Network Working Group                                           J. Kempf
Request for Comments: 5269                               DoCoMo Labs USA
Category: Standards Track                                      R. Koodli
                                                       Starent Networks
                                                              June 2008


Distributing a Symmetric Fast Mobile IPv6 (FMIPv6) Handover Key Using
                  SEcure Neighbor Discovery (SEND)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  Fast Mobile IPv6 requires that a Fast Binding Update is secured using
  a security association shared between an Access Router and a Mobile
  Node in order to avoid certain attacks.  In this document, a method
  for provisioning a shared key from the Access Router to the Mobile
  Node is defined to protect this signaling.  The Mobile Node generates
  a public/private key pair using the same public key algorithm as for
  SEND (RFC 3971).  The Mobile Node sends the public key to the Access
  Router.  The Access Router encrypts a shared handover key using the
  public key and sends it back to the Mobile Node.  The Mobile Node
  decrypts the shared handover key using the matching private key, and
  the handover key is then available for generating an authenticator on
  a Fast Binding Update.  The Mobile Node and Access Router use the
  Router Solicitation for Proxy Advertisement and Proxy Router
  Advertisement from Fast Mobile IPv6 for the key exchange.  The key
  exchange messages are required to have SEND security; that is, the
  source address is a Cryptographically Generated Address (CGA) and the
  messages are signed using the CGA private key of the sending node.
  This allows the Access Router, prior to providing the shared handover
  key, to verify the authorization of the Mobile Node to claim the
  address so that the previous care-of CGA in the Fast Binding Update
  can act as the name of the key.










Kempf & Koodli              Standards Track                     [Page 1]

RFC 5269                     FMIP Security                     June 2008


Table of Contents

  1. Introduction ....................................................2
     1.1. Terminology ................................................3
  2. Overview of the Protocol ........................................3
     2.1. Brief Review of SEND .......................................3
     2.2. Protocol Overview ..........................................4
  3. Handover Key Provisioning and Use ...............................4
     3.1. Sending Router Solicitations for Proxy Advertisement .......4
     3.2. Receiving Router Solicitations for Proxy
          Advertisement and Sending Proxy Router Advertisements ......5
     3.3. Receiving Proxy Router Advertisements ......................6
     3.4. Sending FBUs ...............................................7
     3.5. Receiving FBUs .............................................7
     3.6. Key Generation and Lifetime ................................7
     3.7. Protocol Constants .........................................8
  4. Message Formats .................................................8
     4.1. Handover Key Request Option ................................8
     4.2. Handover Key Reply Option .................................10
  5. Security Considerations ........................................11
  6. IANA Considerations ............................................11
  7. References .....................................................12
     7.1. Normative References ......................................12
     7.2. Informative References ....................................12

1.  Introduction

  In Fast Mobile IPv6 (FMIPv6) [FMIP], a Fast Binding Update (FBU) is
  sent from a Mobile Node (MN), undergoing IP handover, to the previous
  Access Router (AR).  The FBU causes a routing change so traffic sent
  to the MN's previous Care-of Address on the previous AR's link is
  tunneled to the new Care-of Address on the new AR's link.  Only an MN
  authorized to claim the address should be able to change the routing
  for the previous Care-of Address.  If such authorization is not
  established, an attacker can redirect a victim MN's traffic at will.

  In this document, a lightweight mechanism is defined by which a
  shared handover key for securing FMIP can be provisioned on the MN by
  the AR.  The mechanism utilizes SEND [SEND] and an additional
  public/private key pair, generated on the MN using the same public
  key algorithm as SEND, to encrypt/decrypt a shared handover key sent
  from the AR to the MN.  The key provisioning occurs at some arbitrary
  time prior to handover, thereby relieving any performance overhead on
  the handover process.  The message exchange between the MN and AR to
  provision the handover key is required to be protected by SEND; that
  is, the source address for the key provisioning messages must be a
  CGA and the messages must be signed with the CGA private key.  This
  allows the AR to establish the MN's authorization to operate on the



Kempf & Koodli              Standards Track                     [Page 2]

RFC 5269                     FMIP Security                     June 2008


  CGA.  The AR uses the CGA to name the handover key.  The SEND key
  pair is, however, independent from the handover encryption/decryption
  key pair and from the actual handover key.  Once the shared handover
  key has been established, when the MN undergoes IP handover, the MN
  generates an authorization Message Authentication Code (MAC) on the
  FBU.  The previous care-of CGA included in the FBU is used by the AR
  to find the right handover key for checking the authorization.

  Handover keys are an instantiation of the purpose built key
  architectural principle [PBK].

1.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

  In addition, the following terminology is used:

  CGA public key

         Public key used to generate the CGA according to RFC 3972
         [CGA].

  CGA private key

         Private key corresponding to the CGA public key.

  Handover key encryption public key

         Public key generated by the MN and sent to the current AR to
         encrypt the shared handover key.

  Handover key encryption private key

         Private key corresponding to handover key encryption public
         key, held by the MN.

2.  Overview of the Protocol

2.1.  Brief Review of SEND

  SEND protects against a variety of threats to local link address
  resolution (also known as Neighbor Discovery) and last hop router
  (AR) discovery in IPv6 [RFC3756].  These threats are not exclusive to
  wireless networks, but they generally are easier to mount on certain
  wireless networks because the link between the access point and MN
  can't be physically secured.



Kempf & Koodli              Standards Track                     [Page 3]

RFC 5269                     FMIP Security                     June 2008


  SEND utilizes CGAs in order to secure Neighbor Discovery signaling
  [CGA].  Briefly, a CGA is formed by hashing together the IPv6 subnet
  prefix for a node's subnet, a random nonce, and an RSA public key,
  called the CGA public key.  The CGA private key is used to sign a
  Neighbor Advertisement (NA) message sent to resolve the link-layer
  address to the IPv6 address.  The combination of the CGA and the
  signature on the NA proves to a receiving node the sender's
  authorization to claim the address.  The node may opportunistically
  generate one or several keys specifically for SEND, or it may use a
  certified key that it distributes more widely.

2.2.  Protocol Overview

  The protocol utilizes the SEND secured Router Solicitation for Proxy
  Advertisement (RtSolPr)/Proxy Router Advertisement (PrRtAdv) [FMIP]
  exchange between the MN and the AR to transport an encrypted, shared
  handover key from the AR to the MN.  First, the MN generates the
  necessary key pair and associated CGA addresses so that the MN can
  employ SEND.  Then, the MN generates a public/private key pair for
  encrypting/decrypting the shared handover key, using the same public
  key algorithm as was used for SEND.  The MN then sends an RtSolPr
  message with a Handover Key Request Option containing the handover
  key encryption public key.  The source address of the RtSolPr message
  is the MN's care-of CGA on the AR's link, the RtSolPr message is
  signed with the MN's CGA key, and contains the CGA Parameters option,
  in accordance with RFC 3971 [SEND].  The AR verifies the message
  using SEND, then utilizes the handover key encryption public key to
  encrypt a shared handover key, which is included with the PrRtAdv in
  the Handover Key Reply Option.  The MN decrypts the shared handover
  key and uses it to establish an authorization MAC when it sends an
  FBU to the previous AR.

3.  Handover Key Provisioning and Use

3.1.  Sending Router Solicitations for Proxy Advertisement

  At some time prior to handover, the MN MUST generate a handover key
  encryption public/private key pair, using exactly the same public key
  algorithm with exactly the same parameters (key size, etc.) as for
  SEND [SEND].  The MN can reuse the key pair on different access
  routers but MUST NOT use the key pair for any other encryption or for
  signature operation.  In order to prevent cryptanalysis, the key pair
  SHOULD be discarded after either a duration of HKEPK-LIFETIME or
  HKEPK-HANDOVERS number of handovers, whichever occurs first.  See
  Section 3.7 for definitions of protocol constants.






Kempf & Koodli              Standards Track                     [Page 4]

RFC 5269                     FMIP Security                     June 2008


  The MN MUST send a Router Solicitation for Proxy Advertisement
  (RtSolPr) containing a Handover Key Request Option with the handover
  encryption public key.  A CGA for the MN MUST be the source address
  on the packet, and the MN MUST include the SEND CGA Option and SEND
  Signature Option with the packet, as specified in [SEND].  The SEND
  signature covers all fields in the RtSolPr, including the 128-bit
  source and destination addresses and ICMP checksum as described in
  RFC 3971, except for the Signature Option itself.  The MN also sets
  the handover authentication Algorithm Type (AT) extension field in
  the Handover Key Request Option to the MN's preferred FBU
  authentication algorithm.  The SEND Nonce MUST also be included for
  anti-replay protection.

3.2.  Receiving Router Solicitations for Proxy Advertisement and Sending
     Proxy Router Advertisements

  When an FMIPv6 capable AR with SEND receives an RtSolPr from an MN
  protected with SEND and including a Handover Key Request Option, the
  AR MUST first validate the RtSolPr using SEND as described in RFC
  3971.  If the RtSolPr can not be validated, the AR MUST NOT include a
  Handover Key Reply Option in the reply.  The AR also MUST NOT change
  any existing key record for the address, since the message may be an
  attempt by an attacker to disrupt communications for a legitimate MN.
  The AR SHOULD respond to the RtSolPr but MUST NOT perform handover
  key provisioning.

  If the RtSolPr can be validated, the AR MUST then determine whether
  the CGA is already associated with a shared handover key.  If the CGA
  is associated with an existing handover key, the AR MUST return the
  existing handover key to the MN.  If the CGA does not have a shared
  handover key, the AR MUST construct a shared handover key as
  described in Section 3.6.  The AR MUST encrypt the handover key with
  the handover key encryption public key included in the Handover Key
  Request Option.  The AR MUST insert the encrypted handover key into a
  Handover Key Reply Option and MUST attach the Handover Key Reply
  Option to the PrRtAdv.  The lifetime of the key, HK-LIFETIME, MUST
  also be included in the Handover Key Reply Option.  The AR SHOULD set
  the AT field of the Handover Key Option to the MN's preferred
  algorithm type indicated in the AT field of the Handover Key Request
  Option, if it is supported; otherwise, the AR MUST select an
  authentication algorithm that is of equivalent strength or stronger,
  and set the field to that.  The AR MUST also include the SEND nonce
  from the RtSolPr for anti-replay protection.  The AR MUST have a
  certificate suitable for a SEND-capable router, support SEND
  certificate discovery, and include a SEND CGA Option and a SEND
  Signature Option in the PrRtAdv messages it sends.  Similarly, the
  mobile nodes MUST be configured with one or more SEND trust anchors
  so that they can verify these messages.  The SEND signature covers



Kempf & Koodli              Standards Track                     [Page 5]

RFC 5269                     FMIP Security                     June 2008


  all fields in the PrRtAdv, including the 128-bit source and
  destination addresses and ICMP checksum as described in RFC 3971,
  except for the Signature Option itself.  The PrRtAdv is then unicast
  back to the MN at the MN's care-of CGA that was the source address on
  the RtSolPr.  The handover key MUST be stored by the AR for future
  use, indexed by the CGA, and the authentication algorithm type (i.e.,
  the resolution of the AT field processing) and HK-LIFETIME MUST be
  recorded with the key.

3.3.  Receiving Proxy Router Advertisements

  Upon receipt of one or more PrRtAdvs secured with SEND and having the
  Handover Key Reply Option, the MN MUST first validate the PrRtAdvs as
  described in RFC 3971.  Normally, the MN will have obtained the
  router's certification path to validate an RA prior to sending the
  PrRtSol and the MN MUST check to ensure that the key used to sign the
  PrRtAdv is the router's certified public key.  If the MN does not
  have the router's certification path cached, it MUST use the SEND
  CPS/CPA messages to obtain the certification path to validate the
  key.  If a certified key from the router was not used to sign the
  message, the message MUST be dropped.

  From the messages that validate, the MN SHOULD choose one with an AT
  flag in the Handover Key Reply Option indicating an authentication
  algorithm that the MN supports.  From that message, the MN MUST
  determine which handover key encryption public key to use in the
  event the MN has more than one.  The MN finds the right public key to
  use by matching the SEND nonce from the RtSolPr.  If no such match
  occurs, the MN MUST drop the PrRtAdv.  The MN MUST use the matching
  private key to decrypt the handover key using its handover key
  encryption private key, and store the handover key for later use,
  named with the AR's CGA, along with the algorithm type and
  HK-LIFETIME.  The MN MUST use the returned algorithm type indicated
  in the PrRtAdv.  The MN MUST index the handover keys with the AR's
  IPv6 address, to which the MN later sends the FBU, and the MN's CGA
  to which the handover key applies.  This allows the MN to select the
  proper key when communicating with a previous AR.  Prior to
  HK-LIFETIME expiring, the MN MUST request a new key from the AR if
  FMIPv6 service is still required from the router.

  If more than one router responds to the RtSolPr, the MN MAY keep
  track of all such keys.  If none of the PrRtAdvs contains an
  algorithm type indicator corresponding to an algorithm the MN
  supports, the MN MAY re-send the RtSolPr requesting a different
  algorithm, but to prevent bidding down attacks from compromised
  routers, the MN SHOULD NOT request an algorithm that is weaker than
  its original request.




Kempf & Koodli              Standards Track                     [Page 6]

RFC 5269                     FMIP Security                     June 2008


3.4.  Sending FBUs

  When the MN needs to signal the Previous AR (PAR) using an FMIPv6
  FBU, the MN MUST utilize the handover key and the corresponding
  authentication algorithm to generate an authenticator for the
  message.  The MN MUST select the appropriate key for the PAR using
  the PAR's CGA and the MN's previous care-of CGA on the PAR's link.
  As defined by the FMIPv6 [FMIP], the MN MUST generate the
  authentication MAC using the handover key and the appropriate
  algorithm and MUST include the MAC in the FBU message.  As specified
  by FMIPv6, the MN MUST include the old care-of CGA in a Home Address
  Option.  The FMIPv6 document provides more detail about the
  construction of the authenticator on the FBU.

3.5.  Receiving FBUs

  When the PAR receives an FBU message containing an authenticator, the
  PAR MUST find the corresponding handover key using the MN's care-of
  CGA in the Home Address Option as the index.  If a handover key is
  found, the PAR MUST utilize the handover key and the appropriate
  algorithm to verify the authenticator.  If the handover key is not
  found, the PAR MUST NOT change forwarding for the care-of CGA.  The
  FMIPv6 document [FMIP] provides more detail on how the AR processes
  an FBU containing an authenticator.

3.6.  Key Generation and Lifetime

  The AR MUST randomly generate a key having sufficient strength to
  match the authentication algorithm.  Some authentication algorithms
  specify a required key size.  The AR MUST generate a unique key for
  each CGA public key, and SHOULD take care that the key generation is
  uncorrelated between handover keys, and between handover keys and CGA
  keys.  The actual algorithm used to generate the key is not important
  for interoperability since only the AR generates the key; the MN
  simply uses it.

  A PAR SHOULD NOT discard the handover key immediately after use if it
  is still valid.  It is possible that the MN may undergo rapid
  movement to another AR prior to the completion of Mobile IPv6 binding
  update on the PAR, and the MN MAY as a consequence initialize
  another, subsequent handover optimization to move traffic from the
  PAR to another new AR.  The default time for keeping the key valid
  corresponds to the default time during which forwarding from the PAR
  to the new AR is performed for FMIP.  The FMIPv6 document [FMIP]
  provides more detail about the FMIP forwarding time default.

  If the MN returns to a PAR prior to the expiration of the handover
  key, the PAR MAY send and the MN MAY receive the same handover key as



Kempf & Koodli              Standards Track                     [Page 7]

RFC 5269                     FMIP Security                     June 2008


  was previously returned, if the MN generates the same CGA for its
  Care-of Address.  However, the MN MUST NOT assume that it can
  continue to use the old key without actually receiving the handover
  key again from the PAR.  The MN SHOULD discard the handover key after
  MIPv6 binding update is complete on the new AR.  The PAR MUST discard
  the key after FMIPv6 forwarding for the previous Care-of Address
  times out or when HK-LIFETIME expires.

3.7.  Protocol Constants

  The following are protocol constants with suggested defaults:

  HKEPK-LIFETIME:   The maximum lifetime for the handover key
                    encryption public key.  Default is 12 hours.

  HKEPK-HANDOVERS:  The maximum number of handovers for which the
                    handover key encryption public key should be
                    reused.  Default is 10.

  HK-LIFETIME:      The maximum lifetime for the handover key.  Default
                    is 12 hours (43200 seconds).

4.  Message Formats

4.1.  Handover Key Request Option

  The Handover Key Request Option is a standard IPv6 Neighbor Discovery
  [RFC4861] option in TLV format.  The Handover Key Request Option is
  included in the RtSolPr message along with the SEND CGA Option, RSA
  Signature Option, and Nonce Option.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |  Pad Length   |  AT   |Resrvd.|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  .                                                               .
  .              Handover Key Encryption Public Key               .
  .                                                               .
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  .                                                               .
  .                           Padding                             .
  .                                                               .
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Kempf & Koodli              Standards Track                     [Page 8]

RFC 5269                     FMIP Security                     June 2008



  Fields:

     Type:          27

     Length:        The length of the option in units of 8 octets,
                    including the Type and Length fields.  The value 0
                    is invalid.  The receiver MUST discard a message
                    that contains this value.

     Pad Length:    The number of padding octets beyond the end of the
                    Handover Key Encryption Public Key field but within
                    the length specified by the Length field.  Padding
                    octets MUST be set to zero by senders and ignored
                    by receivers.

     AT:            A 4-bit algorithm type field describing the
                    algorithm used by FMIPv6 to calculate the
                    authenticator.  See [FMIP] for details.

     Resrvd.:       A 4-bit field reserved for future use.  The value
                    MUST be initialized to zero by the sender and MUST
                    be ignored by the receiver.

     Handover Key Encryption Public Key:
                    The handover key encryption public key.  The key
                    MUST be formatted according to the same
                    specification as the CGA key in the CGA Parameters
                    Option [CGA] of the message, and MUST have the same
                    parameters as the CGA key.

     Padding:       A variable-length field making the option length a
                    multiple of 8, containing as many octets as
                    specified in the Pad Length field.

















Kempf & Koodli              Standards Track                     [Page 9]

RFC 5269                     FMIP Security                     June 2008


4.2.  Handover Key Reply Option

  The Handover Key Reply Option is a standard IPv6 Neighbor Discovery
  [RFC4861] option in TLV format.  The Handover Key Reply Option is
  included in the PrRtAdv message along with the SEND CGA Option, RSA
  Signature Option, and Nonce Option.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |  Pad Length   |  AT   |Resrvd.|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Key Lifetime        |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                                                               |
  .                                                               .
  .                    Encrypted Handover Key                     .
  .                                                               .
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  .                                                               .
  .                           Padding                             .
  .                                                               .
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Fields:

     Type:          28

     Length:        The length of the option in units of 8 octets,
                    including the Type and Length fields.  The value 0
                    is invalid.  The receiver MUST discard a message
                    that contains this value.

     Pad Length:    The number of padding octets beyond the end of the
                    Encrypted Handover Key field but within the length
                    specified by the Length field.  Padding octets MUST
                    be set to zero by senders and ignored by receivers.

     AT:            A 4-bit algorithm type field describing the
                    algorithm used by FMIPv6 to calculate the
                    authenticator.  See [FMIP] for details.






Kempf & Koodli              Standards Track                    [Page 10]

RFC 5269                     FMIP Security                     June 2008


     Resrvd.:       A 4-bit field reserved for future use.  The value
                    MUST be initialized to zero by the sender and MUST
                    be ignored by the receiver.

     Key Lifetime:  Lifetime of the handover key, HK-LIFETIME, in
                    seconds.

     Encrypted Handover Key:
                    The shared handover key, encrypted with the MN's
                    handover key encryption public key, using the
                    RSAES-PKCS1-v1_5 format [RFC3447].

     Padding:       A variable-length field making the option length a
                    multiple of 8, containing as many octets as
                    specified in the Pad Length field.

5.  Security Considerations

  This document describes a shared key provisioning protocol for the
  FMIPv6 handover optimization protocol.  The key provisioning protocol
  utilizes a public key generated with the same public key algorithm as
  SEND to bootstrap a shared key for authorizing changes due to
  handover associated with the MN's former address on the PAR.  General
  security considerations involving CGAs apply to the protocol
  described in this document, see [CGA] for a discussion of security
  considerations around CGAs.  This protocol is subject to the same
  risks from replay attacks and denial-of-service (DoS) attacks using
  the RtSolPr as the SEND protocol [SEND] for RS.  The measures
  recommended in RFC 3971 for mitigating replay attacks and DoS attacks
  apply here as well.  An additional consideration involves when to
  generate the handover key on the AR.  To avoid state depletion
  attacks, the handover key SHOULD NOT be generated prior to SEND
  processing that verifies the originator of RtSolPr.  State depletion
  attacks can be addressed by techniques, such as rate limiting
  RtSolPr, restricting the amount of state reserved for unresolved
  solicitations, and clever cache management.  These techniques are the
  same as used in implementing Neighbor Discovery.

  For other FMIPv6 security considerations, please see the FMIPv6
  document [FMIP].

6.  IANA Considerations

  IANA has assigned IPv6 Neighbor Discovery option type codes for the
  two new IPv6 Neighbor Discovery options, the Handover Key Request
  Option (27) and Handover Key Reply Option (28), defined in this
  document.




Kempf & Koodli              Standards Track                    [Page 11]

RFC 5269                     FMIP Security                     June 2008


7.  References

7.1.  Normative References

  [FMIP]    Koodli, R., Ed., "Mobile IPv6 Fast Handovers", RFC 5268,
            June 2008.

  [SEND]    Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,
            "SEcure Neighbor Discovery (SEND)", RFC 3971, March 2005.

  [CGA]     Aura, T., "Cryptographically Generated Addresses (CGA)",
            RFC 3972, March 2005.

  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
            "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
            September 2007.

  [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
            Standards (PKCS) #1: RSA Cryptography Specifications
            Version 2.1", RFC 3447, February 2003.

7.2.  Informative References

  [RFC3756] Nikander, P., Ed., Kempf, J., and E. Nordmark, "IPv6
            Neighbor Discovery (ND) Trust Models and Threats", RFC
            3756, May 2004.

  [PBK]     Bradner, S., Mankin, A., and Schiller, J., "A Framework for
            Purpose-Built Keys (PBK)", Work in Progress, June 2003.
            Progress.


















Kempf & Koodli              Standards Track                    [Page 12]

RFC 5269                     FMIP Security                     June 2008


Authors' Addresses

  James Kempf
  DoCoMo Labs USA
  3240 Hillview Avenue
  Palo Alto, CA 94303
  USA

  Phone: +1 650 496 4711
  EMail: [email protected]

  Rajeev Koodli
  Starent Networks
  30 International Place
  Tewksbury, MA  01876
  USA

  Phone: +1 408 735 7679
  EMail: [email protected]
































Kempf & Koodli              Standards Track                    [Page 13]

RFC 5269                     FMIP Security                     June 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Kempf & Koodli              Standards Track                    [Page 14]