Network Working Group                                            H. Jang
Request for Comments: 5270                                       SAMSUNG
Category: Informational                                           J. Jee
                                                                   ETRI
                                                                 Y. Han
                                                                    KUT
                                                                S. Park
                                                    SAMSUNG Electronics
                                                                 J. Cha
                                                                   ETRI
                                                              June 2008


        Mobile IPv6 Fast Handovers over IEEE 802.16e Networks

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Abstract

  This document describes how a Mobile IPv6 Fast Handover can be
  implemented on link layers conforming to the IEEE 802.16e suite of
  specifications.  The proposed scheme tries to achieve seamless
  handover by exploiting the link-layer handover indicators and thereby
  synchronizing the IEEE 802.16e handover procedures with the Mobile
  IPv6 fast handover procedures efficiently.






















Jang, et al.                 Informational                      [Page 1]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
  2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  3
  3.  IEEE 802.16e Handover Overview . . . . . . . . . . . . . . . .  4
  4.  Network Topology Acquisition and Network Selection . . . . . .  5
  5.  Interaction between FMIPv6 and IEEE 802.16e  . . . . . . . . .  6
    5.1.  Access Router Discovery  . . . . . . . . . . . . . . . . .  6
    5.2.  Handover Preparation . . . . . . . . . . . . . . . . . . .  7
    5.3.  Handover Execution . . . . . . . . . . . . . . . . . . . .  8
    5.4.  Handover Completion  . . . . . . . . . . . . . . . . . . .  9
  6.  The Examples of Handover Scenario  . . . . . . . . . . . . . . 10
    6.1.  Predictive Mode  . . . . . . . . . . . . . . . . . . . . . 10
    6.2.  Reactive Mode  . . . . . . . . . . . . . . . . . . . . . . 12
  7.  IEEE 802.21 Considerations . . . . . . . . . . . . . . . . . . 14
  8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 14
  9.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 15
  10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 15
    10.1. Normative References . . . . . . . . . . . . . . . . . . . 15
    10.2. Informative References . . . . . . . . . . . . . . . . . . 16

1.  Introduction

  Mobile IPv6 Fast Handover protocol (FMIPv6) [RFC5268] was proposed to
  complement the Mobile IPv6 (MIPv6) [RFC3775] by reducing the handover
  latency for the real-time traffic.  FMIPv6 assumes the support from
  the link-layer technology; however, the specific link-layer
  information available and its available timing differs according to
  the particular link-layer technology in use, as pointed out in
  [RFC4260], which provides an FMIPv6 solution for the IEEE 802.11
  networks.  So, this document is proposed to provide an informational
  guide to the developers about how to optimize the FMIPv6 handover
  procedures, specifically in the IEEE 802.16e networks
  [IEEE802.16][IEEE802.16e].

  The proposed scheme achieves seamless handover by exploiting the
  link-layer handover indicators and designing an efficient
  interleaving scheme of the 802.16e and the FMIPv6 handover
  procedures.  The scheme targets a hard handover, which is the default
  handover type of IEEE 802.16e.  For the other handover types, i.e.,
  the Macro Diversity Handover (MDHO) and Fast Base Station Switching
  (FBSS), the base stations in the same diversity set are likely to
  belong to the same subnet for diversity, and FMIPv6 might not be
  needed.  Regarding the MDHO and the FBSS deployment with FMIPv6,
  further discussion will be needed and is not in the scope of this
  document.





Jang, et al.                 Informational                      [Page 2]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


  We begin with a summary of handover procedures of [IEEE802.16e] and
  then present the optimized complete FMIPv6 handover procedures by
  using the link-layer handover indicators.  The examples of handover
  scenarios are described for both the predictive mode and reactive
  mode.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document is to be interpreted as described in [RFC2119].

  Most of terms used in this document are defined in MIPv6 [RFC3775]
  and FMIPv6 [RFC5268].

  The following terms come from the IEEE 802.16e specification
  [IEEE802.16e].

     MOB_NBR-ADV

        An IEEE 802.16e neighbor advertisement message sent
        periodically by a base station.

     MOB_MSHO-REQ

        An IEEE 802.16e handover request message sent by a mobile node.

     MOB_BSHO-RSP

        An IEEE 802.16e handover response message sent by a base
        station.

     MOB_BSHO-REQ

        An IEEE 802.16e handover request message sent by a base
        station.

     MOB_HO-IND

        An IEEE 802.16e handover indication message sent by a mobile
        node.

     BSID

        An IEEE 802.16e base station identifier.






Jang, et al.                 Informational                      [Page 3]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


3.  IEEE 802.16e Handover Overview

  Compared with the handover in the WLAN (Wireless Local Area Network),
  the IEEE 802.16e handover mechanism consists of more steps since the
  802.16e embraces the functionality for elaborate parameter adjustment
  and procedural flexibility.

  When a mobile node (MN) stays in a link, it listens to the Layer 2
  neighbor advertisement messages, named MOB_NBR-ADV, from its serving
  base station (BS).  A BS broadcasts them periodically to identify the
  network and announce the characteristics of neighbor BSs.  Receiving
  this, the MN decodes this message to find out information about the
  parameters of neighbor BSs for its future handover.  With the
  provided information in a MOB_NBR-ADV, the MN may minimize the
  handover latency by obtaining the channel number of neighbors and
  reducing the scanning time, or may select the better target BS based
  on the signal strength, Quality-of-Service (QoS) level, service
  price, etc.

  The handover procedure is conceptually divided into two steps:
  "handover preparation" and "handover execution" [SH802.16e].  The
  handover preparation can be initiated by either an MN or a BS.

  During this period, neighbors are compared by the metrics such as
  signal strength or QoS parameters, and a target BS is selected among
  them.  If necessary, the MN may try to associate (initial ranging)
  with candidate BSs to expedite a future handover.  Once the MN
  decides to handover, it notifies its intent by sending a MOB_MSHO-REQ
  message to the serving BS (s-BS).  The BS then replies with a
  MOB_BSHO-RSP containing the recommended BSs to the MN after
  negotiating with candidates.  Optionally, it may confirm handover to
  the target BS (t-BS) over backbone when the target is decided.
  Alternatively, the BS may trigger handover with a MOB_BSHO-REQ
  message.

  After handover preparation, handover execution starts.  The MN sends
  a MOB_HO-IND message to the serving BS as a final indication of its
  handover.  Once it makes a new attachment, it conducts 802.16e
  ranging through which it can acquire physical parameters from the
  target BS, tuning its parameters to the target BS.  After ranging
  with the target BS successfully, the MN negotiates basic capabilities
  such as maximum transmit power and modulator/demodulator type.  It
  then performs authentication and key exchange procedures, and finally
  registers with the target BS.  If the target BS has already learned
  some contexts such as authentication or capability parameters through
  backbone, it may omit the corresponding procedures.  For the details
  of the 802.16 handover procedures, refer to Section 6.3.22 of
  [IEEE802.16e].  After completing registration, the target BS starts



Jang, et al.                 Informational                      [Page 4]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


  to serve the MN and communication via target BS is available.
  However, in case the MN moves to a different subnet, it should
  reconfigure a new IP address and reestablish an IP connection.  To
  resume the active session of the previous link, the MN should also
  perform IP layer handover.

4.  Network Topology Acquisition and Network Selection

  This section describes how discovery of adjacent networks and
  selection of target network work in the IEEE 802.16e for background
  information.

  An MN can learn the network topology and acquire the link information
  in several ways.  First of all, it can do that via L2 neighbor
  advertisements.  A BS supporting mobile functionality shall broadcast
  a MOB_NBR-ADV message periodically that includes the network topology
  information (its maximum interval is 1 second).  This message
  includes BSIDs and channel information of neighbor BSs, and it is
  used to facilitate the MN's synchronization with neighbor BSs.  An MN
  can collect the necessary information of the neighbor BSs through
  this message for its future handover.

  Another method for acquisition of network topology is scanning, which
  is the process to seek and monitor available BSs in order to find
  suitable handover targets.  While a MOB_NBR-ADV message includes
  static information about neighbor BSs, scanning provides rather
  dynamic parameters such as link quality parameters.  Since the
  MOB_NBR-ADV message delivers a list of neighbor BSIDs periodically
  and scanning provides a way to sort out some adequate BSs, it is
  recommended that when new BSs are found in the advertisement, the MN
  identifies them via scanning and resolves their BSIDs to the
  information of the subnet where the BS is connected.  The
  association, an optional initial ranging procedure occurring during
  scanning, is one of the helpful methods to facilitate the impending
  handover.  The MN is able to get ranging parameters and service
  availability information for the purpose of proper selection of the
  target BS and expediting a potential future handover to it.  The
  detailed explanation of association is described in Section 6.3.22 of
  [IEEE802.16e].

  Besides the methods provided by 802.16e, the MN may rely on other
  schemes.  For instance, the topology information may be provided
  through the MIIS (Media Independent Information Service)
  [IEEE802.21], which has been developed by the IEEE 802.21 working
  group.  The MIIS is a framework by which the MN or network can obtain
  network information to facilitate network selection and handovers.





Jang, et al.                 Informational                      [Page 5]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


  After learning about neighbors, the MN may compare them to find a BS,
  which can serve better than the serving BS.  The target BS may be
  determined by considering various criteria such as required QoS,
  cost, user preference, and policy.  How to select the target BS is
  not in the scope of this document.

5.  Interaction between FMIPv6 and IEEE 802.16e

  In this section, a set of primitives is introduced for an efficient
  interleaving of the IEEE 802.16e and the FMIPv6 procedures as below.
  The following sections present the handover procedures in detail by
  using them.

     o NEW_LINK_DETECTED (NLD)

        A trigger from the link layer to the IP layer in the MN to
        report that a new link has been detected.

     o LINK_HANDOVER_IMPEND (LHI)

        A trigger from the link layer to the IP layer in the MN to
        report that a link-layer handover decision has been made and
        its execution is imminent.

     o LINK_SWITCH (LSW)

        A control command from the IP layer to the link layer in the MN
        in order to force the MN to switch from an old BS to a new BS.

     o LINK_UP (LUP)

        A trigger from the link layer to the IP layer in the MN to
        report that the MN completes the link-layer connection
        establishment with a new BS.

5.1.  Access Router Discovery

  Once a new BS is detected through reception of a MOB_NBR-ADV and
  scanning, an MN may try to learn the associated access router (AR)
  information as soon as possible.  In order to enable its quick
  discovery in the IP layer, the link layer (802.16) triggers a
  NEW_LINK_DETECTED primitive to the IP layer (FMIPv6) on detecting a
  new BS.

  Receiving the NEW_LINK_DETECTED from the link layer, the IP layer
  tries to learn the associated AR information by exchanging an RtSolPr
  (Router Solicitation for Proxy Advertisement) and a PrRtAdv (Proxy
  Router Advertisement) with the PAR (Previous Access Router).



Jang, et al.                 Informational                      [Page 6]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


  According to [RFC5268], the MN may send an RtSolPr at any convenient
  time.  However, this proposal recommends that, if feasible, the MN
  send it as soon as possible after receiving the NEW_LINK_DETECTED for
  quick router discovery because detection of a new BS usually implies
  MN's movement, which may result in handover.

  Transmission of RtSolPr messages may cause the signaling overhead
  problem that is mentioned in Section 2 of [RFC4907].  To rate-limit
  the retransmitted RtSolPr messages, FMIPv6 provides a back-off
  mechanism.  It is also possible that attackers may forge a MOB_NBR-
  ADV message so that it can contain a bunch of bogus BSIDs or may send
  a flood of MOB_NBR-ADV messages each of which contains different
  BSIDs.  This problem is mentioned in Section 8.

5.2.  Handover Preparation

  When the MN decides to change links based on its policy such as the
  degrading signal strength or increasing packet loss rate, it
  initiates handover by sending a MOB_MSHO-REQ to the BS and will
  receive a MOB_BSHO-RSP from the BS as a response.  Alternatively, the
  BS may initiate handover by sending a MOB_BSHO-REQ to the MN.

  On receiving either a MOB_BSHO-RSP or a MOB_BSHO-REQ, the link layer
  triggers a LINK_HANDOVER_IMPEND in order to signal the IP layer of
  arrival of MOB_BSHO-REQ/MOB_BSHO-RSP quickly.  At this time, the
  target BS decided in the link layer is delivered to the IP layer as a
  parameter of the primitive.  The primitive is used to report that a
  link-layer handover decision has been made and its execution is
  imminent.  It can be helpfully used for FMIPv6 as an indication to
  start the handover preparation procedure, that is to send an FBU
  (Fast Binding Update) message to the PAR.

  To avoid erroneous results due to unreliable and inconsistent
  characteristics of link, for instance, to move to the unpredicted
  network or to stay in the current network after sending an FBU,
  Section 2 of [RFC4907] advises the use of a combination of signal
  strength data with other techniques rather than relying only on
  signal strength for handover decision.  For example, the
  LINK_HANDOVER_IMPEND may be sent after validating filtered signal
  strength measurements with other indications of link loss such as
  lack of beacon reception.

  Once the IP layer receives the LINK_HANDOVER_IMPEND, it checks
  whether or not the specified target network belongs to a different
  subnet based on the information collected during the Access Router
  Discovery step.  If the target proves to be in the same subnet, the
  MN can continue to use the current IP address after handover, and
  there is no need to perform FMIPv6.  Otherwise, the IP layer



Jang, et al.                 Informational                      [Page 7]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


  formulates a prospective NCoA (New Care-of Address) with the
  information provided in the PrRtAdv message and sends an FBU message
  to the PAR.

  When the FBU message arrives in the PAR successfully, the PAR and the
  NAR (New Access Router) process it according to [RFC5268].  The PAR
  sets up a tunnel between the PCoA (Previous Care-of Address) and NCoA
  by exchanging HI (Handover Initiate) and HAck (Handover Acknowledge)
  messages with the NAR, forwarding the packets destined for the MN to
  the NCoA.  The NCoA is confirmed or re-assigned by the NAR in the
  HAck and, finally delivered to the MN through the FBack (Fast Binding
  Acknowledgment) in case of predictive mode.

  After the MN sends a MOB_HO-IND to the serving BS, data packet
  transfer between the MN and the BS is no longer allowed.  Note that
  when a MOB_HO-IND is sent out before an FBack arrives in the MN, it
  is highly probable that the MN will operate in reactive mode because
  the serving BS releases all the MN's connections and resources after
  receiving a MOB_HO-IND.  Therefore, if possible, the MN should
  exchange FBU and FBack messages with the PAR before sending a MOB_HO-
  IND to the BS so as to operate in predictive mode.

5.3.  Handover Execution

  If the MN receives an FBack message on the previous link, it runs in
  predictive mode after handover.  Otherwise, it should run in reactive
  mode.  In order for the MN to operate in predictive mode as far as
  possible after handover, implementations may allow use of a
  LINK_SWITCH primitive.  The LINK_SWITCH is a command in order to
  force the MN to switch from an old BS to a new BS and the similar
  concept has introduced for the wireless LAN in [RFC5184].  When it is
  applied, the MN's IP layer issues a LINK_SWITCH primitive to the link
  layer on receiving the FBack message in the previous link.  Until it
  occurs, the link layer keeps the current (previous) link if feasible
  and postpones sending a MOB_HO-IND message while waiting for the
  FBack message.

  After switching links, the MN synchronizes with the target BS and
  performs the 802.16e network entry procedure.  The MN exchanges the
  RNG-REQ/RSP, SBC-REQ/RSP, PKM-REQ/RSP, and REG-REQ/RSP messages with
  the target BS.  Some of these messages may be omitted if the
  (previously) serving BS transferred the context to the target BS over
  the backbone beforehand.  When the network entry procedure is
  completed and the link layer is ready for data transmission, it
  informs the IP layer of the fact with a LINK_UP primitive.






Jang, et al.                 Informational                      [Page 8]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


  Section 2 of [RFC4907] recommends that link indications should be
  designed with built-in damping.  The LINK_UP primitive defined in
  this document is generated by the link layer state machine based on
  the 802.16e link layer message exchanges, that is, the IEEE 802.16e
  network entry and the service flow creation procedures.  Therefore,
  the LINK_UP is typically less sensitive to changes in transient link
  conditions.  The link may experience an intermittent loss.  Even in
  such a case, the following FMIPv6 operation is performed only when
  the MN handovers to the link with a different subnet and there is no
  signaling overhead as a result of a intermittent loss.

5.4.  Handover Completion

  When the MN's IP layer receives a LINK_UP primitive from the link
  layer, it should check whether it has moved into the target network
  predicted by FMIPv6.  In case the target BS is within the same
  subnet, the MN does not perform the FMIPv6 operation.

     *  If the MN discovers itself in the predicted target network and
        receives an FBack message in the previous link, the MN's IP
        layer sends an UNA (Unsolicited Neighbor Advertisement) to the
        NAR (predictive mode).

     *  If the MN has moved to the target network without receiving an
        FBack message in the previous link, the IP layer sends an UNA
        and also an FBU message immediately after sending the UNA
        message (reactive mode).  The NAR may provide a different IP
        address by using an RA (Router Advertisement) with a NAACK
        (Neighbor Advertisement Acknowledge) option other than the
        formulated NCoA by the MN.

     *  The MN may discover itself in the unpredicted network
        (erroneous movement).  If this is the case, the MN moves to the
        network that is not the target specified in the
        LINK_HANDOVER_IMPEND primitive.  For the recovery from such an
        invalid indication, which is mentioned in Section 2 of
        [RFC4907], the MN should send a new FBU to the PAR according to
        Section 5.6 of [RFC5268] so that the PAR can update the
        existing binding entry and redirect the packets to the new
        confirmed location.

  In both cases of predictive and reactive modes, once the MN has moved
  into the new link, it uses the NCoA formulated by the MN as a source
  address of the UNA, irrespective of NCoA availability.  It then
  starts a Duplicate Address Detection (DAD) probe for NCoA according
  to [RFC4862].  In case the NAR provides the MN with a new NCoA, the
  MN MUST use the provided NCoA instead of the NCoA formulated by the
  MN.



Jang, et al.                 Informational                      [Page 9]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


  When the NAR receives an UNA message, it deletes its proxy neighbor
  cache entry if it exists, and forwards buffered packets to the MN
  after updating the neighbor cache properly.  Detailed UNA processing
  rules are specified in Section 6.4 of [RFC5268].

6.  The Examples of Handover Scenario

  In this section, the recommended handover procedures over 802.16e
  network are shown for both predictive and reactive modes.  It is
  assumed that the MN handovers to the network that belongs to a
  different subnet.

  In the following figures, the messages between the MN's Layer 2 (MN
  L2) and the BS are the IEEE 802.16 messages, while messages between
  the MN's Layer 3 (MN L3) and the PAR and messages between PAR and NAR
  are the FMIPv6 messages.  The messages between the MN L2 and the MN
  L3 are primitives introduced in this document.

6.1.  Predictive Mode

  The handover procedures in the predictive mode are briefly described
  as follows.  Figure 3 illustrates these procedures.

     1.   A BS broadcasts a MOB_NBR-ADV periodically.

     2.   If the MN discovers a new neighbor BS in this message, it may
          perform scanning for the BS.

     3.   When a new BS is found through the MOB_NBR-ADV and scanning,
          the MN's link layer notifies it to the IP layer by a
          NEW_LINK_DETECTED primitive.

     4.   The MN tries to resolve the new BS's BSID to the associated
          AR by exchange of RtSolPr and PrRtAdv messages with the PAR.

     5.   The MN initiates handover by sending a MOB_MSHO-REQ message
          to the BS and receives a MOB_BSHO-RSP from the BS.
          Alternatively, the BS may initiate handover by sending a
          MOB_BSHO-REQ to the MN.

     6.   When the MN receives either a MOB_BSHO-RSP or a MOB_BSHO-REQ
          from the BS, its link layer triggers a LINK_HANDOVER_IMPEND
          primitive to the IP layer.








Jang, et al.                 Informational                     [Page 10]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


     7.   On reception of the LINK_HANDOVER_IMPEND, the MN's IP layer
          identifies that the target delivered along with the
          LINK_HANDOVER_IMPEND belongs to a different subnet and sends
          an FBU message to the PAR.  On receiving this message, the
          PAR establishes tunnel between the PCoA and the NCoA by
          exchange of HI and HAck messages with the NAR, and it
          forwards packets destined for the MN to the NCoA.  During
          this time, the NAR may confirm NCoA availability in the new
          link via HAck.

     8.   The MN receives the FBack message before its handover and
          sends a MOB_HO-IND message as a final indication of handover.
          Issue of a MOB_HO-IND may be promoted optionally by using a
          LINK_SWITCH command from the IP layer.  Afterwards it
          operates in predictive mode in the new link.

     9.   The MN conducts handover to the target BS and performs the
          IEEE 802.16e network entry procedure.

     10.  As soon as the network entry procedure is completed, the MN's
          link layer signals the IP layer with a LINK_UP.  On receiving
          this, the IP layer identifies that it has moved to a
          predicted target network and received the FBack message in
          the previous link.  It issues an UNA to the NAR by using the
          NCoA as a source IP address.  At the same time, it starts to
          perform DAD for the NCoA.

     11.  When the NAR receives the UNA from the MN, it delivers the
          buffered packets to the MN.






















Jang, et al.                 Informational                     [Page 11]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


       (MN L3  MN L2)                   s-BS   PAR          t-BS   NAR
         |      |                        |      |            |      |
   1-2.  |      |<---MOB_NBR-ADV --------|      |            |      |
         |      |<-------Scanning------->|      |            |      |
   3.    |<-NLD-|                        |      |            |      |
   4.    |--------------(RtSolPr)-------------->|            |      |
         |<--------------PrRtAdv----------------|            |      |
         |      |                        |      |            |      |
   5.    |      |------MOB_MSHO-REQ----->|      |            |      |
         |      |<-----MOB_BSHO-RSP------|      |            |      |
         |      |  or                    |      |            |      |
         |      |<-----MOB_BSHO-REQ------|      |            |      |
   6.    |<-LHI-|                        |      |            |      |
   7.    |------------------FBU---------------->|            |      |
         |      |                        |      |--------HI-------->|
         |      |                        |      |<------HACK--------|
         |<-----------------FBack---------------|-->         |      |
         |      |                        |    Packets==============>|
   8.    |(LSW)>|-------MOB_HO-IND------>|      |            |      |
      disconnect|                        |      |            |      |
      connect   |                        |      |            |      |
   9.    |      |<---------IEEE 802.16 network entry-------->|      |
   10.   |<-LUP-|                        |      |            |      |
         |----------------------------UNA-------------------------->|
   11.   |<==================================================== Packets
         |      |                        |      |                   |

              Figure 3. Predictive Fast Handover in 802.16e

6.2.  Reactive Mode

  The handover procedures in the reactive mode are described as
  follows.  Figure 4 is illustrating these procedures.

     1. ~ 7.  The same as procedures of predictive mode.

     8.   The MN does not receive the FBack message before handover and
          sends a MOB_HO-IND message as a final indication of handover.
          Afterwards, it operates in reactive mode in the new link.

     9.   The MN conducts handover to the target network and performs
          the 802.16e network entry procedure.









Jang, et al.                 Informational                     [Page 12]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


     10.  As soon as the network entry procedure is completed, the MN's
          link layer signals the IP layer with a LINK_UP.  On receiving
          this, the IP layer identifies that it has moved to the
          predicted target network without receiving the FBack in the
          previous link.  The MN issues an UNA to the NAR by using NCoA
          as a source IP address and starts to perform DAD for the
          NCoA.  Additionally, it sends an FBU to the PAR in the
          reactive mode.

     11.  When the NAR receives the UNA and the FBU from the MN, it
          forwards the FBack to the PAR.  The FBack and Packets are
          forwarded from the PAR and delivered to the MN (NCoA) through
          the NAR.  The NAR may supply a different IP address than the
          NCoA by sending an RA with a NAACK option to the MN.

      (MN L3  MN L2)                   s-BS   PAR          t-BS   NAR
         |      |                        |      |            |      |
   1-2.  |      |<---MOB_NBR-ADV & Scan--|      |            |      |
         |      |<-------Scanning------->|      |            |      |
   3.    |<-NLD-|                        |      |            |      |
   4.    |--------------(RtSolPr)-------------->|            |      |
         |<--------------PrRtAdv----------------|            |      |
         |      |                        |      |            |      |
   5.    |      |------MOB_MSHO-REQ----->|      |            |      |
         |      |<-----MOB_BSHO-RSP------|      |            |      |
         |      |  or                    |      |            |      |
         |      |<-----MOB_BSHO-REQ------|      |            |      |
   6.    |<-LHI-|                        |      |            |      |
   7.    |--------FBU----X--->           |      |            |      |
   8.    |      |-------MOB_HO-IND------>|      |            |      |
      disconnect|                        |      |            |      |
      connect   |                        |      |            |      |
   9.    |      |<---------IEEE 802.16 network entry-------->|      |
   10.   |<-LUP-|                        |      |            |      |
         |----------------------------UNA-------------------------->|
         |----------------------------FBU--------------------------)|
   11.   |      |                        |      |<-------FBU-------)|
         |      |                        |      |<-----HI/HAck----->|
         |      |                        |      |  (if necessary)   |
         |      |                        | Packets & FBack=========>|
         |<=========================================================|
         |      |                        |      |            |      |

               Figure 4. Reactive Fast Handover in 802.16e







Jang, et al.                 Informational                     [Page 13]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


7.  IEEE 802.21 Considerations

  It is worth noting that great research has been conducted on defining
  generic services in the IEEE 802.21 working group that facilitate
  handovers between heterogeneous access links.  The standard works are
  named as a Media Independent Handover (MIH) Service [IEEE802.21], and
  propose three kinds of services: Media Independent Event Service
  (MIES), Media Independent Command Service (MICS), and Media
  Independent Information Service (MIIS).

  An MIES defines the events triggered from lower layers (physical and
  link) to higher layers (network and above) in order to report changes
  of physical and link-layer conditions.  On the other hand, an MICS
  supports the commands sent from higher layers to lower layers, and it
  provides users with a way of managing the link behavior relevant to
  handovers and mobility.  An MIIS provides a framework by which the MN
  or network can obtain network information to facilitate network
  selection and handovers.

  Although the purpose of IEEE 802.21 has been developed to enhance the
  user experience of MNs roaming between heterogeneous networks, the
  results may be utilized to optimize the handover performance in a
  homogeneous network.  When the MIH primitives are available for
  handover in the 802.16e network, the MN can use them instead of the
  primitives proposed in this document.  Table 1 shows examples of the
  mapping between the proposed primitives and the MIH primitives.

          +-------------------------+-------------------------+
          |   Proposed primitives   |      MIH primitives     |
          +===================================================+
          |  NEW_LINK_DETECTED      |  LINK_DETECTED          |
          +---------------------------------------------------+
          |  LINK_HANDOVER_IMPEND   |  LINK_HANDOVER_IMMINENT |
          +---------------------------------------------------+
          |  LINK_SWITCH            |  HANDOVER_COMMIT        |
          +---------------------------------------------------+
          |  LINK_UP                |  LINK_UP                |
          +---------------------------------------------------+

           Table 1. The Proposed Primitives and MIH Primitives

8.  Security Considerations

  The primitives defined in this document are used only for local
  indication inside of the MN, so no security mechanism is required to
  protect those primitives.  However, FMIPv6 messages and IEEE 802.16e
  messages, which may trigger the primitives, need to be protected.




Jang, et al.                 Informational                     [Page 14]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


  Security considerations of the FMIPv6 specification [RFC5268] are
  applicable to this document.  It is also worthwhile to note that the
  IEEE802.16e has a security sub-layer that provides subscribers with
  privacy and authentication over the broadband wireless network.  This
  layer has two main component protocols: a privacy key management
  protocol (PKM) for key management and authentication and an
  encapsulation protocol for encrypting data.  From the perspective of
  the 802.16e, FMIPv6 messages are considered as data and are delivered
  securely by using those protocols.

  However, some of IEEE 802.16e management messages are sent without
  authentication.  For example, there is no protection to secure
  802.16e broadcast messages.  It may be possible for the attacker to
  maliciously forge a MOB_NBR-ADV message so that it contains the bogus
  BSIDs, or send a flood of MOB_NBR-ADV messages having different bogus
  BSIDs toward the MN.  As a result, the MN may trigger a bunch of
  NEW_LINK_DETECTED primitives and send useless consecutive RtSolPr
  messages to the PAR, finally resulting in wasting the air resources.
  Therefore, the MN SHOULD perform scanning when detecting new BSs in
  the received MOB_NBR-ADV messages in order to assure the included
  neighbor information.

  It is also possible that attackers try a DoS (Denial-of-Service)
  attack by sending a flood of MOB_BSHO-REQ messages and triggering
  LINK_HANDOVER_IMPEND primitives in the MN.  But the IEEE 802.16e
  provides a message authentication scheme for management messages
  involved in handover as well as network entry procedures by using a
  message authentication code (MAC) such as HMAC/CMAC (hashed/cipher
  MAC).  Thus, those management messages are protected from the
  malicious use by attackers who intend to trigger LINK_HANDOVER_IMPEND
  or LINK_UP primitives in the MN.

9.  Acknowledgments

  Many thanks to the IETF Mobility Working Group members of KWISF
  (Korea Wireless Internet Standardization Forum) for their efforts on
  this work.  In addition, we would like to thank Alper E. Yegin,
  Jinhyeock Choi, Rajeev Koodli, Jonne Soininen, Gabriel Montenegro,
  Singh Ajoy, Yoshihiro Ohba, Behcet Sarikaya, Vijay Devarapalli, and
  Ved Kafle who have provided technical advice.

10.  References

10.1.  Normative References

  [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.




Jang, et al.                 Informational                     [Page 15]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


  [RFC3775]      Johnson, D., Perkins, C., and J. Arkko, "Mobility
                 Support in IPv6", RFC 3775, June 2004.

  [RFC4862]      Thomson, S., Narten, T., and T. Jinmei, "IPv6
                 Stateless Address Autoconfiguration", RFC 4862,
                 September 2007.

  [RFC5268]      Koodli, R., Ed., "Mobile IPv6 Fast Handovers",
                 RFC 5268, June 2008.

  [IEEE802.16]   "IEEE Standard for Local and Metropolitan Area
                 Networks, Part 16: Air Interface for Fixed Broadband
                 Wireless Access Systems", IEEE Std 802.16-2004,
                 October 2004.

  [IEEE802.16e]  "IEEE Standard for Local and Metropolitan Area
                 Networks, Amendment 2: Physical and Medium Access
                 Control Layers for Combined Fixed and Mobile Operation
                 in Licensed Bands and Corrigendum 1", IEEE
                 Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005,
                 February 2006.

10.2.  Informative References

  [RFC4260]      McCann, P., "Mobile IPv6 Fast Handovers for 802.11
                 Networks", RFC 4260, November 2005.

  [RFC5184]      Teraoka, F., Gogo, K., Mitsuya, K., Shibui, R., and K.
                 Mitani, "Unified Layer 2 (L2) Abstractions for Layer 3
                 (L3)-Driven Fast Handover", RFC 5184, May 2008.

  [RFC4907]      Aboba, B., "Architectural Implications of Link
                 Indications", RFC 4907, June 2007.

  [IEEE802.21]   "Draft IEEE Standard for Local and Metropolitan Area
                 Networks: Media Independent Handover Services", IEEE
                 Std P802.21 D9.0, February 2008.

  [SH802.16e]    Kim, K., Kim, C., and T. Kim, "A Seamless Handover
                 Mechanism for IEEE 802.16e Broadband Wireless Access",
                 International Conference on Computational Science vol.
                 2, pp.527-534, 2005.









Jang, et al.                 Informational                     [Page 16]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


Authors' Addresses

  Heejin Jang
  SAMSUNG Advanced Institute of Technology
  P.O. Box 111
  Suwon 440-600
  Korea

  EMail: [email protected]


  Junghoon Jee
  Electronics and Telecommunications Research Institute
  161 Gajeong-dong, Yuseong-gu
  Daejon 305-350
  Korea

  EMail: [email protected]


  Youn-Hee Han
  Korea University of Technology and Education
  Gajeon-ri, Byeongcheon-myeon
  Cheonan 330-708
  Korea

  EMail: [email protected]


  Soohong Daniel Park
  SAMSUNG Electronics
  416 Maetan-3dong, Yeongtong-gu
  Suwon 442-742
  Korea

  EMail: [email protected]


  Jaesun Cha
  Electronics and Telecommunications Research Institute
  161 Gajeong-dong, Yuseong-gu
  Daejon 305-350
  Korea

  EMail: [email protected]






Jang, et al.                 Informational                     [Page 17]

RFC 5270                  FMIPv6 over 802.16e                  June 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Jang, et al.                 Informational                     [Page 18]