Network Working Group                                          H. Yokota
Request for Comments: 5271                                      KDDI Lab
Category: Informational                                       G. Dommety
                                                    Cisco Systems, Inc.
                                                              June 2008


           Mobile IPv6 Fast Handovers for 3G CDMA Networks

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Abstract

  Mobile IPv6 is designed to maintain its connectivity while moving
  from one network to another.  It is adopted in 3G CDMA networks as a
  way to maintain connectivity when the mobile node (MN) moves between
  access routers.  However, this handover procedure requires not only
  movement detection by the MN, but also the acquisition of a new
  Care-of Address and Mobile IPv6 registration with the new care-of
  address before the traffic can be sent or received in the target
  network.  During this period, packets destined for the mobile node
  may be lost, which may not be acceptable for a real-time application
  such as Voice over IP (VoIP) or video telephony.  This document
  specifies fast handover methods in the 3G CDMA networks in order to
  reduce latency and packet loss during handover.






















Yokota & Dommety             Informational                      [Page 1]

RFC 5271                 3G CDMA Fast Handover                 June 2008


Table of Contents

  1. Introduction ....................................................2
  2. Requirements Notation ...........................................3
  3. Terminology .....................................................3
  4. Network Reference Model for Mobile IPv6 over 3G CDMA Networks ...4
  5. Fast Handover Procedures ........................................6
     5.1. Predictive Fast Handover ...................................7
     5.2. Reactive Fast Handover ....................................12
     5.3. Considerations on the Link Indications ....................15
  6. Message Format .................................................15
     6.1. Handover Assist Information Option ........................15
     6.2. Mobile Node Identifier Option .............................16
     6.3. New Flag Extension to FBU Message .........................17
     6.4. New Flag Extension to PrRtAdv Message .....................17
  7. Security Considerations ........................................18
  8. IANA Considerations ............................................18
  9. Acknowledgements ...............................................19
  10. References ....................................................19
     10.1. Normative References .....................................19
     10.2. Informative References ...................................19

1.  Introduction

  Mobile IPv6 [2] allows mobile nodes (MNs) to maintain persistent IP
  connectivity while the MN moves around in the IPv6 network.  It is
  adopted in 3G CDMA networks for handling host-based mobility
  management [12].  During handover, however, the mobile node (MN)
  needs to switch the radio link to obtain a new Care-of Address (CoA)
  and to re-register with the home agent (HA), which may cause a
  communication disruption.  This is not desirable for real-time
  applications such as VoIP and video telephony.  To reduce this
  disruption time or latency, a fast handover protocol for Mobile IPv6
  [3] is proposed.  RFC 4260 [7] further describes how this Mobile IPv6
  Fast Handover could be implemented on link layers conforming to the
  IEEE 802.11 suite of specifications.  However, 3G CDMA and IEEE
  802.11 networks are substantially different in the radio access, the
  representations of the network nodes or parameters, and the network
  attachment procedures; for example, the beacon scanning or New Access
  Router (NAR) discovery based on [Access Point Identifier, Access
  Router-info (AP-ID, AR-info)] tuples specified in RFC 4260 can not be
  directly applied to 3G CDMA networks.  This document therefore
  specifies how Mobile IPv6 fast handovers can be applied in the 3G
  CDMA networks.







Yokota & Dommety             Informational                      [Page 2]

RFC 5271                 3G CDMA Fast Handover                 June 2008


2.  Requirements Notation

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [1].

3.  Terminology

  This document refers to [3] for Mobile IPv6 fast handover
  terminology.  Terms that first appear in this document are defined
  below:

  Access Network Identifier (ANID): An identifier that is used by the
     Packet Data Serving Node (PDSN) to determine whether the MN is
     being handed off from the access network that was not previously
     using this PDSN.  Anytime the MN crosses into a new region, which
     is defined by the ANID, it must re-register with that access
     network.  The ANID is further composed of the System ID (SID),
     Network ID (NID), and Packet Zone ID (PZID) and these values are
     administered by the operator.  The lengths of the SID, NID, and
     PZID are 2 octets, 2 octets, and 1 octet, respectively.  Thus,
     that of the ANID occupies 5 octets [11].

  Forward Pilot Channel:  A portion of the Forward Channel that carries
     the pilot.  The Forward Channel is a portion of the physical layer
     channels transmitted from the 3G CDMA access network to the MN.
     Further, several sets of pilots (e.g., the active set or neighbor
     set) are defined to determine when and where to handover.

  Home Link Prefix (HLP):  The prefix address assigned to the home link
     where the MN should send the binding update message.  This is also
     called Home Network Prefix (HNP) and one of the bootstrap
     parameters for the MN.

  International Mobile Subscriber Identity (IMSI):  The IMSI is a
     string of decimal digits, up to a maximum of 15 digits, that
     identifies a unique mobile terminal or mobile subscriber
     internationally.  The IMSI consists of three fields:  the Mobile
     Country Code (MCC), the Mobile Network Code (MNC), and the Mobile
     Subscriber Identification Number (MSIN).  An example of the IMSI
     is "440701234567890", where "440" is the MCC, "70" is the MNC, and
     "1234567890" is the MSIN.  The IMSI conforms to the ITU-T E.212
     numbering standard [6].  In this specification, IMSI is an ASCII
     string that consists of not more than 15 decimal digits (ASCII
     values between 30 and 39 hexadecimal), one character per IMSI
     digit.  The above example would therefore be encoded as "34 34 30
     37 30 31 32 33 34 35 36 37 38 39 30" in hexadecimal notation.




Yokota & Dommety             Informational                      [Page 3]

RFC 5271                 3G CDMA Fast Handover                 June 2008


  Mobile Identity (MN ID):  An identifier of the Mobile Node that is
     used by the access network.  The value (e.g., IMSI) is unique
     within the operator's network.

  Packet Data Serving Node (PDSN):  An entity that routes MN originated
     or MN terminated packet data traffic.  A PDSN establishes,
     maintains, and terminates link-layer sessions to MNs.  A PDSN is
     the access router in the visited access provider network.

  Sector Address Identifier (SectorID):  A typical cell divides its
     coverage area into several sectors.  In 3G CDMA systems, each
     sector uses a different PN (Pseudo Noise) code offset and is
     associated with SectorID.  The SectorID is 128 bits long and can
     be represented in the IPv6 address format [8].

4.  Network Reference Model for Mobile IPv6 over 3G CDMA Networks

  Figure 1 shows a simplified reference model of the Mobile IP enabled
  3G CDMA networks.  The home agent (HA) and Authentication,
  Authorization, and Accounting (AAA) server of the mobile node (MN)
  reside in the home IP network, and the MN roams within or between the
  access provider network(s).  Usually, the home IP network is not
  populated by the MNs, which are instead connected only to the access
  provider networks.  Prior to the Mobile IPv6 registration, the MN
  establishes a 3G CDMA access technology specific link-layer
  connection with the access router (AR).  When the MN moves from one
  AR to another, the link-layer connection is re-established, and a
  Mobile IPv6 handover is performed.  Those ARs reside in either the
  same or different access provider network(s).  The figure shows the
  situation, where the MN moves from the Previous Access Router (PAR)
  to the New Access Router (NAR) via the radio access network (RAN).




















Yokota & Dommety             Informational                      [Page 4]

RFC 5271                 3G CDMA Fast Handover                 June 2008


                         Home IP Network
                    +........................+
                    . +--------+  +--------+ .
                    . |   HA   |--|  AAA   | .
                    . +--------+  +--------+ .
                    +../......\..............+
                      /        \
                Access Provider Network(s)
         +.............+      +.............+
         . +---------+ .      . +---------+ .
         . |   PAR   | .      . |   NAR   | .
         . +---------+ .      . +---------+ .
         .      |:     .      .     :|      .
         .      |:L2link      L2link:|      .
         .      |:     .      .     :|      .
         . +----+:---+ .      . +---:+----+ .
         . |   RAN   | .      . |   RAN   | .
         . +----+:---+ .      . +---:+----+ .
         .      |:     .      .     :|      .
         .    +----+   .      .   +----+    .
         .    | MN |  --------->  | MN |    .
         .    +----+   .      .   +----+    .
         +.............+      +.............+

       Figure 1: Reference Model for Mobile IP

  In 3G CDMA networks, pilot channels transmitted by base stations
  allow the MN to obtain a rapid and accurate C/I (carrier to
  interference) estimate.  This estimate is based on measuring the
  strength of the Forward Pilot Channel or the pilot, which is
  associated with a sector of a base station (BS).  The MN searches for
  the pilots and maintains those with sufficient signal strength in the
  pilot sets.  The MN sends measurement results, which include the
  offsets of the PN code in use and the C/Is in the pilot sets, to
  provide the radio access network (RAN) with the estimate of sectors
  in its neighborhood.  There are several triggers for the MN to send
  those estimates, e.g., when the strength of a pilot in the pilot sets
  exceeds that of the current pilot, the MN sends the estimates to the
  access network.  As long as the sector to which the MN is going to
  move belongs to the same access network, the mobility within that
  access network is handled by the access-specific interfaces [10] and
  the link-layer connection between the MN and AR can be maintained
  without a re-establishment.  The MN can continually search for pilots
  without disrupting the data communication and a timely handover is
  assisted by the network.  If, however, the serving access network
  finds that the sector associated with the highest pilot strength
  belongs to a different AR, it attempts to close the connection with
  the MN.  The MN then attempts to get a new traffic channel assigned



Yokota & Dommety             Informational                      [Page 5]

RFC 5271                 3G CDMA Fast Handover                 June 2008


  in the new access network, which is followed by establishing a new
  connection with the new AR.  This could cause a noticeable
  communication disruption and lead to a serious degradation of the
  user experience.  In order to minimize the service degradation,
  during the handover between ARs, an IP-level fast handover approach
  as defined in RFC 5268 needs to be involved.  If the air interface
  information can be used as a trigger for the handover between access
  routers, fast and smooth handover of Mobile IPv6 can be realized in
  3G CDMA networks.  The MN can continually search for pilots without
  disrupting the data communication and a timely handover is assisted
  by the network.

  To assist the handover of the MN to the new AR, various types of
  information can be considered: the pilot sets, which include the
  candidates of the target sectors or BSs, the cell information where
  the MN resides, the serving nodes in the radio access network, and
  the location of the MN, if available.  To identify the access network
  that the MN moves to or from, the Access Network Identifiers (ANID)
  or the subnet information can be used [9][10].  In this document, a
  collection of such information is called "handover assist
  information".  In 3G CDMA networks, the Link-Layer Address of the New
  Access Point (AP) defined in [3] may not be available.  If this is
  the case, the Handover Assist Information option defined in this
  document SHOULD be used instead.

5.  Fast Handover Procedures

  There are two modes defined in [3] according to the time of sending
  the FBU (Fast Binding Update); one is called "predictive mode", where
  the MN sends the FBU and receives the FBAck (Fast Binding
  Acknowledgment) on the PAR's (Previous Access Router's) link and the
  other is called "reactive mode", where the MN sends the FBU from the
  NAR's (New Access Router's) link.  In the predictive mode, the time
  and place the MN hands off must be indicated sufficiently before the
  time it actually happens.  In cellular systems, since handovers are
  controlled by the network, the predictive mode is well applied.
  However, if the network is not configured to be able to identify the
  new AR, to which the MN is moving next, in a timely manner, the
  reactive mode is better applied.

  Section 2 of RFC 4907 [20] suggests architectural principles on the
  link indication and the effectiveness of the optimization.  The link
  indication of this document relies on 3G CDMA networks and the
  effectiveness of the optimization is attributed to RFC 5268.  The
  above principles are thus considered by the related specifications
  referenced in this document.





Yokota & Dommety             Informational                      [Page 6]

RFC 5271                 3G CDMA Fast Handover                 June 2008


5.1.  Predictive Fast Handover

  Figure 2 shows the predictive mode of MIPv6 fast handover operation.
  When the MN finds a sector or a BS whose pilot signal is sufficiently
  strong, it initiates handover according to the following sequence:

  (a)  A router solicitation for proxy router advertisement is sent to
       the PAR.  Handover assist information for the target 3G CDMA
       network is attached to this message.

  (b)  Based on the received handover assist information, the NAR is
       determined and a proxy router advertisement (PrRtAdv) containing
       the prefix of the NAR is sent back to the MN.  The MN also
       checks that the R flag is not set in the PrRtAdv message, which
       indicates the network supports the predictive fast handover mode
       (defined later).

  (c)  The MN creates an NCoA (new CoA) and sends the Fast Binding
       Update (FBU) with the NCoA to the PAR, which in turn sends the
       Handover Initiate (HI) to the NAR.

  (d)  The NAR sends the Handover Acknowledge (HAck) back to the PAR,
       which in turn sends the FBU acknowledgment (FBAck) to the MN.

  (e)  The PAR starts forwarding packets toward the NCoA and the NAR
       captures and buffers them.

  (f)  The link-layer connection associated with the PAR is closed and
       a new traffic channel is assigned in the new access network.

  (g)  The MN attaches to the new access network.  The attachment
       procedure is access technology specific and that for 3G CDMA
       network including the PPP transactions is described later.

  (h)  The MN sends the Unsolicited Neighbor Advertisement (UNA).

  (i)  The NAR starts delivering packets to the MN.

  (j)  The MN sends the Binding Update (BU) to the HA to update the
       Binding Cache Entry (BCE) with the NCoA, and the HA sends back
       the Binding Acknowledgment (BA) to the MN.










Yokota & Dommety             Informational                      [Page 7]

RFC 5271                 3G CDMA Fast Handover                 June 2008


       MN            PAR             NAR            HA             AAA
       |    RtSolPr   |               |              |              |
  (a)  |------------->|               |              |              |
       |    PrRtAdv   |               |              |              |
  (b)  |<-------------|               |              |              |
       |      FBU     |      Hl       |              |              |
  (c)  |------------->|-------------->|              |              |
       |     FBack    |     HAck      |              |              |
  (d)  |<-------------|<--------------|              |              |
       |              |forward packets|              |              |
  (e)  |              |==============>|(buffering)   |              |
       |              |               |              |              |
  (f) handover        |               |              |              |
       |              |               |              |              |
      +--------------------------------------------------------------+
  (g) |                     Attachment procedure                     |
      +--------------------------------------------------------------+
       |             UNA              |              |              |
  (h)  |----------------------------->|              |              |
       |       deliver packets        |              |              |
  (i)  |<=============================|              |              |
       |              |        BU/BA  |              |              |
  (j)  |<------------------------------------------->|              |
       |              |               |              |              |

       Figure 2: MIPv6 Fast Handover Operation (Predictive Mode)

  It is assumed that the NAR can be identified by the PAR leveraging
  the handover assist information from the MN.  To perform the
  predictive mode, the MN MUST send the FBU before the connection with
  the current access network is closed.  If the MN fails to send the
  FBU before handover, it SHOULD fall back to the reactive mode.  Even
  if the MN successfully sends the FBU, its reception by the PAR may be
  delayed for various reasons such as congestion.  If the NAR receives
  the HI triggered by the delayed FBU after the reception of the UNA
  ((c) comes after (h)), then the NAR SHOULD send the HAck with
  handover not accepted and behave as the reactive mode.

  In (a), Router Solicitation for Proxy Advertisement (RtSolPr) is
  supposed to include the New Access Point and the MN Link-Layer
  Address (LLA) options (Option Code=1 and 2, respectively) according
  to [3].  The New AP-LLA option MAY be replaced by the handover assist
  information option in 3G CDMA networks.  As for the MN-LLA option, if
  the LLA for the MN is not available, 3G specific IDs such as IMSI[11]
  MAY be used.  If this is the case, the MN ID option defined in
  Section 6.2, which can support other types of IDs and a length that
  is not necessarily multiples of 8 octets, SHOULD be used instead of
  the MN-LLA option.



Yokota & Dommety             Informational                      [Page 8]

RFC 5271                 3G CDMA Fast Handover                 June 2008


  In (b), PrRtAdv MUST include options for the IP address of the NAR,
  which may be the link-local address, and the prefix for the MN.  The
  PAR SHOULD be able to identify the NAR from the handover assist
  information provided by the MN.

  Figure 3 shows the call flow for the initial attachment in the 3G
  CDMA network [12].  After the traffic channel is assigned, the MN
  first establishes a link-layer connection between itself and the
  access router.  As a link-layer protocol, PPP is considered in this
  figure, and a PPP handshake is depicted as an example.  After a
  link-layer connection is established, the MN registers with the HA by
  sending a Binding Update message.  There are several parameters for
  using Mobile IPv6 such as the home address (HoA), the Care-of Address
  (CoA), the home agent address (HA), and the home link prefix (HLP).
  In [12], obtaining these values is called bootstrapping, and the
  bootstrapping information can be obtained during the link-layer
  establishment phase and/or the mobility binding phase [13].


































Yokota & Dommety             Informational                      [Page 9]

RFC 5271                 3G CDMA Fast Handover                 June 2008


             MN            PAR         NAR         HA          AAA
      /       |     (serving PDSN) (target PDSN)    |           |
      |       |        LCP  |           |           |           |
      | (1)   |<----------------------->|           |           |
      |       |        CHAP/PAP         | Access-Request/Accept |
      | (2)   |<----------------------->|<-------------|------->|
      |       |             |        +------+       |  |        |
      | (3)   |             |        |  HA  |<---------+        |
      |       |             |        +------+       |           |
      |+........................................+   |           |
      |.      |                         |       .   |           |
      |.      |    IPv6CP(IF-ID)        |       .   |           |
      |.(4)*  |<---------|------------->|       .   |           |
  (g)< .    +---------+  |  |           |       .   |           |
      |.(5)*| LL-addr |<-+  |           |       .   |           |
      |.    +---------+     |           |       .   |           |
      |.      |                         |       .   |           |
      |.      |       RA(prefix)        |       .   |           |
      |.(6)*  |<---------|--------------|       .   |           |
      |.    +-----+      |  |           |       .   |           |
      |.(7)*| CoA |<-----+  |           |       .   |           |
      |.    +-----+         |           |       .   |           |
      |+........................................+   |           |
      |       |      DHCPv6(HA)         |           |           |
      | (8)   |<---------------+------->|           |           |
      |     +-----+         |  |        |           |           |
      | (9) | HA  |<-----------+        |           |           |
      |     +-----+         |           |           |           |
      |       |             |           |           |           |
      \       |             |           |           |           |

         Figure 3: Attachment Procedure in 3G CDMA Network

  The procedure for the initial attachment is as follows:

  (g)    The link-layer connection establishment and the bootstrapping
         phase.

  (g-1)  The LCP (Link Control Protocol) configure-request/response
         messages are exchanged.

  (g-2)  User authentication (e.g., Challenge Handshake Authentication
         Protocol (CHAP) or Password Authentication Protocol (PAP)) is
         conducted.







Yokota & Dommety             Informational                     [Page 10]

RFC 5271                 3G CDMA Fast Handover                 June 2008


  (g-3)  The static bootstrapping information is conveyed from the AAA
         and stored in the NAR (target PDSN).  The HoA and HLP can be
         dynamically assigned by the HA in the mobility binding phase.
         This step can be skipped in the handover case.

  (g-4)  Unique interface IDs are negotiated in IPv6 Control Protocol
         (IPv6CP).

  (g-5)  The MN configures its link-local address based on the obtained
         interface ID.

  (g-6)  A router advertisement containing the prefix is received by
         the MN.

  (g-7)  The MN configures its CoA based on the obtained prefix.

  (g-8)  DHCPv6 is used to obtain the static bootstrap information
         (e.g., the HA address).  This step is performed in the initial
         attachment and can be skipped once the MN obtains those
         parameters.

  (g-9)  The MN installs the bootstrap information for further
         procedures (e.g., the mobility binding).

  As is shown in Figure 3, it takes a considerable amount of time to
  establish a link-layer connection and almost all of the above
  sequences run every time the MN attaches to a new access network.  It
  is therefore beneficial if packets in transit to the MN are saved not
  only during the time period when the MN switches to the new radio
  channel but also during the time period when the MN establishes the
  link-layer connection.

  There are several ways to configure a unique IP address for the MN.
  If a globally unique prefix is assigned per link as introduced in
  [12], the MN can use any interface ID except that of the other peer
  (the AR to which the MN is attached) to create a unique IP address.
  If this is the case, however, the PAR cannot provide the MN with a
  correct prefix for the new network in the PrRtAdv since such a prefix
  is selected by the NAR and provided in the router advertisement.  The
  MN therefore configures a temporary NCoA with the prefix provided by
  the PAR and the correct NCoA MUST be assigned by the NAR.  Therefore,
  in 3G CDMA network, the PAR MUST send the HI with the S flag set when
  it receives the FBU from the MN at step (c) in Figure 2.








Yokota & Dommety             Informational                     [Page 11]

RFC 5271                 3G CDMA Fast Handover                 June 2008


  The UNA is supposed to include the MN-LLA [3], but the point-to-point
  link-layer connection may be able to uniquely identify the MN.  The
  most required information by the UNA is the NCoA to check if there is
  a corresponding buffer.  Therefore, in (h), the function of the UNA
  can be realized in several ways:

  o  Since the establishment of the link-layer connection in (g)
     indicates readiness of data communication on the MN side, the NAR
     immediately checks if there is a buffer that has packets destined
     for the NCoA, which was configured at steps (c) - (d), and starts
     delivering, if any (substitution of UNA).

  o  The MN sends the UNA as defined in [3].  Instead of the MN-LLA in
     the LLA option, the MN ID MAY be included in the MN ID option
     (standard implementation of UNA).

  The primary benefit of the predictive fast handover mode is that the
  packets destined for the MN can be buffered at the NAR, and packet
  loss due to handover will be much lower than that of the normal MIPv6
  operation.  Regarding the bootstrapping, the following benefit can be
  obtained, too:

  o  Since the NCoA can be configured via the fast handover procedures,
     a router advertisement is not required.

  Therefore, the procedures (g-4) to (g-7) can be skipped from the
  standard MIPv6 operation in Figure 3.

5.2.  Reactive Fast Handover

  When the network does not support the predictive fast handover mode,
  the reactive fast handover is applied.  In this document, a new flag
  is defined in PrRtAdv to inform the MN about the capability of the
  network (see Section 6.4).  To minimize packet loss in this
  situation, the PAR instead of the NAR can buffer packets for the MN
  until the MN regains connectivity with the NAR.  The NAR obtains the
  information of the PAR from the MN on the NAR's link and receives
  packets buffered at the PAR.  In this case, the PAR does not need to
  know the IP address of the NAR or the NCoA and just waits for the NAR
  to contact the PAR.  However, since the PAR needs to know when to
  buffer packets for the MN, the PAR obtains the timing of buffering
  from the MN via the FBU or the lower-layer signaling, e.g., an
  indication of the release of the connection with the MN.  Details of
  the procedure are as follows:

  (a)  A router solicitation for proxy router advertisement MAY be sent
       to the PAR.




Yokota & Dommety             Informational                     [Page 12]

RFC 5271                 3G CDMA Fast Handover                 June 2008


  (b)  The proxy router advertisement MAY be sent to the MN.  If the
       information on the NAR is not available by the PAR, "0::0" MUST
       be used for the options related to the NAR (e.g., IP address of
       the NAR).

  (c)  The MN sends the FBU or the access network indicates the close
       of the connection with the MN by the lower-layer signaling.  If
       the MN cannot formulate the NCoA, "0::0", MUST be used for the
       NCoA in the FBU.  If the B flag is set in the FBU, the PAR
       SHOULD start buffering packets destined for the PCoA.

  (d)  The link-layer connection associated with the PAR is closed and
       a new traffic channel is assigned in the new access network.

  (e)  The MN attaches to the new access network.  This part is the
       same as described in Section 5.1 and illustrated in Figure 3.

  (f)  The MN sends the UNA to the NAR.

  (g)  The MN sends the Fast Binding Update (FBU) to the PAR via the
       NAR.

  (h)  The NAR forwards the FBU from the MN to the PAR.

  (i)  The PAR sends the Handover Initiate (HI) to the NAR with the
       Code set to 1.

  (j)  The NAR sends the Handover Acknowledge (HAck) back to the PAR.

  (k)  The PAR sends the FBAck to the NAR.

  (l)  If the PAR is buffering packets destined for the PCoA, it starts
       forwarding them as well as newly arriving ones to the NAR.

  (m)  The NAR delivers the packets to the MN.

  (n)  The MN sends the BU to the HA to update the BCE with the NCoA
       and the HA sends back the BA to the MN.













Yokota & Dommety             Informational                     [Page 13]

RFC 5271                 3G CDMA Fast Handover                 June 2008


       MN            PAR             NAR             HA            AAA
       |   RtSolPr    |               |              |              |
  (a)  |------------->|               |              |              |
       |   PrRtAdv    |               |              |              |
  (b)  |<-------------|               |              |              |
       |     FBU      |               |              |              |
  (c)  |- - - - - - ->|(buffering)    |              |              |
       |              |               |              |              |
  (d) handover        |               |              |              |
       |              |               |              |              |
      +--------------------------------------------------------------+
  (e) |                    Attachment procedure                      |
      +--------------------------------------------------------------+
       |             UNA              |              |              |
  (f)  |----------------------------->|              |              |
       |             FBU              |              |              |
  (g)  |----------------------------->|              |              |
       |              |     FBU       |              |              |
  (h)  |              |<--------------|              |              |
       |              |      HI       |              |              |
  (i)  |              |-------------->|              |              |
       |              |     HAck      |              |              |
  (j)  |              |<--------------|              |              |
       |              |     FBack     |              |              |
  (k)  |              |-------------->|              |              |
       |              |forward packets|              |              |
  (l)  |              |==============>|              |              |
       |        deliver packets       |              |              |
  (m)  |<=============================|              |              |
       |              |        BU/BA  |              |              |
  (n)  |<------------------------------------------->|              |
       |              |               |              |              |

       Figure 4: MIPv6 Fast Handover Operation (Reactive Mode)

  To indicate the PAR to buffer packets destined for the PCoA, in step
  (c), a new flag 'B' is defined in the FBU.  When the PAR receives the
  FBU with this flag set, it SHOULD buffer packets for the MN.  The PAR
  MAY also start buffering packets for the MN based on lower layer
  signal during handover.  Since the packets are buffered at the PAR in
  this scenario, the UNA, which is received and processed by the NAR,
  can not be used to trigger to forward the buffered packets at the
  PAR.  In Figure 4, the HAck from the NAR is used as the trigger for
  the forwarding of any buffered packets.

  The handover indication from the lower layer of 3G CDMA system is
  reasonably reliable by the periodical reports from the MN; however,
  there are several situations where the target link is not available



Yokota & Dommety             Informational                     [Page 14]

RFC 5271                 3G CDMA Fast Handover                 June 2008


  after the handover (step (d)) and the MN comes back to the PAR, or
  the MN is not able to move to the target link for some reason after
  the connection was closed.  If this is the case, the attachment
  procedure is performed on the previous link.  The packets buffered at
  the PAR SHOULD be delivered to the MN after the connection is
  re-established.

5.3.  Considerations on the Link Indications

  This section discusses if the link indications assumed in this
  document meet the principles defined in Section 2 of RFC 4907[20],
  which suggests 11 architectural principles on the link indication and
  the effectiveness of the optimization.  This document relies on the
  3G CDMA network regarding the link indication, which is precisely
  specified by 3GPP2.  Therefore, principles (1) to (5), (7), (8), and
  (11), that is, "Model Validation", "Clear Definition", "Robustness",
  "Recovery from Invalid Indications", "Congestion Control",
  "Interoperability", "Race Condition", and "Transport of Link
  Indications" are considered by those specs.  Principle (6)
  "Effectiveness" mentions the effectiveness of the optimization.  This
  document bases its effectiveness on RFC 5268.  Therefore, this
  principle is dealt by that RFC.  Principle (9) "Metric Consistency"
  mentions inconsistencies between link and routing layer metrics.  The
  spec of this document does not change the routing metrics and
  multi-homing is not considered.  Finally, principle (10) "Layer
  Compression", mentions an overhead reduction scheme and
  interoperability.  This document does not deal with overhead
  reduction and therefore this principle does not apply.

6.  Message Format

6.1.  Handover Assist Information Option

  If the lower layer information of the new point of attachment is not
  represented as the link-layer address, the following option SHOULD be
  used.  The primary purpose of this option is to convey the handover
  assist information described in Section 4.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Type       |    Length     |  Option-Code  |   HAI-Length  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                HAI-Value...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-






Yokota & Dommety             Informational                     [Page 15]

RFC 5271                 3G CDMA Fast Handover                 June 2008


  Type           29

  Length         The size of this option in 8 octets including the
                 Type, Length, Option-Code, and HAI-Length (Handover
                 Assist Information-Length) fields.

  Option-Code
                 1: Access Network Identifier (AN ID)
                 2: Sector ID

  HAI-Length     The size of the HAI-Value field in octets.

  HAI-Value      The value specified by the Option-Code.

  If those that received this message do not support this option, they
  SHOULD treat this option as opaque and MUST NOT drop it.

  Option-Code indicates the particular type of handover assist
  information.  Currently, two types of information are defined to
  assist the discovery of the NAR (see Section 3).

  Depending on the size of the HAI-Value field, appropriate padding
  MUST be used to ensure that the entire option size is a multiple of 8
  octets.  The HAI-Length is used to disambiguate the size of the
  HAI-Value.

  The handover assist information MAY replace the New Access Point
  Link-Layer Address in 3G CDMA networks.

6.2.  Mobile Node Identifier Option

  This option is used to transfer the Identifier of the MN, which is
  not its link-layer address.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +---------------+---------------+---------------+---------------+
  |      Type     |     Length    |   Option-Code |  MN ID-Length |
  +---------------------------------------------------------------+
  |               MN ID ...
  +-----------------------------

  Type           30

  Length         The size of this option is in 8 octets including the
                 Type, Length, and Option-Code.





Yokota & Dommety             Informational                     [Page 16]

RFC 5271                 3G CDMA Fast Handover                 June 2008


  Option-Code
                 1: NAI [4]
                 2: IMSI (See Section 3)

  MN ID-Length   The length of the MN ID in octets.

  MN ID          MN ID value

  The MN ID MAY replace the MN Link-Layer Address in 3G CDMA networks.

6.3.  New Flag Extension to FBU Message

  The MN MUST send the FBU to the PAR with the following new (B) flag
  set in the previous network to indicate the PAR to buffer packets
  destined for the PCoA.  The rest of the Binding Update message format
  remains the same as defined in [2] and with the additional (M), (R),
  and (P) flags as specified in [14], [15], and [16], respectively.

                                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  |          Sequence #           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |A|H|L|K|M|R|P|B|   Reserved    |            Lifetime           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  .                                                               .
  .                        Mobility options                       .
  .                                                               .
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  B flag:        If the 'B' flag is set, the PAR SHOULD start buffering
                 the packets destined for the MN as specified in
                 Section 5.2.

6.4.  New Flag Extension to PrRtAdv Message

  A new flag 'R' is defined in the PrRtAdv to inform the MN about the
  fast handover mode that the network supports.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Type     |      Code     |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Subtype    |R|  Reserved   |           Identifier          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Options ...
  +-+-+-+-+-+-+-+-+-+-+-+-



Yokota & Dommety             Informational                     [Page 17]

RFC 5271                 3G CDMA Fast Handover                 June 2008


  R flag:        If the 'R' flag is set, the network supports only the
                 reactive handover mode.  Otherwise, the network
                 supports both the predictive and reactive fast
                 handover mode.

7.  Security Considerations

  The security considerations for Mobile IPv6 fast handover are
  described in [3].  When a 3G CDMA network is considered, it can be
  assumed that the PAR and the NAR have a trust relationship and the
  links between them and those between the ARs and the MN are secured.
  The MN is authenticated every time it attaches to the new link;
  therefore, the AR can securely identify the MN.  Depending on the
  operator's policy, however, SEcure Neighbor Discovery (SEND) [18] and
  the shared handover key defined in [17] can also be applied.

8.  IANA Considerations

  This document defines two new IPv6 Neighbor Discovery options that
  have been assigned from the same space as the IPv6 Neighbor Discovery
  Options defined in [19].

     29: Handover Assist Information Option (Section 6.1)

     30: Mobile Node Identifier Option (Section 6.2)

  This document creates two new registries for the Option-Code field in
  the Handover Assist Information Option and that in the Mobile Node
  Identifier Option.  The values for the Option-Code must be within the
  range 0-255.  New values for both registries can be allocated by
  Standards Action or IESG approval [5].

  The Option-Code values that have been assigned by IANA are as
  follows:

   Option-Code for Handover Assist Information Option
   Value Description                   Reference
   ----- ----------------------------  ----------
     0   Reserved
     1   ANID                          Section 6.1
     2   Sector ID                     Section 6.1










Yokota & Dommety             Informational                     [Page 18]

RFC 5271                 3G CDMA Fast Handover                 June 2008


   Option-Code for Mobile Node Identifier Option
   Value Description                   Reference
   ----- ----------------------------  ----------
     0   Reserved
     1   NAI                           Section 6.2
     2   IMSI                          Section 6.2

9.  Acknowledgements

  The authors would like to thank Kuntal Chowdhury, Ashutosh Dutta, Ved
  Kafle, and Vijay Devarapalli for providing feedback and support for
  this work.  The authors would also thank Sebastian Thalanany for
  3GPP2 expert review.

10.  References

10.1.  Normative References

  [1]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

  [2]   Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in
        IPv6", RFC 3775, June 2004.

  [3]   Koodli, R., Ed., "Mobile IPv6 Fast Handovers", RFC 5268, June
        2008.

  [4]   Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The Network
        Access Identifier", RFC 4282, December 2005.

  [5]   Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
        Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

  [6]   ITU-T Recommendation, "The international identification plan
        for mobile terminals and mobile users", ITU-T E.212, May 2004.

10.2.  Informative References

  [7]   McCann, P., "Mobile IPv6 Fast Handovers for 802.11 Networks",
        RFC 4260, November 2005.

  [8]   3GPP2 TSG-C, "cdma2000 High Rate Packet Data Air Interface
        Specification", C.S0024-A v.2.0, July 2005.

  [9]   3GPP2 TSG-A, "3GPP2 Access Network Interfaces Interoperability
        Specification", A.S0001-A v.2.0, June 2001.





Yokota & Dommety             Informational                     [Page 19]

RFC 5271                 3G CDMA Fast Handover                 June 2008


  [10]  3GPP2 TSG-A, "Interoperability Specification for High Rate
        Packet 1 2 Data (HRPD) Access Network Interfaces - Rev A.",
        A.S0007-A v.2.0, May 2003.

  [11]  3GPP2 TSG-A, "Interoperability Specification (IOS) for High
        Rate Packet Data (HRPD) Access Network Interfaces", 3GPP2
        A.S0008-0 v3.0, May 2003.

  [12]  3GPP2 TSG-X, "cdma2000 Wireless IP Network Standard: Simple IP
        and Mobile IP services", X.S0011-002-D v.1.0, February 2006.

  [13]  Devarapalli, V., Patel, A., Keung, K., and K. Chowdhury,
        "Mobile IPv6 Bootstrapping for the Authentication Option
        Protocol", Work in Progress, September 2007.

  [14]  Soliman, H., Castelluccia, C., El Malki, K., and L. Bellier,
        "Hierarchical Mobile IPv6 Mobility Management (HMIPv6)", RFC
        4140, August 2005.

  [15]  Devarapalli, V., Wakikawa, R., Petrescu, A., and P. Thubert,
        "Network Mobility (NEMO) Basic Support Protocol", RFC 3963,
        January 2005.

  [16]  Gundavell, S., Ed., Leung, K., Devarapalli, V., Chowdhury, K.,
        and B. Patil, "Proxy Mobile IPv6", Work in Progress, February
        2008.

  [17]  Kempf, J., Ed. and R. Koodli, "Distributing a Symmetric FMIPv6
        Handover Key using SEND", RFC 5269, June 2008.

  [18]  Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander, "SEcure
        Neighbor Discovery (SEND)", RFC 3971, March 2005.

  [19]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
        "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
        September 2007.

  [20]  Aboba, B., Ed., "Architectural Implications of Link
        Indications", RFC 4907, June 2007.












Yokota & Dommety             Informational                     [Page 20]

RFC 5271                 3G CDMA Fast Handover                 June 2008


Authors' Addresses

  Hidetoshi Yokota
  KDDI Lab
  2-1-15 Ohara, Fujimino
  Saitama,  356-8502
  JP

  Phone: +81 49 278 7894
  Fax:   +81 49 278 7510
  EMail: [email protected]

  Gopal Dommety
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA  95134
  US

  Phone: +1 408 525 1404
  EMail: [email protected]































Yokota & Dommety             Informational                     [Page 21]

RFC 5271                 3G CDMA Fast Handover                 June 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Yokota & Dommety             Informational                     [Page 22]