.  The trust anchor
          information includes:

        (1)  the trusted issuer name,

        (2)  the trusted public key algorithm,

        (3)  the trusted public key, and

        (4)  optionally, the trusted public key parameters associated
             with the public key.

     The trust anchor information may be provided to the path
     processing procedure in the form of a self-signed certificate.
     When the trust anchor information is provided in the form of a
     certificate, the name in the subject field is used as the trusted
     issuer name and the contents of the subjectPublicKeyInfo field is
     used as the source of the trusted public key algorithm and the
     trusted public key.  The trust anchor information is trusted
     because it was delivered to the path processing procedure by some
     trustworthy out-of-band procedure.  If the trusted public key
     algorithm requires parameters, then the parameters are provided
     along with the trusted public key.

     (e)  initial-policy-mapping-inhibit, which indicates if policy
          mapping is allowed in the certification path.

     (f)  initial-explicit-policy, which indicates if the path must be
          valid for at least one of the certificate policies in the
          user-initial-policy-set.

     (g)  initial-any-policy-inhibit, which indicates whether the
          anyPolicy OID should be processed if it is included in a
          certificate.

     (h)  initial-permitted-subtrees, which indicates for each name
          type (e.g., X.500 distinguished names, email addresses, or IP
          addresses) a set of subtrees within which all subject names
          in every certificate in the certification path MUST fall.
          The initial-permitted-subtrees input includes a set for each
          name type.  For each name type, the set may consist of a



Cooper, et al.              Standards Track                    [Page 76]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


          single subtree that includes all names of that name type or
          one or more subtrees that each specifies a subset of the
          names of that name type, or the set may be empty.  If the set
          for a name type is empty, then the certification path will be
          considered invalid if any certificate in the certification
          path includes a name of that name type.

     (i)  initial-excluded-subtrees, which indicates for each name type
          (e.g., X.500 distinguished names, email addresses, or IP
          addresses) a set of subtrees within which no subject name in
          any certificate in the certification path may fall.  The
          initial-excluded-subtrees input includes a set for each name
          type.  For each name type, the set may be empty or may
          consist of one or more subtrees that each specifies a subset
          of the names of that name type.  If the set for a name type
          is empty, then no names of that name type are excluded.

  Conforming implementations are not required to support the setting of
  all of these inputs.  For example, a conforming implementation may be
  designed to validate all certification paths using a value of FALSE
  for initial-any-policy-inhibit.

6.1.2.  Initialization

  This initialization phase establishes eleven state variables based
  upon the nine inputs:

     (a)  valid_policy_tree:  A tree of certificate policies with their
          optional qualifiers; each of the leaves of the tree
          represents a valid policy at this stage in the certification
          path validation.  If valid policies exist at this stage in
          the certification path validation, the depth of the tree is
          equal to the number of certificates in the chain that have
          been processed.  If valid policies do not exist at this stage
          in the certification path validation, the tree is set to
          NULL.  Once the tree is set to NULL, policy processing
          ceases.

          Each node in the valid_policy_tree includes three data
          objects: the valid policy, a set of associated policy
          qualifiers, and a set of one or more expected policy values.
          If the node is at depth x, the components of the node have
          the following semantics:

        (1)  The valid_policy is a single policy OID representing a
             valid policy for the path of length x.





Cooper, et al.              Standards Track                    [Page 77]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


        (2)  The qualifier_set is a set of policy qualifiers associated
             with the valid policy in certificate x.

        (3)  The expected_policy_set contains one or more policy OIDs
             that would satisfy this policy in the certificate x+1.

     The initial value of the valid_policy_tree is a single node with
     valid_policy anyPolicy, an empty qualifier_set, and an
     expected_policy_set with the single value anyPolicy.  This node is
     considered to be at depth zero.

     Figure 3 is a graphic representation of the initial state of the
     valid_policy_tree.  Additional figures will use this format to
     describe changes in the valid_policy_tree during path processing.

             +----------------+
             |   anyPolicy    |   <---- valid_policy
             +----------------+
             |       {}       |   <---- qualifier_set
             +----------------+
             |  {anyPolicy}   |   <---- expected_policy_set
             +----------------+

     Figure 3.  Initial Value of the valid_policy_tree State Variable

     (b)  permitted_subtrees:  a set of root names for each name type
          (e.g., X.500 distinguished names, email addresses, or IP
          addresses) defining a set of subtrees within which all
          subject names in subsequent certificates in the certification
          path MUST fall.  This variable includes a set for each name
          type, and the initial value is initial-permitted-subtrees.

     (c)  excluded_subtrees:  a set of root names for each name type
          (e.g., X.500 distinguished names, email addresses, or IP
          addresses) defining a set of subtrees within which no subject
          name in subsequent certificates in the certification path may
          fall.  This variable includes a set for each name type, and
          the initial value is initial-excluded-subtrees.

     (d)  explicit_policy:  an integer that indicates if a non-NULL
          valid_policy_tree is required.  The integer indicates the
          number of non-self-issued certificates to be processed before
          this requirement is imposed.  Once set, this variable may be
          decreased, but may not be increased.  That is, if a
          certificate in the path requires a non-NULL
          valid_policy_tree, a later certificate cannot remove this
          requirement.  If initial-explicit-policy is set, then the
          initial value is 0, otherwise the initial value is n+1.



Cooper, et al.              Standards Track                    [Page 78]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (e)  inhibit_anyPolicy:  an integer that indicates whether the
          anyPolicy policy identifier is considered a match.  The
          integer indicates the number of non-self-issued certificates
          to be processed before the anyPolicy OID, if asserted in a
          certificate other than an intermediate self-issued
          certificate, is ignored.  Once set, this variable may be
          decreased, but may not be increased.  That is, if a
          certificate in the path inhibits processing of anyPolicy, a
          later certificate cannot permit it.  If initial-any-policy-
          inhibit is set, then the initial value is 0, otherwise the
          initial value is n+1.

     (f)  policy_mapping:  an integer that indicates if policy mapping
          is permitted.  The integer indicates the number of non-self-
          issued certificates to be processed before policy mapping is
          inhibited.  Once set, this variable may be decreased, but may
          not be increased.  That is, if a certificate in the path
          specifies that policy mapping is not permitted, it cannot be
          overridden by a later certificate.  If initial-policy-
          mapping-inhibit is set, then the initial value is 0,
          otherwise the initial value is n+1.

     (g)  working_public_key_algorithm:  the digital signature
          algorithm used to verify the signature of a certificate.  The
          working_public_key_algorithm is initialized from the trusted
          public key algorithm provided in the trust anchor
          information.

     (h)  working_public_key:  the public key used to verify the
          signature of a certificate.  The working_public_key is
          initialized from the trusted public key provided in the trust
          anchor information.

     (i)  working_public_key_parameters:  parameters associated with
          the current public key that may be required to verify a
          signature (depending upon the algorithm).  The
          working_public_key_parameters variable is initialized from
          the trusted public key parameters provided in the trust
          anchor information.

     (j)  working_issuer_name:  the issuer distinguished name expected
          in the next certificate in the chain.  The
          working_issuer_name is initialized to the trusted issuer name
          provided in the trust anchor information.







Cooper, et al.              Standards Track                    [Page 79]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (k)  max_path_length:  this integer is initialized to n, is
          decremented for each non-self-issued certificate in the path,
          and may be reduced to the value in the path length constraint
          field within the basic constraints extension of a CA
          certificate.

  Upon completion of the initialization steps, perform the basic
  certificate processing steps specified in 6.1.3.

6.1.3.  Basic Certificate Processing

  The basic path processing actions to be performed for certificate i
  (for all i in [1..n]) are listed below.

     (a)  Verify the basic certificate information.  The certificate
          MUST satisfy each of the following:

        (1)  The signature on the certificate can be verified using
             working_public_key_algorithm, the working_public_key, and
             the working_public_key_parameters.

        (2)  The certificate validity period includes the current time.

        (3)  At the current time, the certificate is not revoked.  This
             may be determined by obtaining the appropriate CRL
             (Section 6.3), by status information, or by out-of-band
             mechanisms.

        (4)  The certificate issuer name is the working_issuer_name.

     (b)  If certificate i is self-issued and it is not the final
          certificate in the path, skip this step for certificate i.
          Otherwise, verify that the subject name is within one of the
          permitted_subtrees for X.500 distinguished names, and verify
          that each of the alternative names in the subjectAltName
          extension (critical or non-critical) is within one of the
          permitted_subtrees for that name type.

     (c)  If certificate i is self-issued and it is not the final
          certificate in the path, skip this step for certificate i.
          Otherwise, verify that the subject name is not within any of
          the excluded_subtrees for X.500 distinguished names, and
          verify that each of the alternative names in the
          subjectAltName extension (critical or non-critical) is not
          within any of the excluded_subtrees for that name type.






Cooper, et al.              Standards Track                    [Page 80]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (d)  If the certificate policies extension is present in the
          certificate and the valid_policy_tree is not NULL, process
          the policy information by performing the following steps in
          order:

        (1)  For each policy P not equal to anyPolicy in the
             certificate policies extension, let P-OID denote the OID
             for policy P and P-Q denote the qualifier set for policy
             P.  Perform the following steps in order:

           (i)   For each node of depth i-1 in the valid_policy_tree
                 where P-OID is in the expected_policy_set, create a
                 child node as follows: set the valid_policy to P-OID,
                 set the qualifier_set to P-Q, and set the
                 expected_policy_set to
                 {P-OID}.

                 For example, consider a valid_policy_tree with a node
                 of depth i-1 where the expected_policy_set is {Gold,
                 White}.  Assume the certificate policies Gold and
                 Silver appear in the certificate policies extension of
                 certificate i.  The Gold policy is matched, but the
                 Silver policy is not.  This rule will generate a child
                 node of depth i for the Gold policy.  The result is
                 shown as Figure 4.

                            +-----------------+
                            |       Red       |
                            +-----------------+
                            |       {}        |
                            +-----------------+   node of depth i-1
                            |  {Gold, White}  |
                            +-----------------+
                                     |
                                     |
                                     |
                                     V
                            +-----------------+
                            |      Gold       |
                            +-----------------+
                            |       {}        |
                            +-----------------+   node of depth i
                            |     {Gold}      |
                            +-----------------+

                   Figure 4.  Processing an Exact Match





Cooper, et al.              Standards Track                    [Page 81]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


           (ii)  If there was no match in step (i) and the
                 valid_policy_tree includes a node of depth i-1 with
                 the valid_policy anyPolicy, generate a child node with
                 the following values: set the valid_policy to P-OID,
                 set the qualifier_set to P-Q, and set the
                 expected_policy_set to  {P-OID}.

                 For example, consider a valid_policy_tree with a node
                 of depth i-1 where the valid_policy is anyPolicy.
                 Assume the certificate policies Gold and Silver appear
                 in the certificate policies extension of certificate
                 i.  The Gold policy does not have a qualifier, but the
                 Silver policy has the qualifier Q-Silver.  If Gold and
                 Silver were not matched in (i) above, this rule will
                 generate two child nodes of depth i, one for each
                 policy.  The result is shown as Figure 5.

                                  +-----------------+
                                  |    anyPolicy    |
                                  +-----------------+
                                  |       {}        |
                                  +-----------------+ node of depth i-1
                                  |   {anyPolicy}   |
                                  +-----------------+
                                     /           \
                                    /             \
                                   /               \
                                  /                 \
                    +-----------------+          +-----------------+
                    |      Gold       |          |     Silver      |
                    +-----------------+          +-----------------+
                    |       {}        |          |   {Q-Silver}    |
                    +-----------------+ nodes of +-----------------+
                    |     {Gold}      | depth i  |    {Silver}     |
                    +-----------------+          +-----------------+

                 Figure 5.  Processing Unmatched Policies when a
                 Leaf Node Specifies anyPolicy

        (2)  If the certificate policies extension includes the policy
             anyPolicy with the qualifier set AP-Q and either (a)
             inhibit_anyPolicy is greater than 0 or (b) i<n and the
             certificate is self-issued, then:

             For each node in the valid_policy_tree of depth i-1, for
             each value in the expected_policy_set (including
             anyPolicy) that does not appear in a child node, create a
             child node with the following values: set the valid_policy



Cooper, et al.              Standards Track                    [Page 82]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


             to the value from the expected_policy_set in the parent
             node, set the qualifier_set to AP-Q, and set the
             expected_policy_set to the value in the valid_policy from
             this node.

             For example, consider a valid_policy_tree with a node of
             depth i-1 where the expected_policy_set is {Gold, Silver}.
             Assume anyPolicy appears in the certificate policies
             extension of certificate i with no policy qualifiers, but
             Gold and Silver do not appear.  This rule will generate
             two child nodes of depth i, one for each policy.  The
             result is shown below as Figure 6.

                              +-----------------+
                              |      Red        |
                              +-----------------+
                              |       {}        |
                              +-----------------+ node of depth i-1
                              |  {Gold, Silver} |
                              +-----------------+
                                 /           \
                                /             \
                               /               \
                              /                 \
                +-----------------+          +-----------------+
                |      Gold       |          |     Silver      |
                +-----------------+          +-----------------+
                |       {}        |          |       {}        |
                +-----------------+ nodes of +-----------------+
                |     {Gold}      | depth i  |    {Silver}     |
                +-----------------+          +-----------------+

             Figure 6.  Processing Unmatched Policies When the
             Certificate Policies Extension Specifies anyPolicy

        (3)  If there is a node in the valid_policy_tree of depth i-1
             or less without any child nodes, delete that node.  Repeat
             this step until there are no nodes of depth i-1 or less
             without children.

             For example, consider the valid_policy_tree shown in
             Figure 7 below.  The two nodes at depth i-1 that are
             marked with an 'X' have no children, and they are deleted.
             Applying this rule to the resulting tree will cause the
             node at depth i-2 that is marked with a 'Y' to be deleted.
             In the resulting tree, there are no nodes of depth i-1 or
             less without children, and this step is complete.




Cooper, et al.              Standards Track                    [Page 83]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (e)  If the certificate policies extension is not present, set the
          valid_policy_tree to NULL.

     (f)  Verify that either explicit_policy is greater than 0 or the
          valid_policy_tree is not equal to NULL;

  If any of steps (a), (b), (c), or (f) fails, the procedure
  terminates, returning a failure indication and an appropriate reason.

  If i is not equal to n, continue by performing the preparatory steps
  listed in Section 6.1.4.  If i is equal to n, perform the wrap-up
  steps listed in Section 6.1.5.

                                +-----------+
                                |           | node of depth i-3
                                +-----------+
                                /     |     \
                               /      |      \
                              /       |       \
                  +-----------+ +-----------+ +-----------+
                  |           | |           | |     Y     | nodes of
                  +-----------+ +-----------+ +-----------+ depth i-2
                  /   \               |             |
                 /     \              |             |
                /       \             |             |
     +-----------+ +-----------+ +-----------+ +-----------+ nodes of
     |           | |     X     | |           | |    X      |  depth
     +-----------+ +-----------+ +-----------+ +-----------+   i-1
           |                      /    |    \
           |                     /     |     \
           |                    /      |      \
     +-----------+ +-----------+ +-----------+ +-----------+ nodes of
     |           | |           | |           | |           |  depth
     +-----------+ +-----------+ +-----------+ +-----------+   i

            Figure 7.  Pruning the valid_policy_tree

6.1.4.  Preparation for Certificate i+1

     To prepare for processing of certificate i+1, perform the
     following steps for certificate i:

     (a)  If a policy mappings extension is present, verify that the
          special value anyPolicy does not appear as an
          issuerDomainPolicy or a subjectDomainPolicy.

     (b)  If a policy mappings extension is present, then for each
          issuerDomainPolicy ID-P in the policy mappings extension:



Cooper, et al.              Standards Track                    [Page 84]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


        (1)  If the policy_mapping variable is greater than 0, for each
             node in the valid_policy_tree of depth i where ID-P is the
             valid_policy, set expected_policy_set to the set of
             subjectDomainPolicy values that are specified as
             equivalent to ID-P by the policy mappings extension.

             If no node of depth i in the valid_policy_tree has a
             valid_policy of ID-P but there is a node of depth i with a
             valid_policy of anyPolicy, then generate a child node of
             the node of depth i-1 that has a valid_policy of anyPolicy
             as follows:

           (i)    set the valid_policy to ID-P;

           (ii)   set the qualifier_set to the qualifier set of the
                  policy anyPolicy in the certificate policies
                  extension of certificate i; and

           (iii)  set the expected_policy_set to the set of
                  subjectDomainPolicy values that are specified as
                  equivalent to ID-P by the policy mappings extension.

        (2)  If the policy_mapping variable is equal to 0:

           (i)    delete each node of depth i in the valid_policy_tree
                  where ID-P is the valid_policy.

           (ii)   If there is a node in the valid_policy_tree of depth
                  i-1 or less without any child nodes, delete that
                  node.  Repeat this step until there are no nodes of
                  depth i-1 or less without children.

     (c)  Assign the certificate subject name to working_issuer_name.

     (d)  Assign the certificate subjectPublicKey to
          working_public_key.

     (e)  If the subjectPublicKeyInfo field of the certificate contains
          an algorithm field with non-null parameters, assign the
          parameters to the working_public_key_parameters variable.

          If the subjectPublicKeyInfo field of the certificate contains
          an algorithm field with null parameters or parameters are
          omitted, compare the certificate subjectPublicKey algorithm
          to the working_public_key_algorithm.  If the certificate
          subjectPublicKey algorithm and the
          working_public_key_algorithm are different, set the
          working_public_key_parameters to null.



Cooper, et al.              Standards Track                    [Page 85]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (f)  Assign the certificate subjectPublicKey algorithm to the
          working_public_key_algorithm variable.

     (g)  If a name constraints extension is included in the
          certificate, modify the permitted_subtrees and
          excluded_subtrees state variables as follows:

        (1)  If permittedSubtrees is present in the certificate, set
             the permitted_subtrees state variable to the intersection
             of its previous value and the value indicated in the
             extension field.  If permittedSubtrees does not include a
             particular name type, the permitted_subtrees state
             variable is unchanged for that name type.  For example,
             the intersection of example.com and foo.example.com is
             foo.example.com.  And the intersection of example.com and
             example.net is the empty set.

        (2)  If excludedSubtrees is present in the certificate, set the
             excluded_subtrees state variable to the union of its
             previous value and the value indicated in the extension
             field.  If excludedSubtrees does not include a particular
             name type, the excluded_subtrees state variable is
             unchanged for that name type.  For example, the union of
             the name spaces example.com and foo.example.com is
             example.com.  And the union of example.com and example.net
             is both name spaces.

     (h)  If certificate i is not self-issued:

        (1)  If explicit_policy is not 0, decrement explicit_policy by
             1.

        (2)  If policy_mapping is not 0, decrement policy_mapping by 1.

        (3)  If inhibit_anyPolicy is not 0, decrement inhibit_anyPolicy
             by 1.

     (i)  If a policy constraints extension is included in the
          certificate, modify the explicit_policy and policy_mapping
          state variables as follows:

        (1)  If requireExplicitPolicy is present and is less than
             explicit_policy, set explicit_policy to the value of
             requireExplicitPolicy.

        (2)  If inhibitPolicyMapping is present and is less than
             policy_mapping, set policy_mapping to the value of
             inhibitPolicyMapping.



Cooper, et al.              Standards Track                    [Page 86]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (j)  If the inhibitAnyPolicy extension is included in the
          certificate and is less than inhibit_anyPolicy, set
          inhibit_anyPolicy to the value of inhibitAnyPolicy.

     (k)  If certificate i is a version 3 certificate, verify that the
          basicConstraints extension is present and that cA is set to
          TRUE.  (If certificate i is a version 1 or version 2
          certificate, then the application MUST either verify that
          certificate i is a CA certificate through out-of-band means
          or reject the certificate.  Conforming implementations may
          choose to reject all version 1 and version 2 intermediate
          certificates.)

     (l)  If the certificate was not self-issued, verify that
          max_path_length is greater than zero and decrement
          max_path_length by 1.

     (m)  If pathLenConstraint is present in the certificate and is
          less than max_path_length, set max_path_length to the value
          of pathLenConstraint.

     (n)  If a key usage extension is present, verify that the
          keyCertSign bit is set.

     (o)  Recognize and process any other critical extension present in
          the certificate.  Process any other recognized non-critical
          extension present in the certificate that is relevant to path
          processing.

  If check (a), (k), (l), (n), or (o) fails, the procedure terminates,
  returning a failure indication and an appropriate reason.

  If (a), (k), (l), (n), and (o) have completed successfully, increment
  i and perform the basic certificate processing specified in Section
  6.1.3.

6.1.5.  Wrap-Up Procedure

  To complete the processing of the target certificate, perform the
  following steps for certificate n:

     (a)  If explicit_policy is not 0, decrement explicit_policy by 1.

     (b)  If a policy constraints extension is included in the
          certificate and requireExplicitPolicy is present and has a
          value of 0, set the explicit_policy state variable to 0.





Cooper, et al.              Standards Track                    [Page 87]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (c)  Assign the certificate subjectPublicKey to
          working_public_key.

     (d)  If the subjectPublicKeyInfo field of the certificate contains
          an algorithm field with non-null parameters, assign the
          parameters to the working_public_key_parameters variable.

          If the subjectPublicKeyInfo field of the certificate contains
          an algorithm field with null parameters or parameters are
          omitted, compare the certificate subjectPublicKey algorithm
          to the working_public_key_algorithm.  If the certificate
          subjectPublicKey algorithm and the
          working_public_key_algorithm are different, set the
          working_public_key_parameters to null.

     (e)  Assign the certificate subjectPublicKey algorithm to the
          working_public_key_algorithm variable.

     (f)  Recognize and process any other critical extension present in
          the certificate n.  Process any other recognized non-critical
          extension present in certificate n that is relevant to path
          processing.

     (g)  Calculate the intersection of the valid_policy_tree and the
          user-initial-policy-set, as follows:

        (i)    If the valid_policy_tree is NULL, the intersection is
               NULL.

        (ii)   If the valid_policy_tree is not NULL and the user-
               initial-policy-set is any-policy, the intersection is
               the entire valid_policy_tree.

        (iii)  If the valid_policy_tree is not NULL and the user-
               initial-policy-set is not any-policy, calculate the
               intersection of the valid_policy_tree and the user-
               initial-policy-set as follows:

            1.  Determine the set of policy nodes whose parent nodes
                have a valid_policy of anyPolicy.  This is the
                valid_policy_node_set.

            2.  If the valid_policy of any node in the
                valid_policy_node_set is not in the user-initial-
                policy-set and is not anyPolicy, delete this node and
                all its children.





Cooper, et al.              Standards Track                    [Page 88]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


            3.  If the valid_policy_tree includes a node of depth n
                with the valid_policy anyPolicy and the user-initial-
                policy-set is not any-policy, perform the following
                steps:

              a.  Set P-Q to the qualifier_set in the node of depth n
                  with valid_policy anyPolicy.

              b.  For each P-OID in the user-initial-policy-set that is
                  not the valid_policy of a node in the
                  valid_policy_node_set, create a child node whose
                  parent is the node of depth n-1 with the valid_policy
                  anyPolicy.  Set the values in the child node as
                  follows: set the valid_policy to P-OID, set the
                  qualifier_set to P-Q, and set the expected_policy_set
                  to {P-OID}.

              c.  Delete the node of depth n with the valid_policy
                  anyPolicy.

            4.  If there is a node in the valid_policy_tree of depth
                n-1 or less without any child nodes, delete that node.
                Repeat this step until there are no nodes of depth n-1
                or less without children.

  If either (1) the value of explicit_policy variable is greater than
  zero or (2) the valid_policy_tree is not NULL, then path processing
  has succeeded.

6.1.6.  Outputs

  If path processing succeeds, the procedure terminates, returning a
  success indication together with final value of the
  valid_policy_tree, the working_public_key, the
  working_public_key_algorithm, and the working_public_key_parameters.

6.2.  Using the Path Validation Algorithm

  The path validation algorithm describes the process of validating a
  single certification path.  While each certification path begins with
  a specific trust anchor, there is no requirement that all
  certification paths validated by a particular system share a single
  trust anchor.  The selection of one or more trusted CAs is a local
  decision.  A system may provide any one of its trusted CAs as the
  trust anchor for a particular path.  The inputs to the path
  validation algorithm may be different for each path.  The inputs used
  to process a path may reflect application-specific requirements or
  limitations in the trust accorded a particular trust anchor.  For



Cooper, et al.              Standards Track                    [Page 89]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  example, a trusted CA may only be trusted for a particular
  certificate policy.  This restriction can be expressed through the
  inputs to the path validation procedure.

  An implementation MAY augment the algorithm presented in Section 6.1
  to further limit the set of valid certification paths that begin with
  a particular trust anchor.  For example, an implementation MAY modify
  the algorithm to apply a path length constraint to a specific trust
  anchor during the initialization phase, or the application MAY
  require the presence of a particular alternative name form in the
  target certificate, or the application MAY impose requirements on
  application-specific extensions.  Thus, the path validation algorithm
  presented in Section 6.1 defines the minimum conditions for a path to
  be considered valid.

  Where a CA distributes self-signed certificates to specify trust
  anchor information, certificate extensions can be used to specify
  recommended inputs to path validation.  For example, a policy
  constraints extension could be included in the self-signed
  certificate to indicate that paths beginning with this trust anchor
  should be trusted only for the specified policies.  Similarly, a name
  constraints extension could be included to indicate that paths
  beginning with this trust anchor should be trusted only for the
  specified name spaces.  The path validation algorithm presented in
  Section 6.1 does not assume that trust anchor information is provided
  in self-signed certificates and does not specify processing rules for
  additional information included in such certificates.
  Implementations that use self-signed certificates to specify trust
  anchor information are free to process or ignore such information.

6.3.  CRL Validation

  This section describes the steps necessary to determine if a
  certificate is revoked when CRLs are the revocation mechanism used by
  the certificate issuer.  Conforming implementations that support CRLs
  are not required to implement this algorithm, but they MUST be
  functionally equivalent to the external behavior resulting from this
  procedure when processing CRLs that are issued in conformance with
  this profile.  Any algorithm may be used by a particular
  implementation so long as it derives the correct result.

  This algorithm assumes that all of the needed CRLs are available in a
  local cache.  Further, if the next update time of a CRL has passed,
  the algorithm assumes a mechanism to fetch a current CRL and place it
  in the local CRL cache.






Cooper, et al.              Standards Track                    [Page 90]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  This algorithm defines a set of inputs, a set of state variables, and
  processing steps that are performed for each certificate in the path.
  The algorithm output is the revocation status of the certificate.

6.3.1.  Revocation Inputs

  To support revocation processing, the algorithm requires two inputs:

     (a)  certificate:  The algorithm requires the certificate serial
          number and issuer name to determine whether a certificate is
          on a particular CRL.  The basicConstraints extension is used
          to determine whether the supplied certificate is associated
          with a CA or an end entity.  If present, the algorithm uses
          the cRLDistributionPoints and freshestCRL extensions to
          determine revocation status.

     (b)  use-deltas:  This boolean input determines whether delta CRLs
          are applied to CRLs.

6.3.2.  Initialization and Revocation State Variables

  To support CRL processing, the algorithm requires the following state
  variables:

     (a)  reasons_mask:  This variable contains the set of revocation
          reasons supported by the CRLs and delta CRLs processed so
          far.  The legal members of the set are the possible
          revocation reason values minus unspecified: keyCompromise,
          cACompromise, affiliationChanged, superseded,
          cessationOfOperation, certificateHold, privilegeWithdrawn,
          and aACompromise.  The special value all-reasons is used to
          denote the set of all legal members.  This variable is
          initialized to the empty set.

     (b)  cert_status:  This variable contains the status of the
          certificate.  This variable may be assigned one of the
          following values: unspecified, keyCompromise, cACompromise,
          affiliationChanged, superseded, cessationOfOperation,
          certificateHold, removeFromCRL, privilegeWithdrawn,
          aACompromise, the special value UNREVOKED, or the special
          value UNDETERMINED.  This variable is initialized to the
          special value UNREVOKED.

     (c)  interim_reasons_mask:  This contains the set of revocation
          reasons supported by the CRL or delta CRL currently being
          processed.





Cooper, et al.              Standards Track                    [Page 91]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  Note: In some environments, it is not necessary to check all reason
  codes.  For example, some environments are only concerned with
  cACompromise and keyCompromise for CA certificates.  This algorithm
  checks all reason codes.  Additional processing and state variables
  may be necessary to limit the checking to a subset of the reason
  codes.

6.3.3.  CRL Processing

  This algorithm begins by assuming that the certificate is not
  revoked.  The algorithm checks one or more CRLs until either the
  certificate status is determined to be revoked or sufficient CRLs
  have been checked to cover all reason codes.

  For each distribution point (DP) in the certificate's CRL
  distribution points extension, for each corresponding CRL in the
  local CRL cache, while ((reasons_mask is not all-reasons) and
  (cert_status is UNREVOKED)) perform the following:

     (a)  Update the local CRL cache by obtaining a complete CRL, a
          delta CRL, or both, as required:

        (1)  If the current time is after the value of the CRL next
             update field, then do one of the following:

           (i)   If use-deltas is set and either the certificate or the
                 CRL contains the freshest CRL extension, obtain a
                 delta CRL with a next update value that is after the
                 current time and can be used to update the locally
                 cached CRL as specified in Section 5.2.4.

           (ii)  Update the local CRL cache with a current complete
                 CRL, verify that the current time is before the next
                 update value in the new CRL, and continue processing
                 with the new CRL.  If use-deltas is set and either the
                 certificate or the CRL contains the freshest CRL
                 extension, then obtain the current delta CRL that can
                 be used to update the new locally cached complete CRL
                 as specified in Section 5.2.4.

        (2)  If the current time is before the value of the next update
             field, use-deltas is set, and either the certificate or
             the CRL contains the freshest CRL extension, then obtain
             the current delta CRL that can be used to update the
             locally cached complete CRL as specified in Section 5.2.4.






Cooper, et al.              Standards Track                    [Page 92]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (b)  Verify the issuer and scope of the complete CRL as follows:

        (1)  If the DP includes cRLIssuer, then verify that the issuer
             field in the complete CRL matches cRLIssuer in the DP and
             that the complete CRL contains an issuing distribution
             point extension with the indirectCRL boolean asserted.
             Otherwise, verify that the CRL issuer matches the
             certificate issuer.

        (2)  If the complete CRL includes an issuing distribution point
             (IDP) CRL extension, check the following:

           (i)   If the distribution point name is present in the IDP
                 CRL extension and the distribution field is present in
                 the DP, then verify that one of the names in the IDP
                 matches one of the names in the DP.  If the
                 distribution point name is present in the IDP CRL
                 extension and the distribution field is omitted from
                 the DP, then verify that one of the names in the IDP
                 matches one of the names in the cRLIssuer field of the
                 DP.

           (ii)  If the onlyContainsUserCerts boolean is asserted in
                 the IDP CRL extension, verify that the certificate
                 does not include the basic constraints extension with
                 the cA boolean asserted.

           (iii) If the onlyContainsCACerts boolean is asserted in the
                 IDP CRL extension, verify that the certificate
                 includes the basic constraints extension with the cA
                 boolean asserted.

           (iv)  Verify that the onlyContainsAttributeCerts boolean is
                 not asserted.

     (c)  If use-deltas is set, verify the issuer and scope of the
          delta CRL as follows:

        (1)  Verify that the delta CRL issuer matches the complete CRL
             issuer.

        (2)  If the complete CRL includes an issuing distribution point
             (IDP) CRL extension, verify that the delta CRL contains a
             matching IDP CRL extension.  If the complete CRL omits an
             IDP CRL extension, verify that the delta CRL also omits an
             IDP CRL extension.





Cooper, et al.              Standards Track                    [Page 93]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


        (3)  Verify that the delta CRL authority key identifier
             extension matches the complete CRL authority key
             identifier extension.

     (d)  Compute the interim_reasons_mask for this CRL as follows:

        (1)  If the issuing distribution point (IDP) CRL extension is
             present and includes onlySomeReasons and the DP includes
             reasons, then set interim_reasons_mask to the intersection
             of reasons in the DP and onlySomeReasons in the IDP CRL
             extension.

        (2)  If the IDP CRL extension includes onlySomeReasons but the
             DP omits reasons, then set interim_reasons_mask to the
             value of onlySomeReasons in the IDP CRL extension.

        (3)  If the IDP CRL extension is not present or omits
             onlySomeReasons but the DP includes reasons, then set
             interim_reasons_mask to the value of DP reasons.

        (4)  If the IDP CRL extension is not present or omits
             onlySomeReasons and the DP omits reasons, then set
             interim_reasons_mask to the special value all-reasons.

     (e)  Verify that interim_reasons_mask includes one or more reasons
          that are not included in the reasons_mask.

     (f)  Obtain and validate the certification path for the issuer of
          the complete CRL.  The trust anchor for the certification
          path MUST be the same as the trust anchor used to validate
          the target certificate.  If a key usage extension is present
          in the CRL issuer's certificate, verify that the cRLSign bit
          is set.

     (g)  Validate the signature on the complete CRL using the public
          key validated in step (f).

     (h)  If use-deltas is set, then validate the signature on the
          delta CRL using the public key validated in step (f).

     (i)  If use-deltas is set, then search for the certificate on the
          delta CRL.  If an entry is found that matches the certificate
          issuer and serial number as described in Section 5.3.3, then
          set the cert_status variable to the indicated reason as
          follows:






Cooper, et al.              Standards Track                    [Page 94]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


        (1)  If the reason code CRL entry extension is present, set the
             cert_status variable to the value of the reason code CRL
             entry extension.

        (2)  If the reason code CRL entry extension is not present, set
             the cert_status variable to the value unspecified.

     (j)  If (cert_status is UNREVOKED), then search for the
          certificate on the complete CRL.  If an entry is found that
          matches the certificate issuer and serial number as described
          in Section 5.3.3, then set the cert_status variable to the
          indicated reason as described in step (i).

     (k)  If (cert_status is removeFromCRL), then set cert_status to
          UNREVOKED.

     (l)  Set the reasons_mask state variable to the union of its
          previous value and the value of the interim_reasons_mask
          state variable.

  If ((reasons_mask is all-reasons) OR (cert_status is not UNREVOKED)),
  then the revocation status has been determined, so return
  cert_status.

  If the revocation status has not been determined, repeat the process
  above with any available CRLs not specified in a distribution point
  but issued by the certificate issuer.  For the processing of such a
  CRL, assume a DP with both the reasons and the cRLIssuer fields
  omitted and a distribution point name of the certificate issuer.
  That is, the sequence of names in fullName is generated from the
  certificate issuer field as well as the certificate issuerAltName
  extension.  After processing such CRLs, if the revocation status has
  still not been determined, then return the cert_status UNDETERMINED.

7.  Processing Rules for Internationalized Names

  Internationalized names may be encountered in numerous certificate
  and CRL fields and extensions, including distinguished names,
  internationalized domain names, electronic mail addresses, and
  Internationalized Resource Identifiers (IRIs).  Storage, comparison,
  and presentation of such names require special care.  Some characters
  may be encoded in multiple ways.  The same names could be represented
  in multiple encodings (e.g., ASCII or UTF8).  This section
  establishes conformance requirements for storage or comparison of
  each of these name forms.  Informative guidance on presentation is
  provided for some of these name forms.





Cooper, et al.              Standards Track                    [Page 95]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


7.1.  Internationalized Names in Distinguished Names

  Representation of internationalized names in distinguished names is
  covered in Sections 4.1.2.4, Issuer Name, and 4.1.2.6, Subject Name.
  Standard naming attributes, such as common name, employ the
  DirectoryString type, which supports internationalized names through
  a variety of language encodings.  Conforming implementations MUST
  support UTF8String and PrintableString.  RFC 3280 required only
  binary comparison of attribute values encoded in UTF8String, however,
  this specification requires a more comprehensive handling of
  comparison.  Implementations may encounter certificates and CRLs with
  names encoded using TeletexString, BMPString, or UniversalString, but
  support for these is OPTIONAL.

  Conforming implementations MUST use the LDAP StringPrep profile
  (including insignificant space handling), as specified in [RFC4518],
  as the basis for comparison of distinguished name attributes encoded
  in either PrintableString or UTF8String.  Conforming implementations
  MUST support name comparisons using caseIgnoreMatch.  Support for
  attribute types that use other equality matching rules is optional.

  Before comparing names using the caseIgnoreMatch matching rule,
  conforming implementations MUST perform the six-step string
  preparation algorithm described in [RFC4518] for each attribute of
  type DirectoryString, with the following clarifications:

     *  In step 2, Map, the mapping shall include case folding as
        specified in Appendix B.2 of [RFC3454].

     *  In step 6, Insignificant Character Removal, perform white space
        compression as specified in Section 2.6.1, Insignificant Space
        Handling, of [RFC4518].

  When performing the string preparation algorithm, attributes MUST be
  treated as stored values.

  Comparisons of domainComponent attributes MUST be performed as
  specified in Section 7.3.

  Two naming attributes match if the attribute types are the same and
  the values of the attributes are an exact match after processing with
  the string preparation algorithm.  Two relative distinguished names
  RDN1 and RDN2 match if they have the same number of naming attributes
  and for each naming attribute in RDN1 there is a matching naming
  attribute in RDN2.  Two distinguished names DN1 and DN2 match if they
  have the same number of RDNs, for each RDN in DN1 there is a matching
  RDN in DN2, and the matching RDNs appear in the same order in both
  DNs.  A distinguished name DN1 is within the subtree defined by the



Cooper, et al.              Standards Track                    [Page 96]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  distinguished name DN2 if DN1 contains at least as many RDNs as DN2,
  and DN1 and DN2 are a match when trailing RDNs in DN1 are ignored.

7.2.  Internationalized Domain Names in GeneralName

  Internationalized Domain Names (IDNs) may be included in certificates
  and CRLs in the subjectAltName and issuerAltName extensions, name
  constraints extension, authority information access extension,
  subject information access extension, CRL distribution points
  extension, and issuing distribution point extension.  Each of these
  extensions uses the GeneralName type; one choice in GeneralName is
  the dNSName field, which is defined as type IA5String.

  IA5String is limited to the set of ASCII characters.  To accommodate
  internationalized domain names in the current structure, conforming
  implementations MUST convert internationalized domain names to the
  ASCII Compatible Encoding (ACE) format as specified in Section 4 of
  RFC 3490 before storage in the dNSName field.  Specifically,
  conforming implementations MUST perform the conversion operation
  specified in Section 4 of RFC 3490, with the following
  clarifications:

     *  in step 1, the domain name SHALL be considered a "stored
        string".  That is, the AllowUnassigned flag SHALL NOT be set;

     *  in step 3, set the flag called "UseSTD3ASCIIRules";

     *  in step 4, process each label with the "ToASCII" operation; and

     *  in step 5, change all label separators to U+002E (full stop).

  When comparing DNS names for equality, conforming implementations
  MUST perform a case-insensitive exact match on the entire DNS name.
  When evaluating name constraints, conforming implementations MUST
  perform a case-insensitive exact match on a label-by-label basis.  As
  noted in Section 4.2.1.10, any DNS name that may be constructed by
  adding labels to the left-hand side of the domain name given as the
  constraint is considered to fall within the indicated subtree.

  Implementations should convert IDNs to Unicode before display.
  Specifically, conforming implementations should perform the
  conversion operation specified in Section 4 of RFC 3490, with the
  following clarifications:

     *  in step 1, the domain name SHALL be considered a "stored
        string".  That is, the AllowUnassigned flag SHALL NOT be set;

     *  in step 3, set the flag called "UseSTD3ASCIIRules";



Cooper, et al.              Standards Track                    [Page 97]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     *  in step 4, process each label with the "ToUnicode" operation;
        and

     *  skip step 5.

  Note:  Implementations MUST allow for increased space requirements
  for IDNs.  An IDN ACE label will begin with the four additional
  characters "xn--" and may require as many as five ASCII characters to
  specify a single international character.

7.3.  Internationalized Domain Names in Distinguished Names

  Domain Names may also be represented as distinguished names using
  domain components in the subject field, the issuer field, the
  subjectAltName extension, or the issuerAltName extension.  As with
  the dNSName in the GeneralName type, the value of this attribute is
  defined as an IA5String.  Each domainComponent attribute represents a
  single label.  To represent a label from an IDN in the distinguished
  name, the implementation MUST perform the "ToASCII" label conversion
  specified in Section 4.1 of RFC 3490.  The label SHALL be considered
  a "stored string".  That is, the AllowUnassigned flag SHALL NOT be
  set.

  Conforming implementations shall perform a case-insensitive exact
  match when comparing domainComponent attributes in distinguished
  names, as described in Section 7.2.

  Implementations should convert ACE labels to Unicode before display.
  Specifically, conforming implementations should perform the
  "ToUnicode" conversion operation specified, as described in Section
  7.2, on each ACE label before displaying the name.

7.4.  Internationalized Resource Identifiers

  Internationalized Resource Identifiers (IRIs) are the
  internationalized complement to the Uniform Resource Identifier
  (URI).  IRIs are sequences of characters from Unicode, while URIs are
  sequences of characters from the ASCII character set.  [RFC3987]
  defines a mapping from IRIs to URIs.  While IRIs are not encoded
  directly in any certificate fields or extensions, their mapped URIs
  may be included in certificates and CRLs.  URIs may appear in the
  subjectAltName and issuerAltName extensions, name constraints
  extension, authority information access extension, subject
  information access extension, issuing distribution point extension,
  and CRL distribution points extension.  Each of these extensions uses
  the GeneralName type; URIs are encoded in the
  uniformResourceIdentifier field in GeneralName, which is defined as
  type IA5String.



Cooper, et al.              Standards Track                    [Page 98]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  To accommodate IRIs in the current structure, conforming
  implementations MUST map IRIs to URIs as specified in Section 3.1 of
  [RFC3987], with the following clarifications:

     *  in step 1, generate a UCS character sequence from the original
        IRI format normalizing according to the NFC as specified in
        Variant b (normalization according to NFC);

     *  perform step 2 using the output from step 1.

  Implementations MUST NOT convert the ireg-name component before
  performing step 2.

  Before URIs may be compared, conforming implementations MUST perform
  a combination of the syntax-based and scheme-based normalization
  techniques described in [RFC3987].  Specifically, conforming
  implementations MUST prepare URIs for comparison as follows:

     *  Step 1: Where IRIs allow the usage of IDNs, those names MUST be
        converted to ASCII Compatible Encoding as specified in Section
        7.2 above.

     *  Step 2: The scheme and host are normalized to lowercase, as
        described in Section 5.3.2.1 of [RFC3987].

     *  Step 3: Perform percent-encoding normalization, as specified in
        Section 5.3.2.3 of [RFC3987].

     *  Step 4: Perform path segment normalization, as specified in
        Section 5.3.2.4 of [RFC3987].

     *  Step 5: If recognized, the implementation MUST perform scheme-
        based normalization as specified in Section 5.3.3 of [RFC3987].

  Conforming implementations MUST recognize and perform scheme-based
  normalization for the following schemes: ldap, http, https, and ftp.
  If the scheme is not recognized, step 5 is omitted.

  When comparing URIs for equivalence, conforming implementations shall
  perform a case-sensitive exact match.

  Implementations should convert URIs to Unicode before display.
  Specifically, conforming implementations should perform the
  conversion operation specified in Section 3.2 of [RFC3987].







Cooper, et al.              Standards Track                    [Page 99]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


7.5.  Internationalized Electronic Mail Addresses

  Electronic Mail addresses may be included in certificates and CRLs in
  the subjectAltName and issuerAltName extensions, name constraints
  extension, authority information access extension, subject
  information access extension, issuing distribution point extension,
  or CRL distribution points extension.  Each of these extensions uses
  the GeneralName construct; GeneralName includes the rfc822Name
  choice, which is defined as type IA5String.  To accommodate email
  addresses with internationalized domain names using the current
  structure, conforming implementations MUST convert the addresses into
  an ASCII representation.

  Where the host-part (the Domain of the Mailbox) contains an
  internationalized name, the domain name MUST be converted from an IDN
  to the ASCII Compatible Encoding (ACE) format as specified in Section
  7.2.

  Two email addresses are considered to match if:

     1)  the local-part of each name is an exact match, AND

     2)  the host-part of each name matches using a case-insensitive
         ASCII comparison.

  Implementations should convert the host-part of internationalized
  email addresses specified in these extensions to Unicode before
  display.  Specifically, conforming implementations should perform the
  conversion of the host-part of the Mailbox as described in Section
  7.2.

8.  Security Considerations

  The majority of this specification is devoted to the format and
  content of certificates and CRLs.  Since certificates and CRLs are
  digitally signed, no additional integrity service is necessary.
  Neither certificates nor CRLs need be kept secret, and unrestricted
  and anonymous access to certificates and CRLs has no security
  implications.

  However, security factors outside the scope of this specification
  will affect the assurance provided to certificate users.  This
  section highlights critical issues to be considered by implementers,
  administrators, and users.

  The procedures performed by CAs and RAs to validate the binding of
  the subject's identity to their public key greatly affect the
  assurance that ought to be placed in the certificate.  Relying



Cooper, et al.              Standards Track                   [Page 100]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  parties might wish to review the CA's certification practice
  statement.  This is particularly important when issuing certificates
  to other CAs.

  The use of a single key pair for both signature and other purposes is
  strongly discouraged.  Use of separate key pairs for signature and
  key management provides several benefits to the users.  The
  ramifications associated with loss or disclosure of a signature key
  are different from loss or disclosure of a key management key.  Using
  separate key pairs permits a balanced and flexible response.
  Similarly, different validity periods or key lengths for each key
  pair may be appropriate in some application environments.
  Unfortunately, some legacy applications (e.g., Secure Sockets Layer
  (SSL)) use a single key pair for signature and key management.

  The protection afforded private keys is a critical security factor.
  On a small scale, failure of users to protect their private keys will
  permit an attacker to masquerade as them or decrypt their personal
  information.  On a larger scale, compromise of a CA's private signing
  key may have a catastrophic effect.  If an attacker obtains the
  private key unnoticed, the attacker may issue bogus certificates and
  CRLs.  Existence of bogus certificates and CRLs will undermine
  confidence in the system.  If such a compromise is detected, all
  certificates issued to the compromised CA MUST be revoked, preventing
  services between its users and users of other CAs.  Rebuilding after
  such a compromise will be problematic, so CAs are advised to
  implement a combination of strong technical measures (e.g., tamper-
  resistant cryptographic modules) and appropriate management
  procedures (e.g., separation of duties) to avoid such an incident.

  Loss of a CA's private signing key may also be problematic.  The CA
  would not be able to produce CRLs or perform normal key rollover.
  CAs SHOULD maintain secure backup for signing keys.  The security of
  the key backup procedures is a critical factor in avoiding key
  compromise.

  The availability and freshness of revocation information affects the
  degree of assurance that ought to be placed in a certificate.  While
  certificates expire naturally, events may occur during its natural
  lifetime that negate the binding between the subject and public key.
  If revocation information is untimely or unavailable, the assurance
  associated with the binding is clearly reduced.  Relying parties
  might not be able to process every critical extension that can appear
  in a CRL.  CAs SHOULD take extra care when making revocation
  information available only through CRLs that contain critical
  extensions, particularly if support for those extensions is not
  mandated by this profile.  For example, if revocation information is
  supplied using a combination of delta CRLs and full CRLs, and the



Cooper, et al.              Standards Track                   [Page 101]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  delta CRLs are issued more frequently than the full CRLs, then
  relying parties that cannot handle the critical extensions related to
  delta CRL processing will not be able to obtain the most recent
  revocation information.  Alternatively, if a full CRL is issued
  whenever a delta CRL is issued, then timely revocation information
  will be available to all relying parties.  Similarly, implementations
  of the certification path validation mechanism described in Section 6
  that omit revocation checking provide less assurance than those that
  support it.

  The certification path validation algorithm depends on the certain
  knowledge of the public keys (and other information) about one or
  more trusted CAs.  The decision to trust a CA is an important
  decision as it ultimately determines the trust afforded a
  certificate.  The authenticated distribution of trusted CA public
  keys (usually in the form of a "self-signed" certificate) is a
  security critical out-of-band process that is beyond the scope of
  this specification.

  In addition, where a key compromise or CA failure occurs for a
  trusted CA, the user will need to modify the information provided to
  the path validation routine.  Selection of too many trusted CAs makes
  the trusted CA information difficult to maintain.  On the other hand,
  selection of only one trusted CA could limit users to a closed
  community of users.

  The quality of implementations that process certificates also affects
  the degree of assurance provided.  The path validation algorithm
  described in Section 6 relies upon the integrity of the trusted CA
  information, and especially the integrity of the public keys
  associated with the trusted CAs.  By substituting public keys for
  which an attacker has the private key, an attacker could trick the
  user into accepting false certificates.

  The binding between a key and certificate subject cannot be stronger
  than the cryptographic module implementation and algorithms used to
  generate the signature.  Short key lengths or weak hash algorithms
  will limit the utility of a certificate.  CAs are encouraged to note
  advances in cryptology so they can employ strong cryptographic
  techniques.  In addition, CAs SHOULD decline to issue certificates to
  CAs or end entities that generate weak signatures.

  Inconsistent application of name comparison rules can result in
  acceptance of invalid X.509 certification paths or rejection of valid
  ones.  The X.500 series of specifications defines rules for comparing
  distinguished names that require comparison of strings without regard





Cooper, et al.              Standards Track                   [Page 102]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  to case, character set, multi-character white space substring, or
  leading and trailing white space.  This specification relaxes these
  requirements, requiring support for binary comparison at a minimum.

  CAs MUST encode the distinguished name in the subject field of a CA
  certificate identically to the distinguished name in the issuer field
  in certificates issued by that CA.  If CAs use different encodings,
  implementations might fail to recognize name chains for paths that
  include this certificate.  As a consequence, valid paths could be
  rejected.

  In addition, name constraints for distinguished names MUST be stated
  identically to the encoding used in the subject field or
  subjectAltName extension.  If not, then name constraints stated as
  excludedSubtrees will not match and invalid paths will be accepted
  and name constraints expressed as permittedSubtrees will not match
  and valid paths will be rejected.  To avoid acceptance of invalid
  paths, CAs SHOULD state name constraints for distinguished names as
  permittedSubtrees wherever possible.

  In general, using the nameConstraints extension to constrain one name
  form (e.g., DNS names) offers no protection against use of other name
  forms (e.g., electronic mail addresses).

  While X.509 mandates that names be unambiguous, there is a risk that
  two unrelated authorities will issue certificates and/or CRLs under
  the same issuer name.  As a means of reducing problems and security
  issues related to issuer name collisions, CA and CRL issuer names
  SHOULD be formed in a way that reduces the likelihood of name
  collisions.  Implementers should take into account the possible
  existence of multiple unrelated CAs and CRL issuers with the same
  name.  At a minimum, implementations validating CRLs MUST ensure that
  the certification path of a certificate and the CRL issuer
  certification path used to validate the certificate terminate at the
  same trust anchor.

  While the local-part of an electronic mail address is case sensitive
  [RFC2821], emailAddress attribute values are not case sensitive
  [RFC2985].  As a result, there is a risk that two different email
  addresses will be treated as the same address when the matching rule
  for the emailAddress attribute is used, if the email server exploits
  the case sensitivity of mailbox local-parts.  Implementers should not
  include an email address in the emailAddress attribute if the email
  server that hosts the email address treats the local-part of email
  addresses as case sensitive.

  Implementers should be aware of risks involved if the CRL
  distribution points or authority information access extensions of



Cooper, et al.              Standards Track                   [Page 103]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  corrupted certificates or CRLs contain links to malicious code.
  Implementers should always take the steps of validating the retrieved
  data to ensure that the data is properly formed.

  When certificates include a cRLDistributionPoints extension with an
  https URI or similar scheme, circular dependencies can be introduced.
  The relying party is forced to perform an additional path validation
  in order to obtain the CRL required to complete the initial path
  validation!  Circular conditions can also be created with an https
  URI (or similar scheme) in the authorityInfoAccess or
  subjectInfoAccess extensions.  At worst, this situation can create
  unresolvable dependencies.

  CAs SHOULD NOT include URIs that specify https, ldaps, or similar
  schemes in extensions.  CAs that include an https URI in one of these
  extensions MUST ensure that the server's certificate can be validated
  without using the information that is pointed to by the URI.  Relying
  parties that choose to validate the server's certificate when
  obtaining information pointed to by an https URI in the
  cRLDistributionPoints, authorityInfoAccess, or subjectInfoAccess
  extensions MUST be prepared for the possibility that this will result
  in unbounded recursion.

  Self-issued certificates provide CAs with one automated mechanism to
  indicate changes in the CA's operations.  In particular, self-issued
  certificates may be used to implement a graceful change-over from one
  non-compromised CA key pair to the next.  Detailed procedures for "CA
  key update" are specified in [RFC4210], where the CA protects its new
  public key using its previous private key and vice versa using two
  self-issued certificates.  Conforming client implementations will
  process the self-issued certificate and determine whether
  certificates issued under the new key may be trusted.  Self-issued
  certificates MAY be used to support other changes in CA operations,
  such as additions to the CA's policy set, using similar procedures.

  Some legacy implementations support names encoded in the ISO 8859-1
  character set (Latin1String) [ISO8859] but tag them as TeletexString.
  TeletexString encodes a larger character set than ISO 8859-1, but it
  encodes some characters differently.  The name comparison rules
  specified in Section 7.1 assume that TeletexStrings are encoded as
  described in the ASN.1 standard.  When comparing names encoded using
  the Latin1String character set, false positives and negatives are
  possible.

  When strings are mapped from internal representations to visual
  representations, sometimes two different strings will have the same
  or similar visual representations.  This can happen for many
  different reasons, including use of similar glyphs and use of



Cooper, et al.              Standards Track                   [Page 104]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  composed characters (such as e + ' equaling U+00E9, the Korean
  composed characters, and vowels above consonant clusters in certain
  languages).  As a result of this situation, people doing visual
  comparisons between two different names may think they are the same
  when in fact they are not.  Also, people may mistake one string for
  another.  Issuers of certificates and relying parties both need to be
  aware of this situation.

9.  IANA Considerations

  Extensions in certificates and CRLs are identified using object
  identifiers.  The objects are defined in an arc delegated by IANA to
  the PKIX Working Group.  No further action by IANA is necessary for
  this document or any anticipated updates.

10.  Acknowledgments

  Warwick Ford participated with the authors in some of the design team
  meetings that directed development of this document.  The design
  team's efforts were guided by contributions from Matt Crawford, Tom
  Gindin, Steve Hanna, Stephen Henson, Paul Hoffman, Takashi Ito, Denis
  Pinkas, and Wen-Cheng Wang.

11.  References

11.1.  Normative References

  [RFC791]   Postel, J., "Internet Protocol", STD 5, RFC 791, September
             1981.

  [RFC1034]  Mockapetris, P., "Domain Names - Concepts and Facilities",
             STD 13, RFC 1034, November 1987.

  [RFC1123]  Braden, R., Ed., "Requirements for Internet Hosts --
             Application and Support", STD 3, RFC 1123, October 1989.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 2460, December 1998.

  [RFC2585]  Housley, R. and P. Hoffman, "Internet X.509 Public Key
             Infrastructure: Operational Protocols: FTP and HTTP", RFC
             2585, May 1999.






Cooper, et al.              Standards Track                   [Page 105]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  [RFC2616]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
             Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
             Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

  [RFC2797]  Myers, M., Liu, X., Schaad, J., and J. Weinstein,
             "Certificate Management Messages over CMS", RFC 2797,
             April 2000.

  [RFC2821]  Klensin, J., Ed., "Simple Mail Transfer Protocol", RFC
             2821, April 2001.

  [RFC3454]  Hoffman, P. and M. Blanchet, "Preparation of
             Internationalized Strings ("stringprep")", RFC 3454,
             December 2002.

  [RFC3490]  Faltstrom, P., Hoffman, P., and A. Costello,
             "Internationalizing Domain Names in Applications (IDNA)",
             RFC 3490, March 2003.

  [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
             10646", STD 63, RFC 3629, November 2003.

  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66, RFC
             3986, January 2005.

  [RFC3987]  Duerst, M. and M. Suignard, "Internationalized Resource
             Identifiers (IRIs)", RFC 3987, January 2005.

  [RFC4516]  Smith, M., Ed., and T. Howes, "Lightweight Directory
             Access Protocol (LDAP): Uniform Resource Locator", RFC
             4516, June 2006.

  [RFC4518]  Zeilenga, K., "Lightweight Directory Access Protocol
             (LDAP): Internationalized String Preparation", RFC 4518,
             June 2006.

  [RFC4523]  Zeilenga, K., "Lightweight Directory Access Protocol
             (LDAP) Schema Definitions for X.509 Certificates", RFC
             4523, June 2006.

  [RFC4632]  Fuller, V. and T. Li, "Classless Inter-domain Routing
             (CIDR): The Internet Address Assignment and Aggregation
             Plan", BCP 122, RFC 4632, August 2006.

  [X.680]    ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002,
             Information technology - Abstract Syntax Notation One
             (ASN.1):  Specification of basic notation.



Cooper, et al.              Standards Track                   [Page 106]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  [X.690]    ITU-T Recommendation X.690 (2002) | ISO/IEC 8825-1:2002,
             Information technology - ASN.1 encoding rules:
             Specification of Basic Encoding Rules (BER), Canonical
             Encoding Rules (CER) and Distinguished Encoding Rules
             (DER).

11.2.  Informative References

  [ISO8859]  ISO/IEC 8859-1:1998.  Information technology -- 8-bit
             single-byte coded graphic character sets -- Part 1: Latin
             alphabet No. 1.

  [ISO10646] ISO/IEC 10646:2003.  Information technology -- Universal
             Multiple-Octet Coded Character Set (UCS).

  [NFC]      Davis, M. and M. Duerst, "Unicode Standard Annex #15:
             Unicode Normalization Forms", October 2006,
             <http://www.unicode.org/reports/tr15/>.

  [RFC1422]  Kent, S., "Privacy Enhancement for Internet Electronic
             Mail: Part II: Certificate-Based Key Management", RFC
             1422, February 1993.

  [RFC2277]  Alvestrand, H., "IETF Policy on Character Sets and
             Languages", BCP 18, RFC 2277, January 1998.

  [RFC2459]  Housley, R., Ford, W., Polk, W., and D. Solo, "Internet
             X.509 Public Key Infrastructure Certificate and CRL
             Profile", RFC 2459, January 1999.

  [RFC2560]  Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
             Adams, "X.509 Internet Public Key Infrastructure Online
             Certificate Status Protocol - OCSP", RFC 2560, June 1999.

  [RFC2985]  Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
             Classes and Attribute Types Version 2.0", RFC 2985,
             November 2000.

  [RFC3161]  Adams, C., Cain, P., Pinkas, D., and R. Zuccherato,
             "Internet X.509 Public Key Infrastructure Time-Stamp
             Protocol (TSP)", RFC 3161, August 2001.

  [RFC3279]  Bassham, L., Polk, W., and R. Housley, "Algorithms and
             Identifiers for the Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 3279, April 2002.





Cooper, et al.              Standards Track                   [Page 107]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  [RFC3280]  Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
             X.509 Public Key Infrastructure Certificate and
             Certificate Revocation List (CRL) Profile", RFC 3280,
             April 2002.

  [RFC4055]  Schaad, J., Kaliski, B., and R. Housley, "Additional
             Algorithms and Identifiers for RSA Cryptography for use in
             the Internet X.509 Public Key Infrastructure Certificate
             and Certificate Revocation List (CRL) Profile", RFC 4055,
             June 2005.

  [RFC4120]  Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
             Kerberos Network Authentication Service (V5)", RFC 4120,
             July 2005.

  [RFC4210]  Adams, C., Farrell, S., Kause, T., and T. Mononen,
             "Internet X.509 Public Key Infrastructure Certificate
             Management Protocol (CMP)", RFC 4210, September 2005.

  [RFC4325]  Santesson, S. and R. Housley, "Internet X.509 Public Key
             Infrastructure Authority Information Access Certificate
             Revocation List (CRL) Extension", RFC 4325, December 2005.

  [RFC4491]  Leontiev, S., Ed., and D. Shefanovski, Ed., "Using the
             GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94
             Algorithms with the Internet X.509 Public Key
             Infrastructure Certificate and CRL Profile", RFC 4491, May
             2006.

  [RFC4510]  Zeilenga, K., Ed., "Lightweight Directory Access Protocol
             (LDAP): Technical Specification Road Map", RFC 4510, June
             2006.

  [RFC4512]  Zeilenga, K., Ed., "Lightweight Directory Access Protocol
             (LDAP): Directory Information Models", RFC 4512, June
             2006.

  [RFC4514]  Zeilenga, K., Ed., "Lightweight Directory Access Protocol
             (LDAP): String Representation of Distinguished Names", RFC
             4514, June 2006.

  [RFC4519]  Sciberras, A., Ed., "Lightweight Directory Access Protocol
             (LDAP): Schema for User Applications", RFC 4519, June
             2006.







Cooper, et al.              Standards Track                   [Page 108]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  [RFC4630]  Housley, R. and S. Santesson, "Update to DirectoryString
             Processing in the Internet X.509 Public Key Infrastructure
             Certificate and Certificate Revocation List (CRL)
             Profile", RFC 4630, August 2006.

  [X.500]    ITU-T Recommendation X.500 (2005) | ISO/IEC 9594-1:2005,
             Information technology - Open Systems Interconnection -
             The Directory: Overview of concepts, models and services.

  [X.501]    ITU-T Recommendation X.501 (2005) | ISO/IEC 9594-2:2005,
             Information technology - Open Systems Interconnection -
             The Directory: Models.

  [X.509]    ITU-T Recommendation X.509 (2005) | ISO/IEC 9594-8:2005,
             Information technology - Open Systems Interconnection -
             The Directory: Public-key and attribute certificate
             frameworks.

  [X.520]    ITU-T Recommendation X.520 (2005) | ISO/IEC 9594-6:2005,
             Information technology - Open Systems Interconnection -
             The Directory: Selected attribute types.

  [X.660]    ITU-T Recommendation X.660 (2004) | ISO/IEC 9834-1:2005,
             Information technology - Open Systems Interconnection -
             Procedures for the operation of OSI Registration
             Authorities: General procedures, and top arcs of the ASN.1
             Object Identifier tree.

  [X.683]    ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002,
             Information technology - Abstract Syntax Notation One
             (ASN.1): Parameterization of ASN.1 specifications.

  [X9.55]    ANSI X9.55-1997, Public Key Cryptography for the Financial
             Services Industry: Extensions to Public Key Certificates
             and Certificate Revocation Lists, January 1997.
















Cooper, et al.              Standards Track                   [Page 109]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


Appendix A.  Pseudo-ASN.1 Structures and OIDs

  This appendix describes data objects used by conforming PKI
  components in an "ASN.1-like" syntax.  This syntax is a hybrid of the
  1988 and 1993 ASN.1 syntaxes.  The 1988 ASN.1 syntax is augmented
  with 1993 UNIVERSAL Types UniversalString, BMPString, and UTF8String.

  The ASN.1 syntax does not permit the inclusion of type statements in
  the ASN.1 module, and the 1993 ASN.1 standard does not permit use of
  the new UNIVERSAL types in modules using the 1988 syntax.  As a
  result, this module does not conform to either version of the ASN.1
  standard.

  This appendix may be converted into 1988 ASN.1 by replacing the
  definitions for the UNIVERSAL Types with the 1988 catch-all "ANY".

A.1.  Explicitly Tagged Module, 1988 Syntax

PKIX1Explicit88 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit(18) }

DEFINITIONS EXPLICIT TAGS ::=

BEGIN

-- EXPORTS ALL --

-- IMPORTS NONE --

-- UNIVERSAL Types defined in 1993 and 1998 ASN.1
-- and required by this specification

UniversalString ::= [UNIVERSAL 28] IMPLICIT OCTET STRING
       -- UniversalString is defined in ASN.1:1993

BMPString ::= [UNIVERSAL 30] IMPLICIT OCTET STRING
     -- BMPString is the subtype of UniversalString and models
     -- the Basic Multilingual Plane of ISO/IEC 10646

UTF8String ::= [UNIVERSAL 12] IMPLICIT OCTET STRING
     -- The content of this type conforms to RFC 3629.

-- PKIX specific OIDs

id-pkix  OBJECT IDENTIFIER  ::=
        { iso(1) identified-organization(3) dod(6) internet(1)
                   security(5) mechanisms(5) pkix(7) }




Cooper, et al.              Standards Track                   [Page 110]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- PKIX arcs

id-pe OBJECT IDENTIFIER ::= { id-pkix 1 }
       -- arc for private certificate extensions
id-qt OBJECT IDENTIFIER ::= { id-pkix 2 }
       -- arc for policy qualifier types
id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }
       -- arc for extended key purpose OIDS
id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }
       -- arc for access descriptors

-- policyQualifierIds for Internet policy qualifiers

id-qt-cps      OBJECT IDENTIFIER ::=  { id-qt 1 }
     -- OID for CPS qualifier
id-qt-unotice  OBJECT IDENTIFIER ::=  { id-qt 2 }
     -- OID for user notice qualifier

-- access descriptor definitions

id-ad-ocsp         OBJECT IDENTIFIER ::= { id-ad 1 }
id-ad-caIssuers    OBJECT IDENTIFIER ::= { id-ad 2 }
id-ad-timeStamping OBJECT IDENTIFIER ::= { id-ad 3 }
id-ad-caRepository OBJECT IDENTIFIER ::= { id-ad 5 }

-- attribute data types

Attribute               ::= SEQUENCE {
     type             AttributeType,
     values    SET OF AttributeValue }
           -- at least one value is required

AttributeType           ::= OBJECT IDENTIFIER

AttributeValue          ::= ANY -- DEFINED BY AttributeType

AttributeTypeAndValue   ::= SEQUENCE {
       type    AttributeType,
       value   AttributeValue }

-- suggested naming attributes: Definition of the following
--   information object set may be augmented to meet local
--   requirements.  Note that deleting members of the set may
--   prevent interoperability with conforming implementations.
-- presented in pairs: the AttributeType followed by the
--   type definition for the corresponding AttributeValue





Cooper, et al.              Standards Track                   [Page 111]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- Arc for standard naming attributes

id-at OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) ds(5) 4 }

-- Naming attributes of type X520name

id-at-name                AttributeType ::= { id-at 41 }
id-at-surname             AttributeType ::= { id-at  4 }
id-at-givenName           AttributeType ::= { id-at 42 }
id-at-initials            AttributeType ::= { id-at 43 }
id-at-generationQualifier AttributeType ::= { id-at 44 }

-- Naming attributes of type X520Name:
--   X520name ::= DirectoryString (SIZE (1..ub-name))
--
-- Expanded to avoid parameterized type:
X520name ::= CHOICE {
     teletexString     TeletexString   (SIZE (1..ub-name)),
     printableString   PrintableString (SIZE (1..ub-name)),
     universalString   UniversalString (SIZE (1..ub-name)),
     utf8String        UTF8String      (SIZE (1..ub-name)),
     bmpString         BMPString       (SIZE (1..ub-name)) }

-- Naming attributes of type X520CommonName

id-at-commonName        AttributeType ::= { id-at 3 }

-- Naming attributes of type X520CommonName:
--   X520CommonName ::= DirectoryName (SIZE (1..ub-common-name))
--
-- Expanded to avoid parameterized type:
X520CommonName ::= CHOICE {
     teletexString     TeletexString   (SIZE (1..ub-common-name)),
     printableString   PrintableString (SIZE (1..ub-common-name)),
     universalString   UniversalString (SIZE (1..ub-common-name)),
     utf8String        UTF8String      (SIZE (1..ub-common-name)),
     bmpString         BMPString       (SIZE (1..ub-common-name)) }














Cooper, et al.              Standards Track                   [Page 112]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- Naming attributes of type X520LocalityName

id-at-localityName      AttributeType ::= { id-at 7 }

-- Naming attributes of type X520LocalityName:
--   X520LocalityName ::= DirectoryName (SIZE (1..ub-locality-name))
--
-- Expanded to avoid parameterized type:
X520LocalityName ::= CHOICE {
     teletexString     TeletexString   (SIZE (1..ub-locality-name)),
     printableString   PrintableString (SIZE (1..ub-locality-name)),
     universalString   UniversalString (SIZE (1..ub-locality-name)),
     utf8String        UTF8String      (SIZE (1..ub-locality-name)),
     bmpString         BMPString       (SIZE (1..ub-locality-name)) }

-- Naming attributes of type X520StateOrProvinceName

id-at-stateOrProvinceName AttributeType ::= { id-at 8 }

-- Naming attributes of type X520StateOrProvinceName:
--   X520StateOrProvinceName ::= DirectoryName (SIZE (1..ub-state-name))
--
-- Expanded to avoid parameterized type:
X520StateOrProvinceName ::= CHOICE {
     teletexString     TeletexString   (SIZE (1..ub-state-name)),
     printableString   PrintableString (SIZE (1..ub-state-name)),
     universalString   UniversalString (SIZE (1..ub-state-name)),
     utf8String        UTF8String      (SIZE (1..ub-state-name)),
     bmpString         BMPString       (SIZE (1..ub-state-name)) }






















Cooper, et al.              Standards Track                   [Page 113]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- Naming attributes of type X520OrganizationName

id-at-organizationName  AttributeType ::= { id-at 10 }

-- Naming attributes of type X520OrganizationName:
--   X520OrganizationName ::=
--          DirectoryName (SIZE (1..ub-organization-name))
--
-- Expanded to avoid parameterized type:
X520OrganizationName ::= CHOICE {
     teletexString     TeletexString
                         (SIZE (1..ub-organization-name)),
     printableString   PrintableString
                         (SIZE (1..ub-organization-name)),
     universalString   UniversalString
                         (SIZE (1..ub-organization-name)),
     utf8String        UTF8String
                         (SIZE (1..ub-organization-name)),
     bmpString         BMPString
                         (SIZE (1..ub-organization-name))  }

-- Naming attributes of type X520OrganizationalUnitName

id-at-organizationalUnitName AttributeType ::= { id-at 11 }

-- Naming attributes of type X520OrganizationalUnitName:
--   X520OrganizationalUnitName ::=
--          DirectoryName (SIZE (1..ub-organizational-unit-name))
--
-- Expanded to avoid parameterized type:
X520OrganizationalUnitName ::= CHOICE {
     teletexString     TeletexString
                         (SIZE (1..ub-organizational-unit-name)),
     printableString   PrintableString
                         (SIZE (1..ub-organizational-unit-name)),
     universalString   UniversalString
                         (SIZE (1..ub-organizational-unit-name)),
     utf8String        UTF8String
                         (SIZE (1..ub-organizational-unit-name)),
     bmpString         BMPString
                         (SIZE (1..ub-organizational-unit-name)) }










Cooper, et al.              Standards Track                   [Page 114]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- Naming attributes of type X520Title

id-at-title             AttributeType ::= { id-at 12 }

-- Naming attributes of type X520Title:
--   X520Title ::= DirectoryName (SIZE (1..ub-title))
--
-- Expanded to avoid parameterized type:
X520Title ::= CHOICE {
     teletexString     TeletexString   (SIZE (1..ub-title)),
     printableString   PrintableString (SIZE (1..ub-title)),
     universalString   UniversalString (SIZE (1..ub-title)),
     utf8String        UTF8String      (SIZE (1..ub-title)),
     bmpString         BMPString       (SIZE (1..ub-title)) }

-- Naming attributes of type X520dnQualifier

id-at-dnQualifier       AttributeType ::= { id-at 46 }

X520dnQualifier ::=     PrintableString

-- Naming attributes of type X520countryName (digraph from IS 3166)

id-at-countryName       AttributeType ::= { id-at 6 }

X520countryName ::=     PrintableString (SIZE (2))

-- Naming attributes of type X520SerialNumber

id-at-serialNumber      AttributeType ::= { id-at 5 }

X520SerialNumber ::=    PrintableString (SIZE (1..ub-serial-number))

-- Naming attributes of type X520Pseudonym

id-at-pseudonym         AttributeType ::= { id-at 65 }

-- Naming attributes of type X520Pseudonym:
--   X520Pseudonym ::= DirectoryName (SIZE (1..ub-pseudonym))
--
-- Expanded to avoid parameterized type:
X520Pseudonym ::= CHOICE {
  teletexString     TeletexString   (SIZE (1..ub-pseudonym)),
  printableString   PrintableString (SIZE (1..ub-pseudonym)),
  universalString   UniversalString (SIZE (1..ub-pseudonym)),
  utf8String        UTF8String      (SIZE (1..ub-pseudonym)),
  bmpString         BMPString       (SIZE (1..ub-pseudonym)) }




Cooper, et al.              Standards Track                   [Page 115]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- Naming attributes of type DomainComponent (from RFC 4519)

id-domainComponent   AttributeType ::= { 0 9 2342 19200300 100 1 25 }

DomainComponent ::=  IA5String

-- Legacy attributes

pkcs-9 OBJECT IDENTIFIER ::=
      { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 9 }

id-emailAddress      AttributeType ::= { pkcs-9 1 }

EmailAddress ::=     IA5String (SIZE (1..ub-emailaddress-length))

-- naming data types --

Name ::= CHOICE { -- only one possibility for now --
     rdnSequence  RDNSequence }

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

DistinguishedName ::=   RDNSequence

RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue

-- Directory string type --

DirectoryString ::= CHOICE {
     teletexString       TeletexString   (SIZE (1..MAX)),
     printableString     PrintableString (SIZE (1..MAX)),
     universalString     UniversalString (SIZE (1..MAX)),
     utf8String          UTF8String      (SIZE (1..MAX)),
     bmpString           BMPString       (SIZE (1..MAX)) }

-- certificate and CRL specific structures begin here

Certificate  ::=  SEQUENCE  {
    tbsCertificate       TBSCertificate,
    signatureAlgorithm   AlgorithmIdentifier,
    signature            BIT STRING  }










Cooper, et al.              Standards Track                   [Page 116]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


TBSCertificate  ::=  SEQUENCE  {
    version         [0]  Version DEFAULT v1,
    serialNumber         CertificateSerialNumber,
    signature            AlgorithmIdentifier,
    issuer               Name,
    validity             Validity,
    subject              Name,
    subjectPublicKeyInfo SubjectPublicKeyInfo,
    issuerUniqueID  [1]  IMPLICIT UniqueIdentifier OPTIONAL,
                         -- If present, version MUST be v2 or v3
    subjectUniqueID [2]  IMPLICIT UniqueIdentifier OPTIONAL,
                         -- If present, version MUST be v2 or v3
    extensions      [3]  Extensions OPTIONAL
                         -- If present, version MUST be v3 --  }

Version  ::=  INTEGER  {  v1(0), v2(1), v3(2)  }

CertificateSerialNumber  ::=  INTEGER

Validity ::= SEQUENCE {
    notBefore      Time,
    notAfter       Time  }

Time ::= CHOICE {
    utcTime        UTCTime,
    generalTime    GeneralizedTime }

UniqueIdentifier  ::=  BIT STRING

SubjectPublicKeyInfo  ::=  SEQUENCE  {
    algorithm            AlgorithmIdentifier,
    subjectPublicKey     BIT STRING  }

Extensions  ::=  SEQUENCE SIZE (1..MAX) OF Extension

Extension  ::=  SEQUENCE  {
    extnID      OBJECT IDENTIFIER,
    critical    BOOLEAN DEFAULT FALSE,
    extnValue   OCTET STRING
                -- contains the DER encoding of an ASN.1 value
                -- corresponding to the extension type identified
                -- by extnID
    }








Cooper, et al.              Standards Track                   [Page 117]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- CRL structures

CertificateList  ::=  SEQUENCE  {
    tbsCertList          TBSCertList,
    signatureAlgorithm   AlgorithmIdentifier,
    signature            BIT STRING  }

TBSCertList  ::=  SEQUENCE  {
    version                 Version OPTIONAL,
                                  -- if present, MUST be v2
    signature               AlgorithmIdentifier,
    issuer                  Name,
    thisUpdate              Time,
    nextUpdate              Time OPTIONAL,
    revokedCertificates     SEQUENCE OF SEQUENCE  {
         userCertificate         CertificateSerialNumber,
         revocationDate          Time,
         crlEntryExtensions      Extensions OPTIONAL
                                  -- if present, version MUST be v2
                              }  OPTIONAL,
    crlExtensions           [0] Extensions OPTIONAL }
                                  -- if present, version MUST be v2

-- Version, Time, CertificateSerialNumber, and Extensions were
-- defined earlier for use in the certificate structure

AlgorithmIdentifier  ::=  SEQUENCE  {
    algorithm               OBJECT IDENTIFIER,
    parameters              ANY DEFINED BY algorithm OPTIONAL  }
                               -- contains a value of the type
                               -- registered for use with the
                               -- algorithm object identifier value

-- X.400 address syntax starts here

ORAddress ::= SEQUENCE {
  built-in-standard-attributes BuiltInStandardAttributes,
  built-in-domain-defined-attributes
                  BuiltInDomainDefinedAttributes OPTIONAL,
  -- see also teletex-domain-defined-attributes
  extension-attributes ExtensionAttributes OPTIONAL }










Cooper, et al.              Standards Track                   [Page 118]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- Built-in Standard Attributes

BuiltInStandardAttributes ::= SEQUENCE {
  country-name                  CountryName OPTIONAL,
  administration-domain-name    AdministrationDomainName OPTIONAL,
  network-address           [0] IMPLICIT NetworkAddress OPTIONAL,
    -- see also extended-network-address
  terminal-identifier       [1] IMPLICIT TerminalIdentifier OPTIONAL,
  private-domain-name       [2] PrivateDomainName OPTIONAL,
  organization-name         [3] IMPLICIT OrganizationName OPTIONAL,
    -- see also teletex-organization-name
  numeric-user-identifier   [4] IMPLICIT NumericUserIdentifier
                                OPTIONAL,
  personal-name             [5] IMPLICIT PersonalName OPTIONAL,
    -- see also teletex-personal-name
  organizational-unit-names [6] IMPLICIT OrganizationalUnitNames
                                OPTIONAL }
    -- see also teletex-organizational-unit-names

CountryName ::= [APPLICATION 1] CHOICE {
  x121-dcc-code         NumericString
                          (SIZE (ub-country-name-numeric-length)),
  iso-3166-alpha2-code  PrintableString
                          (SIZE (ub-country-name-alpha-length)) }

AdministrationDomainName ::= [APPLICATION 2] CHOICE {
  numeric   NumericString   (SIZE (0..ub-domain-name-length)),
  printable PrintableString (SIZE (0..ub-domain-name-length)) }

NetworkAddress ::= X121Address  -- see also extended-network-address

X121Address ::= NumericString (SIZE (1..ub-x121-address-length))

TerminalIdentifier ::= PrintableString (SIZE (1..ub-terminal-id-length))

PrivateDomainName ::= CHOICE {
  numeric   NumericString   (SIZE (1..ub-domain-name-length)),
  printable PrintableString (SIZE (1..ub-domain-name-length)) }

OrganizationName ::= PrintableString
                           (SIZE (1..ub-organization-name-length))
 -- see also teletex-organization-name

NumericUserIdentifier ::= NumericString
                           (SIZE (1..ub-numeric-user-id-length))






Cooper, et al.              Standards Track                   [Page 119]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


PersonalName ::= SET {
  surname     [0] IMPLICIT PrintableString
                   (SIZE (1..ub-surname-length)),
  given-name  [1] IMPLICIT PrintableString
                   (SIZE (1..ub-given-name-length)) OPTIONAL,
  initials    [2] IMPLICIT PrintableString
                   (SIZE (1..ub-initials-length)) OPTIONAL,
  generation-qualifier [3] IMPLICIT PrintableString
                   (SIZE (1..ub-generation-qualifier-length))
                   OPTIONAL }
 -- see also teletex-personal-name

OrganizationalUnitNames ::= SEQUENCE SIZE (1..ub-organizational-units)
                            OF OrganizationalUnitName
 -- see also teletex-organizational-unit-names

OrganizationalUnitName ::= PrintableString (SIZE
                   (1..ub-organizational-unit-name-length))

-- Built-in Domain-defined Attributes

BuiltInDomainDefinedAttributes ::= SEQUENCE SIZE
                   (1..ub-domain-defined-attributes) OF
                   BuiltInDomainDefinedAttribute

BuiltInDomainDefinedAttribute ::= SEQUENCE {
  type PrintableString (SIZE
                  (1..ub-domain-defined-attribute-type-length)),
  value PrintableString (SIZE
                  (1..ub-domain-defined-attribute-value-length)) }

-- Extension Attributes

ExtensionAttributes ::= SET SIZE (1..ub-extension-attributes) OF
              ExtensionAttribute

ExtensionAttribute ::=  SEQUENCE {
  extension-attribute-type [0] IMPLICIT INTEGER
                  (0..ub-extension-attributes),
  extension-attribute-value [1]
                  ANY DEFINED BY extension-attribute-type }

-- Extension types and attribute values

common-name INTEGER ::= 1

CommonName ::= PrintableString (SIZE (1..ub-common-name-length))




Cooper, et al.              Standards Track                   [Page 120]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


teletex-common-name INTEGER ::= 2

TeletexCommonName ::= TeletexString (SIZE (1..ub-common-name-length))

teletex-organization-name INTEGER ::= 3

TeletexOrganizationName ::=
               TeletexString (SIZE (1..ub-organization-name-length))

teletex-personal-name INTEGER ::= 4

TeletexPersonalName ::= SET {
  surname     [0] IMPLICIT TeletexString
                   (SIZE (1..ub-surname-length)),
  given-name  [1] IMPLICIT TeletexString
                   (SIZE (1..ub-given-name-length)) OPTIONAL,
  initials    [2] IMPLICIT TeletexString
                   (SIZE (1..ub-initials-length)) OPTIONAL,
  generation-qualifier [3] IMPLICIT TeletexString
                   (SIZE (1..ub-generation-qualifier-length))
                   OPTIONAL }

teletex-organizational-unit-names INTEGER ::= 5

TeletexOrganizationalUnitNames ::= SEQUENCE SIZE
     (1..ub-organizational-units) OF TeletexOrganizationalUnitName

TeletexOrganizationalUnitName ::= TeletexString
                 (SIZE (1..ub-organizational-unit-name-length))

pds-name INTEGER ::= 7

PDSName ::= PrintableString (SIZE (1..ub-pds-name-length))

physical-delivery-country-name INTEGER ::= 8

PhysicalDeliveryCountryName ::= CHOICE {
  x121-dcc-code NumericString (SIZE (ub-country-name-numeric-length)),
  iso-3166-alpha2-code PrintableString
                              (SIZE (ub-country-name-alpha-length)) }

postal-code INTEGER ::= 9

PostalCode ::= CHOICE {
  numeric-code   NumericString (SIZE (1..ub-postal-code-length)),
  printable-code PrintableString (SIZE (1..ub-postal-code-length)) }

physical-delivery-office-name INTEGER ::= 10



Cooper, et al.              Standards Track                   [Page 121]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


PhysicalDeliveryOfficeName ::= PDSParameter

physical-delivery-office-number INTEGER ::= 11

PhysicalDeliveryOfficeNumber ::= PDSParameter

extension-OR-address-components INTEGER ::= 12

ExtensionORAddressComponents ::= PDSParameter

physical-delivery-personal-name INTEGER ::= 13

PhysicalDeliveryPersonalName ::= PDSParameter

physical-delivery-organization-name INTEGER ::= 14

PhysicalDeliveryOrganizationName ::= PDSParameter

extension-physical-delivery-address-components INTEGER ::= 15

ExtensionPhysicalDeliveryAddressComponents ::= PDSParameter

unformatted-postal-address INTEGER ::= 16

UnformattedPostalAddress ::= SET {
  printable-address SEQUENCE SIZE (1..ub-pds-physical-address-lines)
       OF PrintableString (SIZE (1..ub-pds-parameter-length)) OPTIONAL,
  teletex-string TeletexString
       (SIZE (1..ub-unformatted-address-length)) OPTIONAL }

street-address INTEGER ::= 17

StreetAddress ::= PDSParameter

post-office-box-address INTEGER ::= 18

PostOfficeBoxAddress ::= PDSParameter

poste-restante-address INTEGER ::= 19

PosteRestanteAddress ::= PDSParameter

unique-postal-name INTEGER ::= 20

UniquePostalName ::= PDSParameter

local-postal-attributes INTEGER ::= 21




Cooper, et al.              Standards Track                   [Page 122]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


LocalPostalAttributes ::= PDSParameter

PDSParameter ::= SET {
  printable-string PrintableString
               (SIZE(1..ub-pds-parameter-length)) OPTIONAL,
  teletex-string TeletexString
               (SIZE(1..ub-pds-parameter-length)) OPTIONAL }

extended-network-address INTEGER ::= 22

ExtendedNetworkAddress ::= CHOICE {
  e163-4-address SEQUENCE {
     number      [0] IMPLICIT NumericString
                      (SIZE (1..ub-e163-4-number-length)),
     sub-address [1] IMPLICIT NumericString
                      (SIZE (1..ub-e163-4-sub-address-length))
                      OPTIONAL },
  psap-address   [0] IMPLICIT PresentationAddress }

PresentationAddress ::= SEQUENCE {
   pSelector     [0] EXPLICIT OCTET STRING OPTIONAL,
   sSelector     [1] EXPLICIT OCTET STRING OPTIONAL,
   tSelector     [2] EXPLICIT OCTET STRING OPTIONAL,
   nAddresses    [3] EXPLICIT SET SIZE (1..MAX) OF OCTET STRING }

terminal-type  INTEGER ::= 23

TerminalType ::= INTEGER {
  telex        (3),
  teletex      (4),
  g3-facsimile (5),
  g4-facsimile (6),
  ia5-terminal (7),
  videotex     (8) } (0..ub-integer-options)

-- Extension Domain-defined Attributes

teletex-domain-defined-attributes INTEGER ::= 6

TeletexDomainDefinedAttributes ::= SEQUENCE SIZE
  (1..ub-domain-defined-attributes) OF TeletexDomainDefinedAttribute

TeletexDomainDefinedAttribute ::= SEQUENCE {
       type TeletexString
              (SIZE (1..ub-domain-defined-attribute-type-length)),
       value TeletexString
              (SIZE (1..ub-domain-defined-attribute-value-length)) }




Cooper, et al.              Standards Track                   [Page 123]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


--  specifications of Upper Bounds MUST be regarded as mandatory
--  from Annex B of ITU-T X.411 Reference Definition of MTS Parameter
--  Upper Bounds

-- Upper Bounds
ub-name INTEGER ::= 32768
ub-common-name INTEGER ::= 64
ub-locality-name INTEGER ::= 128
ub-state-name INTEGER ::= 128
ub-organization-name INTEGER ::= 64
ub-organizational-unit-name INTEGER ::= 64
ub-title INTEGER ::= 64
ub-serial-number INTEGER ::= 64
ub-match INTEGER ::= 128
ub-emailaddress-length INTEGER ::= 255
ub-common-name-length INTEGER ::= 64
ub-country-name-alpha-length INTEGER ::= 2
ub-country-name-numeric-length INTEGER ::= 3
ub-domain-defined-attributes INTEGER ::= 4
ub-domain-defined-attribute-type-length INTEGER ::= 8
ub-domain-defined-attribute-value-length INTEGER ::= 128
ub-domain-name-length INTEGER ::= 16
ub-extension-attributes INTEGER ::= 256
ub-e163-4-number-length INTEGER ::= 15
ub-e163-4-sub-address-length INTEGER ::= 40
ub-generation-qualifier-length INTEGER ::= 3
ub-given-name-length INTEGER ::= 16
ub-initials-length INTEGER ::= 5
ub-integer-options INTEGER ::= 256
ub-numeric-user-id-length INTEGER ::= 32
ub-organization-name-length INTEGER ::= 64
ub-organizational-unit-name-length INTEGER ::= 32
ub-organizational-units INTEGER ::= 4
ub-pds-name-length INTEGER ::= 16
ub-pds-parameter-length INTEGER ::= 30
ub-pds-physical-address-lines INTEGER ::= 6
ub-postal-code-length INTEGER ::= 16
ub-pseudonym INTEGER ::= 128
ub-surname-length INTEGER ::= 40
ub-terminal-id-length INTEGER ::= 24
ub-unformatted-address-length INTEGER ::= 180
ub-x121-address-length INTEGER ::= 16

-- Note - upper bounds on string types, such as TeletexString, are
-- measured in characters.  Excepting PrintableString or IA5String, a
-- significantly greater number of octets will be required to hold
-- such a value.  As a minimum, 16 octets, or twice the specified
-- upper bound, whichever is the larger, should be allowed for



Cooper, et al.              Standards Track                   [Page 124]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- TeletexString.  For UTF8String or UniversalString at least four
-- times the upper bound should be allowed.

END

A.2.  Implicitly Tagged Module, 1988 Syntax

PKIX1Implicit88 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-implicit(19) }

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS ALL --

IMPORTS
     id-pe, id-kp, id-qt-unotice, id-qt-cps,
     -- delete following line if "new" types are supported --
     BMPString, UTF8String,  -- end "new" types --
     ORAddress, Name, RelativeDistinguishedName,
     CertificateSerialNumber, Attribute, DirectoryString
     FROM PKIX1Explicit88 { iso(1) identified-organization(3)
           dod(6) internet(1) security(5) mechanisms(5) pkix(7)
           id-mod(0) id-pkix1-explicit(18) };

-- ISO arc for standard certificate and CRL extensions

id-ce OBJECT IDENTIFIER  ::=  {joint-iso-ccitt(2) ds(5) 29}

-- authority key identifier OID and syntax

id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::=  { id-ce 35 }

AuthorityKeyIdentifier ::= SEQUENCE {
   keyIdentifier             [0] KeyIdentifier            OPTIONAL,
   authorityCertIssuer       [1] GeneralNames             OPTIONAL,
   authorityCertSerialNumber [2] CertificateSerialNumber  OPTIONAL }
   -- authorityCertIssuer and authorityCertSerialNumber MUST both
   -- be present or both be absent

KeyIdentifier ::= OCTET STRING









Cooper, et al.              Standards Track                   [Page 125]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- subject key identifier OID and syntax

id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::=  { id-ce 14 }

SubjectKeyIdentifier ::= KeyIdentifier

-- key usage extension OID and syntax

id-ce-keyUsage OBJECT IDENTIFIER ::=  { id-ce 15 }

KeyUsage ::= BIT STRING {
    digitalSignature        (0),
    nonRepudiation          (1),  -- recent editions of X.509 have
                               -- renamed this bit to contentCommitment
    keyEncipherment         (2),
    dataEncipherment        (3),
    keyAgreement            (4),
    keyCertSign             (5),
    cRLSign                 (6),
    encipherOnly            (7),
    decipherOnly            (8) }

-- private key usage period extension OID and syntax

id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::=  { id-ce 16 }

PrivateKeyUsagePeriod ::= SEQUENCE {
    notBefore       [0]     GeneralizedTime OPTIONAL,
    notAfter        [1]     GeneralizedTime OPTIONAL }
    -- either notBefore or notAfter MUST be present

-- certificate policies extension OID and syntax

id-ce-certificatePolicies OBJECT IDENTIFIER ::=  { id-ce 32 }

anyPolicy OBJECT IDENTIFIER ::= { id-ce-certificatePolicies 0 }

CertificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {
    policyIdentifier   CertPolicyId,
    policyQualifiers   SEQUENCE SIZE (1..MAX) OF
            PolicyQualifierInfo OPTIONAL }

CertPolicyId ::= OBJECT IDENTIFIER






Cooper, et al.              Standards Track                   [Page 126]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


PolicyQualifierInfo ::= SEQUENCE {
    policyQualifierId  PolicyQualifierId,
    qualifier          ANY DEFINED BY policyQualifierId }

-- Implementations that recognize additional policy qualifiers MUST
-- augment the following definition for PolicyQualifierId

PolicyQualifierId ::= OBJECT IDENTIFIER ( id-qt-cps | id-qt-unotice )

-- CPS pointer qualifier

CPSuri ::= IA5String

-- user notice qualifier

UserNotice ::= SEQUENCE {
    noticeRef        NoticeReference OPTIONAL,
    explicitText     DisplayText OPTIONAL }

NoticeReference ::= SEQUENCE {
    organization     DisplayText,
    noticeNumbers    SEQUENCE OF INTEGER }

DisplayText ::= CHOICE {
    ia5String        IA5String      (SIZE (1..200)),
    visibleString    VisibleString  (SIZE (1..200)),
    bmpString        BMPString      (SIZE (1..200)),
    utf8String       UTF8String     (SIZE (1..200)) }

-- policy mapping extension OID and syntax

id-ce-policyMappings OBJECT IDENTIFIER ::=  { id-ce 33 }

PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
    issuerDomainPolicy      CertPolicyId,
    subjectDomainPolicy     CertPolicyId }

-- subject alternative name extension OID and syntax

id-ce-subjectAltName OBJECT IDENTIFIER ::=  { id-ce 17 }

SubjectAltName ::= GeneralNames

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName







Cooper, et al.              Standards Track                   [Page 127]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


GeneralName ::= CHOICE {
    otherName                 [0]  AnotherName,
    rfc822Name                [1]  IA5String,
    dNSName                   [2]  IA5String,
    x400Address               [3]  ORAddress,
    directoryName             [4]  Name,
    ediPartyName              [5]  EDIPartyName,
    uniformResourceIdentifier [6]  IA5String,
    iPAddress                 [7]  OCTET STRING,
    registeredID              [8]  OBJECT IDENTIFIER }

-- AnotherName replaces OTHER-NAME ::= TYPE-IDENTIFIER, as
-- TYPE-IDENTIFIER is not supported in the '88 ASN.1 syntax

AnotherName ::= SEQUENCE {
    type-id    OBJECT IDENTIFIER,
    value      [0] EXPLICIT ANY DEFINED BY type-id }

EDIPartyName ::= SEQUENCE {
    nameAssigner              [0]  DirectoryString OPTIONAL,
    partyName                 [1]  DirectoryString }

-- issuer alternative name extension OID and syntax

id-ce-issuerAltName OBJECT IDENTIFIER ::=  { id-ce 18 }

IssuerAltName ::= GeneralNames

id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::=  { id-ce 9 }

SubjectDirectoryAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute

-- basic constraints extension OID and syntax

id-ce-basicConstraints OBJECT IDENTIFIER ::=  { id-ce 19 }

BasicConstraints ::= SEQUENCE {
    cA                      BOOLEAN DEFAULT FALSE,
    pathLenConstraint       INTEGER (0..MAX) OPTIONAL }












Cooper, et al.              Standards Track                   [Page 128]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- name constraints extension OID and syntax

id-ce-nameConstraints OBJECT IDENTIFIER ::=  { id-ce 30 }

NameConstraints ::= SEQUENCE {
    permittedSubtrees       [0]     GeneralSubtrees OPTIONAL,
    excludedSubtrees        [1]     GeneralSubtrees OPTIONAL }

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {
    base                    GeneralName,
    minimum         [0]     BaseDistance DEFAULT 0,
    maximum         [1]     BaseDistance OPTIONAL }

BaseDistance ::= INTEGER (0..MAX)

-- policy constraints extension OID and syntax

id-ce-policyConstraints OBJECT IDENTIFIER ::=  { id-ce 36 }

PolicyConstraints ::= SEQUENCE {
    requireExplicitPolicy   [0]     SkipCerts OPTIONAL,
    inhibitPolicyMapping    [1]     SkipCerts OPTIONAL }

SkipCerts ::= INTEGER (0..MAX)

-- CRL distribution points extension OID and syntax

id-ce-cRLDistributionPoints     OBJECT IDENTIFIER  ::=  {id-ce 31}

CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

DistributionPoint ::= SEQUENCE {
    distributionPoint       [0]     DistributionPointName OPTIONAL,
    reasons                 [1]     ReasonFlags OPTIONAL,
    cRLIssuer               [2]     GeneralNames OPTIONAL }

DistributionPointName ::= CHOICE {
    fullName                [0]     GeneralNames,
    nameRelativeToCRLIssuer [1]     RelativeDistinguishedName }










Cooper, et al.              Standards Track                   [Page 129]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


ReasonFlags ::= BIT STRING {
    unused                  (0),
    keyCompromise           (1),
    cACompromise            (2),
    affiliationChanged      (3),
    superseded              (4),
    cessationOfOperation    (5),
    certificateHold         (6),
    privilegeWithdrawn      (7),
    aACompromise            (8) }

-- extended key usage extension OID and syntax

id-ce-extKeyUsage OBJECT IDENTIFIER ::= {id-ce 37}

ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId

KeyPurposeId ::= OBJECT IDENTIFIER

-- permit unspecified key uses

anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 }

-- extended key purpose OIDs

id-kp-serverAuth             OBJECT IDENTIFIER ::= { id-kp 1 }
id-kp-clientAuth             OBJECT IDENTIFIER ::= { id-kp 2 }
id-kp-codeSigning            OBJECT IDENTIFIER ::= { id-kp 3 }
id-kp-emailProtection        OBJECT IDENTIFIER ::= { id-kp 4 }
id-kp-timeStamping           OBJECT IDENTIFIER ::= { id-kp 8 }
id-kp-OCSPSigning            OBJECT IDENTIFIER ::= { id-kp 9 }

-- inhibit any policy OID and syntax

id-ce-inhibitAnyPolicy OBJECT IDENTIFIER ::=  { id-ce 54 }

InhibitAnyPolicy ::= SkipCerts

-- freshest (delta)CRL extension OID and syntax

id-ce-freshestCRL OBJECT IDENTIFIER ::=  { id-ce 46 }

FreshestCRL ::= CRLDistributionPoints








Cooper, et al.              Standards Track                   [Page 130]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- authority info access

id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }

AuthorityInfoAccessSyntax  ::=
       SEQUENCE SIZE (1..MAX) OF AccessDescription

AccessDescription  ::=  SEQUENCE {
       accessMethod          OBJECT IDENTIFIER,
       accessLocation        GeneralName  }

-- subject info access

id-pe-subjectInfoAccess OBJECT IDENTIFIER ::= { id-pe 11 }

SubjectInfoAccessSyntax  ::=
       SEQUENCE SIZE (1..MAX) OF AccessDescription

-- CRL number extension OID and syntax

id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }

CRLNumber ::= INTEGER (0..MAX)

-- issuing distribution point extension OID and syntax

id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= { id-ce 28 }

IssuingDistributionPoint ::= SEQUENCE {
    distributionPoint          [0] DistributionPointName OPTIONAL,
    onlyContainsUserCerts      [1] BOOLEAN DEFAULT FALSE,
    onlyContainsCACerts        [2] BOOLEAN DEFAULT FALSE,
    onlySomeReasons            [3] ReasonFlags OPTIONAL,
    indirectCRL                [4] BOOLEAN DEFAULT FALSE,
    onlyContainsAttributeCerts [5] BOOLEAN DEFAULT FALSE }
    -- at most one of onlyContainsUserCerts, onlyContainsCACerts,
    -- and onlyContainsAttributeCerts may be set to TRUE.

id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= { id-ce 27 }

BaseCRLNumber ::= CRLNumber










Cooper, et al.              Standards Track                   [Page 131]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- reason code extension OID and syntax

id-ce-cRLReasons OBJECT IDENTIFIER ::= { id-ce 21 }

CRLReason ::= ENUMERATED {
    unspecified             (0),
    keyCompromise           (1),
    cACompromise            (2),
    affiliationChanged      (3),
    superseded              (4),
    cessationOfOperation    (5),
    certificateHold         (6),
    removeFromCRL           (8),
    privilegeWithdrawn      (9),
    aACompromise           (10) }

-- certificate issuer CRL entry extension OID and syntax

id-ce-certificateIssuer OBJECT IDENTIFIER ::= { id-ce 29 }

CertificateIssuer ::= GeneralNames

-- hold instruction extension OID and syntax

id-ce-holdInstructionCode OBJECT IDENTIFIER ::= { id-ce 23 }

HoldInstructionCode ::= OBJECT IDENTIFIER

-- ANSI x9 arc holdinstruction arc

holdInstruction OBJECT IDENTIFIER ::=
         {joint-iso-itu-t(2) member-body(2) us(840) x9cm(10040) 2}

-- ANSI X9 holdinstructions

id-holdinstruction-none OBJECT IDENTIFIER  ::=
                                     {holdInstruction 1} -- deprecated

id-holdinstruction-callissuer OBJECT IDENTIFIER ::= {holdInstruction 2}

id-holdinstruction-reject OBJECT IDENTIFIER ::= {holdInstruction 3}










Cooper, et al.              Standards Track                   [Page 132]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


-- invalidity date CRL entry extension OID and syntax

id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 }

InvalidityDate ::=  GeneralizedTime

END

Appendix B.  ASN.1 Notes

  CAs MUST force the serialNumber to be a non-negative integer, that
  is, the sign bit in the DER encoding of the INTEGER value MUST be
  zero.  This can be done by adding a leading (leftmost) `00'H octet if
  necessary.  This removes a potential ambiguity in mapping between a
  string of octets and an integer value.

  As noted in Section 4.1.2.2, serial numbers can be expected to
  contain long integers.  Certificate users MUST be able to handle
  serialNumber values up to 20 octets in length.  Conforming CAs MUST
  NOT use serialNumber values longer than 20 octets.

  As noted in Section 5.2.3, CRL numbers can be expected to contain
  long integers.  CRL validators MUST be able to handle cRLNumber
  values up to 20 octets in length.  Conforming CRL issuers MUST NOT
  use cRLNumber values longer than 20 octets.

  The construct "SEQUENCE SIZE (1..MAX) OF" appears in several ASN.1
  constructs.  A valid ASN.1 sequence will have zero or more entries.
  The SIZE (1..MAX) construct constrains the sequence to have at least
  one entry.  MAX indicates that the upper bound is unspecified.
  Implementations are free to choose an upper bound that suits their
  environment.

  The character string type PrintableString supports a very basic Latin
  character set: the lowercase letters 'a' through 'z', uppercase
  letters 'A' through 'Z', the digits '0' through '9', eleven special
  characters ' = ( ) + , - . / : ? and space.

  Implementers should note that the at sign ('@') and underscore ('_')
  characters are not supported by the ASN.1 type PrintableString.
  These characters often appear in Internet addresses.  Such addresses
  MUST be encoded using an ASN.1 type that supports them.  They are
  usually encoded as IA5String in either the emailAddress attribute
  within a distinguished name or the rfc822Name field of GeneralName.
  Conforming implementations MUST NOT encode strings that include
  either the at sign or underscore character as PrintableString.





Cooper, et al.              Standards Track                   [Page 133]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  The character string type TeletexString is a superset of
  PrintableString.  TeletexString supports a fairly standard (ASCII-
  like) Latin character set: Latin characters with non-spacing accents
  and Japanese characters.

  Named bit lists are BIT STRINGs where the values have been assigned
  names.  This specification makes use of named bit lists in the
  definitions for the key usage, CRL distribution points, and freshest
  CRL certificate extensions, as well as the freshest CRL and issuing
  distribution point CRL extensions.  When DER encoding a named bit
  list, trailing zeros MUST be omitted.  That is, the encoded value
  ends with the last named bit that is set to one.

  The character string type UniversalString supports any of the
  characters allowed by [ISO10646].  ISO 10646 is the Universal
  multiple-octet coded Character Set (UCS).

  The character string type UTF8String was introduced in the 1997
  version of ASN.1, and UTF8String was added to the list of choices for
  DirectoryString in the 2001 version of [X.520].  UTF8String is a
  universal type and has been assigned tag number 12.  The content of
  UTF8String was defined by RFC 2044 and updated in RFC 2279, which was
  updated in [RFC3629].

  In anticipation of these changes, and in conformance with IETF Best
  Practices codified in [RFC2277], IETF Policy on Character Sets and
  Languages, this document includes UTF8String as a choice in
  DirectoryString and in the userNotice certificate policy qualifier.

  For many of the attribute types defined in [X.520], the
  AttributeValue uses the DirectoryString type.  Of the attributes
  specified in Appendix A, the name, surname, givenName, initials,
  generationQualifier, commonName, localityName, stateOrProvinceName,
  organizationName, organizationalUnitName, title, and pseudonym
  attributes all use the DirectoryString type.  X.520 uses a
  parameterized type definition [X.683] of DirectoryString to specify
  the syntax for each of these attributes.  The parameter is used to
  indicate the maximum string length allowed for the attribute.  In
  Appendix A, in order to avoid the use of parameterized type
  definitions, the DirectoryString type is written in its expanded form
  for the definition of each of these attribute types.  So, the ASN.1
  in Appendix A describes the syntax for each of these attributes as
  being a CHOICE of TeletexString, PrintableString, UniversalString,
  UTF8String, and BMPString, with the appropriate constraints on the
  string length applied to each of the types in the CHOICE, rather than
  using the ASN.1 type DirectoryString to describe the syntax.





Cooper, et al.              Standards Track                   [Page 134]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  Implementers should note that the DER encoding of the SET OF values
  requires ordering of the encodings of the values.  In particular,
  this issue arises with respect to distinguished names.

  Implementers should note that the DER encoding of SET or SEQUENCE
  components whose value is the DEFAULT omit the component from the
  encoded certificate or CRL.  For example, a BasicConstraints
  extension whose cA value is FALSE would omit the cA boolean from the
  encoded certificate.

  Object Identifiers (OIDs) are used throughout this specification to
  identify certificate policies, public key and signature algorithms,
  certificate extensions, etc.  There is no maximum size for OIDs.
  This specification mandates support for OIDs that have arc elements
  with values that are less than 2^28, that is, they MUST be between 0
  and 268,435,455, inclusive.  This allows each arc element to be
  represented within a single 32-bit word.  Implementations MUST also
  support OIDs where the length of the dotted decimal (see Section 1.4
  of [RFC4512]) string representation can be up to 100 bytes
  (inclusive).  Implementations MUST be able to handle OIDs with up to
  20 elements (inclusive).  CAs SHOULD NOT issue certificates that
  contain OIDs that exceed these requirements.  Likewise, CRL issuers
  SHOULD NOT issue CRLs that contain OIDs that exceed these
  requirements.

  The content-specific rules for encoding GeneralName field values in
  the nameConstraints extension differ from rules that apply in other
  extensions.  In all other certificate, CRL, and CRL entry extensions
  specified in this document the encoding rules conform to the rules
  for the underlying type.  For example, values in the
  uniformResourceIdentifier field must contain a valid URI as specified
  in [RFC3986].  The content-specific rules for encoding values in the
  nameConstraints extension are specified in Section 4.2.1.10, and
  these rules may not conform to the rules for the underlying type.
  For example, when the uniformResourceIdentifier field appears in a
  nameConstraints extension, it must hold a DNS name (e.g.,
  "host.example.com" or ".example.com") rather than a URI.

  Implementors are warned that the X.500 standards community has
  developed a series of extensibility rules.  These rules determine
  when an ASN.1 definition can be changed without assigning a new
  Object Identifier (OID).  For example, at least two extension
  definitions included in [RFC2459], the predecessor to this profile
  document, have different ASN.1 definitions in this specification, but
  the same OID is used.  If unknown elements appear within an
  extension, and the extension is not marked as critical, those unknown
  elements ought to be ignored, as follows:




Cooper, et al.              Standards Track                   [Page 135]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


     (a)  ignore all unknown bit name assignments within a bit string;

     (b)  ignore all unknown named numbers in an ENUMERATED type or
          INTEGER type that is being used in the enumerated style,
          provided the number occurs as an optional element of a SET or
          SEQUENCE; and

     (c)  ignore all unknown elements in SETs, at the end of SEQUENCEs,
          or in CHOICEs where the CHOICE is itself an optional element
          of a SET or SEQUENCE.

  If an extension containing unexpected values is marked as critical,
  the implementation MUST reject the certificate or CRL containing the
  unrecognized extension.

Appendix C.  Examples

  This appendix contains four examples: three certificates and a CRL.
  The first two certificates and the CRL comprise a minimal
  certification path.

  Appendix C.1 contains an annotated hex dump of a "self-signed"
  certificate issued by a CA whose distinguished name is
  cn=Example CA,dc=example,dc=com.  The certificate contains an RSA
  public key, and is signed by the corresponding RSA private key.

  Appendix C.2 contains an annotated hex dump of an end entity
  certificate.  The end entity certificate contains an RSA public key,
  and is signed by the private key corresponding to the "self-signed"
  certificate in Appendix C.1.

  Appendix C.3 contains an annotated hex dump of an end entity
  certificate that contains a DSA public key with parameters, and is
  signed with DSA and SHA-1.  This certificate is not part of the
  minimal certification path.

  Appendix C.4 contains an annotated hex dump of a CRL.  The CRL is
  issued by the CA whose distinguished name is
  cn=Example CA,dc=example,dc=com and the list of revoked certificates
  includes the end entity certificate presented in Appendix C.2.

  The certificates were processed using Peter Gutmann's dumpasn1
  utility to generate the output.  The source for the dumpasn1 utility
  is available at <http://www.cs.auckland.ac.nz/~pgut001/dumpasn1.c>.
  The binaries for the certificates and CRLs are available at
  http://csrc.nist.gov/groups/ST/crypto_apps_infra/documents/pkixtools.





Cooper, et al.              Standards Track                   [Page 136]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  In places in this appendix where a distinguished name is specified
  using a string representation, the strings are formatted using the
  rules specified in [RFC4514].

C.1.  RSA Self-Signed Certificate

  This appendix contains an annotated hex dump of a 578 byte version 3
  certificate.  The certificate contains the following information:

  (a)  the serial number is 17;
  (b)  the certificate is signed with RSA and the SHA-1 hash algorithm;
  (c)  the issuer's distinguished name is
       cn=Example CA,dc=example,dc=com;
  (d)  the subject's distinguished name is
       cn=Example CA,dc=example,dc=com;
  (e)  the certificate was issued on April 30, 2004 and expired on
       April 30, 2005;
  (f)  the certificate contains a 1024-bit RSA public key;
  (g)  the certificate contains a subject key identifier extension
       generated using method (1) of Section 4.2.1.2; and
  (h)  the certificate is a CA certificate (as indicated through the
       basic constraints extension).

  0  574: SEQUENCE {
  4  423:   SEQUENCE {
  8    3:     [0] {
 10    1:       INTEGER 2
        :       }
 13    1:     INTEGER 17
 16   13:     SEQUENCE {
 18    9:       OBJECT IDENTIFIER
        :         sha1withRSAEncryption (1 2 840 113549 1 1 5)
 29    0:       NULL
        :       }
 31   67:     SEQUENCE {
 33   19:       SET {
 35   17:         SEQUENCE {
 37   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
 49    3:           IA5String 'com'
        :           }
        :         }
 54   23:       SET {
 56   21:         SEQUENCE {
 58   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
 70    7:           IA5String 'example'
        :           }



Cooper, et al.              Standards Track                   [Page 137]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


        :         }
 79   19:       SET {
 81   17:         SEQUENCE {
 83    3:           OBJECT IDENTIFIER commonName (2 5 4 3)
 88   10:           PrintableString 'Example CA'
        :           }
        :         }
        :       }
100   30:     SEQUENCE {
102   13:       UTCTime 30/04/2004 14:25:34 GMT
117   13:       UTCTime 30/04/2005 14:25:34 GMT
        :       }
132   67:     SEQUENCE {
134   19:       SET {
136   17:         SEQUENCE {
138   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
150    3:           IA5String 'com'
        :           }
        :         }
155   23:       SET {
157   21:         SEQUENCE {
159   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
171    7:           IA5String 'example'
        :           }
        :         }
180   19:       SET {
182   17:         SEQUENCE {
184    3:           OBJECT IDENTIFIER commonName (2 5 4 3)
189   10:           PrintableString 'Example CA'
        :           }
        :         }
        :       }
201  159:     SEQUENCE {
204   13:       SEQUENCE {
206    9:         OBJECT IDENTIFIER
        :           rsaEncryption (1 2 840 113549 1 1 1)
217    0:         NULL
        :         }
219  141:       BIT STRING, encapsulates {
223  137:         SEQUENCE {
226  129:           INTEGER
        :             00 C2 D7 97 6D 28 70 AA 5B CF 23 2E 80 70 39 EE
        :             DB 6F D5 2D D5 6A 4F 7A 34 2D F9 22 72 47 70 1D
        :             EF 80 E9 CA 30 8C 00 C4 9A 6E 5B 45 B4 6E A5 E6
        :             6C 94 0D FA 91 E9 40 FC 25 9D C7 B7 68 19 56 8F
        :             11 70 6A D7 F1 C9 11 4F 3A 7E 3F 99 8D 6E 76 A5



Cooper, et al.              Standards Track                   [Page 138]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


        :             74 5F 5E A4 55 53 E5 C7 68 36 53 C7 1D 3B 12 A6
        :             85 FE BD 6E A1 CA DF 35 50 AC 08 D7 B9 B4 7E 5C
        :             FE E2 A3 2C D1 23 84 AA 98 C0 9B 66 18 9A 68 47
        :             E9
358    3:           INTEGER 65537
        :           }
        :         }
        :       }
363   66:     [3] {
365   64:       SEQUENCE {
367   29:         SEQUENCE {
369    3:           OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14)
374   22:           OCTET STRING, encapsulates {
376   20:             OCTET STRING
        :               08 68 AF 85 33 C8 39 4A 7A F8 82 93 8E 70 6A 4A
        :               20 84 2C 32
        :             }
        :           }
398   14:         SEQUENCE {
400    3:           OBJECT IDENTIFIER keyUsage (2 5 29 15)
405    1:           BOOLEAN TRUE
408    4:           OCTET STRING, encapsulates {
410    2:             BIT STRING 1 unused bits
        :               '0000011'B
        :             }
        :           }
414   15:         SEQUENCE {
416    3:           OBJECT IDENTIFIER basicConstraints (2 5 29 19)
421    1:           BOOLEAN TRUE
424    5:           OCTET STRING, encapsulates {
426    3:             SEQUENCE {
428    1:               BOOLEAN TRUE
        :               }
        :             }
        :           }
        :         }
        :       }
        :     }
431   13:   SEQUENCE {
433    9:     OBJECT IDENTIFIER
        :         sha1withRSAEncryption (1 2 840 113549 1 1 5)
444    0:     NULL
        :     }
446  129:   BIT STRING
        :     6C F8 02 74 A6 61 E2 64 04 A6 54 0C 6C 72 13 AD
        :     3C 47 FB F6 65 13 A9 85 90 33 EA 76 A3 26 D9 FC
        :     D1 0E 15 5F 28 B7 EF 93 BF 3C F3 E2 3E 7C B9 52
        :     FC 16 6E 29 AA E1 F4 7A 6F D5 7F EF B3 95 CA F3



Cooper, et al.              Standards Track                   [Page 139]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


        :     66 88 83 4E A1 35 45 84 CB BC 9B B8 C8 AD C5 5E
        :     46 D9 0B 0E 8D 80 E1 33 2B DC BE 2B 92 7E 4A 43
        :     A9 6A EF 8A 63 61 B3 6E 47 38 BE E8 0D A3 67 5D
        :     F3 FA 91 81 3C 92 BB C5 5F 25 25 EB 7C E7 D8 A1
        :   }

C.2.  End Entity Certificate Using RSA

  This appendix contains an annotated hex dump of a 629-byte version 3
  certificate.  The certificate contains the following information:

  (a)  the serial number is 18;
  (b)  the certificate is signed with RSA and the SHA-1 hash algorithm;
  (c)  the issuer's distinguished name is
       cn=Example CA,dc=example,dc=com;
  (d)  the subject's distinguished name is
       cn=End Entity,dc=example,dc=com;
  (e)  the certificate was valid from September 15, 2004 through March
       15, 2005;
  (f)  the certificate contains a 1024-bit RSA public key;
  (g)  the certificate is an end entity certificate, as the basic
       constraints extension is not present;
  (h)  the certificate contains an authority key identifier extension
       matching the subject key identifier of the certificate in
       appendix C.1; and
  (i)  the certificate includes one alternative name -- an electronic
       mail address (rfc822Name) of "[email protected]".

  0  625: SEQUENCE {
  4  474:   SEQUENCE {
  8    3:     [0] {
 10    1:       INTEGER 2
        :       }
 13    1:     INTEGER 18
 16   13:     SEQUENCE {
 18    9:       OBJECT IDENTIFIER
        :         sha1withRSAEncryption (1 2 840 113549 1 1 5)
 29    0:       NULL
        :       }
 31   67:     SEQUENCE {
 33   19:       SET {
 35   17:         SEQUENCE {
 37   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
 49    3:           IA5String 'com'
        :           }
        :         }
 54   23:       SET {



Cooper, et al.              Standards Track                   [Page 140]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


 56   21:         SEQUENCE {
 58   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
 70    7:           IA5String 'example'
        :           }
        :         }
 79   19:       SET {
 81   17:         SEQUENCE {
 83    3:           OBJECT IDENTIFIER commonName (2 5 4 3)
 88   10:           PrintableString 'Example CA'
        :           }
        :         }
        :       }
100   30:     SEQUENCE {
102   13:       UTCTime 15/09/2004 11:48:21 GMT
117   13:       UTCTime 15/03/2005 11:48:21 GMT
        :       }
132   67:     SEQUENCE {
134   19:       SET {
136   17:         SEQUENCE {
138   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
150    3:           IA5String 'com'
        :           }
        :         }
155   23:       SET {
157   21:         SEQUENCE {
159   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
171    7:           IA5String 'example'
        :           }
        :         }
180   19:       SET {
182   17:         SEQUENCE {
184    3:           OBJECT IDENTIFIER commonName (2 5 4 3)
189   10:           PrintableString 'End Entity'
        :           }
        :         }
        :       }
201  159:     SEQUENCE {
204   13:       SEQUENCE {
206    9:         OBJECT IDENTIFIER
        :           rsaEncryption (1 2 840 113549 1 1 1)
217    0:         NULL
        :         }
219  141:       BIT STRING, encapsulates {
223  137:         SEQUENCE {
226  129:           INTEGER



Cooper, et al.              Standards Track                   [Page 141]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


        :             00 E1 6A E4 03 30 97 02 3C F4 10 F3 B5 1E 4D 7F
        :             14 7B F6 F5 D0 78 E9 A4 8A F0 A3 75 EC ED B6 56
        :             96 7F 88 99 85 9A F2 3E 68 77 87 EB 9E D1 9F C0
        :             B4 17 DC AB 89 23 A4 1D 7E 16 23 4C 4F A8 4D F5
        :             31 B8 7C AA E3 1A 49 09 F4 4B 26 DB 27 67 30 82
        :             12 01 4A E9 1A B6 C1 0C 53 8B 6C FC 2F 7A 43 EC
        :             33 36 7E 32 B2 7B D5 AA CF 01 14 C6 12 EC 13 F2
        :             2D 14 7A 8B 21 58 14 13 4C 46 A3 9A F2 16 95 FF
        :             23
358    3:           INTEGER 65537
        :           }
        :         }
        :       }
363  117:     [3] {
365  115:       SEQUENCE {
367   33:         SEQUENCE {
369    3:           OBJECT IDENTIFIER subjectAltName (2 5 29 17)
374   26:           OCTET STRING, encapsulates {
376   24:             SEQUENCE {
378   22:               [1] '[email protected]'
        :               }
        :             }
        :           }
402   29:         SEQUENCE {
404    3:           OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14)
409   22:           OCTET STRING, encapsulates {
411   20:             OCTET STRING
        :               17 7B 92 30 FF 44 D6 66 E1 90 10 22 6C 16 4F C0
        :               8E 41 DD 6D
        :             }
        :           }
433   31:         SEQUENCE {
435    3:           OBJECT IDENTIFIER
        :             authorityKeyIdentifier (2 5 29 35)
440   24:           OCTET STRING, encapsulates {
442   22:             SEQUENCE {
444   20:               [0]
        :                 08 68 AF 85 33 C8 39 4A 7A F8 82 93 8E 70 6A
        :                 4A 20 84 2C 32
        :               }
        :             }
        :           }
466   14:         SEQUENCE {
468    3:           OBJECT IDENTIFIER keyUsage (2 5 29 15)
473    1:           BOOLEAN TRUE
476    4:           OCTET STRING, encapsulates {
478    2:             BIT STRING 6 unused bits
        :               '11'B



Cooper, et al.              Standards Track                   [Page 142]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


        :             }
        :           }
        :         }
        :       }
        :     }
482   13:   SEQUENCE {
484    9:     OBJECT IDENTIFIER
        :         sha1withRSAEncryption (1 2 840 113549 1 1 5)
495    0:     NULL
        :     }
497  129:   BIT STRING
        :     00 20 28 34 5B 68 32 01 BB 0A 36 0E AD 71 C5 95
        :     1A E1 04 CF AE AD C7 62 14 A4 1B 36 31 C0 E2 0C
        :     3D D9 1E C0 00 DC 10 A0 BA 85 6F 41 CB 62 7A B7
        :     4C 63 81 26 5E D2 80 45 5E 33 E7 70 45 3B 39 3B
        :     26 4A 9C 3B F2 26 36 69 08 79 BB FB 96 43 77 4B
        :     61 8B A1 AB 91 64 E0 F3 37 61 3C 1A A3 A4 C9 8A
        :     B2 BF 73 D4 4D E4 58 E4 62 EA BC 20 74 92 86 0E
        :     CE 84 60 76 E9 73 BB C7 85 D3 91 45 EA 62 5D CD
        :   }

C.3.  End Entity Certificate Using DSA

  This appendix contains an annotated hex dump of a 914-byte version 3
  certificate.  The certificate contains the following information:

  (a)  the serial number is 256;

  (b)  the certificate is signed with DSA and the SHA-1 hash algorithm;

  (c)  the issuer's distinguished name is cn=Example DSA
       CA,dc=example,dc=com;

  (d)  the subject's distinguished name is cn=DSA End
       Entity,dc=example,dc=com;

  (e)  the certificate was issued on May 2, 2004 and expired on May 2,
       2005;

  (f)  the certificate contains a 1024-bit DSA public key with
       parameters;

  (g)  the certificate is an end entity certificate (not a CA
       certificate);

  (h)  the certificate includes a subject alternative name of
       "<http://www.example.com/users/DSAendentity.html>" and an issuer
       alternative name of "<http://www.example.com>" -- both are URLs;



Cooper, et al.              Standards Track                   [Page 143]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  (i)  the certificate includes an authority key identifier extension
       and a certificate policies extension specifying the policy OID
       2.16.840.1.101.3.2.1.48.9; and

  (j)  the certificate includes a critical key usage extension
       specifying that the public key is intended for verification of
       digital signatures.

  0  910: SEQUENCE {
  4  846:   SEQUENCE {
  8    3:     [0] {
 10    1:       INTEGER 2
        :       }
 13    2:     INTEGER 256
 17    9:     SEQUENCE {
 19    7:       OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)
        :       }
 28   71:     SEQUENCE {
 30   19:       SET {
 32   17:         SEQUENCE {
 34   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
 46    3:           IA5String 'com'
        :           }
        :         }
 51   23:       SET {
 53   21:         SEQUENCE {
 55   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
 67    7:           IA5String 'example'
        :           }
        :         }
 76   23:       SET {
 78   21:         SEQUENCE {
 80    3:           OBJECT IDENTIFIER commonName (2 5 4 3)
 85   14:           PrintableString 'Example DSA CA'
        :           }
        :         }
        :       }
101   30:     SEQUENCE {
103   13:       UTCTime 02/05/2004 16:47:38 GMT
118   13:       UTCTime 02/05/2005 16:47:38 GMT
        :       }
133   71:     SEQUENCE {
135   19:       SET {
137   17:         SEQUENCE {
139   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)



Cooper, et al.              Standards Track                   [Page 144]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


151    3:           IA5String 'com'
        :           }
        :         }
156   23:       SET {
158   21:         SEQUENCE {
160   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
172    7:           IA5String 'example'
        :           }
        :         }
181   23:       SET {
183   21:         SEQUENCE {
185    3:           OBJECT IDENTIFIER commonName (2 5 4 3)
190   14:           PrintableString 'DSA End Entity'
        :           }
        :         }
        :       }
206  439:     SEQUENCE {
210  300:       SEQUENCE {
214    7:         OBJECT IDENTIFIER dsa (1 2 840 10040 4 1)
223  287:         SEQUENCE {
227  129:           INTEGER
        :             00 B6 8B 0F 94 2B 9A CE A5 25 C6 F2 ED FC FB 95
        :             32 AC 01 12 33 B9 E0 1C AD 90 9B BC 48 54 9E F3
        :             94 77 3C 2C 71 35 55 E6 FE 4F 22 CB D5 D8 3E 89
        :             93 33 4D FC BD 4F 41 64 3E A2 98 70 EC 31 B4 50
        :             DE EB F1 98 28 0A C9 3E 44 B3 FD 22 97 96 83 D0
        :             18 A3 E3 BD 35 5B FF EE A3 21 72 6A 7B 96 DA B9
        :             3F 1E 5A 90 AF 24 D6 20 F0 0D 21 A7 D4 02 B9 1A
        :             FC AC 21 FB 9E 94 9E 4B 42 45 9E 6A B2 48 63 FE
        :             43
359   21:           INTEGER
        :             00 B2 0D B0 B1 01 DF 0C 66 24 FC 13 92 BA 55 F7
        :             7D 57 74 81 E5
382  129:           INTEGER
        :             00 9A BF 46 B1 F5 3F 44 3D C9 A5 65 FB 91 C0 8E
        :             47 F1 0A C3 01 47 C2 44 42 36 A9 92 81 DE 57 C5
        :             E0 68 86 58 00 7B 1F F9 9B 77 A1 C5 10 A5 80 91
        :             78 51 51 3C F6 FC FC CC 46 C6 81 78 92 84 3D F4
        :             93 3D 0C 38 7E 1A 5B 99 4E AB 14 64 F6 0C 21 22
        :             4E 28 08 9C 92 B9 66 9F 40 E8 95 F6 D5 31 2A EF
        :             39 A2 62 C7 B2 6D 9E 58 C4 3A A8 11 81 84 6D AF
        :             F8 B4 19 B4 C2 11 AE D0 22 3B AA 20 7F EE 1E 57
        :             18
        :           }
        :         }
514  132:       BIT STRING, encapsulates {
518  128:         INTEGER



Cooper, et al.              Standards Track                   [Page 145]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


        :           30 B6 75 F7 7C 20 31 AE 38 BB 7E 0D 2B AB A0 9C
        :           4B DF 20 D5 24 13 3C CD 98 E5 5F 6C B7 C1 BA 4A
        :           BA A9 95 80 53 F0 0D 72 DC 33 37 F4 01 0B F5 04
        :           1F 9D 2E 1F 62 D8 84 3A 9B 25 09 5A 2D C8 46 8E
        :           2B D4 F5 0D 3B C7 2D C6 6C B9 98 C1 25 3A 44 4E
        :           8E CA 95 61 35 7C CE 15 31 5C 23 13 1E A2 05 D1
        :           7A 24 1C CB D3 72 09 90 FF 9B 9D 28 C0 A1 0A EC
        :           46 9F 0D B8 D0 DC D0 18 A6 2B 5E F9 8F B5 95 BE
        :         }
        :       }
649  202:     [3] {
652  199:       SEQUENCE {
655   57:         SEQUENCE {
657    3:           OBJECT IDENTIFIER subjectAltName (2 5 29 17)
662   50:           OCTET STRING, encapsulates {
664   48:             SEQUENCE {
666   46:               [6]
        :                 'http://www.example.com/users/DSAendentity.'
        :                 'html'
        :               }
        :             }
        :           }
714   33:         SEQUENCE {
716    3:           OBJECT IDENTIFIER issuerAltName (2 5 29 18)
721   26:           OCTET STRING, encapsulates {
723   24:             SEQUENCE {
725   22:               [6] 'http://www.example.com'
        :               }
        :             }
        :           }
749   29:         SEQUENCE {
751    3:           OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14)
756   22:           OCTET STRING, encapsulates {
758   20:             OCTET STRING
        :               DD 25 66 96 43 AB 78 11 43 44 FE 95 16 F9 D9 B6
        :               B7 02 66 8D
        :             }
        :           }
780   31:         SEQUENCE {
782    3:           OBJECT IDENTIFIER
        :             authorityKeyIdentifier (2 5 29 35)
787   24:           OCTET STRING, encapsulates {
789   22:             SEQUENCE {
791   20:               [0]
        :                 86 CA A5 22 81 62 EF AD 0A 89 BC AD 72 41 2C
        :                 29 49 F4 86 56
        :               }
        :             }



Cooper, et al.              Standards Track                   [Page 146]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


        :           }
813   23:         SEQUENCE {
815    3:           OBJECT IDENTIFIER certificatePolicies (2 5 29 32)
820   16:           OCTET STRING, encapsulates {
822   14:             SEQUENCE {
824   12:               SEQUENCE {
826   10:                 OBJECT IDENTIFIER '2 16 840 1 101 3 2 1 48 9'
        :                 }
        :               }
        :             }
        :           }
838   14:         SEQUENCE {
840    3:           OBJECT IDENTIFIER keyUsage (2 5 29 15)
845    1:           BOOLEAN TRUE
848    4:           OCTET STRING, encapsulates {
850    2:             BIT STRING 7 unused bits
        :               '1'B (bit 0)
        :             }
        :           }
        :         }
        :       }
        :     }
854    9:   SEQUENCE {
856    7:     OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)
        :     }
865   47:   BIT STRING, encapsulates {
868   44:     SEQUENCE {
870   20:       INTEGER
        :         65 57 07 34 DD DC CA CC 5E F4 02 F4 56 42 2C 5E
        :         E1 B3 3B 80
892   20:       INTEGER
        :         60 F4 31 17 CA F4 CF FF EE F4 08 A7 D9 B2 61 BE
        :         B1 C3 DA BF
        :       }
        :     }
        :   }

C.4.  Certificate Revocation List

  This appendix contains an annotated hex dump of a version 2 CRL with
  two extensions (cRLNumber and authorityKeyIdentifier).  The CRL was
  issued by cn=Example CA,dc=example,dc=com on February 5, 2005; the
  next scheduled issuance was February 6, 2005.  The CRL includes one
  revoked certificate: serial number 18, which was revoked on November
  19, 2004 due to keyCompromise.  The CRL itself is number 12, and it
  was signed with RSA and SHA-1.





Cooper, et al.              Standards Track                   [Page 147]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


  0  352: SEQUENCE {
  4  202:   SEQUENCE {
  7    1:     INTEGER 1
 10   13:     SEQUENCE {
 12    9:       OBJECT IDENTIFIER
        :         sha1withRSAEncryption (1 2 840 113549 1 1 5)
 23    0:       NULL
        :       }
 25   67:     SEQUENCE {
 27   19:       SET {
 29   17:         SEQUENCE {
 31   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
 43    3:           IA5String 'com'
        :           }
        :         }
 48   23:       SET {
 50   21:         SEQUENCE {
 52   10:           OBJECT IDENTIFIER
        :             domainComponent (0 9 2342 19200300 100 1 25)
 64    7:           IA5String 'example'
        :           }
        :         }
 73   19:       SET {
 75   17:         SEQUENCE {
 77    3:           OBJECT IDENTIFIER commonName (2 5 4 3)
 82   10:           PrintableString 'Example CA'
        :           }
        :         }
        :       }
 94   13:     UTCTime 05/02/2005 12:00:00 GMT
109   13:     UTCTime 06/02/2005 12:00:00 GMT
124   34:     SEQUENCE {
126   32:       SEQUENCE {
128    1:         INTEGER 18
131   13:         UTCTime 19/11/2004 15:57:03 GMT
146   12:         SEQUENCE {
148   10:           SEQUENCE {
150    3:             OBJECT IDENTIFIER cRLReason (2 5 29 21)
155    3:             OCTET STRING, encapsulates {
157    1:               ENUMERATED 1
        :               }
        :             }
        :           }
        :         }
        :       }
160   47:     [0] {
162   45:       SEQUENCE {



Cooper, et al.              Standards Track                   [Page 148]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


164   31:         SEQUENCE {
166    3:           OBJECT IDENTIFIER
        :             authorityKeyIdentifier (2 5 29 35)
171   24:           OCTET STRING, encapsulates {
173   22:             SEQUENCE {
175   20:               [0]
        :                 08 68 AF 85 33 C8 39 4A 7A F8 82 93 8E 70 6A
        :                 4A 20 84 2C 32
        :               }
        :             }
        :           }
197   10:         SEQUENCE {
199    3:           OBJECT IDENTIFIER cRLNumber (2 5 29 20)
204    3:           OCTET STRING, encapsulates {
206    1:             INTEGER 12
        :             }
        :           }
        :         }
        :       }
        :     }
209   13:   SEQUENCE {
211    9:     OBJECT IDENTIFIER
        :         sha1withRSAEncryption (1 2 840 113549 1 1 5)
222    0:     NULL
        :     }
224  129:   BIT STRING
        :     22 DC 18 7D F7 08 CE CC 75 D0 D0 6A 9B AD 10 F4
        :     76 23 B4 81 6E B5 6D BE 0E FB 15 14 6C C8 17 6D
        :     1F EE 90 17 A2 6F 60 E4 BD AA 8C 55 DE 8E 84 6F
        :     92 F8 9F 10 12 27 AF 4A D4 2F 85 E2 36 44 7D AA
        :     A3 4C 25 38 15 FF 00 FD 3E 7E EE 3D 26 12 EB D8
        :     E7 2B 62 E2 2B C3 46 80 EF 78 82 D1 15 C6 D0 9C
        :     72 6A CB CE 7A ED 67 99 8B 6E 70 81 7D 43 42 74
        :     C1 A6 AF C1 55 17 A2 33 4C D6 06 98 2B A4 FC 2E
        :   }
















Cooper, et al.              Standards Track                   [Page 149]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


Authors' Addresses

  David Cooper
  National Institute of Standards and Technology
  100 Bureau Drive, Mail Stop 8930
  Gaithersburg, MD 20899-8930
  USA
  EMail: [email protected]

  Stefan Santesson
  Microsoft
  One Microsoft Way
  Redmond, WA 98052
  USA
  EMail: [email protected]

  Stephen Farrell
  Distributed Systems Group
  Computer Science Department
  Trinity College Dublin
  Ireland
  EMail: [email protected]

  Sharon Boeyen
  Entrust
  1000 Innovation Drive
  Ottawa, Ontario
  Canada K2K 3E7
  EMail: [email protected]

  Russell Housley
  Vigil Security, LLC
  918 Spring Knoll Drive
  Herndon, VA 20170
  USA
  EMail: [email protected]

  Tim Polk
  National Institute of Standards and Technology
  100 Bureau Drive, Mail Stop 8930
  Gaithersburg, MD 20899-8930
  USA
  EMail: [email protected]








Cooper, et al.              Standards Track                   [Page 150]

RFC 5280            PKIX Certificate and CRL Profile            May 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Cooper, et al.              Standards Track                   [Page 151]