Network Working Group                                          S. Turner
Request for Comments: 5275                                          IECA
Category: Standards Track                                      June 2008


            CMS Symmetric Key Management and Distribution

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document describes a mechanism to manage (i.e., set up,
  distribute, and rekey) keys used with symmetric cryptographic
  algorithms.  Also defined herein is a mechanism to organize users
  into groups to support distribution of encrypted content using
  symmetric cryptographic algorithms.  The mechanism uses the
  Cryptographic Message Syntax (CMS) protocol and Certificate
  Management over CMS (CMC) protocol to manage the symmetric keys.  Any
  member of the group can then later use this distributed shared key to
  decrypt other CMS encrypted objects with the symmetric key.  This
  mechanism has been developed to support Secure/Multipurpose Internet
  Mail Extensions (S/MIME) Mail List Agents (MLAs).























Turner                      Standards Track                     [Page 1]

RFC 5275                     CMS SymKeyDist                    June 2008


Table of Contents

  1. Introduction ....................................................4
     1.1. Conventions Used in This Document ..........................4
     1.2. Applicability to E-mail ....................................5
     1.3. Applicability to Repositories ..............................5
     1.4. Using the Group Key ........................................5
  2. Architecture ....................................................6
  3. Protocol Interactions ...........................................7
     3.1. Control Attributes .........................................8
          3.1.1. GL Use KEK .........................................10
          3.1.2. Delete GL ..........................................14
          3.1.3. Add GL Member ......................................14
          3.1.4. Delete GL Member ...................................15
          3.1.5. Rekey GL ...........................................16
          3.1.6. Add GL Owner .......................................16
          3.1.7. Remove GL Owner ....................................17
          3.1.8. GL Key Compromise ..................................17
          3.1.9. GL Key Refresh .....................................18
          3.1.10. GLA Query Request and Response ....................18
                 3.1.10.1. GLA Query Request ........................18
                 3.1.10.2. GLA Query Response .......................19
                 3.1.10.3. Request and Response Types ...............19
          3.1.11. Provide Cert ......................................19
          3.1.12. Update Cert .......................................20
          3.1.13. GL Key ............................................21
     3.2. Use of CMC, CMS, and PKIX .................................23
          3.2.1. Protection Layers ..................................23
                 3.2.1.1. Minimum Protection ........................23
                 3.2.1.2. Additional Protection .....................24
          3.2.2. Combining Requests and Responses ...................24
          3.2.3. GLA Generated Messages .............................26
          3.2.4. CMC Control Attributes and CMS Signed Attributes ...27
                 3.2.4.1. Using cMCStatusInfoExt ....................27
                 3.2.4.2. Using transactionId .......................30
                 3.2.4.3. Using Nonces and signingTime ..............30
                 3.2.4.4. CMC and CMS Attribute Support
                          Requirements ..............................31
          3.2.5. Resubmitted GL Member Messages .....................31
          3.2.6. PKIX Certificate and CRL Profile ...................31
  4. Administrative Messages ........................................32
     4.1. Assign KEK to GL ..........................................32
     4.2. Delete GL from GLA ........................................36
     4.3. Add Members to GL .........................................38
          4.3.1. GLO Initiated Additions ............................39
          4.3.2. Prospective Member Initiated Additions .............47
     4.4. Delete Members from GL ....................................49
          4.4.1. GLO Initiated Deletions ............................50



Turner                      Standards Track                     [Page 2]

RFC 5275                     CMS SymKeyDist                    June 2008


          4.4.2. Member Initiated Deletions .........................56
     4.5. Request Rekey of GL .......................................57
          4.5.1. GLO Initiated Rekey Requests .......................59
          4.5.2. GLA Initiated Rekey Requests .......................62
     4.6. Change GLO ................................................63
     4.7. Indicate KEK Compromise ...................................65
          4.7.1. GL Member Initiated KEK Compromise Message .........66
          4.7.2. GLO Initiated KEK Compromise Message ...............67
     4.8. Request KEK Refresh .......................................69
     4.9. GLA Query Request and Response ............................70
     4.10. Update Member Certificate ................................73
          4.10.1. GLO and GLA Initiated Update Member Certificate ...73
          4.10.2. GL Member Initiated Update Member Certificate .....75
  5. Distribution Message ...........................................77
     5.1. Distribution Process ......................................78
  6. Algorithms .....................................................79
     6.1. KEK Generation Algorithm ..................................79
     6.2. Shared KEK Wrap Algorithm .................................79
     6.3. Shared KEK Algorithm ......................................79
  7. Message Transport ..............................................80
  8. Security Considerations ........................................80
  9. Acknowledgements ...............................................81
  10. References ....................................................81
     10.1. Normative References .....................................81
     10.2. Informative References ...................................82
  Appendix A. ASN.1 Module ..........................................83

























Turner                      Standards Track                     [Page 3]

RFC 5275                     CMS SymKeyDist                    June 2008


1.  Introduction

  With the ever-expanding use of secure electronic communications
  (e.g., S/MIME [MSG]), users require a mechanism to distribute
  encrypted data to multiple recipients (i.e., a group of users).
  There are essentially two ways to encrypt the data for recipients:
  using asymmetric algorithms with public key certificates (PKCs) or
  symmetric algorithms with symmetric keys.

  With asymmetric algorithms, the originator forms an originator-
  determined content-encryption key (CEK) and encrypts the content,
  using a symmetric algorithm.  Then, using an asymmetric algorithm and
  the recipient's PKCs, the originator generates per-recipient
  information that either (a) encrypts the CEK for a particular
  recipient (ktri RecipientInfo CHOICE) or (b) transfers sufficient
  parameters to enable a particular recipient to independently generate
  the same KEK (kari RecipientInfo CHOICE).  If the group is large,
  processing of the per-recipient information may take quite some time,
  not to mention the time required to collect and validate the PKCs for
  each of the recipients.  Each recipient identifies its per-recipient
  information and uses the private key associated with the public key
  of its PKC to decrypt the CEK and hence gain access to the encrypted
  content.

  With symmetric algorithms, the origination process is slightly
  different.  Instead of using PKCs, the originator uses a previously
  distributed secret key-encryption key (KEK) to encrypt the CEK (kekri
  RecipientInfo CHOICE).  Only one copy of the encrypted CEK is
  required because all the recipients already have the shared KEK
  needed to decrypt the CEK and hence gain access to the encrypted
  content.

  The techniques to protect the shared KEK are beyond the scope of this
  document.  Only the members of the list and the key manager should
  have the KEK in order to maintain confidentiality.  Access control to
  the information protected by the KEK is determined by the entity that
  encrypts the information, as all members of the group have access.
  If the entity performing the encryption wants to ensure that some
  subset of the group does not gain access to the information, either a
  different KEK should be used (shared only with this smaller group) or
  asymmetric algorithms should be used.

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119
  [RFC2119].



Turner                      Standards Track                     [Page 4]

RFC 5275                     CMS SymKeyDist                    June 2008


1.2.  Applicability to E-mail

  One primary audience for this distribution mechanism is e-mail.
  Distribution lists, sometimes referred to as mail lists, support the
  distribution of messages to recipients subscribed to the mail list.
  There are two models for how the mail list can be used.  If the
  originator is a member of the mail list, the originator sends
  messages encrypted with the shared KEK to the mail list (e.g.,
  listserv or majordomo) and the message is distributed to the mail
  list members.  If the originator is not a member of the mail list
  (does not have the shared KEK), the originator sends the message
  (encrypted for the MLA) to the Mail List Agent (MLA), and then the
  MLA uses the shared KEK to encrypt the message for the members.  In
  either case, the recipients of the mail list use the previously
  distributed-shared KEK to decrypt the message.

1.3.  Applicability to Repositories

  Objects can also be distributed via a repository (e.g., Lightweight
  Directory Access Protocol (LDAP) servers, X.500 Directory System
  Agents (DSAs), Web-based servers).  If an object is stored in a
  repository encrypted with a symmetric key algorithm, anyone with the
  shared KEK and access to that object can then decrypt that object.
  The encrypted object and the encrypted, shared KEK can be stored in
  the repository.

1.4.  Using the Group Key

  This document was written with three specific scenarios in mind: two
  supporting Mail List Agents and one for general message distribution.
  Scenario 1 depicts the originator sending a public key (PK) protected
  message to an MLA who then uses the shared KEK(s) to redistribute the
  message to the members of the list.  Scenario 2 depicts the
  originator sending a shared KEK protected message to an MLA who then
  redistributes the message to the members of the list (the MLA only
  adds additional recipients).  The key used by the originator could be
  a key shared either amongst all recipients or just between the member
  and the MLA.  Note that if the originator uses a key shared only with
  the MLA, then the MLA will need to decrypt the message and reencrypt
  the message for the list recipients.  Scenario 3 shows an originator
  sending a shared KEK protected message to a group of recipients
  without an intermediate MLA.









Turner                      Standards Track                     [Page 5]

RFC 5275                     CMS SymKeyDist                    June 2008


                  +---->                   +---->       +---->
   PK   +-----+ S |         S    +-----+ S |         S  |
  ----> | MLA | --+---->   ----> | MLA | --+---->   ----+---->
        +-----+   |              +-----+   |            |
                  +---->                   +---->       +---->

      Scenario 1               Scenario 2           Scenario 3

2.  Architecture

  Figure 1 depicts the architecture to support symmetric key
  distribution.  The Group List Agent (GLA) supports two distinct
  functions with two different agents:

  -  The Key Management Agent (KMA), which is responsible for
     generating the shared KEKs.

  -  The Group Management Agent (GMA), which is responsible for
     managing the Group List (GL) to which the shared KEKs are
     distributed.

  +----------------------------------------------+
  |              Group List Agent                |    +-------+
  | +------------+    + -----------------------+ |    | Group |
  | |    Key     |    | Group Management Agent | |<-->| List  |
  | | Management |<-->|     +------------+     | |    | Owner |
  | |   Agent    |    |     | Group List |     | |    +-------+
  | +------------+    |     +------------+     | |
  |                   |       /  |  \          | |
  |                   +------------------------+ |
  +----------------------------------------------+
                           /     |      \
                          /      |       \
              +----------+ +---------+ +----------+
              | Member 1 | |   ...   | | Member n |
              +----------+ +---------+ +----------+

       Figure 1 - Key Distribution Architecture

  A GLA may support multiple KMAs.  A GLA in general supports only one
  GMA, but the GMA may support multiple GLs.  Multiple KMAs may support
  a GMA in the same fashion as GLAs support multiple KMAs.  Assigning a
  particular KMA to a GL is beyond the scope of this document.

  Modeling real-world GL implementations shows that there are very
  restrictive GLs, where a human determines GL membership, and very
  open GLs, where there are no restrictions on GL membership.  To
  support this spectrum, the mechanism described herein supports both



Turner                      Standards Track                     [Page 6]

RFC 5275                     CMS SymKeyDist                    June 2008


  managed (i.e., where access control is applied) and unmanaged (i.e.,
  where no access control is applied) GLs.  The access control
  mechanism for managed lists is beyond the scope of this document.
  Note: If the distribution for the list is performed by an entity
  other than the originator (e.g., an MLA distributing a mail message),
  this entity can also enforce access control rules.

  In either case, the GL must initially be constructed by an entity
  hereafter called the Group List Owner (GLO).  There may be multiple
  entities who 'own' the GL and who are allowed to make changes to the
  GL's properties or membership.  The GLO determines if the GL will be
  managed or unmanaged and is the only entity that may delete the GL.
  GLO(s) may or may not be GL members.  GLO(s) may also set up lists
  that are closed, where the GLO solely determines GL membership.

  Though Figure 1 depicts the GLA as encompassing both the KMA and GMA
  functions, the two functions could be supported by the same entity or
  they could be supported by two different entities.  If two entities
  are used, they could be located on one or two platforms.  There is
  however a close relationship between the KMA and GMA functions.  If
  the GMA stores all information pertaining to the GLs and the KMA
  merely generates keys, a corrupted GMA could cause havoc.  To protect
  against a corrupted GMA, the KMA would be forced to double check the
  requests it receives to ensure that the GMA did not tamper with them.
  These duplicative checks blur the functionality of the two components
  together.  For this reason, the interactions between the KMA and GMA
  are beyond the scope of this document.

  Proprietary mechanisms may be used to separate the functions by
  strengthening the trust relationship between the two entities.
  Henceforth, the distinction between the two agents is not discussed
  further; the term GLA will be used to address both functions.  It
  should be noted that a corrupt GLA can always cause havoc.

3.  Protocol Interactions

  There are existing mechanisms (e.g., listserv and majordomo) to
  manage GLs; however, this document does not address securing these
  mechanisms, as they are not standardized.  Instead, it defines
  protocol interactions, as depicted in Figure 2, used by the GL
  members, GLA, and GLO(s) to manage GLs and distribute shared KEKs.
  The interactions have been divided into administration messages and
  distribution messages.  The administrative messages are the request
  and response messages needed to set up the GL, delete the GL, add
  members to the GL, delete members of the GL, request a group rekey,
  add owners to the GL, remove owners of the GL, indicate a group key
  compromise, refresh a group key, interrogate the GLA, and update
  members' and owners' public key certificates.  The distribution



Turner                      Standards Track                     [Page 7]

RFC 5275                     CMS SymKeyDist                    June 2008


  messages are the messages that distribute the shared KEKs.  The
  following sections describe the ASN.1 for both the administration and
  distribution messages.  Section 4 describes how to use the
  administration messages, and Section 5 describes how to use the
  distribution messages.

     +-----+                   +----------+
     | GLO | <---+      +----> | Member 1 |
     +-----+     |      |      +----------+
                 |      |
  +-----+ <------+      |      +----------+
  | GLA | <-------------+----> |   ...    |
  +-----+               |      +----------+
                        |
                        |      +----------+
                        +----> | Member n |
                               +----------+

       Figure 2 - Protocol Interactions

3.1.  Control Attributes

  To avoid creating an entirely new protocol, the Certificate
  Management over CMS (CMC) protocol was chosen as the foundation of
  this protocol.  The main reason for the choice was the layering
  aspect provided by CMC where one or more control attributes are
  included in message, protected with CMS, to request or respond to a
  desired action.  The CMC PKIData structure is used for requests, and
  the CMC PKIResponse structure is used for responses.  The content-
  types PKIData and PKIResponse are then encapsulated in CMS's
  SignedData or EnvelopedData, or a combination of the two (see Section
  3.2).  The following are the control attributes defined in this
  document:


















Turner                      Standards Track                     [Page 8]

RFC 5275                     CMS SymKeyDist                    June 2008


        Control
       Attribute          OID          Syntax
  -------------------  ----------- -----------------
   glUseKEK            id-skd 1    GLUseKEK
   glDelete            id-skd 2    GeneralName
   glAddMember         id-skd 3    GLAddMember
   glDeleteMember      id-skd 4    GLDeleteMember
   glRekey             id-skd 5    GLRekey
   glAddOwner          id-skd 6    GLOwnerAdministration
   glRemoveOwner       id-skd 7    GLOwnerAdministration
   glkCompromise       id-skd 8    GeneralName
   glkRefresh          id-skd 9    GLKRefresh
   glaQueryRequest     id-skd 11   GLAQueryRequest
   glaQueryResponse    id-skd 12   GLAQueryResponse
   glProvideCert       id-skd 13   GLManageCert
   glUpdateCert        id-skd 14   GLManageCert
   glKey               id-skd 15   GLKey

  In the following conformance tables, the column headings have the
  following meanings: O for originate, R for receive, and F for
  forward.  There are three types of implementations: GLOs, GLAs, and
  GL members.  The GLO is an optional component, hence all GLO O and
  GLO R messages are optional, and GLA F messages are optional.  The
  first table includes messages that conformant implementations MUST
  support.  The second table includes messages that MAY be implemented.
  The second table should be interpreted as follows: if the control
  attribute is implemented by a component, then it must be implemented
  as indicated.  For example, if a GLA is implemented that supports the
  glAddMember control attribute, then it MUST support receiving the
  glAddMember message.  Note that "-" means not applicable.

                            Required
         Implementation Requirement       |  Control
    GLO   |        GLA        | GL Member | Attribute
   O  R   |  O      R      F  |  O    R   |
  ------- | ----------------- | --------- | ----------
  MAY  -  | MUST    -     MAY |  -   MUST | glProvideCert
  MAY MAY |  -     MUST   MAY | MUST  -   | glUpdateCert
   -   -  | MUST    -      -  |  -   MUST | glKey












Turner                      Standards Track                     [Page 9]

RFC 5275                     CMS SymKeyDist                    June 2008


                            Optional
          Implementation Requirement      |  Control
    GLO   |        GLA        | GL Member | Attribute
   O   R  |  O      R      F  |  O    R   |
  ------- | ----------------- | --------- | ----------
  MAY  -  |  -     MAY     -  |  -    -   | glUseKEK
  MAY  -  |  -     MAY     -  |  -    -   | glDelete
  MAY MAY |  -     MUST   MAY | MUST  -   | glAddMember
  MAY MAY |  -     MUST   MAY | MUST  -   | glDeleteMember
  MAY  -  |  -     MAY     -  |  -    -   | glRekey
  MAY  -  |  -     MAY     -  |  -    -   | glAddOwner
  MAY  -  |  -     MAY     -  |  -    -   | glRemoveOwner
  MAY MAY |  -     MUST   MAY | MUST  -   | glkCompromise
  MAY  -  |  -     MUST    -  | MUST  -   | glkRefresh
  MAY  -  |  -     SHOULD  -  | MAY   -   | glaQueryRequest
   -  MAY | SHOULD  -      -  |  -   MAY  | glaQueryResponse

  glaQueryResponse is carried in the CMC PKIResponse content-type, all
  other control attributes are carried in the CMC PKIData content-type.
  The exception is glUpdateCert, which can be carried in either PKIData
  or PKIResponse.

  Success and failure messages use CMC (see Section 3.2.4).

3.1.1.  GL Use KEK

  The GLO uses glUseKEK to request that a shared KEK be assigned to a
  GL.  glUseKEK messages MUST be signed by the GLO.  The glUseKEK
  control attribute has the syntax GLUseKEK:

  GLUseKEK ::= SEQUENCE {
    glInfo                GLInfo,
    glOwnerInfo           SEQUENCE SIZE (1..MAX) OF GLOwnerInfo,
    glAdministration      GLAdministration DEFAULT 1,
    glKeyAttributes       GLKeyAttributes OPTIONAL }

  GLInfo ::= SEQUENCE {
    glName     GeneralName,
    glAddress  GeneralName }

  GLOwnerInfo ::= SEQUENCE {
    glOwnerName     GeneralName,
    glOwnerAddress  GeneralName,
    certificate     Certificates OPTIONAL }







Turner                      Standards Track                    [Page 10]

RFC 5275                     CMS SymKeyDist                    June 2008


  Certificates ::= SEQUENCE {
     pKC                [0] Certificate OPTIONAL,
                                 -- See [PROFILE]
     aC                 [1] SEQUENCE SIZE (1.. MAX) OF
                            AttributeCertificate OPTIONAL,
                                 -- See [ACPROF]
     certPath           [2] CertificateSet OPTIONAL }
                                 -- From [CMS]

  -- CertificateSet and CertificateChoices are included only
  -- for illustrative purposes as they are imported from [CMS].

  CertificateSet ::= SET SIZE (1..MAX) OF CertificateChoices

  -- CertificateChoices supports X.509 public key certificates in
  -- certificates and v2 attribute certificates in v2AttrCert.

  GLAdministration ::= INTEGER {
    unmanaged  (0),
    managed    (1),
    closed     (2) }

  GLKeyAttributes ::= SEQUENCE {
    rekeyControlledByGLO       [0] BOOLEAN DEFAULT FALSE,
    recipientsNotMutuallyAware [1] BOOLEAN DEFAULT TRUE,
    duration                   [2] INTEGER DEFAULT 0,
    generationCounter          [3] INTEGER DEFAULT 2,
    requestedAlgorithm         [4] AlgorithmIdentifier
                                DEFAULT { id-aes128-wrap } }

  The fields in GLUseKEK have the following meaning:

    - glInfo indicates the name of the GL in glName and the address of
      the GL in glAddress.  The glName and glAddress can be the same,
      but this is not always the case.  Both the name and address MUST
      be unique for a given GLA.

    - glOwnerInfo indicates:

       -- glOwnerName indicates the name of the owner of the GL.  One
          of the names in glOwnerName MUST match one of the names in
          the certificate (either the subject distinguished name or one
          of the subject alternative names) used to sign this
          SignedData.PKIData creating the GL (i.e., the immediate
          signer).

       -- glOwnerAddress indicates the GL owner's address.




Turner                      Standards Track                    [Page 11]

RFC 5275                     CMS SymKeyDist                    June 2008


       -- certificates MAY be included.  It contains the following
          three fields:

           --- certificates.pKC includes the encryption certificate for
               the GLO.  It will be used to encrypt responses for the
               GLO.

           --- certificates.aC MAY be included to convey any attribute
               certificate (see [ACPROF]) associated with the
               encryption certificate of the GLO included in
               certificates.pKC.

           --- certificates.certPath MAY also be included to convey
               certificates that might aid the recipient in
               constructing valid certification paths for the
               certificate provided in certificates.pKC and the
               attribute certificates provided in certificates.aC.
               Theses certificates are optional because they might
               already be included elsewhere in the message (e.g., in
               the outer CMS layer).

       -- glAdministration indicates how the GL ought to be
          administered.  The default is for the list to be managed.
          Three values are supported for glAdministration:

           --- Unmanaged - When the GLO sets glAdministration to
               unmanaged, it is allowing prospective members to request
               addition and deletion from the GL without GLO
               intervention.

           --- Managed - When the GLO sets glAdministration to managed,
               it is allowing prospective members to request addition
               and deletion from the GL, but the request is redirected
               by the GLA to GLO for review.  The GLO makes the
               determination as to whether to honor the request.

           --- Closed - When the GLO sets glAdministration to closed,
               it is not allowing prospective members to request
               addition or deletion from the GL.  The GLA will only
               accept glAddMember and glDeleteMember requests from the
               GLO.

       -- glKeyAttributes indicates the attributes the GLO wants the
          GLA to assign to the shared KEK.  If this field is omitted,
          GL rekeys will be controlled by the GLA, the recipients are
          allowed to know about one another, the algorithm will be
          AES-128 (see Section 7), the shared KEK will be valid for a
          calendar month (i.e., first of the month until the last day



Turner                      Standards Track                    [Page 12]

RFC 5275                     CMS SymKeyDist                    June 2008


          of the month), and two shared KEKs will be distributed
          initially.  The fields in glKeyAttributes have the following
          meaning:

           --- rekeyControlledByGLO indicates whether the GL rekey
               messages will be generated by the GLO or by the GLA.
               The default is for the GLA to control rekeys.  If GL
               rekey is controlled by the GLA, the GL will continue to
               be rekeyed until the GLO deletes the GL or changes the
               GL rekey to be GLO controlled.

           --- recipientsNotMutuallyAware indicates that the GLO wants
               the GLA to distribute the shared KEK individually for
               each of the GL members (i.e., a separate glKey message
               is sent to each recipient).  The default is for separate
               glKey message not to be required.

               Note: This supports lists where one member does not know
               the identities of the other members.  For example, a
               list is configured granting submit permissions to only
               one member.  All other members are 'listening'.  The
               security policy of the list does not allow the members
               to know who else is on the list.  If a glKey is
               constructed for all of the GL members, information about
               each of the members may be derived from the information
               in RecipientInfos.

               To make sure the glkey message does not divulge
               information about the other recipients, a separate glKey
               message would be sent to each GL member.

           --- duration indicates the length of time (in days) during
               which the shared KEK is considered valid.  The value
               zero (0) indicates that the shared KEK is valid for a
               calendar month in the UTC Zulu time zone.  For example,
               if the duration is zero (0), if the GL shared KEK is
               requested on July 24, the first key will be valid until
               the end of July and the next key will be valid for the
               entire month of August.  If the value is not zero (0),
               the shared KEK will be valid for the number of days
               indicated by the value.  For example, if the value of
               duration is seven (7) and the shared KEK is requested on
               Monday but not generated until Tuesday (13 May 2008);
               the shared KEKs will be valid from Tuesday (13 May 2008)
               to Tuesday (20 May 2008).  The exact time of the day is
               determined when the key is generated.





Turner                      Standards Track                    [Page 13]

RFC 5275                     CMS SymKeyDist                    June 2008


           --- generationCounter indicates the number of keys the GLO
               wants the GLA to distribute.  To ensure uninterrupted
               function of the GL, two (2) shared KEKs at a minimum
               MUST be initially distributed.  The second shared KEK is
               distributed with the first shared KEK, so that when the
               first shared KEK is no longer valid the second key can
               be used.  If the GLA controls rekey, then it also
               indicates the number of shared KEKs the GLO wants
               outstanding at any one time.  See Sections 4.5 and 5 for
               more on rekey.

           --- requestedAlgorithm indicates the algorithm and any
               parameters the GLO wants the GLA to use with the shared
               KEK.  The parameters are conveyed via the
               SMIMECapabilities attribute (see [MSG]).  See Section 6
               for more on algorithms.

3.1.2.  Delete GL

  GLOs use glDelete to request that a GL be deleted from the GLA.  The
  glDelete control attribute has the syntax GeneralName.  The glDelete
  message MUST be signed by the GLO.  The name of the GL to be deleted
  is included in GeneralName:

  DeleteGL ::= GeneralName

3.1.3.  Add GL Member

  GLOs use the glAddMember to request addition of new members, and
  prospective GL members use the glAddMember to request their own
  addition to the GL.  The glAddMember message MUST be signed by either
  the GLO or the prospective GL member.  The glAddMember control
  attribute has the syntax GLAddMember:

  GLAddMember ::= SEQUENCE {
    glName    GeneralName,
    glMember  GLMember }

  GLMember ::= SEQUENCE {
    glMemberName     GeneralName,
    glMemberAddress  GeneralName OPTIONAL,
    certificates     Certificates OPTIONAL }

  The fields in GLAddMembers have the following meaning:

    - glName indicates the name of the GL to which the member should be
      added.




Turner                      Standards Track                    [Page 14]

RFC 5275                     CMS SymKeyDist                    June 2008


    - glMember indicates the particulars for the GL member.  Both of
      the following fields must be unique for a given GL:

       -- glMemberName indicates the name of the GL member.

       -- glMemberAddress indicates the GL member's address.  It MUST
          be included.

          Note: In some instances, the glMemberName and glMemberAddress
          may be the same, but this is not always the case.

       -- certificates MUST be included.  It contains the following
          three fields:

           --- certificates.pKC includes the member's encryption
               certificate.  It will be used, at least initially, to
               encrypt the shared KEK for that member.  If the message
               is generated by a prospective GL member, the pKC MUST be
               included.  If the message is generated by a GLO, the pKC
               SHOULD be included.

           --- certificates.aC MAY be included to convey any attribute
               certificate (see [ACPROF]) associated with the member's
               encryption certificate.

           --- certificates.certPath MAY also be included to convey
               certificates that might aid the recipient in
               constructing valid certification paths for the
               certificate provided in certificates.pKC and the
               attribute certificates provided in certificates.aC.
               These certificates are optional because they might
               already be included elsewhere in the message (e.g., in
               the outer CMS layer).

3.1.4.  Delete GL Member

  GLOs use the glDeleteMember to request deletion of GL members, and GL
  members use the glDeleteMember to request their own removal from the
  GL.  The glDeleteMember message MUST be signed by either the GLO or
  the GL member.  The glDeleteMember control attribute has the syntax
  GLDeleteMember:

  GLDeleteMember ::= SEQUENCE {
    glName            GeneralName,
    glMemberToDelete  GeneralName }






Turner                      Standards Track                    [Page 15]

RFC 5275                     CMS SymKeyDist                    June 2008


  The fields in GLDeleteMembers have the following meaning:

    - glName indicates the name of the GL from which the member should
      be removed.

    - glMemberToDelete indicates the name or address of the member to
      be deleted.

3.1.5.  Rekey GL

  GLOs use the glRekey to request a GL rekey.  The glRekey message MUST
  be signed by the GLO.  The glRekey control attribute has the syntax
  GLRekey:

  GLRekey ::= SEQUENCE {
    glName              GeneralName,
    glAdministration    GLAdministration OPTIONAL,
    glNewKeyAttributes  GLNewKeyAttributes OPTIONAL,
    glRekeyAllGLKeys    BOOLEAN OPTIONAL }

  GLNewKeyAttributes ::= SEQUENCE {
    rekeyControlledByGLO       [0] BOOLEAN OPTIONAL,
    recipientsNotMutuallyAware [1] BOOLEAN OPTIONAL,
    duration                   [2] INTEGER OPTIONAL,
    generationCounter          [3] INTEGER OPTIONAL,
    requestedAlgorithm         [4] AlgorithmIdentifier OPTIONAL }

  The fields in GLRekey have the following meaning:

    - glName indicates the name of the GL to be rekeyed.

    - glAdministration indicates if there is any change to how the GL
      should be administered.  See Section 3.1.1 for the three options.
      This field is only included if there is a change from the
      previously registered glAdministration.

    - glNewKeyAttributes indicates whether the rekey of the GLO is
      controlled by the GLA or GL, what algorithm and parameters the
      GLO wishes to use, the duration of the key, and how many keys
      will be issued.  The field is only included if there is a change
      from the previously registered glKeyAttributes.

    - glRekeyAllGLKeys indicates whether the GLO wants all of the
      outstanding GL's shared KEKs rekeyed.  If it is set to TRUE then
      all outstanding KEKs MUST be issued.  If it is set to FALSE then
      all outstanding KEKs need not be reissued.





Turner                      Standards Track                    [Page 16]

RFC 5275                     CMS SymKeyDist                    June 2008


3.1.6.  Add GL Owner

  GLOs use the glAddOwner to request that a new GLO be allowed to
  administer the GL.  The glAddOwner message MUST be signed by a
  registered GLO.  The glAddOwner control attribute has the syntax
  GLOwnerAdministration:

  GLOwnerAdministration ::= SEQUENCE {
    glName       GeneralName,
    glOwnerInfo  GLOwnerInfo }

  The fields in GLAddOwners have the following meaning:

    - glName indicates the name of the GL to which the new GLO should
      be associated.

    - glOwnerInfo indicates the name, address, and certificates of the
      new GLO.  As this message includes names of new GLOs, the
      certificates.pKC MUST be included, and it MUST include the
      encryption certificate of the new GLO.

3.1.7.  Remove GL Owner

  GLOs use the glRemoveOwner to request that a GLO be disassociated
  with the GL.  The glRemoveOwner message MUST be signed by a
  registered GLO.  The glRemoveOwner control attribute has the syntax
  GLOwnerAdministration:

  GLOwnerAdministration ::= SEQUENCE {
    glName       GeneralName,
    glOwnerInfo  GLOwnerInfo }

  The fields in GLRemoveOwners have the following meaning:

    - glName indicates the name of the GL to which the GLO should be
      disassociated.

    - glOwnerInfo indicates the name and address of the GLO to be
      removed.  The certificates field SHOULD be omitted, as it will be
      ignored.

3.1.8.  GL Key Compromise

  GL members and GLOs use glkCompromise to indicate that the shared KEK
  possessed has been compromised.  The glKeyCompromise control
  attribute has the syntax GeneralName.  This message is always
  redirected by the GLA to the GLO for further action.  The
  glkCompromise MAY be included in an EnvelopedData generated with the



Turner                      Standards Track                    [Page 17]

RFC 5275                     CMS SymKeyDist                    June 2008


  compromised shared KEK.  The name of the GL to which the compromised
  key is associated is placed in GeneralName:

  GLKCompromise ::= GeneralName

3.1.9.  GL Key Refresh

  GL members use the glkRefresh to request that the shared KEK be
  redistributed to them.  The glkRefresh control attribute has the
  syntax GLKRefresh.

  GLKRefresh ::= SEQUENCE {
    glName  GeneralName,
    dates   SEQUENCE SIZE (1..MAX) OF Date }

  Date ::= SEQUENCE {
    start GeneralizedTime,
    end   GeneralizedTime OPTIONAL }

  The fields in GLKRefresh have the following meaning:

    - glName indicates the name of the GL for which the GL member wants
      shared KEKs.

    - dates indicates a date range for keys the GL member wants.  The
      start field indicates the first date the GL member wants and the
      end field indicates the last date.  The end date MAY be omitted
      to indicate the GL member wants all keys from the specified start
      date to the current date.  Note that a procedural mechanism is
      needed to restrict users from accessing messages that they are
      not allowed to access.

3.1.10.  GLA Query Request and Response

  There are situations where GLOs and GL members may need to determine
  some information from the GLA about the GL.  GLOs and GL members use
  the glaQueryRequest, defined in Section 3.1.10.1, to request
  information and GLAs use the glaQueryResponse, defined in Section
  3.1.10.2, to return the requested information.  Section 3.1.10.3
  includes one request and response type and value; others may be
  defined in additional documents.

3.1.10.1.  GLA Query Request

  GLOs and GL members use the glaQueryRequest to ascertain information
  about the GLA.  The glaQueryRequest control attribute has the syntax
  GLAQueryRequest:




Turner                      Standards Track                    [Page 18]

RFC 5275                     CMS SymKeyDist                    June 2008


  GLAQueryRequest ::= SEQUENCE {
    glaRequestType   OBJECT IDENTIFIER,
    glaRequestValue  ANY DEFINED BY glaRequestType }

3.1.10.2.  GLA Query Response

  GLAs return the glaQueryResponse after receiving a GLAQueryRequest.
  The glaQueryResponse MUST be signed by a GLA.  The glaQueryResponse
  control attribute has the syntax GLAQueryResponse:

  GLAQueryResponse ::= SEQUENCE {
    glaResponseType   OBJECT IDENTIFIER,
    glaResponseValue  ANY DEFINED BY glaResponseType }

3.1.10.3.  Request and Response Types

  Requests and responses are registered as a pair under the following
  object identifier arc:

  id-cmc-glaRR OBJECT IDENTIFIER ::= { id-cmc 99 }

  This document defines one request/response pair for GL members and
  GLOs to query the GLA for the list of algorithm it supports.  The
  following Object Identifier (OID) is included in the glaQueryType
  field:

  id-cmc-gla-skdAlgRequest OBJECT IDENTIFIER ::={ id-cmc-glaRR 1 }

  SKDAlgRequest ::= NULL

  If the GLA supports GLAQueryRequest and GLAQueryResponse messages,
  the GLA may return the following OID in the glaQueryType field:

  id-cmc-gla-skdAlgResponse OBJECT IDENTIFIER ::= { id-cmc-glaRR 2 }

  The glaQueryValue has the form of the smimeCapabilities attributes as
  defined in [MSG].

3.1.11.  Provide Cert

  GLAs and GLOs use the glProvideCert to request that a GL member
  provide an updated or new encryption certificate.  The glProvideCert
  message MUST be signed by either GLA or GLO.  If the GL member's PKC
  has been revoked, the GLO or GLA MUST NOT use it to generate the
  EnvelopedData that encapsulates the glProvideCert request.  The
  glProvideCert control attribute has the syntax GLManageCert:





Turner                      Standards Track                    [Page 19]

RFC 5275                     CMS SymKeyDist                    June 2008


  GLManageCert ::= SEQUENCE {
    glName    GeneralName,
    glMember  GLMember }

  The fields in GLManageCert have the following meaning:

    - glName indicates the name of the GL to which the GL member's new
      certificate is to be associated.

    - glMember indicates particulars for the GL member:

       -- glMemberName indicates the GL member's name.

       -- glMemberAddress indicates the GL member's address.  It MAY be
          omitted.

       -- certificates SHOULD be omitted.

3.1.12 Update Cert

  GL members and GLOs use the glUpdateCert to provide a new certificate
  for the GL.  GL members can generate an unsolicited glUpdateCert or
  generate a response glUpdateCert as a result of receiving a
  glProvideCert message.  GL members MUST sign the glUpdateCert.  If
  the GL member's encryption certificate has been revoked, the GL
  member MUST NOT use it to generate the EnvelopedData that
  encapsulates the glUpdateCert request or response.  The glUpdateCert
  control attribute has the syntax GLManageCert:

  GLManageCert ::= SEQUENCE {
    glName    GeneralName,
    glMember  GLMember }

  The fields in GLManageCert have the following meaning:

    - glName indicates the name of the GL to which the GL member's new
      certificate should be associated.

    - glMember indicates the particulars for the GL member:

       -- glMemberName indicates the GL member's name.

       -- glMemberAddress indicates the GL member's address.  It MAY be
          omitted.

       -- certificates MAY be omitted if the GLManageCert message is
          sent to request the GL member's certificate; otherwise, it
          MUST be included.  It includes the following three fields:



Turner                      Standards Track                    [Page 20]

RFC 5275                     CMS SymKeyDist                    June 2008


           --- certificates.pKC includes the member's encryption
               certificate that will be used to encrypt the shared KEK
               for that member.

           --- certificates.aC MAY be included to convey one or more
               attribute certificates associated with the member's
               encryption certificate.

           --- certificates.certPath MAY also be included to convey
               certificates that might aid the recipient in
               constructing valid certification paths for the
               certificate provided in certificates.pKC and the
               attribute certificates provided in certificates.aC.
               These certificates are optional because they might
               already be included elsewhere in the message (e.g., in
               the outer CMS layer).

3.1.13.  GL Key

  The GLA uses the glKey to distribute the shared KEK.  The glKey
  message MUST be signed by the GLA.  The glKey control attribute has
  the syntax GLKey:

  GLKey ::= SEQUENCE {
    glName        GeneralName,
    glIdentifier  KEKIdentifier,      -- See [CMS]
    glkWrapped    RecipientInfos,     -- See [CMS]
    glkAlgorithm  AlgorithmIdentifier,
    glkNotBefore  GeneralizedTime,
    glkNotAfter   GeneralizedTime }

  -- KEKIdentifier is included only for illustrative purposes as
  -- it is imported from [CMS].

  KEKIdentifier ::= SEQUENCE {
    keyIdentifier OCTET STRING,
    date GeneralizedTime OPTIONAL,
    other OtherKeyAttribute OPTIONAL }

  The fields in GLKey have the following meaning:

    - glName is the name of the GL.

    - glIdentifier is the key identifier of the shared KEK.  See
      Section 6.2.3 of [CMS] for a description of the subfields.






Turner                      Standards Track                    [Page 21]

RFC 5275                     CMS SymKeyDist                    June 2008


    - glkWrapped is the wrapped shared KEK for the GL for a particular
      duration.  The RecipientInfos MUST be generated as specified in
      Section 6.2 of [CMS].  The ktri RecipientInfo choice MUST be
      supported.  The key in the EncryptedKey field (i.e., the
      distributed shared KEK) MUST be generated according to the
      section concerning random number generation in the security
      considerations of [CMS].

    - glkAlgorithm identifies the algorithm with which the shared KEK
      is used.  Since no encrypted data content is being conveyed at
      this point, the parameters encoded with the algorithm should be
      the structure defined for smimeCapabilities rather than encrypted
      content.

    - glkNotBefore indicates the date at which the shared KEK is
      considered valid.  GeneralizedTime values MUST be expressed in
      UTC (Zulu) and MUST include seconds (i.e., times are
      YYYYMMDDHHMMSSZ), even where the number of seconds is zero.
      GeneralizedTime values MUST NOT include fractional seconds.

    - glkNotAfter indicates the date after which the shared KEK is
      considered invalid.  GeneralizedTime values MUST be expressed in
      UTC (Zulu) and MUST include seconds (i.e., times are
      YYYYMMDDHHMMSSZ), even where the number of seconds is zero.
      GeneralizedTime values MUST NOT include fractional seconds.

  If the glKey message is in response to a glUseKEK message:

    - The GLA MUST generate separate glKey messages for each recipient
      if glUseKEK.glKeyAttributes.recipientsNotMutuallyAware is set to
      TRUE.  For each recipient, you want to generate a message that
      contains that recipient's key (i.e., one message with one
      attribute).

    - The GLA MUST generate the requested number of glKey messages.
      The value in glUseKEK.glKeyAttributes.generationCounter indicates
      the number of glKey messages requested.

  If the glKey message is in response to a glRekey message:

    - The GLA MUST generate separate glKey messages for each recipient
      if glRekey.glNewKeyAttributes.recipientsNotMutuallyAware is set
      to TRUE.

    - The GLA MUST generate the requested number of glKey messages.
      The value in glUseKEK.glKeyAttributes.generationCounter indicates
      the number of glKey messages requested.




Turner                      Standards Track                    [Page 22]

RFC 5275                     CMS SymKeyDist                    June 2008


    - The GLA MUST generate one glKey message for each outstanding
      shared KEKs for the GL when glRekeyAllGLKeys is set to TRUE.

  If the glKey message was not in response to a glRekey or glUseKEK
  (e.g., where the GLA controls rekey):

    - The GLA MUST generate separate glKey messages for each recipient
      when glUseKEK.glNewKeyAttributes.recipientsNotMutuallyAware that
      set up the GL was set to TRUE.

    - The GLA MAY generate glKey messages prior to the duration on the
      last outstanding shared KEK expiring, where the number of glKey
      messages generated is generationCounter minus one (1).  Other
      distribution mechanisms can also be supported to support this
      functionality.

3.2.  Use of CMC, CMS, and PKIX

  The following sections outline the use of CMC, CMS, and the PKIX
  certificate and CRL profile.

3.2.1.  Protection Layers

  The following sections outline the protection required for the
  control attributes defined in this document.

  Note: There are multiple ways to encapsulate SignedData and
  EnvelopedData.  The first is to use a MIME wrapper around each
  ContentInfo, as specified in [MSG].  The second is not to use a MIME
  wrapper around each ContentInfo, as specified in Transporting S/MIME
  Objects in X.400 [X400TRANS].

3.2.1.1.  Minimum Protection

  At a minimum, a SignedData MUST protect each request and response
  encapsulated in PKIData and PKIResponse.  The following is a
  depiction of the minimum wrappings:

  Minimum Protection
  ------------------
  SignedData
   PKIData or PKIResponse
    controlSequence

  Prior to taking any action on any request or response SignedData(s)
  MUST be processed according to [CMS].





Turner                      Standards Track                    [Page 23]

RFC 5275                     CMS SymKeyDist                    June 2008


3.2.1.2.  Additional Protection

  An additional EnvelopedData MAY also be used to provide
  confidentiality of the request and response.  An additional
  SignedData MAY also be added to provide authentication and integrity
  of the encapsulated EnvelopedData.  The following is a depiction of
  the optional additional wrappings:

                                 Authentication and Integrity
  Confidentiality Protection     of Confidentiality Protection
  --------------------------     -----------------------------
  EnvelopedData                  SignedData
   SignedData                     EnvelopedData
    PKIData or PKIResponse         SignedData
     controlSequence                PKIData or PKIResponse
                                     controlSequence

  If an incoming message is encrypted, the confidentiality of the
  message MUST be preserved.  All EnvelopedData objects MUST be
  processed as specified in [CMS].  If a SignedData is added over an
  EnvelopedData, a ContentHints attribute SHOULD be added.  See Section
  2.9 of Extended Security Services for S/MIME [ESS].

  If the GLO or GL member applies confidentiality to a request, the
  EnvelopedData MUST include the GLA as a recipient.  If the GLA
  forwards the GL member request to the GLO, then the GLA MUST decrypt
  the EnvelopedData content, strip the confidentiality layer, and apply
  its own confidentiality layer as an EnvelopedData with the GLO as a
  recipient.

3.2.2.  Combining Requests and Responses

  Multiple requests and responses corresponding to a GL MAY be included
  in one PKIData.controlSequence or PKIResponse.controlSequence.
  Requests and responses for multiple GLs MAY be combined in one
  PKIData or PKIResponse by using PKIData.cmsSequence and
  PKIResponse.cmsSequence.  A separate cmsSequence MUST be used for
  different GLs.  That is, requests corresponding to two different GLs
  are included in different cmsSequences.  The following is a diagram
  depicting multiple requests and responses combined in one PKIData and
  PKIResponse:










Turner                      Standards Track                    [Page 24]

RFC 5275                     CMS SymKeyDist                    June 2008


      Multiple Requests and Responses
  Request                        Response
  -------                        --------
  SignedData                      SignedData
   PKIData                         PKIResponse
    cmsSequence                     cmsSequence
     SignedData                      SignedData
      PKIData                         PKIResponse
       controlSequence                 controlSequence
        One or more requests            One or more responses
        corresponding to one GL         corresponding to one GL
     SignedData                      SignedData
      PKIData                         PKIResponse
       controlSequence                 controlSequence
        One or more requests            One or more responses
        corresponding to another GL     corresponding to another GL

  When applying confidentiality to multiple requests and responses, all
  of the requests/responses MAY be included in one EnvelopedData.  The
  following is a depiction:

  Confidentiality of Multiple Requests and Responses
  Wrapped Together
  ----------------
  EnvelopedData
   SignedData
    PKIData
     cmsSequence
      SignedData
       PKIResponse
        controlSequence
         One or more requests
         corresponding to one GL
      SignedData
       PKIData
        controlSequence
         One or more requests
         corresponding to one GL













Turner                      Standards Track                    [Page 25]

RFC 5275                     CMS SymKeyDist                    June 2008


  Certain combinations of requests in one PKIData.controlSequence and
  one PKIResponse.controlSequence are not allowed.  The invalid
  combinations listed here MUST NOT be generated:

     Invalid Combinations
  ---------------------------
  glUseKEK   & glDeleteMember
  glUseKEK   & glRekey
  glUseKEK   & glDelete
  glDelete   & glAddMember
  glDelete   & glDeleteMember
  glDelete   & glRekey
  glDelete   & glAddOwner
  glDelete   & glRemoveOwner

  To avoid unnecessary errors, certain requests and responses SHOULD be
  processed prior to others.  The following is the priority of message
  processing, if not listed it is an implementation decision as to
  which to process first: glUseKEK before glAddMember, glRekey before
  glAddMember, and glDeleteMember before glRekey.  Note that there is a
  processing priority, but it does not imply an ordering within the
  content.

3.2.3.  GLA Generated Messages

  When the GLA generates a success or fail message, it generates one
  for each request.  SKDFailInfo values of unsupportedDuration,
  unsupportedDeliveryMethod, unsupportedAlgorithm, noGLONameMatch,
  nameAlreadyInUse, alreadyAnOwner, and notAnOwner are not returned to
  GL members.

  If GLKeyAttributes.recipientsNotMutuallyAware is set to TRUE, a
  separate PKIResponse.cMCStatusInfoExt and PKIData.glKey MUST be
  generated for each recipient.  However, it is valid to send one
  message with multiple attributes to the same recipient.

  If the GL has multiple GLOs, the GLA MUST send cMCStatusInfoExt
  messages to the requesting GLO.  The mechanism to determine which GLO
  made the request is beyond the scope of this document.

  If a GL is managed and the GLA receives a glAddMember,
  glDeleteMember, or glkCompromise message, the GLA redirects the
  request to the GLO for review.  An additional, SignedData MUST be
  applied to the redirected request as follows:







Turner                      Standards Track                    [Page 26]

RFC 5275                     CMS SymKeyDist                    June 2008


  GLA Forwarded Requests
  ----------------------
  SignedData
   PKIData
     cmsSequence
       SignedData
        PKIData
         controlSequence

3.2.4.  CMC Control Attributes and CMS Signed Attributes

  CMC carries control attributes as CMS signed attributes.  These
  attributes are defined in [CMC] and [CMS].  Some of these attributes
  are REQUIRED; others are OPTIONAL.  The required attributes are as
  follows: cMCStatusInfoExt transactionId, senderNonce, recipientNonce,
  queryPending, and signingTime.  Other attributes can also be used;
  however, their use is beyond the scope of this document.  The
  following sections specify requirements in addition to those already
  specified in [CMC] and [CMS].

3.2.4.1.  Using cMCStatusInfoExt

  cMCStatusInfoExt is used by GLAs to indicate to GLOs and GL members
  that a request was unsuccessful.  Two classes of failure codes are
  used within this document.  Errors from the CMCFailInfo list, found
  in Section 5.1.4 of CMC, are encoded as defined in CMC.  Error codes
  defined in this document are encoded using the ExtendedFailInfo field
  of the cmcStatusInfoExt structure.  If the same failure code applies
  to multiple commands, a single cmcStatusInfoExt structure can be used
  with multiple items in cMCStatusInfoExt.bodyList.  The GLA MAY also
  return other pertinent information in statusString.  The SKDFailInfo
  object identifier and value are:

  id-cet-skdFailInfo OBJECT IDENTIFIER ::= { iso(1)
    identified-organization(3) dod(6) internet(1) security(5)
    mechanisms(5) pkix(7) cet(15) skdFailInfo(1) }

  SKDFailInfo ::= INTEGER {
    unspecified           (0),
    closedGL              (1),
    unsupportedDuration   (2),
    noGLACertificate      (3),
    invalidCert           (4),
    unsupportedAlgorithm  (5),
    noGLONameMatch        (6),
    invalidGLName         (7),
    nameAlreadyInUse      (8),
    noSpam                (9),



Turner                      Standards Track                    [Page 27]

RFC 5275                     CMS SymKeyDist                    June 2008


  -- obsolete             (10),
    alreadyAMember        (11),
    notAMember            (12),
    alreadyAnOwner        (13),
    notAnOwner            (14) }

  The values have the following meaning:

    - unspecified indicates that the GLA is unable or unwilling to
      perform the requested action and does not want to indicate the
      reason.

    - closedGL indicates that members can only be added or deleted by
      the GLO.

    - unsupportedDuration indicates that the GLA does not support
      generating keys that are valid for the requested duration.

    - noGLACertificate indicates that the GLA does not have a valid
      certificate.

    - invalidCert indicates that the member's encryption certificate
      was not verifiable (i.e., signature did not validate,
      certificate's serial number present on a CRL, the certificate
      expired, etc.).

    - unsupportedAlgorithm indicates the GLA does not support the
      requested algorithm.

    - noGLONameMatch indicates that one of the names in the certificate
      used to sign a request does not match the name of a registered
      GLO.

    - invalidGLName indicates that the GLA does not support the glName
      present in the request.

    - nameAlreadyInUse indicates that the glName is already assigned on
      the GLA.

    - noSpam indicates that the prospective GL member did not sign the
      request (i.e., if the name in glMember.glMemberName does not
      match one of the names (either the subject distinguished name or
      one of the subject alternative names) in the certificate used to
      sign the request).

    - alreadyAMember indicates that the prospective GL member is
      already a GL member.




Turner                      Standards Track                    [Page 28]

RFC 5275                     CMS SymKeyDist                    June 2008


    - notAMember indicates that the prospective GL member to be deleted
      is not presently a GL member.

    - alreadyAnOwner indicates that the prospective GLO is already a
      GLO.

    - notAnOwner indicates that the prospective GLO to be deleted is
      not presently a GLO.

  cMCStatusInfoExt is used by GLAs to indicate to GLOs and GL members
  that a request was successfully completed.  If the request was
  successful, the GLA returns a cMCStatusInfoExt response with
  cMCStatus.success and optionally other pertinent information in
  statusString.

  When the GL is managed and the GLO has reviewed GL member initiated
  glAddMember, glDeleteMember, and glkComrpomise requests, the GLO uses
  cMCStatusInfoExt to indicate the success or failure of the request.
  If the request is allowed, cMCStatus.success is returned and
  statusString is optionally returned to convey additional information.
  If the request is denied, cMCStatus.failed is returned and
  statusString is optionally returned to convey additional information.
  Additionally, the appropriate SKDFailInfo can be included in
  cMCStatusInfoExt.extendedFailInfo.

  cMCStatusInfoExt is used by GLOs, GLAs, and GL members to indicate
  that signature verification failed.  If the signature failed to
  verify over any control attribute except a cMCStatusInfoExt, a
  cMCStatusInfoExt control attribute MUST be returned indicating
  cMCStatus.failed and otherInfo.failInfo.badMessageCheck.  If the
  signature over the outermost PKIData failed, the bodyList value is
  zero (0).  If the signature over any other PKIData failed, the
  bodyList value is the bodyPartId value from the request or response.
  GLOs and GL members who receive cMCStatusInfoExt messages whose
  signatures are invalid SHOULD generate a new request to avoid
  badMessageCheck message loops.

  cMCStatusInfoExt is also used by GLOs and GLAs to indicate that a
  request could not be performed immediately.  If the request could not
  be processed immediately by the GLA or GLO, the cMCStatusInfoExt
  control attribute MUST be returned indicating cMCStatus.pending and
  otherInfo.pendInfo.  When requests are redirected to the GLO for
  approval (for managed lists), the GLA MUST NOT return a
  cMCStatusInfoExt indicating query pending.







Turner                      Standards Track                    [Page 29]

RFC 5275                     CMS SymKeyDist                    June 2008


  cMCStatusInfoExt is also used by GLAs to indicate that a
  glaQueryRequest is not supported.  If the glaQueryRequest is not
  supported, the cMCStatusInfoExt control attribute MUST be returned
  indicating cMCStatus.noSupport and statusString is optionally
  returned to convey additional information.

  cMCStatusInfoExt is also used by GL members, GLOs, and GLAs to
  indicate that the signingTime (see Section 3.2.4.3) is not close
  enough to the locally specified time.  If the local time is not close
  enough to the time specified in signingTime, a cMCStatus.failed and
  otherInfo.failInfo.badTime MAY be returned.

3.2.4.2.  Using transactionId

  transactionId MAY be included by GLOs, GLAs, or GL members to
  identify a given transaction.  All subsequent requests and responses
  related to the original request MUST include the same transactionId
  control attribute.  If GL members include a transactionId and the
  request is redirected to the GLO, the GLA MAY include an additional
  transactionId in the outer PKIData.  If the GLA included an
  additional transactionId in the outer PKIData, when the GLO generates
  a cMCStatusInfoExt response it generates one for the GLA with the
  GLA's transactionId and one for the GL member with the GL member's
  transactionId.

3.2.4.3.  Using Nonces and signingTime

  The use of nonces (see Section 5.6 of [CMC]) and an indication of
  when the message was signed (see Section 11.3 of [CMS]) can be used
  to provide application-level replay prevention.

  To protect the GL, all messages MUST include the signingTime
  attribute.  Message originators and recipients can then use the time
  provided in this attribute to determine whether they have previously
  received the message.

  If the originating message includes a senderNonce, the response to
  the message MUST include the received senderNonce value as the
  recipientNonce and a new value as the senderNonce value in the
  response.

  If a GLA aggregates multiple messages together or forwards a message
  to a GLO, the GLA MAY optionally generate a new nonce value and
  include that in the wrapping message.  When the response comes back
  from the GLO, the GLA builds a response to the originator(s) of the
  message(s) and deals with each of the nonce values from the
  originating messages.




Turner                      Standards Track                    [Page 30]

RFC 5275                     CMS SymKeyDist                    June 2008


  For these attributes, it is necessary to maintain state information
  on exchanges to compare one result to another.  The time period for
  which this information is maintained is a local policy.

3.2.4.4.  CMC and CMS Attribute Support Requirements

  The following are the implementation requirements for CMC control
  attributes and CMS signed attributes for an implementation to be
  considered conformant to this specification:

         Implementation Requirement     |
     GLO    |      GLA      | GL Member | Attribute
   O    R   |  O    R    F  |  O    R   |
  --------- | ------------- | --------- | ----------
  MUST MUST | MUST MUST  -  | MUST MUST | cMCStatusInfoExt
  MAY  MAY  | MUST MUST  -  | MAY  MAY  | transactionId
  MAY  MAY  | MUST MUST  -  | MAY  MAY  | senderNonce
  MAY  MAY  | MUST MUST  -  | MAY  MAY  | recepientNonce
  MUST MUST | MUST MUST  -  | MUST MUST | SKDFailInfo
  MUST MUST | MUST MUST  -  | MUST MUST | signingTime

3.2.5.  Resubmitted GL Member Messages

  When the GL is managed, the GLA forwards the GL member requests to
  the GLO for GLO approval by creating a new request message containing
  the GL member request(s) as a cmsSequence item.  If the GLO approves
  the request, it can either add a new layer of wrapping and send it
  back to the GLA or create a new message and send it to the GLA.
  (Note in this case there are now 3 layers of PKIData messages with
  appropriate signing layers.)

3.2.6.  PKIX Certificate and CRL Profile

  Signatures, certificates, and CRLs are verified according to the PKIX
  profile [PROFILE].

  Name matching is performed according to the PKIX profile [PROFILE].

  All distinguished name forms must follow the UTF8String convention
  noted in the PKIX profile [PROFILE].

  A certificate per GL would be issued to the GLA.

  GL policy may mandate that the GL member's address be included in the
  GL member's certificate.






Turner                      Standards Track                    [Page 31]

RFC 5275                     CMS SymKeyDist                    June 2008


4.  Administrative Messages

  There are a number of administrative messages that must be exchanged
  to manage a GL.  The following sections describe each request and
  response message combination in detail.  The procedures defined in
  this section are not prescriptive.

4.1.  Assign KEK to GL

  Prior to generating a group key, a GL needs to be set up and a shared
  KEK assigned to the GL.  Figure 3 depicts the protocol interactions
  to set up and assign a shared KEK.  Note that error messages are not
  depicted in Figure 3.  Additionally, behavior for the optional
  transactionId, senderNonce, and recipientNonce CMC control attributes
  is not addressed in these procedures.

   +-----+  1     2  +-----+
   | GLA | <-------> | GLO |
   +-----+           +-----+

  Figure 3 - Create Group List

  The process is as follows:

  1 - The GLO is the entity responsible for requesting the creation of
      the GL.  The GLO sends a
      SignedData.PKIData.controlSequence.glUseKEK request to the GLA (1
      in Figure 3).  The GLO MUST include glName, glAddress,
      glOwnerName, glOwnerAddress, and glAdministration.  The GLO MAY
      also include their preferences for the shared KEK in
      glKeyAttributes by indicating whether the GLO controls the rekey
      in rekeyControlledByGLO, whether separate glKey messages should
      be sent to each recipient in recipientsNotMutuallyAware, the
      requested algorithm to be used with the shared KEK in
      requestedAlgorithm, the duration of the shared KEK, and how many
      shared KEKs should be initially distributed in generationCounter.
      The GLO MUST also include the signingTime attribute with this
      request.

    1.a - If the GLO knows of members to be added to the GL, the
          glAddMember request(s) MAY be included in the same
          controlSequence as the glUseKEK request (see Section 3.2.2).
          The GLO indicates the same glName in the glAddMember request
          as in glUseKEK.glInfo.glName.  Further glAddMember procedures
          are covered in Section 4.3.






Turner                      Standards Track                    [Page 32]

RFC 5275                     CMS SymKeyDist                    June 2008


    1.b - The GLO can apply confidentiality to the request by
          encapsulating the SignedData.PKIData in an EnvelopedData (see
          Section 3.2.1.2).

    1.c - The GLO can also optionally apply another SignedData over the
          EnvelopedData (see Section 3.2.1.2).

  2 - Upon receipt of the request, the GLA checks the signingTime and
      verifies the signature on the innermost SignedData.PKIData.  If
      an additional SignedData and/or EnvelopedData encapsulates the
      request (see Sections 3.2.1.2 and 3.2.2), the GLA verifies the
      outer signature(s) and/or decrypts the outer layer(s) prior to
      verifying the signature on the innermost SignedData.

    2.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLA MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    2.b - Else if signature processing continues and if the signatures
          do not verify, the GLA returns a cMCStatusInfoExt response
          indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck.  Additionally, a
          signingTime attribute is included with the response.

    2.c - Else if the signatures do verify but the GLA does not have a
          valid certificate, the GLA returns a cMCStatusInfoExt with
          cMCStatus.failed and otherInfo.extendedFailInfo.SKDFailInfo
          value of noValidGLACertificate.  Additionally, a signingTime
          attribute is included with the response.  Instead of
          immediately returning the error code, the GLA attempts to get
          a certificate, possibly using [CMC].

    2.d - Else the signatures are valid and the GLA does have a valid
          certificate, the GLA checks that one of the names in the
          certificate used to sign the request matches one of the names
          in glUseKEK.glOwnerInfo.glOwnerName.

      2.d.1 - If the names do not match, the GLA returns a response
              indicating cMCStatusInfoExt with cMCStatus.failed and
              otherInfo.extendedFailInfo.SKDFailInfo value of
              noGLONameMatch.  Additionally, a signingTime attribute is
              included with the response.








Turner                      Standards Track                    [Page 33]

RFC 5275                     CMS SymKeyDist                    June 2008


      2.d.2 - Else if the names all match, the GLA checks that the
              glName and glAddress are not already in use.  The GLA
              also checks any glAddMember included within the
              controlSequence with this glUseKEK.  Further processing
              of the glAddMember is covered in Section 4.3.

        2.d.2.a - If the glName is already in use, the GLA returns a
                  response indicating cMCStatusInfoExt with
                  cMCStatus.failed and
                  otherInfo.extendedFailInfo.SKDFailInfo value of
                  nameAlreadyInUse.  Additionally, a signingTime
                  attribute is included with the response.

        2.d.2.b - Else if the requestedAlgorithm is not supported, the
                  GLA returns a response indicating cMCStatusInfoExt
                  with cMCStatus.failed and
                  otherInfo.extendedFailInfo.SKDFailInfo value of
                  unsupportedAlgorithm.  Additionally, a signingTime
                  attribute is included with the response.

        2.d.2.c - Else if the duration cannot be supported, determining
                  this is beyond the scope of this document, the GLA
                  returns a response indicating cMCStatusInfoExt with
                  cMCStatus.failed and
                  otherInfo.extendedFailInfo.SKDFailInfo value of
                  unsupportedDuration.  Additionally, a signingTime
                  attribute is included with the response.

        2.d.2.d - Else if the GL cannot be supported for other reasons,
                  which the GLA does not wish to disclose, the GLA
                  returns a response indicating cMCStatusInfoExt with
                  cMCStatus.failed and
                  otherInfo.extendedFailInfo.SKDFailInfo value of
                  unspecified.  Additionally, a signingTime attribute
                  is included with the response.

        2.d.2.e - Else if the glName is not already in use, the
                  duration can be supported, and the requestedAlgorithm
                  is supported, the GLA MUST return a cMCStatusInfoExt
                  indicating cMCStatus.success and a signingTime
                  attribute. (2 in Figure 3).  The GLA also takes
                  administrative actions, which are beyond the scope of
                  this document, to store the glName, glAddress,
                  glKeyAttributes, glOwnerName, and glOwnerAddress.
                  The GLA also sends a glKey message as described in
                  section 5.





Turner                      Standards Track                    [Page 34]

RFC 5275                     CMS SymKeyDist                    June 2008


          2.d.2.e.1 - The GLA can apply confidentiality to the response
                      by encapsulating the SignedData.PKIResponse in an
                      EnvelopedData if the request was encapsulated in
                      an EnvelopedData (see Section 3.2.1.2).

          2.d.2.e.2 - The GLA can also optionally apply another
                      SignedData over the EnvelopedData (see Section
                      3.2.1.2).

  3 - Upon receipt of the cMCStatusInfoExt responses, the GLO checks
      the signingTime and verifies the GLA signature(s).  If an
      additional SignedData and/or EnvelopedData encapsulates the
      response (see Section 3.2.1.2 or 3.2.2), the GLO verifies the
      outer signature and/or decrypts the outer layer prior to
      verifying the signature on the innermost SignedData.

    3.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLO MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    3.b - Else if signature processing continues and if the signatures
          do verify, the GLO MUST check that one of the names in the
          certificate used to sign the response matches the name of the
          GL.

      3.b.1 - If the name of the GL does not match the name present in
              the certificate used to sign the message, the GLO should
              not believe the response.

      3.b.2 - Else if the name of the GL does match the name present in
              the certificate and:

        3.b.2.a - If the signatures do verify and the response was
                  cMCStatusInfoExt indicating cMCStatus.success, the
                  GLO has successfully created the GL.

        3.b.2.b - Else if the signatures are valid and the response is
                  cMCStatusInfoExt.cMCStatus.failed with any reason,
                  the GLO can reattempt to create the GL using the
                  information provided in the response.  The GLO can
                  also use the glaQueryRequest to determine the
                  algorithms and other characteristics supported by the
                  GLA (see Section 4.9).







Turner                      Standards Track                    [Page 35]

RFC 5275                     CMS SymKeyDist                    June 2008


4.2.  Delete GL from GLA

  From time to time, there are instances when a GL is no longer needed.
  In this case, the GLO deletes the GL.  Figure 4 depicts the protocol
  interactions to delete a GL.  Note that behavior for the optional
  transactionId, senderNonce, and recipientNonce CMC control attributes
  is not addressed in these procedures.

      +-----+   1    2  +-----+
      | GLA | <-------> | GLO |
      +-----+           +-----+

     Figure 4 - Delete Group List

  The process is as follows:

  1 - The GLO is responsible for requesting the deletion of the GL.
      The GLO sends a SignedData.PKIData.controlSequence.glDelete
      request to the GLA (1 in Figure 4).  The name of the GL to be
      deleted is included in GeneralName.  The GLO MUST also include
      the signingTime attribute and can also include a transactionId
      and senderNonce attributes.

    1.a - The GLO can optionally apply confidentiality to the request
          by encapsulating the SignedData.PKIData in an EnvelopedData
          (see Section 3.2.1.2).

    1.b - The GLO MAY optionally apply another SignedData over the
          EnvelopedData (see Section 3.2.1.2).

  2 - Upon receipt of the request, the GLA checks the signingTime and
      verifies the signature on the innermost SignedData.PKIData.  If
      an additional SignedData and/or EnvelopedData encapsulates the
      request (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
      outer signature and/or decrypts the outer layer prior to
      verifying the signature on the innermost SignedData.

    2.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLA MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    2.b - Else if signature processing continues and if the signatures
          cannot be verified, the GLA returns a cMCStatusInfoExt
          response indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck.  Additionally, a
          signingTime attribute is included with the response.




Turner                      Standards Track                    [Page 36]

RFC 5275                     CMS SymKeyDist                    June 2008


    2.c - Else if the signatures verify, the GLA makes sure the GL is
          supported by checking the name of the GL matches a glName
          stored on the GLA.

      2.c.1 - If the glName is not supported by the GLA, the GLA
              returns a response indicating cMCStatusInfoExt with
              cMCStatus.failed and
              otherInfo.extendedFailInfo.SKDFailInfo value of
              invalidGLName.  Additionally, a signingTime attribute is
              included with the response.

      2.c.2 - Else if the glName is supported by the GLA, the GLA
              ensures that a registered GLO signed the glDelete request
              by checking if one of the names present in the digital
              signature certificate used to sign the glDelete request
              matches a registered GLO.

        2.c.2.a - If the names do not match, the GLA returns a response
                  indicating cMCStatusInfoExt with cMCStatus.failed and
                  otherInfo.extendedFailInfo.SKDFailInfo value of
                  noGLONameMatch.  Additionally, a signingTime
                  attribute is included with the response.

        2.c.2.b - Else if the names do match, but the GL cannot be
                  deleted for other reasons, which the GLA does not
                  wish to disclose, the GLA returns a response
                  indicating cMCStatusInfoExt with cMCStatus.failed and
                  otherInfo.extendedFailInfo.SKDFailInfo value of
                  unspecified.  Additionally, a signingTime attribute
                  is included with the response.  Actions beyond the
                  scope of this document must then be taken to delete
                  the GL from the GLA.

        2.c.2.c - Else if the names do match, the GLA returns a
                  cMCStatusInfoExt indicating cMCStatus.success and a
                  signingTime attribute (2 in Figure 4).  The GLA ought
                  not accept further requests for member additions,
                  member deletions, or group rekeys for this GL.

          2.c.2.c.1 - The GLA can apply confidentiality to the response
                      by encapsulating the SignedData.PKIResponse in an
                      EnvelopedData if the request was encapsulated in
                      an EnvelopedData (see Section 3.2.1.2).

          2.c.2.c.2 - The GLA MAY optionally apply another SignedData
                      over the EnvelopedData (see Section 3.2.1.2).





Turner                      Standards Track                    [Page 37]

RFC 5275                     CMS SymKeyDist                    June 2008


  3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
      signingTime and verifies the GLA signature(s).  If an additional
      SignedData and/or EnvelopedData encapsulates the response (see
      Section 3.2.1.2 or 3.2.2), the GLO verifies the outer signature
      and/or decrypts the outer layer prior to verifying the signature
      on the innermost SignedData.

    3.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLO MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    3.b - Else if signature processing continues and if the signatures
          verify, the GLO checks that one of the names in the
          certificate used to sign the response matches the name of the
          GL.

      3.b.1 - If the name of the GL does not match the name present in
              the certificate used to sign the message, the GLO should
              not believe the response.

      3.b.2 - Else if the name of the GL does match the name present in
              the certificate and:

        3.b.2.a - If the signatures verify and the response was
                  cMCStatusInfoExt indicating cMCStatus.success, the
                  GLO has successfully deleted the GL.

        3.b.2.b - Else if the signatures do verify and the response was
                  cMCStatusInfoExt.cMCStatus.failed with any reason,
                  the GLO can reattempt to delete the GL using the
                  information provided in the response.

4.3.  Add Members to GL

  To add members to GLs, either the GLO or prospective members use the
  glAddMember request.  The GLA processes GLO and prospective GL member
  requests differently though.  GLOs can submit the request at any time
  to add members to the GL, and the GLA, once it has verified the
  request came from a registered GLO, should process it.  If a
  prospective member sends the request, the GLA needs to determine how
  the GL is administered.  When the GLO initially configured the GL, it
  set the GL to be unmanaged, managed, or closed (see Section 3.1.1).
  In the unmanaged case, the GLA merely processes the member's request.
  In the managed case, the GLA forwards the requests from the
  prospective members to the GLO for review.  Where there are multiple
  GLOs for a GL, which GLO the request is forwarded to is beyond the
  scope of this document.  The GLO reviews the request and either



Turner                      Standards Track                    [Page 38]

RFC 5275                     CMS SymKeyDist                    June 2008


  rejects it or submits a reformed request to the GLA.  In the closed
  case, the GLA will not accept requests from prospective members.  The
  following sections describe the processing for the GLO(s), GLA, and
  prospective GL members depending on where the glAddMeber request
  originated, either from a GLO or from prospective members.  Figure 5
  depicts the protocol interactions for the three options.  Note that
  the error messages are not depicted.  Additionally, note that
  behavior for the optional transactionId, senderNonce, and
  recipientNonce CMC control attributes is not addressed in these
  procedures.

     +-----+  2,B{A}              3  +----------+
     | GLO | <--------+    +-------> | Member 1 |
     +-----+          |    |         +----------+
              1       |    |
     +-----+ <--------+    |      3  +----------+
     | GLA |  A            +-------> |   ...    |
     +-----+ <-------------+         +----------+
                           |
                           |      3  +----------+
                           +-------> | Member n |
                                     +----------+

        Figure 5 - Member Addition

  An important decision that needs to be made on a group-by-group basis
  is whether to rekey the group every time a new member is added.
  Typically, unmanaged GLs should not be rekeyed when a new member is
  added, as the overhead associated with rekeying the group becomes
  prohibitive, as the group becomes large.  However, managed and closed
  GLs can be rekeyed to maintain the confidentiality of the traffic
  sent by group members.  An option to rekeying managed or closed GLs
  when a member is added is to generate a new GL with a different group
  key.  Group rekeying is discussed in Sections 4.5 and 5.

4.3.1.  GLO Initiated Additions

  The process for GLO initiated glAddMember requests is as follows:

  1 - The GLO collects the pertinent information for the member(s) to
      be added (this may be done through an out-of-bands means).  The
      GLO then sends a SignedData.PKIData.controlSequence with a
      separate glAddMember request for each member to the GLA (1 in
      Figure 5).  The GLO includes the GL name in glName, the member's
      name in glMember.glMemberName, the member's address in
      glMember.glMemberAddress, and the member's encryption certificate
      in glMember.certificates.pKC.  The GLO can also include any
      attribute certificates associated with the member's encryption



Turner                      Standards Track                    [Page 39]

RFC 5275                     CMS SymKeyDist                    June 2008


      certificate in glMember.certificates.aC, and the certification
      path associated with the member's encryption and attribute
      certificates in glMember.certificates.certPath.  The GLO MUST
      also include the signingTime attribute with this request.

    1.a - The GLO can optionally apply confidentiality to the request
          by encapsulating the SignedData.PKIData in an EnvelopedData
          (see Section 3.2.1.2).

    1.b - The GLO can also optionally apply another SignedData over the
          EnvelopedData (see Section 3.2.1.2).

  2 - Upon receipt of the request, the GLA checks the signingTime and
      verifies the signature on the innermost SignedData.PKIData.  If
      an additional SignedData and/or EnvelopedData encapsulates the
      request (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
      outer signature and/or decrypts the outer layer prior to
      verifying the signature on the innermost SignedData.

    2.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLA MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    2.b - Else if signature processing continues and if the signatures
          cannot be verified, the GLA returns a cMCStatusInfoExt
          response indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck.  Additionally, a
          signingTime attribute is included with the response.

    2.c - Else if the signatures verify, the glAddMember request is
          included in a controlSequence with the glUseKEK request, and
          the processing in Section 4.1 item 2.d is successfully
          completed, the GLA returns a cMCStatusInfoExt indicating
          cMCStatus.success and a signingTime attribute (2 in Figure
          5).

      2.c.1 - The GLA can apply confidentiality to the response by
              encapsulating the SignedData.PKIData in an EnvelopedData
              if the request was encapsulated in an EnvelopedData (see
              Section 3.2.1.2).

      2.c.2 - The GLA can also optionally apply another SignedData over
              the EnvelopedData (see Section 3.2.1.2).







Turner                      Standards Track                    [Page 40]

RFC 5275                     CMS SymKeyDist                    June 2008


    2.d - Else if the signatures verify and the GLAddMember request is
          not included in a controlSequence with the GLCreate request,
          the GLA makes sure the GL is supported by checking that the
          glName matches a glName stored on the GLA.

      2.d.1 - If the glName is not supported by the GLA, the GLA
              returns a response indicating cMCStatusInfoExt with
              cMCStatus.failed and
              otherInfo.extendedFailInfo.SKDFailInfo value of
              invalidGLName.  Additionally, a signingTime attribute is
              included with the response.

      2.d.2 - Else if the glName is supported by the GLA, the GLA
              checks to see if the glMemberName is present on the GL.

        2.d.2.a - If the glMemberName is present on the GL, the GLA
                  returns a response indicating cMCStatusInfoExt with
                  cMCStatus.failed and
                  otherInfo.extendedFailInfo.SKDFailInfo value of
                  alreadyAMember.  Additionally, a signingTime
                  attribute is included with the response.

        2.d.2.b - Else if the glMemberName is not present on the GL,
                  the GLA checks how the GL is administered.

          2.d.2.b.1 - If the GL is closed, the GLA checks that a
                      registered GLO signed the request by checking
                      that one of the names in the digital signature
                      certificate used to sign the request matches a
                      registered GLO.

            2.d.2.b.1.a - If the names do not match, the GLA returns a
                          response indicating cMCStatusInfoExt with
                          cMCStatus.failed and
                          otherInfo.extendedFailInfo.SKDFailInfo value
                          of noGLONameMatch.  Additionally, a
                          signingTime attribute is included with the
                          response.

            2.d.2.b.1.b - Else if the names match, the GLA verifies the
                          member's encryption certificate.

              2.d.2.b.1.b.1 - If the member's encryption certificate
                              cannot be verified, the GLA can return a
                              response indicating cMCStatusInfoExt with
                              cMCStatus.failed and
                              otherInfo.extendedFailInfo.SKDFailInfo
                              value of invalidCert to the GLO.



Turner                      Standards Track                    [Page 41]

RFC 5275                     CMS SymKeyDist                    June 2008


                              Additionally, a signingTime attribute is
                              included with the response.  If the GLA
                              does not return a
                              cMCStatusInfoExt.cMCStatus.failed
                              response, the GLA issues a glProvideCert
                              request (see Section 4.10).

              2.d.2.b.1.b.2 - Else if the member's certificate
                              verifies, the GLA returns a
                              cMCStatusInfoExt indicating
                              cMCStatus.success and a signingTime
                              attribute (2 in Figure 5).  The GLA also
                              takes administrative actions, which are
                              beyond the scope of this document, to add
                              the member to the GL stored on the GLA.
                              The GLA also distributes the shared KEK
                              to the member via the mechanism described
                              in Section 5.

                2.d.2.b.1.b.2.a - The GLA applies confidentiality to
                                  the response by encapsulating the
                                  SignedData.PKIData in an
                                  EnvelopedData if the request was
                                  encapsulated in an EnvelopedData (see
                                  Section 3.2.1.2).

                2.d.2.b.1.b.2.b - The GLA can also optionally apply
                                  another SignedData over the
                                  EnvelopedData (see Section 3.2.1.2).

          2.d.2.b.2 - Else if the GL is managed, the GLA checks that
                      either a registered GLO or the prospective member
                      signed the request.  For GLOs, one of the names
                      in the certificate used to sign the request needs
                      to match a registered GLO.  For the prospective
                      member, the name in glMember.glMemberName needs
                      to match one of the names in the certificate used
                      to sign the request.

            2.d.2.b.2.a - If the signer is neither a registered GLO nor
                          the prospective GL member, the GLA returns a
                          response indicating cMCStatusInfoExt with
                          cMCStatus.failed and
                          otherInfo.extendedFailInfo.SKDFailInfo value
                          of noSpam.  Additionally, a signingTime
                          attribute is included with the response.





Turner                      Standards Track                    [Page 42]

RFC 5275                     CMS SymKeyDist                    June 2008


            2.d.2.b.2.b - Else if the signer is a registered GLO, the
                          GLA verifies the member's encryption
                          certificate.

              2.d.2.b.2.b.1 - If the member's certificate cannot be
                              verified, the GLA can return a response
                              indicating cMCStatusInfoExt with
                              cMCStatus.failed and
                              otherInfo.extendedFailInfo.SKDFailInfo
                              value of invalidCert.  Additionally, a
                              signingTime attribute is included with
                              the response.  If the GLA does not return
                              a cMCStatus.failed response, the GLA MUST
                              issue a glProvideCert request (see
                              Section 4.10).

              2.d.2.b.2.b.2 - Else if the member's certificate
                              verifies, the GLA MUST return a
                              cMCStatusInfoExt indicating
                              cMCStatus.success and a signingTime
                              attribute to the GLO (2 in Figure 5).
                              The GLA also takes administrative
                              actions, which are beyond the scope of
                              this document, to add the member to the
                              GL stored on the GLA.  The GLA also
                              distributes the shared KEK to the member
                              via the mechanism described in Section 5.
                              The GL policy may mandate that the GL
                              member's address be included in the GL
                              member's certificate.

                2.d.2.b.2.b.2.a - The GLA applies confidentiality to
                                  the response by encapsulating the
                                  SignedData.PKIData in an
                                  EnvelopedData if the request was
                                  encapsulated in an EnvelopedData (see
                                  Section 3.2.1.2).

                2.d.2.b.2.b.2.b - The GLA can also optionally apply
                                  another SignedData over the
                                  EnvelopedData (see Section 3.2.1.2).

            2.d.2.b.2.c - Else if the signer is the prospective member,
                          the GLA forwards the glAddMember request (see
                          Section 3.2.3) to a registered GLO (B{A} in
                          Figure 5).  If there is more than one
                          registered GLO, the GLO to which the request
                          is forwarded is beyond the scope of this



Turner                      Standards Track                    [Page 43]

RFC 5275                     CMS SymKeyDist                    June 2008


                          document.  Further processing of the
                          forwarded request by GLOs is addressed in 3
                          of Section 4.3.2.

              2.d.2.b.2.c.1 - The GLA applies confidentiality to the
                              forwarded request by encapsulating the
                              SignedData.PKIData in an EnvelopedData if
                              the original request was encapsulated in
                              an EnvelopedData (see Section 3.2.1.2).

              2.d.2.b.2.c.2 - The GLA can also optionally apply another
                              SignedData over the EnvelopedData (see
                              Section 3.2.1.2).

          2.d.2.b.3 - Else if the GL is unmanaged, the GLA checks that
                      either a registered GLO or the prospective member
                      signed the request.  For GLOs, one of the names
                      in the certificate used to sign the request needs
                      to match the name of a registered GLO.  For the
                      prospective member, the name in
                      glMember.glMemberName needs to match one of the
                      names in the certificate used to sign the
                      request.

            2.d.2.b.3.a - If the signer is neither a registered GLO nor
                          the prospective member, the GLA returns a
                          response indicating cMCStatusInfoExt with
                          cMCStatus.failed and
                          otherInfo.extendedFailInfo.SKDFailInfo value
                          of noSpam.  Additionally, a signingTime
                          attribute is included with the response.

            2.d.2.b.3.b - Else if the signer is either a registered GLO
                          or the prospective member, the GLA verifies
                          the member's encryption certificate.

              2.d.2.b.3.b.1 - If the member's certificate cannot be
                              verified, the GLA can return a response
                              indicating cMCStatusInfoExt with
                              cMCStatus.failed and
                              otherInfo.extendedFailInfo.SKDFailInfo
                              value of invalidCert and a signingTime
                              attribute to either the GLO or the
                              prospective member depending on where the
                              request originated.  If the GLA does not
                              return a cMCStatus.failed response, the
                              GLA issues a glProvideCert request (see




Turner                      Standards Track                    [Page 44]

RFC 5275                     CMS SymKeyDist                    June 2008


                              Section 4.10) to either the GLO or
                              prospective member depending on where the
                              request originated.

              2.d.2.b.3.b.2 - Else if the member's certificate
                              verifies, the GLA returns a
                              cMCStatusInfoExt indicating
                              cMCStatus.success and a signingTime
                              attribute to the GLO (2 in Figure 5) if
                              the GLO signed the request and to the GL
                              member (3 in Figure 5) if the GL member
                              signed the request.  The GLA also takes
                              administrative actions, which are beyond
                              the scope of this document, to add the
                              member to the GL stored on the GLA.  The
                              GLA also distributes the shared KEK to
                              the member via the mechanism described in
                              Section 5.

                2.d.2.b.3.b.2.a - The GLA applies confidentiality to
                                  the response by encapsulating the
                                  SignedData.PKIData in an
                                  EnvelopedData if the request was
                                  encapsulated in an EnvelopedData (see
                                  Section 3.2.1.2).

                2.d.2.b.3.b.2.b - The GLA can also optionally apply
                                  another SignedData over the
                                  EnvelopedData (see Section 3.2.1.2).

  3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
      signingTime and verifies the GLA signature(s).  If an additional
      SignedData and/or EnvelopedData encapsulates the response (see
      Section 3.2.1.2 or 3.2.2), the GLO verifies the outer signature
      and/or decrypts the outer layer prior to verifying the signature
      on the innermost SignedData.

    3.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLO MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    3.b - Else if signature processing continues and if the signatures
          verify, the GLO checks that one of the names in the
          certificate used to sign the response matches the name of the
          GL.





Turner                      Standards Track                    [Page 45]

RFC 5275                     CMS SymKeyDist                    June 2008


      3.b.1 - If the name of the GL does not match the name present in
              the certificate used to sign the message, the GLO should
              not believe the response.

      3.b.2 - Else if the name of the GL matches the name present in
              the certificate and:

        3.b.2.a - If the signatures verify and the response is
                  cMCStatusInfoExt indicating cMCStatus.success, the
                  GLA has added the member to the GL.  If the member
                  was added to a managed list and the original request
                  was signed by the member, the GLO sends a
                  cMCStatusInfoExt.cMCStatus.success and a signingTime
                  attribute to the GL member.

        3.b.2.b - Else if the GLO received a
                  cMCStatusInfoExt.cMCStatus.failed with any reason,
                  the GLO can reattempt to add the member to the GL
                  using the information provided in the response.

  4 - Upon receipt of the cMCStatusInfoExt response, the prospective
      member checks the signingTime and verifies the GLA signatures or
      GLO signatures.  If an additional SignedData and/or EnvelopedData
      encapsulates the response (see Section 3.2.1.2 or 3.2.2), the GLO
      verifies the outer signature and/or decrypts the outer layer
      prior to verifying the signature on the innermost SignedData.

    4.a - If the signingTime attribute value is not within the locally
          accepted time window, the prospective member MAY return a
          response indicating cMCStatus.failed and
          otherInfo.failInfo.badTime and a signingTime attribute.

    4.b - Else if signature processing continues and if the signatures
          verify, the GL member checks that one of the names in the
          certificate used to sign the response matches the name of the
          GL.

      4.b.1 - If the name of the GL does not match the name present in
              the certificate used to sign the message, the GL member
              should not believe the response.

    4.b.2 - Else if the name of the GL matches the name present in the
              certificate and:

        4.b.2.a - If the signatures verify, the prospective member has
                  been added to the GL.





Turner                      Standards Track                    [Page 46]

RFC 5275                     CMS SymKeyDist                    June 2008


        4.b.2.b - Else if the prospective member received a
                  cMCStatusInfoExt.cMCStatus.failed, for any reason,
                  the prospective member MAY reattempt to add itself to
                  the GL using the information provided in the
                  response.

4.3.2.  Prospective Member Initiated Additions

  The process for prospective member initiated glAddMember requests is
  as follows:

  1 - The prospective GL member sends a
      SignedData.PKIData.controlSequence.glAddMember request to the GLA
      (A in Figure 5).  The prospective GL member includes: the GL name
      in glName, their name in glMember.glMemberName, their address in
      glMember.glMemberAddress, and their encryption certificate in
      glMember.certificates.pKC.  The prospective GL member can also
      include any attribute certificates associated with their
      encryption certificate in glMember.certificates.aC, and the
      certification path associated with their encryption and attribute
      certificates in glMember.certificates.certPath.  The prospective
      member MUST also include the signingTime attribute with this
      request.

    1.a - The prospective GL member can optionally apply
          confidentiality to the request by encapsulating the
          SignedData.PKIData in an EnvelopedData (see Section 3.2.1.2).

    1.b - The prospective GL member MAY optionally apply another
          SignedData over the EnvelopedData (see Section 3.2.1.2).

  2 - Upon receipt of the request, the GLA verifies the request as per
      2 in Section 4.3.1.

  3 - Upon receipt of the forwarded request, the GLO checks the
      signingTime and verifies the prospective GL member signature on
      the innermost SignedData.PKIData and the GLA signature on the
      outer layer.  If an EnvelopedData encapsulates the innermost
      layer (see Section 3.2.1.2 or 3.2.2), the GLO decrypts the outer
      layer prior to verifying the signature on the innermost
      SignedData.

      Note: For cases where the GL is closed and either a) a
      prospective member sends directly to the GLO or b) the GLA has
      mistakenly forwarded the request to the GLO, the GLO should first
      determine whether to honor the request.





Turner                      Standards Track                    [Page 47]

RFC 5275                     CMS SymKeyDist                    June 2008


    3.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLO MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime.

    3.b - Else if signature processing continues and if the signatures
          verify, the GLO checks to make sure one of the names in the
          certificate used to sign the request matches the name in
          glMember.glMemberName.

      3.b.1 - If the names do not match, the GLO sends a
              SignedData.PKIResponse.controlSequence message back to
              the prospective member with
              cMCStatusInfoExt.cMCStatus.failed indicating why the
              prospective member was denied in
              cMCStausInfo.statusString.  This stops people from adding
              people to GLs without their permission.  Additionally, a
              signingTime attribute is included with the response.

      3.b.2 - Else if the names match, the GLO determines whether the
              prospective member is allowed to be added.  The mechanism
              is beyond the scope of this document; however, the GLO
              should check to see that the glMember.glMemberName is not
              already on the GL.

        3.b.2.a - If the GLO determines the prospective member is not
                  allowed to join the GL, the GLO can return a
                  SignedData.PKIResponse.controlSequence message back
                  to the prospective member with
                  cMCStatusInfoExt.cMCtatus.failed indicating why the
                  prospective member was denied in
                  cMCStatus.statusString.  Additionally, a signingTime
                  attribute is included with the response.

        3.b.2.b - Else if the GLO determines the prospective member is
                  allowed to join the GL, the GLO verifies the member's
                  encryption certificate.

          3.b.2.b.1 - If the member's certificate cannot be verified,
                      the GLO returns a
                      SignedData.PKIResponse.controlSequence back to
                      the prospective member with
                      cMCStatusInfoExt.cMCtatus.failed indicating that
                      the member's encryption certificate did not
                      verify in cMCStatus.statusString.  Additionally,
                      a signingTime attribute is included with the
                      response.  If the GLO does not return a
                      cMCStatusInfoExt response, the GLO sends a




Turner                      Standards Track                    [Page 48]

RFC 5275                     CMS SymKeyDist                    June 2008


                      SignedData.PKIData.controlSequence.glProvideCert
                      message to the prospective member requesting a
                      new encryption certificate (see Section 4.10).

          3.b.2.b.2 - Else if the member's certificate verifies, the
                      GLO resubmits the glAddMember request (see
                      Section 3.2.5) to the GLA (1 in Figure 5).

            3.b.2.b.2.a - The GLO applies confidentiality to the new
                          GLAddMember request by encapsulating the
                          SignedData.PKIData in an EnvelopedData if the
                          initial request was encapsulated in an
                          EnvelopedData (see Section 3.2.1.2).

            3.b.2.b.2.b - The GLO can also optionally apply another
                          SignedData over the EnvelopedData (see
                          Section 3.2.1.2).

  4 - Processing continues as in 2 of Section 4.3.1.

4.4.  Delete Members from GL

  To delete members from GLs, either the GLO or members to be removed
  use the glDeleteMember request.  The GLA processes the GLO, and
  members requesting their own removal make requests differently.  The
  GLO can submit the request at any time to delete members from the GL,
  and the GLA, once it has verified the request came from a registered
  GLO, should delete the member.  If a member sends the request, the
  GLA needs to determine how the GL is administered.  When the GLO
  initially configured the GL, it set the GL to be unmanaged, managed,
  or closed (see Section 3.1.1).  In the unmanaged case, the GLA merely
  processes the member's request.  In the managed case, the GLA
  forwards the requests from the member to the GLO for review.  Where
  there are multiple GLOs for a GL, which GLO the request is forwarded
  to is beyond the scope of this document.  The GLO reviews the request
  and either rejects it or submits a reformed request to the GLA.  In
  the closed case, the GLA will not accept requests from members.  The
  following sections describe the processing for the GLO(s), GLA, and
  GL members depending on where the request originated, either from a
  GLO or from members wanting to be removed.  Figure 6 depicts the
  protocol interactions for the three options.  Note that the error
  messages are not depicted.  Additionally, behavior for the optional
  transactionId, senderNonce, and recipientNonce CMC control attributes
  is not addressed in these procedures.







Turner                      Standards Track                    [Page 49]

RFC 5275                     CMS SymKeyDist                    June 2008


  +-----+  2,B{A}              3  +----------+
  | GLO | <--------+    +-------> | Member 1 |
  +-----+          |    |         +----------+
           1       |    |
  +-----+ <--------+    |      3  +----------+
  | GLA |  A            +-------> |   ...    |
  +-----+ <-------------+         +----------+
                        |
                        |      3  +----------+
                        +-------> | Member n |
                                  +----------+

      Figure 6 - Member Deletion

  If the member is not removed from the GL, it will continue to receive
  and be able to decrypt data protected with the shared KEK and will
  continue to receive rekeys.  For unmanaged lists, there is no point
  to a group rekey because there is no guarantee that the member
  requesting to be removed has not already added itself back on the GL
  under a different name.  For managed and closed GLs, the GLO needs to
  take steps to ensure that the member being deleted is not on the GL
  twice.  After ensuring this, managed and closed GLs can be rekeyed to
  maintain the confidentiality of the traffic sent by group members.
  If the GLO is sure the member has been deleted, the group rekey
  mechanism can be used to distribute the new key (see Sections 4.5 and
  5).

4.4.1.  GLO Initiated Deletions

  The process for GLO initiated glDeleteMember requests is as follows:

  1 - The GLO collects the pertinent information for the member(s) to
      be deleted (this can be done through an out-of-band means).  The
      GLO then sends a SignedData.PKIData.controlSequence with a
      separate glDeleteMember request for each member to the GLA (1 in
      Figure 6).  The GLO MUST include the GL name in glName and the
      member's name in glMemberToDelete.  If the GL from which the
      member is being deleted is a closed or managed GL, the GLO MUST
      also generate a glRekey request and include it with the
      glDeletemember request (see Section 4.5).  The GLO MUST also
      include the signingTime attribute with this request.

    1.a - The GLO can optionally apply confidentiality to the request
          by encapsulating the SignedData.PKIData in an EnvelopedData
          (see Section 3.2.1.2).

    1.b - The GLO can also optionally apply another SignedData over the
          EnvelopedData (see Section 3.2.1.2).



Turner                      Standards Track                    [Page 50]

RFC 5275                     CMS SymKeyDist                    June 2008


  2 - Upon receipt of the request, the GLA checks the signingTime
      attribute and verifies the signature on the innermost
      SignedData.PKIData.  If an additional SignedData and/or
      EnvelopedData encapsulates the request (see Section 3.2.1.2 or
      3.2.2), the GLA verifies the outer signature and/or decrypts the
      outer layer prior to verifying the signature on the innermost
      SignedData.

    2.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLA MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    2.b - Else if signature processing continues and if the signatures
          cannot be verified, the GLA returns a cMCStatusInfoExt
          response indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck.  Additionally, a
          signingTime attribute is included with the response.

    2.c - Else if the signatures verify, the GLA makes sure the GL is
          supported by the GLA by checking that the glName matches a
          glName stored on the GLA.

      2.c.1 - If the glName is not supported by the GLA, the GLA
              returns a response indicating cMCStatusInfoExt with
              cMCStatus.failed and
              otherInfo.extendedFailInfo.SKDFailInfo value of
              invalidGLName.  Additionally, a signingTime attribute is
              included with the response.

      2.c.2 - Else if the glName is supported by the GLA, the GLA
              checks to see if the glMemberName is present on the GL.

        2.c.2.a - If the glMemberName is not present on the GL, the GLA
                  returns a response indicating cMCStatusInfoExt with
                  cMCStatus.failed and
                  otherInfo.extendedFailInfo.SKDFailInfo value of
                  notAMember.  Additionally, a signingTime attribute is
                  included with the response.

        2.c.2.b - Else if the glMemberName is already on the GL, the
                  GLA checks how the GL is administered.

          2.c.2.b.1 - If the GL is closed, the GLA checks that the
                      registered GLO signed the request by checking
                      that one of the names in the digital signature
                      certificate used to sign the request matches the
                      registered GLO.



Turner                      Standards Track                    [Page 51]

RFC 5275                     CMS SymKeyDist                    June 2008


            2.c.2.b.1.a - If the names do not match, the GLA returns a
                          response indicating cMCStatusInfoExt with
                          cMCStatus.failed and
                          otherInfo.extendedFailInfo.SKDFailInfo value
                          of closedGL.  Additionally, a signingTime
                          attribute is included with the response.

            2.c.2.b.1.b - Else if the names do match, the GLA returns a
                          cMCStatusInfoExt.cMCStatus.success and a
                          signingTime attribute (2 in Figure 5).  The
                          GLA also takes administrative actions, which
                          are beyond the scope of this document, to
                          delete the member with the GL stored on the
                          GLA.  Note that the GL also needs to be
                          rekeyed as described in Section 5.

              2.c.2.b.1.b.1 - The GLA applies confidentiality to the
                              response by encapsulating the
                              SignedData.PKIData in an EnvelopedData if
                              the request was encapsulated in an
                              EnvelopedData (see Section 3.2.1.2).

              2.c.2.b.1.b.2 - The GLA can also optionally apply another
                              SignedData over the EnvelopedData (see
                              Section 3.2.1.2).

          2.c.2.b.2 - Else if the GL is managed, the GLA checks that
                      either a registered GLO or the prospective member
                      signed the request.  For GLOs, one of the names
                      in the certificate used to sign the request needs
                      to match a registered GLO.  For the prospective
                      member, the name in glMember.glMemberName needs
                      to match one of the names in the certificate used
                      to sign the request.

            2.c.2.b.2.a - If the signer is neither a registered GLO nor
                          the prospective GL member, the GLA returns a
                          response indicating cMCStatusInfoExt with
                          cMCStatus.failed and
                          otherInfo.extendedFailInfo.SKDFailInfo value
                          of noSpam.  Additionally, a signingTime
                          attribute is included with the response.

            2.c.2.b.2.b - Else if the signer is a registered GLO, the
                          GLA returns a
                          cMCStatusInfoExt.cMCStatus.success and a
                          signingTime attribute(2 in Figure 6).  The
                          GLA also takes administrative actions, which



Turner                      Standards Track                    [Page 52]

RFC 5275                     CMS SymKeyDist                    June 2008


                          are beyond the scope of this document, to
                          delete the member with the GL stored on the
                          GLA.  Note that the GL will also be rekeyed
                          as described in Section 5.

              2.c.2.b.2.b.1 - The GLA applies confidentiality to the
                              response by encapsulating the
                              SignedData.PKIData in an EnvelopedData if
                              the request was encapsulated in an
                              EnvelopedData (see Section 3.2.1.2).

              2.c.2.b.2.b.2 - The GLA can also optionally apply another
                              SignedData over the EnvelopedData (see
                              Section 3.2.1.2).

            2.c.2.b.2.c - Else if the signer is the prospective member,
                          the GLA forwards the glDeleteMember request
                          (see Section 3.2.3) to the GLO (B{A} in
                          Figure 6).  If there is more than one
                          registered GLO, the GLO to which the request
                          is forwarded to is beyond the scope of this
                          document.  Further processing of the
                          forwarded request by GLOs is addressed in 3
                          of Section 4.4.2.

              2.c.2.b.2.c.1 - The GLA applies confidentiality to the
                              forwarded request by encapsulating the
                              SignedData.PKIData in an EnvelopedData if
                              the request was encapsulated in an
                              EnvelopedData (see Section 3.2.1.2).

              2.c.2.b.2.c.2 - The GLA can also optionally apply another
                              SignedData over the EnvelopedData (see
                              Section 3.2.1.2).

          2.c.2.b.3 - Else if the GL is unmanaged, the GLA checks that
                      either a registered GLO or the prospective member
                      signed the request.  For GLOs, one of the names
                      in the certificate used to sign the request needs
                      to match the name of a registered GLO.  For the
                      prospective member, the name in
                      glMember.glMemberName needs to match one of the
                      names in the certificate used to sign the
                      request.







Turner                      Standards Track                    [Page 53]

RFC 5275                     CMS SymKeyDist                    June 2008


            2.c.2.b.3.a - If the signer is neither the GLO nor the
                          prospective member, the GLA returns a
                          response indicating cMCStatusInfoExt with
                          cMCStatus.failed and
                          otherInfo.extendedFailInfo.SKDFailInfo value
                          of noSpam.  Additionally, a signingTime
                          attribute is included with the response.

            2.c.2.b.3.b - Else if the signer is either a registered GLO
                          or the member, the GLA returns a
                          cMCStatusInfoExt.cMCStatus.success and a
                          signingTime attribute to the GLO (2 in Figure
                          6) if the GLO signed the request and to the
                          GL member (3 in Figure 6) if the GL member
                          signed the request.  The GLA also takes
                          administrative actions, which are beyond the
                          scope of this document, to delete the member
                          with the GL stored on the GLA.

              2.c.2.b.3.b.1 - The GLA applies confidentiality to the
                              response by encapsulating the
                              SignedData.PKIData in an EnvelopedData if
                              the request was encapsulated in an
                              EnvelopedData (see Section 3.2.1.2).

              2.c.2.b.3.b.2 - The GLA can also optionally apply another
                              SignedData over the EnvelopedData (see
                              Section 3.2.1.2).

  3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
      signingTime and verifies the GLA signatures.  If an additional
      SignedData and/or EnvelopedData encapsulates the response (see
      Section 3.2.1.2 or 3.2.2), the GLO verifies the outer signature
      and/or decrypts the outer layer prior to verifying the signature
      on the innermost SignedData.

    3.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLO MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    3.b - Else if signature processing continues and if the signatures
          do verify, the GLO checks that one of the names in the
          certificate used to sign the response matches the name of the
          GL.






Turner                      Standards Track                    [Page 54]

RFC 5275                     CMS SymKeyDist                    June 2008


      3.b.1 - If the name of the GL does not match the name present in
              the certificate used to sign the message, the GLO should
              not believe the response.

      3.b.2 - Else if the name of the GL matches the name present in
              the certificate and:

        3.b.2.a - If the signatures verify and the response is
                  cMCStatusInfoExt.cMCStatus.success, the GLO has
                  deleted the member from the GL.  If member was
                  deleted from a managed list and the original request
                  was signed by the member, the GLO sends a
                  cMCStatusInfoExt.cMCStatus.success and a signingTime
                  attribute to the GL member.

        3.b.2.b - Else if the GLO received a
                  cMCStatusInfoExt.cMCStatus.failed with any reason,
                  the GLO may reattempt to delete the member from the
                  GL using the information provided in the response.

  4 - Upon receipt of the cMCStatusInfoExt response, the member checks
      the signingTime and verifies the GLA signature(s) or GLO
      signature(s).  If an additional SignedData and/or EnvelopedData
      encapsulates the response (see Section 3.2.1.2 or 3.2.2), the GLO
      verifies the outer signature and/or decrypts the outer layer
      prior to verifying the signature on the innermost SignedData.

    4.a - If the signingTime attribute value is not within the locally
          accepted time window, the prospective member MAY return a
          response indicating cMCStatus.failed and
          otherInfo.failInfo.badTime and a signingTime attribute.

    4.b - Else if signature processing continues and if the signatures
          verify, the GL member checks that one of the names in the
          certificate used to sign the response matches the name of the
          GL.

      4.b.1 - If the name of the GL does not match the name present in
              the certificate used to sign the message, the GL member
              should not believe the response.

      4.b.2 - Else if the name of the GL matches the name present in
              the certificate and:

        4.b.2.a - If the signature(s) verify, the member has been
                  deleted from the GL.





Turner                      Standards Track                    [Page 55]

RFC 5275                     CMS SymKeyDist                    June 2008


        4.b.2.b - Else if the member received a
                  cMCStatusInfoExt.cMCStatus.failed with any reason,
                  the member can reattempt to delete itself from the GL
                  using the information provided in the response.

4.4.2.  Member Initiated Deletions

  The process for member initiated deletion of its own membership using
  the glDeleteMember requests is as follows:

  1 - The member sends a
      SignedData.PKIData.controlSequence.glDeleteMember request to the
      GLA (A in Figure 6).  The member includes the name of the GL in
      glName and the member's own name in glMemberToDelete.  The GL
      member MUST also include the signingTime attribute with this
      request.

    1.a - The member can optionally apply confidentiality to the
          request by encapsulating the SignedData.PKIData in an
          EnvelopedData (see Section 3.2.1.2).

    1.b - The member can also optionally apply another SignedData over
          the EnvelopedData (see Section 3.2.1.2).

  2 - Upon receipt of the request, the GLA verifies the request as per
      2 in Section 4.4.1.

  3 - Upon receipt of the forwarded request, the GLO checks the
      signingTime and verifies the member signature on the innermost
      SignedData.PKIData and the GLA signature on the outer layer.  If
      an EnvelopedData encapsulates the innermost layer (see Section
      3.2.1.2 or 3.2.2), the GLO decrypts the outer layer prior to
      verifying the signature on the innermost SignedData.

      Note: For cases where the GL is closed and either (a) a
      prospective member sends directly to the GLO or (b) the GLA has
      mistakenly forwarded the request to the GLO, the GLO should first
      determine whether to honor the request.

    3.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLO MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.








Turner                      Standards Track                    [Page 56]

RFC 5275                     CMS SymKeyDist                    June 2008


    3.b - Else if signature processing continues if the signatures
          cannot be verified, the GLO returns a cMCStatusInfoExt
          response indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck and a signingTime
          attribute.

    3.c - Else if the signatures verify, the GLO checks to make sure
          one of the names in the certificates used to sign the request
          matches the name in glMemberToDelete.

      3.c.1 - If the names do not match, the GLO sends a
              SignedData.PKIResponse.controlSequence message back to
              the prospective member with
              cMCStatusInfoExt.cMCtatus.failed indicating why the
              prospective member was denied in
              cMCStatusInfoExt.statusString.  This stops people from
              adding people to GLs without their permission.
              Additionally, a signingTime attribute is included with
              the response.

      3.c.2 - Else if the names match, the GLO resubmits the
              glDeleteMember request (see Section 3.2.5) to the GLA (1
              in Figure 6).  The GLO makes sure the glMemberName is
              already on the GL.  The GLO also generates a glRekey
              request and include it with the GLDeleteMember request
              (see Section 4.5).

        3.c.2.a - The GLO applies confidentiality to the new
                  GLDeleteMember request by encapsulating the
                  SignedData.PKIData in an EnvelopedData if the initial
                  request was encapsulated in an EnvelopedData (see
                  Section 3.2.1.2).

        3.c.2.b - The GLO can also optionally apply another SignedData
                  over the EnvelopedData (see Section 3.2.1.2).

  4 - Further processing is as in 2 of Section 4.4.1.

4.5.  Request Rekey of GL

  From time to time, the GL will need to be rekeyed.  Some situations
  follow:

    - When a member is removed from a closed or managed GL.  In this
      case, the PKIData.controlSequence containing the glDeleteMember
      ought to contain a glRekey request.





Turner                      Standards Track                    [Page 57]

RFC 5275                     CMS SymKeyDist                    June 2008


    - Depending on policy, when a member is removed from an unmanaged
      GL.  If the policy is to rekey the GL, the
      PKIData.controlSequence containing the glDeleteMember could also
      contain a glRekey request or an out-of-bands means could be used
      to tell the GLA to rekey the GL.  Rekeying of unmanaged GLs when
      members are deleted is not advised.

    - When the current shared KEK has been compromised.

    - When the current shared KEK is about to expire.  Consider two
      cases:

       -- If the GLO controls the GL rekey, the GLA should not assume
          that a new shared KEK should be distributed, but instead wait
          for the glRekey message.

       -- If the GLA controls the GL rekey, the GLA should initiate a
          glKey message as specified in Section 5.

  If the generationCounter (see Section 3.1.1) is set to a value
  greater than one (1) and the GLO controls the GL rekey, the GLO may
  generate a glRekey any time before the last shared KEK has expired.
  To be on the safe side, the GLO ought to request a rekey one (1)
  duration before the last shared KEK expires.

  The GLA and GLO are the only entities allowed to initiate a GL rekey.
  The GLO indicated whether they are going to control rekeys or whether
  the GLA is going to control rekeys when they assigned the shared KEK
  to GL (see Section 3.1.1).  The GLO initiates a GL rekey at any time.
  The GLA can be configured to automatically rekey the GL prior to the
  expiration of the shared KEK (the length of time before the
  expiration is an implementation decision).  The GLA can also
  automatically rekey GLs that have been compromised, but this is
  covered in Section 5.  Figure 7 depicts the protocol interactions to
  request a GL rekey.  Note that error messages are not depicted.
  Additionally, behavior for the optional transactionId, senderNonce,
  and recipientNonce CMC control attributes is not addressed in these
  procedures.

  +-----+  1   2,A  +-----+
  | GLA | <-------> | GLO |
  +-----+           +-----+

  Figure 7 - GL Rekey Request







Turner                      Standards Track                    [Page 58]

RFC 5275                     CMS SymKeyDist                    June 2008


4.5.1.  GLO Initiated Rekey Requests

  The process for GLO initiated glRekey requests is as follows:

  1 - The GLO sends a SignedData.PKIData.controlSequence.glRekey
      request to the GLA (1 in Figure 7).  The GLO includes the glName.
      If glAdministration and glKeyNewAttributes are omitted then there
      is no change from the previously registered GL values for these
      fields.  If the GLO wants to force a rekey for all outstanding
      shared KEKs, it includes the glRekeyAllGLKeys set to TRUE.  The
      GLO MUST also include a signingTime attribute with this request.

    1.a - The GLO can optionally apply confidentiality to the request
          by encapsulating the SignedData.PKIData in an EnvelopedData
          (see Section 3.2.1.2).

    1.b - The GLO can also optionally apply another SignedData over the
          EnvelopedData (see Section 3.2.1.2).

  2 - Upon receipt of the request, the GLA checks the signingTime and
      verifies the signature on the innermost SignedData.PKIData.  If
      an additional SignedData and/or EnvelopedData encapsulates the
      request (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
      outer signature and/or decrypts the outer layer prior to
      verifying the signature on the innermost SignedData.

    2.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLA MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    2.b - Else if signature processing continues and if the signatures
          do not verify, the GLA returns a cMCStatusInfoExt response
          indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck.  Additionally, a
          signingTime attribute is included with the response.

    2.c - Else if the signatures do verify, the GLA makes sure the GL
          is supported by the GLA by checking that the glName matches a
          glName stored on the GLA.

      2.c.1 - If the glName present does not match a GL stored on the
              GLA, the GLA returns a response indicating
              cMCStatusInfoExt with cMCStatus.failed and
              otherInfo.extendedFailInfo.SKDFailInfo value of
              invalidGLName.  Additionally, a signingTime attribute is
              included with the response.




Turner                      Standards Track                    [Page 59]

RFC 5275                     CMS SymKeyDist                    June 2008


      2.c.2 - Else if the glName present matches a GL stored on the
              GLA, the GLA checks that a registered GLO signed the
              request by checking that one of the names in the
              certificate used to sign the request is a registered GLO.

        2.c.2.a - If the names do not match, the GLA returns a response
                  indicating cMCStatusInfoExt with cMCStatus.failed and
                  otherInfo.extendedFailInfo.SKDFailInfo value of
                  noGLONameMatch.  Additionally, a signingTime
                  attribute is included with the response.

        2.c.2.b - Else if the names match, the GLA checks the
                  glNewKeyAttribute values.

          2.c.2.b.1 - If the new value for requestedAlgorithm is not
                      supported, the GLA returns a response indicating
                      cMCStatusInfoExt with cMCStatus.failed and
                      otherInfo.extendedFailInfo.SKDFailInfo value of
                      unsupportedAlgorithm.  Additionally, a
                      signingTime attribute is included with the
                      response.

          2.c.2.b.2 - Else if the new value duration is not supportable
                      (determining this is beyond the scope of this
                      document), the GLA returns a response indicating
                      cMCStatusInfoExt with cMCStatus.failed and
                      otherInfo.extendedFailInfo.SKDFailInfo value of
                      unsupportedDuration.  Additionally, a signingTime
                      attribute is included with the response.

          2.c.2.b.3 - Else if the GL is not supportable for other
                      reasons that the GLA does not wish to disclose,
                      the GLA returns a response indicating
                      cMCStatusInfoExt with cMCStatus.failed and
                      otherInfo.extendedFailInfo.SKDFailInfo value of
                      unspecified.  Additionally, a signingTime
                      attribute is included with the response.

          2.c.2.b.4 - Else if the new requestedAlgorithm and duration
                      are supportable or the glNewKeyAttributes was
                      omitted, the GLA returns a
                      cMCStatusInfoExt.cMCStatus.success and a
                      sigingTime attribute (2 in Figure 7).  The GLA
                      also uses the glKey message to distribute the
                      rekey shared KEK (see Section 5).






Turner                      Standards Track                    [Page 60]

RFC 5275                     CMS SymKeyDist                    June 2008


            2.c.2.b.4.a - The GLA applies confidentiality to response
                          by encapsulating the SignedData.PKIData in an
                          EnvelopedData if the request was encapsulated
                          in an EnvelopedData (see Section 3.2.1.2).

            2.c.2.b.4.b - The GLA can also optionally apply another
                          SignedData over the EnvelopedData (see
                          Section 3.2.1.2).

  3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
      signingTime and verifies the GLA signature(s).  If an additional
      SignedData and/or EnvelopedData encapsulates the forwarded
      response (see Section 3.2.1.2 or 3.2.2), the GLO verifies the
      outer signature and/or decrypts the forwarded response prior to
      verifying the signature on the innermost SignedData.

    3.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLA MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    3.b - Else if signature processing continues and if the signatures
          verify, the GLO checks that one of the names in the
          certificate used to sign the response matches the name of the
          GL.

      3.b.1 - If the name of the GL does not match the name present in
              the certificate used to sign the message, the GLO should
              not believe the response.

      3.b.2 - Else if the name of the GL matches the name present in
              the certificate and:

        3.b.2.a - If the signatures verify and the response is
                  cMCStatusInfoExt.cMCStatus.success, the GLO has
                  successfully rekeyed the GL.

        3.b.2.b - Else if the GLO received a
                  cMCStatusInfoExt.cMCStatus.failed with any reason,
                  the GLO can reattempt to rekey the GL using the
                  information provided in the response.










Turner                      Standards Track                    [Page 61]

RFC 5275                     CMS SymKeyDist                    June 2008


4.5.2.  GLA Initiated Rekey Requests

  If the GLA is in charge of rekeying the GL the GLA will automatically
  issue a glKey message (see Section 5).  In addition the GLA will
  generate a cMCStatusInfoExt to indicate to the GL that a successful
  rekey has occurred.  The process for GLA initiated rekey is as
  follows:

  1 - The GLA generates for all GLOs a
      SignedData.PKIData.controlSequence.cMCStatusInfoExt.cMCStatus
      success and includes a signingTime attribute (A in Figure 7).

    1.a - The GLA can optionally apply confidentiality to the request
          by encapsulating the SignedData.PKIData in an EnvelopedData
          (see Section 3.2.1.2).

    1.b - The GLA can also optionally apply another SignedData over the
          EnvelopedData (see Section 3.2.1.2).

  2 - Upon receipt of the cMCStatusInfoExt.cMCStatus.success response,
      the GLO checks the signingTime and verifies the GLA signature(s).
      If an additional SignedData and/or EnvelopedData encapsulates the
      forwarded response (see Section 3.2.1.2 or 3.2.2), the GLO MUST
      verify the outer signature and/or decrypt the outer layer prior
      to verifying the signature on the innermost SignedData.

    2.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLO MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    2.b - Else if signature processing continues and if the signatures
          verify, the GLO checks that one of the names in the
          certificate used to sign the response matches the name of the
          GL.

      2.b.1 - If the name of the GL does not match the name present in
              the certificate used to sign the message, the GLO ought
              not believe the response.

      2.b.2 - Else if the name of the GL does match the name present in
              the certificate and the response is
              cMCStatusInfoExt.cMCStatus.success, the GLO knows the GLA
              has successfully rekeyed the GL.







Turner                      Standards Track                    [Page 62]

RFC 5275                     CMS SymKeyDist                    June 2008


4.6.  Change GLO

  Management of managed and closed GLs can become difficult for one GLO
  if the GL membership grows large.  To support distributing the
  workload, GLAs support having GLs be managed by multiple GLOs.  The
  glAddOwner and glRemoveOwner messages are designed to support adding
  and removing registered GLOs.  Figure 8 depicts the protocol
  interactions to send glAddOwner and glRemoveOwner messages and the
  resulting response messages.  Note that error messages are not shown.
  Additionally, behavior for the optional transactionId, senderNonce,
  and recipientNonce CMC control attributes is not addressed in these
  procedures.

       +-----+   1    2  +-----+
       | GLA | <-------> | GLO |
       +-----+           +-----+

  Figure 8 - GLO Add and Delete Owners

  The process for glAddOwner and glDeleteOwner is as follows:

  1 - The GLO sends a SignedData.PKIData.controlSequence.glAddOwner or
      glRemoveOwner request to the GLA (1 in Figure 8).  The GLO
      includes the GL name in glName, and the name and address of the
      GLO in glOwnerName and glOwnerAddress, respectively.  The GLO
      MUST also include the signingTime attribute with this request.

    1.a - The GLO can optionally apply confidentiality to the request
          by encapsulating the SignedData.PKIData in an EnvelopedData
          (see Section 3.2.1.2).

    1.b - The GLO can also optionally apply another SignedData over the
          EnvelopedData (see Section 3.2.1.2).

  2 - Upon receipt of the glAddOwner or glRemoveOwner request, the GLA
      checks the signingTime and verifies the GLO signature(s).  If an
      additional SignedData and/or EnvelopedData encapsulates the
      request (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
      outer signature and/or decrypts the outer layer prior to
      verifying the signature on the innermost SignedData.

    2.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLA MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.






Turner                      Standards Track                    [Page 63]

RFC 5275                     CMS SymKeyDist                    June 2008


    2.b - Else if signature processing continues and if the signatures
          cannot be verified, the GLA returns a cMCStatusInfoExt
          response indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck.  Additionally, a
          signingTime attribute is included with the response.

    2.c - Else if the signatures verify, the GLA makes sure the GL is
          supported by checking that the glName matches a glName stored
          on the GLA.

      2.c.1 - If the glName is not supported by the GLA, the GLA
              returns a response indicating cMCStatusInfoExt with
              cMCStatus.failed and
              otherInfo.extendedFailInfo.SKDFailInfo value of
              invalidGLName.  Additionally, a signingTime attribute is
              included with the response.

      2.c.2 - Else if the glName is supported by the GLA, the GLA
              ensures that a registered GLO signed the glAddOwner or
              glRemoveOwner request by checking that one of the names
              present in the digital signature certificate used to sign
              the glAddOwner or glDeleteOwner request matches the name
              of a registered GLO.

        2.c.2.a - If the names do not match, the GLA returns a response
                  indicating cMCStatusInfoExt with cMCStatus.failed and
                  otherInfo.extendedFailInfo.SKDFailInfo value of
                  noGLONameMatch.  Additionally, a signingTime
                  attribute is included with the response.

        2.c.2.b - Else if the names match, the GLA returns a
                  cMCStatusInfoExt.cMCStatus.success and a signingTime
                  attribute (2 in Figure 4).  The GLA also takes
                  administrative actions to associate the new
                  glOwnerName with the GL in the case of glAddOwner or
                  to disassociate the old glOwnerName with the GL in
                  the cased of glRemoveOwner.

          2.c.2.b.1 - The GLA applies confidentiality to the response
                      by encapsulating the SignedData.PKIResponse in an
                      EnvelopedData if the request was encapsulated in
                      an EnvelopedData (see Section 3.2.1.2).

          2.c.2.b.2 - The GLA can also optionally apply another
                      SignedData over the EnvelopedData (see Section
                      3.2.1.2).





Turner                      Standards Track                    [Page 64]

RFC 5275                     CMS SymKeyDist                    June 2008


  3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
      signingTime and verifies the GLA's signature(s).  If an
      additional SignedData and/or EnvelopedData encapsulates the
      response (see Section 3.2.1.2 or 3.2.2), the GLO verifies the
      outer signature and/or decrypts the outer layer prior to
      verifying the signature on the innermost SignedData.

    3.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLO MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    3.b - Else if signature processing continues and if the signatures
          verify, the GLO checks that one of the names in the
          certificate used to sign the response matches the name of the
          GL.

      3.b.1 - If the name of the GL does not match the name present in
              the certificate used to sign the message, the GLO should
              not believe the response.

      3.b.2 - Else if the name of the GL does match the name present in
              the certificate and:

        3.b.2.a - If the signatures verify and the response was
                  cMCStatusInfoExt.cMCStatus.success, the GLO has
                  successfully added or removed the GLO.

        3.b.2.b - Else if the signatures verify and the response was
                  cMCStatusInfoExt.cMCStatus.failed with any reason,
                  the GLO can reattempt to add or delete the GLO using
                  the information provided in the response.

4.7.  Indicate KEK Compromise

  There will be times when the shared KEK is compromised.  GL members
  and GLOs use glkCompromise to tell the GLA that the shared KEK has
  been compromised.  Figure 9 depicts the protocol interactions for GL
  Key Compromise.  Note that error messages are not shown.
  Additionally, behavior for the optional transactionId, senderNonce,
  and recipientNonce CMC control attributes is not addressed in these
  procedures.









Turner                      Standards Track                    [Page 65]

RFC 5275                     CMS SymKeyDist                    June 2008


  +-----+  2{1}                  4  +----------+
  | GLO | <----------+    +-------> | Member 1 |
  +-----+  5,3{1}    |    |         +----------+
  +-----+ <----------+    |      4  +----------+
  | GLA |  1              +-------> |   ...    |
  +-----+ <---------------+         +----------+
                          |      4  +----------+
                          +-------> | Member n |
                                    +----------+

  Figure 9 - GL Key Compromise

4.7.1.  GL Member Initiated KEK Compromise Message

  The process for GL member initiated glkCompromise messages is as
  follows:

  1 - The GL member sends a
      SignedData.PKIData.controlSequence.glkCompromise request to the
      GLA (1 in Figure 9).  The GL member includes the name of the GL
      in GeneralName.  The GL member MUST also include the signingTime
      attribute with this request.

    1.a - The GL member can optionally apply confidentiality to the
          request by encapsulating the SignedData.PKIData in an
          EnvelopedData (see Section 3.2.1.2).  The glkCompromise can
          be included in an EnvelopedData generated with the
          compromised shared KEK.

    1.b - The GL member can also optionally apply another SignedData
          over the EnvelopedData (see Section 3.2.1.2).

  2 - Upon receipt of the glkCompromise request, the GLA checks the
      signingTime and verifies the GL member signature(s).  If an
      additional SignedData and/or EnvelopedData encapsulates the
      request (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
      outer signature and/or decrypts the outer layer prior to
      verifying the signature on the innermost SignedData.

    2.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLA MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.








Turner                      Standards Track                    [Page 66]

RFC 5275                     CMS SymKeyDist                    June 2008


    2.b - Else if signature processing continues and if the signatures
          cannot be verified, the GLA returns a cMCStatusInfoExt
          response indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck.  Additionally, a
          signingTime attribute is included with the response.

    2.c - Else if the signatures verify, the GLA makes sure the GL is
          supported by checking that the indicated GL name matches a
          glName stored on the GLA.

      2.c.1 - If the glName is not supported by the GLA, the GLA
              returns a response indicating cMCStatusInfoExt with
              cMCStatus.failed and
              otherInfo.extendedFailInfo.SKDFailInfo value of
              invalidGLName.  Additionally, a signingTime attribute is
              included with the response.

      2.c.2 - Else if the glName is supported by the GLA, the GLA
              checks who signed the request.  For GLOs, one of the
              names in the certificate used to sign the request needs
              to match a registered GLO.  For the member, the name in
              glMember.glMemberName needs to match one of the names in
              the certificate used to sign the request.

        2.c.2.a - If the GLO signed the request, the GLA generates a
                  glKey message as described in Section 5 to rekey the
                  GL (4 in Figure 9).

        2.c.2.b - Else if someone other than the GLO signed the
                  request, the GLA forwards the glkCompromise message
                  (see Section 3.2.3) to the GLO (2{1} in Figure 9).
                  If there is more than one GLO, to which GLO the
                  request is forwarded is beyond the scope of this
                  document.  Further processing by the GLO is discussed
                  in Section 4.7.2.

4.7.2.  GLO Initiated KEK Compromise Message

  The process for GLO initiated glkCompromise messages is as follows:

  1 - The GLO either:

    1.a - Generates the glkCompromise message itself by sending a
          SignedData.PKIData.controlSequence.glkCompromise request to
          the GLA (5 in Figure 9).  The GLO includes the name of the GL
          in GeneralName.  The GLO MUST also include a signingTime
          attribute with this request.




Turner                      Standards Track                    [Page 67]

RFC 5275                     CMS SymKeyDist                    June 2008


      1.a.1 - The GLO can optionally apply confidentiality to the
              request by encapsulating the SignedData.PKIData in an
              EnvelopedData (see Section 3.2.1.2).  The glkCompromise
              can be included in an EnvelopedData generated with the
              compromised shared KEK.

      1.a.2 - The GLO can also optionally apply another SignedData over
              the EnvelopedData (see Section 3.2.1.2).

    1.b - Otherwise, checks the signingTime and verifies the GLA and GL
          member signatures on the forwarded glkCompromise message.  If
          an additional SignedData and/or EnvelopedData encapsulates
          the request (see Section 3.2.1.2 or 3.2.2), the GLO verifies
          the outer signature and/or decrypts the outer layer prior to
          verifying the signature on the innermost SignedData.

      1.b.1 - If the signingTime attribute value is not within the
              locally accepted time window, the GLO MAY return a
              response indicating cMCStatus.failed and
              otherInfo.failInfo.badTime and a signingTime attribute.

      1.b.2 - Else if signature processing continues and if the
              signatures cannot be verified, the GLO returns a
              cMCStatusInfoExt response indicating cMCStatus.failed and
              otherInfo.failInfo.badMessageCheck.  Additionally, a
              signingTime attribute is included with the response.

        1.b.2.a - If the signatures verify, the GLO checks that the
                  names in the certificate match the name of the signer
                  (i.e., the name in the certificate used to sign the
                  GL member's request is the GL member).

          1.b.2.a.1 - If either name does not match, the GLO ought not
                      trust the signer and it ought not forward the
                      message to the GLA.

          1.b.2.a.2 - Else if the names match and the signatures
                      verify, the GLO determines whether to forward the
                      glkCompromise message back to the GLA (3{1} in
                      Figure 9).  Further processing by the GLA is in 2
                      of Section 4.7.1.  The GLO can also return a
                      response to the prospective member with
                      cMCStatusInfoExt.cMCtatus.success indicating that
                      the glkCompromise message was successfully
                      received.






Turner                      Standards Track                    [Page 68]

RFC 5275                     CMS SymKeyDist                    June 2008


4.8.  Request KEK Refresh

  There will be times when GL members have irrecoverably lost their
  shared KEK.  The shared KEK is not compromised and a rekey of the
  entire GL is not necessary.  GL members use the glkRefresh message to
  request that the shared KEK(s) be redistributed to them.  Figure 10
  depicts the protocol interactions for GL Key Refresh.  Note that
  error messages are not shown.  Additionally, behavior for the
  optional transactionId, senderNonce, and recipientNonce CMC control
  attributes is not addressed in these procedures.

  +-----+   1       2   +----------+
  | GLA | <-----------> |  Member  |
  +-----+               +----------+

     Figure 10 - GL KEK Refresh

  The process for glkRefresh is as follows:

  1 - The GL member sends a
      SignedData.PKIData.controlSequence.glkRefresh request to the GLA
      (1 in Figure 10).  The GL member includes name of the GL in
      GeneralName.  The GL member MUST also include a signingTime
      attribute with this request.

    1.a - The GL member can optionally apply confidentiality to the
          request by encapsulating the SignedData.PKIData in an
          EnvelopedData (see Section 3.2.1.2).

    1.b - The GL member can also optionally apply another SignedData
          over the EnvelopedData (see Section 3.2.1.2).

  2 - Upon receipt of the glkRefresh request, the GLA checks the
      signingTime and verifies the GL member signature(s).  If an
      additional SignedData and/or EnvelopedData encapsulates the
      request (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
      outer signature and/or decrypt the outer layer prior to verifying
      the signature on the innermost SignedData.

    2.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLA MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.








Turner                      Standards Track                    [Page 69]

RFC 5275                     CMS SymKeyDist                    June 2008


    2.b - Else if signature processing continues and if the signatures
          cannot be verified, the GLA returns a cMCStatusInfoExt
          response indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck.  Additionally, a
          signingTime attribute is included with the response.

    2.c - Else if the signatures verify, the GLA makes sure the GL is
          supported by checking that the GLGeneralName matches a glName
          stored on the GLA.

      2.c.1 - If the name of the GL is not supported by the GLA, the
              GLA returns a response indicating cMCStatusInfoExt with
              cMCStatus.failed and
              otherInfo.extendedFailInfo.SKDFailInfo value of
              invalidGLName.  Additionally, a signingTime attribute is
              included with the response.

      2.c.2 - Else if the glName is supported by the GLA, the GLA
              ensures that the GL member is on the GL.

        2.c.2.a - If the glMemberName is not present on the GL, the GLA
                  returns a response indicating cMCStatusInfoExt with
                  cMCStatus.failed and
                  otherInfo.extendedFailInfo.SKDFailInfo value of
                  noSpam.  Additionally, a signingTime attribute is
                  included with the response.

        2.c.2.b - Else if the glMemberName is present on the GL, the
                  GLA returns a cMCStatusInfoExt.cMCStatus.success, a
                  signingTime attribute, and a glKey message (2 in
                  Figure 10) as described in Section 5.

4.9.  GLA Query Request and Response

  There will be certain times when a GLO is having trouble setting up a
  GL because it does not know the algorithm(s) or some other
  characteristic that the GLA supports.  There can also be times when
  prospective GL members or GL members need to know something about the
  GLA (these requests are not defined in the document).  The
  glaQueryRequest and glaQueryResponse messages have been defined to
  support determining this information.  Figure 11 depicts the protocol
  interactions for glaQueryRequest and glaQueryResponse.  Note that
  error messages are not shown.  Additionally, behavior for the
  optional transactionId, senderNonce, and recipientNonce CMC control
  attributes is not addressed in these procedures.






Turner                      Standards Track                    [Page 70]

RFC 5275                     CMS SymKeyDist                    June 2008


        +-----+   1    2  +------------------+
        | GLA | <-------> | GLO or GL Member |
        +-----+           +------------------+

  Figure 11 - GLA Query Request and Response

  The process for glaQueryRequest and glaQueryResponse is as follows:

  1 - The GLO, GL member, or prospective GL member sends a
      SignedData.PKIData.controlSequence.glaQueryRequest request to the
      GLA (1 in Figure 11).  The GLO, GL member, or prospective GL
      member indicates the information it is interested in receiving
      from the GLA.  Additionally, a signingTime attribute is included
      with this request.

    1.a - The GLO, GL member, or prospective GL member can optionally
          apply confidentiality to the request by encapsulating the
          SignedData.PKIData in an EnvelopedData (see Section 3.2.1.2).

    1.b - The GLO, GL member, or prospective GL member can also
          optionally apply another SignedData over the EnvelopedData
          (see Section 3.2.1.2).

  2 - Upon receipt of the glaQueryRequest, the GLA determines if it
      accepts glaQueryRequest messages.

    2.a - If the GLA does not accept glaQueryRequest messages, the GLA
          returns a cMCStatusInfoExt response indicating
          cMCStatus.noSupport and any other information in
          statusString.

    2.b - Else if the GLA does accept GLAQueryRequests, the GLA checks
          the signingTime and verifies the GLO, GL member, or
          prospective GL member signature(s).  If an additional
          SignedData and/or EnvelopedData encapsulates the request (see
          Section 3.2.1.2 or 3.2.2), the GLA verifies the outer
          signature and/or decrypts the outer layer prior to verifying
          the signature on the innermost SignedData.

      2.b.1 - If the signingTime attribute value is not within the
              locally accepted time window, the GLA MAY return a
              response indicating cMCStatus.failed and
              otherInfo.failInfo.badTime and a signingTime attribute.








Turner                      Standards Track                    [Page 71]

RFC 5275                     CMS SymKeyDist                    June 2008


      2.b.2 - Else if the signature processing continues and if the
              signatures cannot be verified, the GLA returns a
              cMCStatusInfoExt response indicating cMCStatus.failed and
              otherInfo.failInfo.badMessageCheck.  Additionally, a
              signingTime attribute is included with the response.

      2.b.3 - Else if the signatures verify, the GLA returns a
              glaQueryResponse (2 in Figure 11) with the correct
              response if the glaRequestType is supported or returns a
              cMCStatusInfoExt response indicating cMCStatus.noSupport
              if the glaRequestType is not supported.  Additionally, a
              signingTime attribute is included with the response.

        2.b.3.a - The GLA applies confidentiality to the response by
                  encapsulating the SignedData.PKIResponse in an
                  EnvelopedData if the request was encapsulated in an
                  EnvelopedData (see Section 3.2.1.2).

        2.b.3.b - The GLA can also optionally apply another SignedData
                  over the EnvelopedData (see Section 3.2.1.2).

  3 - Upon receipt of the glaQueryResponse, the GLO, GL member, or
      prospective GL member checks the signingTime and verifies the GLA
      signature(s).  If an additional SignedData and/or EnvelopedData
      encapsulates the response (see Section 3.2.1.2 or 3.2.2), the
      GLO, GL member, or prospective GL member verifies the outer
      signature and/or decrypts the outer layer prior to verifying the
      signature on the innermost SignedData.

    3.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLO, GL member, or prospective GL
          member MAY return a response indicating cMCStatus.failed and
          otherInfo.failInfo.badTime and a signingTime attribute.

    3.b - Else if signature processing continues and if the signatures
          do not verify, the GLO, GL member, or prospective GL member
          returns a cMCStatusInfoExt response indicating
          cMCStatus.failed and otherInfo.failInfo.badMessageCheck.
          Additionally, a signingTime attribute is included with the
          response.

    3.c - Else if the signatures verify, then the GLO, GL member, or
          prospective GL member checks that one of the names in the
          certificate used to sign the response matches the name of the
          GL.






Turner                      Standards Track                    [Page 72]

RFC 5275                     CMS SymKeyDist                    June 2008


      3.c.1 - If the name of the GL does not match the name present in
              the certificate used to sign the message, the GLO ought
              not believe the response.

      3.c.2 - Else if the name of the GL matches the name present in
              the certificate and the response was glaQueryResponse,
              then the GLO, GL member, or prospective GL member may use
              the information contained therein.

4.10.  Update Member Certificate

  When the GLO generates a glAddMember request, when the GLA generates
  a glKey message, or when the GLA processes a glAddMember, there can
  be instances when the GL member's certificate has expired or is
  invalid.  In these instances, the GLO or GLA may request that the GL
  member provide a new certificate to avoid the GLA from being unable
  to generate a glKey message for the GL member.  There might also be
  times when the GL member knows that its certificate is about to
  expire or has been revoked, and GL member will not be able to receive
  GL rekeys.  Behavior for the optional transactionId, senderNonce, and
  recipientNonce CMC control attributes is not addressed in these
  procedures.

4.10.1.  GLO and GLA Initiated Update Member Certificate

  The process for GLO initiated glUpdateCert is as follows:

  1 - The GLO or GLA sends a
      SignedData.PKIData.controlSequence.glProvideCert request to the
      GL member.  The GLO or GLA indicates the GL name in glName and
      the GL member name in glMemberName.  Additionally, a signingTime
      attribute is included with this request.

    1.a - The GLO or GLA can optionally apply confidentiality to the
          request by encapsulating the SignedData.PKIData in an
          EnvelopedData (see Section 3.2.1.2).  If the GL member's PKC
          has been revoked, the GLO or GLA ought not use it to generate
          the EnvelopedData that encapsulates the glProvideCert
          request.

    1.b - The GLO or GLA can also optionally apply another SignedData
          over the EnvelopedData (see Section 3.2.1.2).









Turner                      Standards Track                    [Page 73]

RFC 5275                     CMS SymKeyDist                    June 2008


  2 - Upon receipt of the glProvideCert message, the GL member checks
      the signingTime and verifies the GLO or GLA signature(s).  If an
      additional SignedData and/or EnvelopedData encapsulates the
      response (see Section 3.2.1.2 or 3.2.2), the GL member verifies
      the outer signature and/or decrypts the outer layer prior to
      verifying the signature on the innermost SignedData.

    2.a - If the signingTime attribute value is not within the locally
          accepted time window, the GL member MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    2.b - Else if signature processing continues and if the signatures
          cannot be verified, the GL member returns a cMCStatusInfoExt
          response indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck.  Additionally, a
          signingTime attribute is included with the response.

    2.c - Else if the signatures verify, the GL member generates a
          Signed.PKIResponse.controlSequence.glUpdateCert that includes
          the GL name in glName, the member's name in
          glMember.glMemberName, the member's encryption certificate in
          glMember.certificates.pKC.  The GL member can also include
          any attribute certificates associated with the member's
          encryption certificate in glMember.certificates.aC, and the
          certification path associated with the member's encryption
          and attribute certificates in glMember.certificates.certPath.
          Additionally, a signingTime attribute is included with the
          response.

      2.c.1 - The GL member can optionally apply confidentiality to the
              request by encapsulating the SignedData.PKIResponse in an
              EnvelopedData (see Section 3.2.1.2).  If the GL member's
              PKC has been revoked, the GL member ought not use it to
              generate the EnvelopedData that encapsulates the
              glProvideCert request.

      2.c.2 - The GL member can also optionally apply another
              SignedData over the EnvelopedData (see Section 3.2.1.2).

  3 - Upon receipt of the glUpdateCert message, the GLO or GLA checks
      the signingTime and verifies the GL member signature(s).  If an
      additional SignedData and/or EnvelopedData encapsulates the
      response (see Section 3.2.1.2 or 3.2.2), the GL member verifies
      the outer signature and/or decrypts the outer layer prior to
      verifying the signature on the innermost SignedData.





Turner                      Standards Track                    [Page 74]

RFC 5275                     CMS SymKeyDist                    June 2008


    3.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLO or GLA MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    3.b - Else if signature processing continues and if the signatures
          cannot be verified, the GLO or GLA returns a cMCStatusInfoExt
          response indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck.  Additionally, a
          signingTime attribute is included with the response.

    3.c - Else if the signatures verify, the GLO or GLA verifies the
          member's encryption certificate.

      3.c.1 - If the member's encryption certificate cannot be
              verified, the GLO returns either another glProvideCert
              request or a cMCStatusInfoExt with cMCStatus.failed and
              the reason why in cMCStatus.statusString. glProvideCert
              should be returned only a certain number of times is
              because if the GL member does not have a valid
              certificate it will never be able to return one.
              Additionally, a signingTime attribute is included with
              either response.

      3.c.2 - Else if the member's encryption certificate cannot be
              verified, the GLA returns another glProvideCert request
              to the GL member or a cMCStatusInfoExt with
              cMCStatus.failed and the reason why in
              cMCStatus.statusString to the GLO. glProvideCert should
              be returned only a certain number of times because if the
              GL member does not have a valid certificate it will never
              be able to return one.  Additionally, a signingTime
              attribute is included with the response.

      3.c.3 - Else if the member's encryption certificate verifies, the
              GLO or GLA will use it in subsequent glAddMember requests
              and glKey messages associated with the GL member.

4.10.2.  GL Member Initiated Update Member Certificate

  The process for an unsolicited GL member glUpdateCert is as follows:

  1 - The GL member sends a Signed.PKIData.controlSequence.glUpdateCert
      that includes the GL name in glName, the member's name in
      glMember.glMemberName, the member's encryption certificate in
      glMember.certificates.pKC.  The GL member can also include any
      attribute certificates associated with the member's encryption
      certificate in glMember.certificates.aC, and the certification



Turner                      Standards Track                    [Page 75]

RFC 5275                     CMS SymKeyDist                    June 2008


      path associated with the member's encryption and attribute
      certificates in glMember.certificates.certPath.  The GL member
      MUST also include a signingTime attribute with this request.

    1.a - The GL member can optionally apply confidentiality to the
          request by encapsulating the SignedData.PKIData in an
          EnvelopedData (see Section 3.2.1.2).  If the GL member's PKC
          has been revoked, the GLO or GLA ought not use it to generate
          the EnvelopedData that encapsulates the glProvideCert
          request.

    1.b - The GL member can also optionally apply another SignedData
          over the EnvelopedData (see Section 3.2.1.2).

  2 - Upon receipt of the glUpdateCert message, the GLA checks the
      signingTime and verifies the GL member signature(s).  If an
      additional SignedData and/or EnvelopedData encapsulates the
      response (see Section 3.2.1.2 or 3.2.2), the GLA verifies the
      outer signature and/or decrypts the outer layer prior to
      verifying the signature on the innermost SignedData.

    2.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLA MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    2.b - Else if signature processing continues and if the signatures
          cannot be verified, the GLA returns a cMCStatusInfoExt
          response indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck.

    2.c - Else if the signatures verify, the GLA verifies the member's
          encryption certificate.

      2.c.1 - If the member's encryption certificate cannot be
              verified, the GLA returns another glProvideCert request
              to the GL member or a cMCStatusInfoExt with
              cMCStatus.failed and the reason why in
              cMCStatus.statusString to the GLO. glProvideCert ought
              not be returned indefinitely;  if the GL member does not
              have a valid certificate it will never be able to return
              one.  Additionally, a signingTime attribute is included
              with the response.

      2.c.2 - Else if the member's encryption certificate verifies, the
              GLA will use it in subsequent glAddMember requests and
              glKey messages associated with the GL member.  The GLA
              also forwards the glUpdateCert message to the GLO.



Turner                      Standards Track                    [Page 76]

RFC 5275                     CMS SymKeyDist                    June 2008


5.  Distribution Message

  The GLA uses the glKey message to distribute new, shared KEK(s) after
  receiving glAddMember, glDeleteMember (for closed and managed GLs),
  glRekey, glkCompromise, or glkRefresh requests and returning a
  cMCStatusInfoExt response for the respective request.  Figure 12
  depicts the protocol interactions to send out glKey messages.  Unlike
  the procedures defined for the administrative messages, the
  procedures defined in this section MUST be implemented by GLAs for
  origination and by GL members on reception.  Note that error messages
  are not shown.  Additionally, behavior for the optional
  transactionId, senderNonce, and recipientNonce CMC control attributes
  is not addressed in these procedures.

                    1   +----------+
              +-------> | Member 1 |
              |         +----------+
  +-----+     |     1   +----------+
  | GLA | ----+-------> |   ...    |
  +-----+     |         +----------+
              |     1   +----------+
              +-------> | Member n |
                        +----------+

  Figure 12 - GL Key Distribution

  If the GL was set up with GLKeyAttributes.recipientsNotMutuallyAware
  set to TRUE, a separate glKey message MUST be sent to each GL member
  so as not to divulge information about the other GL members.

  When the glKey message is generated as a result of a:

    - glAddMember request,

    - glkComrpomise indication,

    - glkRefresh request,

    - glDeleteMember request with the GL's glAdministration set to
      managed or closed, and

    - glRekey request with generationCounter set to zero (0).

  The GLA MUST use either the kari (see Section 12.3.2 of [CMS]) or
  ktri (see Section 12.3.1 of [CMS]) choice in
  glKey.glkWrapped.RecipientInfo to ensure that only the intended
  recipients receive the shared KEK.  The GLA MUST support the ktri
  choice.



Turner                      Standards Track                    [Page 77]

RFC 5275                     CMS SymKeyDist                    June 2008


  When the glKey message is generated as a result of a glRekey request
  with generationCounter greater than zero (0) or when the GLA controls
  rekeys, the GLA MAY use the kari, ktri, or kekri (see Section 12.3.3
  of [CMS]) in glKey.glkWrapped.RecipientInfo to ensure that only the
  intended recipients receive the shared KEK.  The GLA MUST support the
  RecipientInfo.ktri choice.

5.1.  Distribution Process

  When a glKey message is generated, the process is as follows:

  1 - The GLA MUST send a SignedData.PKIData.controlSequence.glKey to
      each member by including glName, glIdentifier, glkWrapped,
      glkAlgorithm, glkNotBefore, and glkNotAfter.  If the GLA cannot
      generate a glKey message for the GL member because the GL
      member's PKC has expired or is otherwise invalid, the GLA MAY
      send a glUpdateCert to the GL member requesting a new certificate
      be provided (see Section 4.10).  The number of glKey messages
      generated for the GL is described in Section 3.1.13.
      Additionally, a signingTime attribute is included with the
      distribution message(s).

    1.a - The GLA MAY optionally apply another confidentiality layer to
          the message by encapsulating the SignedData.PKIData in
          another EnvelopedData (see Section 3.2.1.2).

    1.b - The GLA MAY also optionally apply another SignedData over the
          EnvelopedData.SignedData.PKIData (see Section 3.2.1.2).

  2 - Upon receipt of the glKey message, the GL members MUST check the
      signingTime and verify the signature over the innermost
      SignedData.PKIData.  If an additional SignedData and/or
      EnvelopedData encapsulates the message (see Section 3.2.1.2 or
      3.2.2), the GL member MUST verify the outer signature and/or
      decrypt the outer layer prior to verifying the signature on the
      SignedData.PKIData.controlSequence.glKey.

    2.a - If the signingTime attribute value is not within the locally
          accepted time window, the GLA MAY return a response
          indicating cMCStatus.failed and otherInfo.failInfo.badTime
          and a signingTime attribute.

    2.b - Else if signature processing continues and if the signatures
          cannot be verified, the GL member MUST return a
          cMCStatusInfoExt response indicating cMCStatus.failed and
          otherInfo.failInfo.badMessageCheck.  Additionally, a
          signingTime attribute is included with the response.




Turner                      Standards Track                    [Page 78]

RFC 5275                     CMS SymKeyDist                    June 2008


    2.c - Else if the signatures verify, the GL member processes the
          RecipientInfos according to [CMS].  Once unwrapped, the GL
          member should store the shared KEK in a safe place.  When
          stored, the glName, glIdentifier, and shared KEK should be
          associated.  Additionally, the GL member MUST return a
          cMCStatusInfoExt indicating cMCStatus.success to tell the GLA
          the KEK was received.

6.  Algorithms

  This section lists the algorithms that MUST be implemented.
  Additional algorithms that SHOULD be implemented are also included.
  Further algorithms MAY also be implemented.

6.1.  KEK Generation Algorithm

  Implementations MUST randomly generate content-encryption keys,
  message-authentication keys, initialization vectors (IVs), and
  padding.  Also, the generation of public/private key pairs relies on
  a random numbers.  The use of inadequate pseudo-random number
  generators (PRNGs) to generate cryptographic keys can result in
  little or no security.  An attacker may find it much easier to
  reproduce the PRNG environment that produced the keys, searching the
  resulting small set of possibilities, rather than brute force
  searching the whole key space.  The generation of quality random
  numbers is difficult.  RFC 4086 [RANDOM] offers important guidance in
  this area, and Appendix 3 of FIPS Pub 186 [FIPS] provides one quality
  PRNG technique.

6.2.  Shared KEK Wrap Algorithm

  In the mechanisms described in Section 5, the shared KEK being
  distributed in glkWrapped MUST be protected by a key of equal or
  greater length (e.g., if an AES 128-bit key is being distributed, a
  key of 128 bits or greater must be used to protect the key).

  The algorithm object identifiers included in glkWrapped are as
  specified in [CMSALG] and [CMSAES].

6.3.  Shared KEK Algorithm

  The shared KEK distributed and indicated in glkAlgorithm MUST support
  the symmetric key-encryption algorithms as specified in [CMSALG] and
  [CMSAES].







Turner                      Standards Track                    [Page 79]

RFC 5275                     CMS SymKeyDist                    June 2008


7.  Message Transport

  SMTP [SMTP] MUST be supported.  Other transport mechanisms MAY also
  be supported.

8.  Security Considerations

  As GLOs control setting up and tearing down the GL and rekeying the
  GL, and can control member additions and deletions, GLOs play an
  important role in the management of the GL, and only "trusted" GLOs
  should be used.

  If a member is deleted or removed from a closed or a managed GL, the
  GL needs to be rekeyed.  If the GL is not rekeyed after a member is
  removed or deleted, the member still possesses the group key and will
  be able to continue to decrypt any messages that can be obtained.

  Members who store KEKs MUST associate the name of the GLA that
  distributed the key so that the members can make sure subsequent
  rekeys are originated from the same entity.

  When generating keys, care should be taken to ensure that the key
  size is not too small and duration too long because attackers will
  have more time to attack the key.  Key size should be selected to
  adequately protect sensitive business communications.

  GLOs and GLAs need to make sure that the generationCounter and
  duration are not too large.  For example, if the GLO indicates that
  the generationCounter is 14 and the duration is one year, then 14
  keys are generated each with a validity period of a year.  An
  attacker will have at least 13 years to attack the final key.

  Assume that two or more parties have a shared KEK, and the shared KEK
  is used to encrypt a second KEK for confidential distribution to
  those parties.  The second KEK might be used to encrypt a third KEK,
  the third KEK might be used to encrypt a fourth KEK, and so on.  If
  any of the KEKs in such a chain is compromised, all of the subsequent
  KEKs in the chain MUST also be considered compromised.

  An attacker can attack the group's shared KEK by attacking one
  member's copy of the shared KEK or attacking multiple members' copies
  of the shared KEK.  For the attacker, it may be easier to either
  attack the group member with the weakest security protecting its copy
  of the shared KEK or attack multiple group members.







Turner                      Standards Track                    [Page 80]

RFC 5275                     CMS SymKeyDist                    June 2008


  An aggregation of the information gathered during the attack(s) may
  lead to the compromise of the group's shared KEK.  Mechanisms to
  protect the shared KEK should be commensurate with value of the data
  being protected.

  The nonce and signingTime attributes are used to protect against
  replay attacks.  However, these provisions are only helpful if
  entities maintain state information about the messages they have sent
  or received for comparison.  If sufficient information is not
  maintained on each exchange, nonces and signingTime are not helpful.
  Local policy determines the amount and duration of state information
  that is maintained.  Additionally, without a unified time source,
  there is the possibility of clocks drifting.  Local policy determines
  the acceptable difference between the local time and signingTime,
  which must compensate for unsynchronized clocks.  Implementations
  MUST handle messages with siginingTime attributes that indicate they
  were created in the future.

9. Acknowledgements

  Thanks to Russ Housley and Jim Schaad for providing much of the
  background and review required to write this document.

10.  References

10.1.  Normative References

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [CMS]        Housley, R., "Cryptographic Message Syntax (CMS)", RFC
               3852, July 2004.

  [CMC]        Schaad, J. and M. Myers, "Certificate Management over
               CMS (CMC)", RFC 5272, June 2008.

  [PROFILE]    Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
               Housley, R., and W. Polk, "Internet X.509 Public Key
               Infrastructure Certificate and Certificate Revocation
               List (CRL) Profile", RFC 5280, May 2008.

  [ACPROF]     Farrell, S. and R. Housley, "An Internet Attribute
               Certificate Profile for Authorization", RFC 3281, April
               2002.







Turner                      Standards Track                    [Page 81]

RFC 5275                     CMS SymKeyDist                    June 2008


  [MSG]        Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
               Extensions (S/MIME) Version 3.1 Message Specification",
               RFC 3851, July 2004.

  [ESS]        Hoffman, P., Ed., "Enhanced Security Services for
               S/MIME", RFC 2634, June 1999.

  [CMSALG]     Housley, R., "Cryptographic Message Syntax (CMS)
               Algorithms", RFC 3370, August 2002.

  [CMSAES]     Schaad, J., "Use of the Advanced Encryption Standard
               (AES) Encryption Algorithm in Cryptographic Message
               Syntax (CMS)", RFC 3565, July 2003.

  [SMTP]       Klensin, J., Ed., "Simple Mail Transfer Protocol", RFC
               2821, April 2001.

10.2.  Informative References

  [X400TRANS]  Hoffman, P. and C. Bonatti, "Transporting
               Secure/Multipurpose Internet Mail Extensions (S/MIME)
               Objects in X.400", RFC 3855, July 2004.

  [RANDOM]     Eastlake, D., 3rd, Schiller, J., and S. Crocker,
               "Randomness Requirements for Security", BCP 106, RFC
               4086, June 2005.

  [FIPS]       National Institute of Standards and Technology, FIPS Pub
               186-2: Digital Signature Standard, January 2000.






















Turner                      Standards Track                    [Page 82]

RFC 5275                     CMS SymKeyDist                    June 2008


Appendix A.  ASN.1 Module

  SMIMESymmetricKeyDistribution
    { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
      pkcs-9(9) smime(16) modules(0) symkeydist(12) }

  DEFINITIONS IMPLICIT TAGS ::=
  BEGIN

  -- EXPORTS All --
  -- The types and values defined in this module are exported for use
  -- in the other ASN.1 modules.  Other applications may use them for
  -- their own purposes.

  IMPORTS

  -- PKIX Part 1 - Implicit [PROFILE]
     GeneralName
       FROM PKIX1Implicit88 { iso(1) identified-organization(3) dod(6)
            internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
            id-pkix1-implicit(19) }

  -- PKIX Part 1 - Explicit [PROFILE]
     AlgorithmIdentifier, Certificate
       FROM PKIX1Explicit88 { iso(1) identified-organization(3) dod(6)
            internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
            id-pkix1-explicit(18) }

  -- Cryptographic Message Syntax [CMS]
     RecipientInfos, KEKIdentifier, CertificateSet
       FROM CryptographicMessageSyntax2004 {iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0)
         cms-2004(24) }

  -- Advanced Encryption Standard (AES) with CMS [CMSAES]
     id-aes128-wrap
       FROM CMSAesRsaesOaep { iso(1) member-body(2) us(840)
         rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0)
         id-mod-cms-aes(19) }

  -- Attribute Certificate Profile [ACPROF]
     AttributeCertificate FROM
        PKIXAttributeCertificate { iso(1) identified-organization(3)
        dod(6) internet(1) security(5) mechanisms(5) pkix(7)
        id-mod(0) id-mod-attribute-cert(12) };






Turner                      Standards Track                    [Page 83]

RFC 5275                     CMS SymKeyDist                    June 2008


  -- This defines the GL symmetric key distribution object identifier
  -- arc.

  id-skd OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
    rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) skd(8) }

  -- This defines the GL Use KEK control attribute.

  id-skd-glUseKEK OBJECT IDENTIFIER ::= { id-skd 1 }

  GLUseKEK ::= SEQUENCE {
    glInfo                GLInfo,
    glOwnerInfo           SEQUENCE SIZE (1..MAX) OF GLOwnerInfo,
    glAdministration      GLAdministration DEFAULT 1,
    glKeyAttributes       GLKeyAttributes OPTIONAL }

  GLInfo ::= SEQUENCE {
    glName     GeneralName,
    glAddress  GeneralName }

  GLOwnerInfo ::= SEQUENCE {
    glOwnerName     GeneralName,
    glOwnerAddress  GeneralName,
    certificates    Certificates OPTIONAL }

  GLAdministration ::= INTEGER {
    unmanaged  (0),
    managed    (1),
    closed     (2) }

  GLKeyAttributes ::= SEQUENCE {
    rekeyControlledByGLO       [0] BOOLEAN DEFAULT FALSE,
    recipientsNotMutuallyAware [1] BOOLEAN DEFAULT TRUE,
    duration                   [2] INTEGER DEFAULT 0,
    generationCounter          [3] INTEGER DEFAULT 2,
    requestedAlgorithm         [4] AlgorithmIdentifier
                                DEFAULT { id-aes128-wrap } }

  -- This defines the Delete GL control attribute.
  -- It has the simple type GeneralName.

  id-skd-glDelete OBJECT IDENTIFIER ::= { id-skd 2 }

  DeleteGL ::= GeneralName

  -- This defines the Add GL Member control attribute.

  id-skd-glAddMember OBJECT IDENTIFIER ::= { id-skd 3 }



Turner                      Standards Track                    [Page 84]

RFC 5275                     CMS SymKeyDist                    June 2008



  GLAddMember ::= SEQUENCE {
    glName    GeneralName,
    glMember  GLMember }

  GLMember ::= SEQUENCE {
    glMemberName     GeneralName,
    glMemberAddress  GeneralName OPTIONAL,
    certificates     Certificates OPTIONAL }

  Certificates ::= SEQUENCE {
     pKC                [0] Certificate OPTIONAL,
                                 -- See [PROFILE]
     aC                 [1] SEQUENCE SIZE (1.. MAX) OF
                            AttributeCertificate OPTIONAL,
                                 -- See [ACPROF]
     certPath           [2] CertificateSet OPTIONAL }
                                 -- From [CMS]

  -- This defines the Delete GL Member control attribute.

  id-skd-glDeleteMember OBJECT IDENTIFIER ::= { id-skd 4 }

  GLDeleteMember ::= SEQUENCE {
    glName            GeneralName,
    glMemberToDelete  GeneralName }

  -- This defines the Delete GL Member control attribute.

  id-skd-glRekey OBJECT IDENTIFIER ::= { id-skd 5 }

  GLRekey ::= SEQUENCE {
    glName              GeneralName,
    glAdministration    GLAdministration OPTIONAL,
    glNewKeyAttributes  GLNewKeyAttributes OPTIONAL,
    glRekeyAllGLKeys    BOOLEAN OPTIONAL }

  GLNewKeyAttributes ::= SEQUENCE {
    rekeyControlledByGLO       [0] BOOLEAN OPTIONAL,
    recipientsNotMutuallyAware [1] BOOLEAN OPTIONAL,
    duration                   [2] INTEGER OPTIONAL,
    generationCounter          [3] INTEGER OPTIONAL,
    requestedAlgorithm         [4] AlgorithmIdentifier OPTIONAL }

  -- This defines the Add and Delete GL Owner control attributes.

  id-skd-glAddOwner OBJECT IDENTIFIER ::= { id-skd 6 }
  id-skd-glRemoveOwner OBJECT IDENTIFIER ::= { id-skd 7 }



Turner                      Standards Track                    [Page 85]

RFC 5275                     CMS SymKeyDist                    June 2008



  GLOwnerAdministration ::= SEQUENCE {
    glName       GeneralName,
    glOwnerInfo  GLOwnerInfo }

  -- This defines the GL Key Compromise control attribute.
  -- It has the simple type GeneralName.

  id-skd-glKeyCompromise OBJECT IDENTIFIER ::= { id-skd 8 }

  GLKCompromise ::= GeneralName

  -- This defines the GL Key Refresh control attribute.

  id-skd-glkRefresh OBJECT IDENTIFIER ::= { id-skd 9 }

  GLKRefresh ::= SEQUENCE {
     glName  GeneralName,
     dates   SEQUENCE SIZE (1..MAX) OF Date }

  Date ::= SEQUENCE {
    start GeneralizedTime,
    end   GeneralizedTime OPTIONAL }

  -- This defines the GLA Query Request control attribute.

  id-skd-glaQueryRequest OBJECT IDENTIFIER ::= { id-skd 11 }

  GLAQueryRequest ::= SEQUENCE {
    glaRequestType   OBJECT IDENTIFIER,
    glaRequestValue  ANY DEFINED BY glaRequestType }


  -- This defines the GLA Query Response control attribute.

  id-skd-glaQueryResponse OBJECT IDENTIFIER ::= { id-skd 12 }

  GLAQueryResponse ::= SEQUENCE {
    glaResponseType   OBJECT IDENTIFIER,
    glaResponseValue  ANY DEFINED BY glaResponseType }

  -- This defines the GLA Request/Response (glaRR) arc for
  -- glaRequestType/glaResponseType.

  id-cmc-glaRR OBJECT IDENTIFIER ::= { iso(1)
    identified-organization(3) dod(6) internet(1) security(5)
    mechanisms(5) pkix(7) cmc(7) glaRR(99) }




Turner                      Standards Track                    [Page 86]

RFC 5275                     CMS SymKeyDist                    June 2008


  -- This defines the Algorithm Request.

  id-cmc-gla-skdAlgRequest OBJECT IDENTIFIER ::= { id-cmc-glaRR 1 }

  SKDAlgRequest ::= NULL

  -- This defines the Algorithm Response.

  id-cmc-gla-skdAlgResponse OBJECT IDENTIFIER ::= { id-cmc-glaRR 2 }

  -- Note that the response for algorithmSupported request is the
  -- smimeCapabilities attribute as defined in MsgSpec [MSG].
  -- This defines the control attribute to request an updated
  -- certificate to the GLA.

  id-skd-glProvideCert OBJECT IDENTIFIER ::= { id-skd 13 }

  GLManageCert ::= SEQUENCE {
    glName    GeneralName,
    glMember  GLMember }

  -- This defines the control attribute to return an updated
  -- certificate to the GLA.  It has the type GLManageCert.

  id-skd-glManageCert OBJECT IDENTIFIER ::= { id-skd 14 }

  -- This defines the control attribute to distribute the GL shared
  -- KEK.

  id-skd-glKey OBJECT IDENTIFIER ::= { id-skd 15 }

  GLKey ::= SEQUENCE {
    glName        GeneralName,
    glIdentifier  KEKIdentifier,  -- See [CMS]
    glkWrapped    RecipientInfos,      -- See [CMS]
    glkAlgorithm  AlgorithmIdentifier,
    glkNotBefore  GeneralizedTime,
    glkNotAfter   GeneralizedTime }

  -- This defines the CMC error types.

  id-cet-skdFailInfo  OBJECT IDENTIFIER ::= { iso(1)
    identified-organization(3) dod(6) internet(1) security(5)
    mechanisms(5) pkix(7) cet(15) skdFailInfo(1) }







Turner                      Standards Track                    [Page 87]

RFC 5275                     CMS SymKeyDist                    June 2008


  SKDFailInfo ::= INTEGER {
    unspecified           (0),
    closedGL              (1),
    unsupportedDuration   (2),
    noGLACertificate      (3),
    invalidCert           (4),
    unsupportedAlgorithm  (5),
    noGLONameMatch        (6),
    invalidGLName         (7),
    nameAlreadyInUse      (8),
    noSpam                (9),
  -- obsolete             (10),
    alreadyAMember        (11),
    notAMember            (12),
    alreadyAnOwner        (13),
    notAnOwner            (14) }

  END -- SMIMESymmetricKeyDistribution

Author's Address

  Sean Turner
  IECA, Inc.
  3057 Nutley Street, Suite 106
  Fairfax, VA 22031
  USA

  EMail: [email protected]























Turner                      Standards Track                    [Page 88]

RFC 5275                     CMS SymKeyDist                    June 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Turner                      Standards Track                    [Page 89]