Network Working Group                                         W. Parrish
Request for Comments: 525                                     J. Pickens
NIC: 17161                           Computer Systems Laboratory -- UCSB
                                                            1 June 1973


                     MIT-MATHLAB MEETS UCSB-OLS:
                    An Example of Resource Sharing

I. Introduction

  A. Resource Sharing, A Comment

     Non-trivial resource sharing among dissimilar system is a much
     discussed concept which, to date, has seen only a few real
     applications.  [See NIC 13538, "1972 Summary of Research
     Activities (UTAH) for description of Tony Hearn's TENEX-CCN
     Programming Link.]  The first attempts have utilized the most
     easily accessible communication paths, (TELNET and RJS) and the
     most universal representations of numbers (byte-oriented numeric
     characters in scientific notation).  Future schemes will probably
     be more efficient through standardized data and control protocols,
     but even with the existing approaches users are gaining experience
     with combinations of resources previously not available.

  B. The MATHLAB/UCSB-OLS Experiment

     MATHLAB [1] and OLS are powerful mathematics systems which cover
     essentially non-intersecting areas of mathematical endeavor.
     MATHLAB (or MACSYMA) contains a high-powered symbolic manipulation
     system.  OLS is a highly interactive numeric and graphics system
     which, through user programs, allows rapid formulation and
     evaluation of problem solutions.  Prior to this experiment, users
     have dealt with problems symbolically on MATHLAB or numerically
     and graphically on OLS.  Lacking an interconnecting data path,
     users have been left to pencil and paper translation between the
     two systems.

     The goal of the MATHLAB-OLS experiment is to provide an automated
     path whereby expressions at MATHLAB may be translated into User
     Programs at UCSB.  Thus the user is able to experiment freely with
     the numeric, graphic, and symbolic aspects of mathematic problems.

II.  THE RESOURCES

  To understand this particular case of resource sharing, it is first
  necessary to understand, to some degree, the resources being shared.
  This paper does not attempt to deal with all of the resources



Parrish & Pickins                                               [Page 1]

RFC 525                MIT-MATHLAB MEETS UCSB-OLS            1 June 1973


  available at both sites (UCSB and MIT).  Only the applicable shared
  resources are discussed briefly.  In the section discussing
  possibilities for additions (Section V) some available unshared
  resources are presented, along with their possible shared
  applications.  The current implementation is limited to evaluation of
  real functions.  A description of the capabilities at the two sites
  follows.

  A. Graphical and Numeric Computation Capabilities at UCSB

     To get a graph of a function on the OLS, it is necessary only to
     specify the function with a series of button-pushes.  For example,
     to get a plot on sin(x), the "program"

             II REAL SIN x DISPLAY RETURN

     will display a plot of sin(x) versus X, provided that X has been
     defined as a vector containing values over the range which it is
     desired to plot.  For a more complete description of OLS see NIC
     5748, "The OLS User's Manual".  Programs in OLS, or sequences of
     button-pushes can be stored under USER level keys, i.e. the above
     program could be defined as USER LI (+) [2], and the user could
     display, modify, and look at various values of the SIN function
     over different ranges by simply setting up the desired value of
     the the vector X, and then typing USER LI (+).  The number of
     elements in such a vector is variable, up to a maximum of 873
     (default value is 51).  The vector containing the result can be
     stored under a letter key, i.e. Y, and can be looked at by typing
     DISPLAY Y.

     Scaling of plots on the OLS is automatic for best fit, or can be
     controlled.  Upon default, however, it is often desirable to look
     at plots of several functions on a common scale.  This can be done
     on the OLS, and the graphs will be overlayed.  OLS graphical
     capabilities are available to users at UCSB on the Culler-Fried
     terminals, and to Network users using a special graphics socket at
     UCSB.  See NIC 15747, RFC 503 "Socket Number List".  For Network
     users without Culler-Fried keyboards, see NIC 7546, RFC 216
     "TELNET Access to UCSB's On-Line System".

  B. Symbolic Manipulations Available at MATHLAB

     MATHLAB'S MACSYMA provides the capability to do many symbolic
     manipulations in a very straightforward and easy-to-learn manner.
     Included in these manipulations are:

        1) Symbolic integration and differentiation of certain
           functions.



Parrish & Pickins                                               [Page 2]

RFC 525                MIT-MATHLAB MEETS UCSB-OLS            1 June 1973


        2) Solutions to equations and systems of equations.

        3) Laplace and inverse-Laplace transforms of certain functions

        4) Certain series expansions.

        5) Rational simplification of rational functions.

  For a more complete description, see "The MACSYMA User's Manual" by
  the MATHLAB Group at Project MAC-MIT.

III.  A DESCRIPTION OF THE CURRENT IMPLEMENTATION

  A variety of programs are used to make up a system to effect this
  transfer of data.

     1) Two functions are defined in Lisp-like language which are
        loaded into MACSYMA after login in order to facilitate saving a
        list of expressions to retrieve later to UCSB, and to write
        this list out to a disk file at MATHLAB for later retrieval.

     2) A set of OLS user programs create the batch job which actually
        performs the retrieval, translation, and storage of these
        expressions on a specified file on some OLS user directory.

     3) The program which actually performs the connection to MATHLAB
        retrieves the expressions, translates and stores into the OLS
        is written in PL/1 and exists as a load module on disk at UCSB.

  The sequence of operations required in order to retrieve expressions
  using these various programs is outlined below:

     1) The user makes a connection to MIT-MATHLAB in the conventional
        manner.  This can be done either through UCSB-OLS, or through
        other TELNET programs, or from a TIP.

     2) The user logs in at MATHLAB, calls up MACSYMA, and loads the
        file into the MACSYMA system which facilitates retrieval.
        (Contains ADDLIST and SAVE functions.)

     3) The user performs the desired manipulations at MATHLAB, and
        saves up a list of line numbers as he goes along using the
        ADDLIST function.  These line numbers represent those
        expressions he wishes to retrieve.  The format for ADDLIST is
        ADDLIST('<LINE NUMBER>).






Parrish & Pickins                                               [Page 3]

RFC 525                MIT-MATHLAB MEETS UCSB-OLS            1 June 1973


     4) When the user has completed all the manipulations he wishes to
        do he saves them on the MIT-MATHLAB disk. (Using SAVE
        function.) The format for SAVE function is SAVE(<filename 1>).
        This function writes out, in horizontal form, the list of line
        numbers in the order the ADDLIST function was invoked to the
        MIT disk.  The filename will be <filename 1>BATCH.  SAVE also
        appends a question mark on the end of the file as an end-of-
        file indicator.

     5) USER disconnect from MATHLAB.

     6) User connects to and logs into OLS, and loads a file containing
        the user programs which produce a virtual job deck for the
        batch system.  A sequence of questions are given to the user by
        these programs regarding accounting information, and the source
        file at MIT, and the destination file at at UCSB.  The batch
        job gets submitted automatically, and the transfer and
        translation is done.

     7) After the transfer is completed, the destination file may be
        loaded into OLS, and the results may be displayed and numerical
        manipulations can take place.

  The form of these user programs, as they are returned is as follows:

        LII REAL LOAD (  function  )

  Therefore in order to look at a graph of one of these functions, it
  is necessary to set up values of various constants, as well as a
  range of values of the independent variable.  It is also necessary to
  request a display of the function.  This can be done by typing
  DISPLAY RETURN.  It should be noted that the function does exist at
  the time directly after the user program is called and may be stored
  under any of the alphabetical keys on the OLS.  Storing several of
  these functions under alphabetical keys will allow them to be called
  up for plotting on a common scale.  For example, if the functions
  were stored under the keys A, B, and C, they could be displayed on a
  common scale by typing DISPLAY ABC RETURN.

IV.  LIMITATIONS

     A. The program as it stands can only transfer expressions.
        Equations or functions are not implemented.

     B. Variable and constant names at MIT can contain more than one
        letter, but the current implementation recognizes only one-
        letter variable names.




Parrish & Pickins                                               [Page 4]

RFC 525                MIT-MATHLAB MEETS UCSB-OLS            1 June 1973


     C. The program as it stands does not handle complex numbers.

     D. The user is subject to failures of three independent systems in
        order to complete the transfer: the UCSB 360/75, the Network,
        and the PDP-10 at MIT.  This has not proven to be a serious
        constraint.

     E. Software changes at either site can cause difficulties since
        the programs are written assuming that things won't change.
        Anyone who has ever had a program that works knows what system
        changes or intermittent glitches can do to foul things up.
        With two systems and a Network things are at least four times
        as difficult.  Thanks are due to Jeffrey Golden at PROJECT MAC
        for helping with ironing things out at MATHLAB, and the UCSB
        Computer Center for their patience with many I/O bound jobs.

V. POSSIBILITIES FOR ADDITIONS

     A. Recognition of complex numbers, possibly for use with LII
        COMPLEX on the OLS.

     B. Addition to translation tables of WMPTALK for recognition of
        SUM, COSH, SINH, INTEGRATE, DIFF, etc. (Often MATHLAB will not
        be able to perform an integral or derivative, in which case it
        will come back with INTEGRATE (Expression) as its answer.)

     C. An OLS Utilities package for allowing users to more easily
        manipulate the numerical vectors describing the
        expressions,i.e., setting up linear and logarithmic sweeps for
        the various plots, describing the scale of the plots on the OLS
        screens.

     D. The ability to have an OLS program written from a MATHLAB
        function, including IF, THEN, ELSE, DO,etc.  This would most
        likely require a more sophisticated parse than is done in the
        current implementation.

EXAMPLE

  An example is included in which a UCSB user:

     A. Logs into MATHLAB,

     B. Initializes the "SAVE" function,

     C. Generates a polynomial function and its derivative and
        integral,




Parrish & Pickins                                               [Page 5]

RFC 525                MIT-MATHLAB MEETS UCSB-OLS            1 June 1973


     D. Logs out of MATHLAB,

     E. Creates the retrieval job,

     F. Waits and then displays the resultant user programs,

     G. and, finally, creates the X variable and plots the functions.

  Although the sample OLS manipulations are very simple ones it should
  be noted that the user could compare the retrieved functions with
  numerical models or even use the functions as subroutines in higher
  level algorithms.  Usage of this combined numeric-symbolic system is
  limited to the imagination of the user.

  The example follows:

  USER TELNET                    Connection to MATHLAB from UCSB
  LOGIN TO MIT-ML                     "II LOG MIT-ML RETURN"

  MIT MATHLAB PDP-10

  ML ITS.796. DDT.514.
  9. USERS

  :LOGIN WMP                              Login to MIT-MATHLAB.


  :MACSYMA                                Call up MACSYMA

  THIS IS MACSYMA 212

  USE " INSTEAD OF ?
  SEE UPDATE > MACSYM;

  FIX 212 DSK MACSYM BEING LOADED
  LOADING DONE

  (C1) BATCH(BATCH,UTILS);                Load BATCH UTILS file.

  (UREAD BATCH UTILS DSK WMP) FILE NOT FOUND

  (C2) BATCH(BATCH,UTILS,DSK,UCSB);

  (C2) LISTX:();
  (D2)                                    ()

  (C3) ADDLIST(X):=LISTX:CONS(X,LISTX);
  (D3)                   ADDLIST(X) := (LISTX : CONS(X, LISTX))



Parrish & Pickins                                               [Page 6]

RFC 525                MIT-MATHLAB MEETS UCSB-OLS            1 June 1973


  (C4) SAVE(FILENAME):=APPLY(STRINGOUT,APPEND(
             CONS((FILENAME,BATCH,DSK,UCSB),REVERSE(LISTX)),("?")));
  (D4) SAVE(FILENAME) :=
       APPLY(STRINGOUT,APPEND(CONS((FILENAME, BATCH, DSK, UCSB),
       REVERSE(LISTX)),(?)))

  (D5)                                          BATCH DONE

  (C6) (X**2+3)/(X+1);
                                               2
                                              X  + 3
  (D6)                                        -------
                                               X + 1
  (C7) INTEGRATE(%,X);

  SIN FASL DSK MACSYM BEING LOADED
  LOADING DONE                                2
                                             X  - 2 X
  (D7)                                      ----------  + 4 LOG(X + 1)
                                               2
  (C8) ADDLIST('D6);
  (D8)                                       (D6)

  (C9) ADDLIST('D7);
  (D9)                               (D7, D6)   Use ADDLIST function
                                       to save line numbers D6 and D7.

  (C10) DIFF(D6,X);
                                             2
                                    2 X     X  + 3
  (D10)                            ----  -  ------
                                    X+1          2
                                            (X+1)

  (C11) ADDLIST('D10);
  (D11)                      (D10, D7, D6)   Use ADDLIST function to
                                             save line number D10.

  (C12) SAVE(MYFILE);
  (D12)                     (D6, D7, D10, ?)  Write list of lines out
                                                 to a disk file using
  (C13) *********Z     Leave MACSYMA                   SAVE function.
  25156)    .IOT 1,1

  :LISTF UCSB


  DSK UCSB



Parrish & Pickins                                               [Page 7]

RFC 525                MIT-MATHLAB MEETS UCSB-OLS            1 June 1973


  FREE BLCCKS UO #1 241 U1 #3 345 U2 #5 379

  3    ATTN     BATCH  1  5/23/73  13:53:11
  1    BATCH    UTILS  1  5/23/73  13:11:43
  3    DEMO     WMP    1  5/26/73  15:29:26
  5    DEMO1    BATCH  1  4/29/73  22:41:17
  1    DEMO99   BATCH  1  5/25/73  00:07:15
  5    MYFILE   BATCH  1  5/31/73  12:41:50 <-- file is in directory
  1    _MSGS_   UCSB   0  5/26/73  21:13:53     at MATHLAB

  :LOGOUT
                                              Logout and disconnect.
  -------------------------------------------------------------------
  ML ITS 796 CONSOLE 24 FREE. 12:42:35

  DISCONNECTION COMPLETE
  WORK AREAS UPDATED                         Load Retrieval program
  LOAD MATHLAB                             "SYST LOAD MATHLAB RETURN"
  FILE LOADED

                                         "USER LO (+)"
  RETRIEVE EXPRESSIONS
  --------------------

  MATHLAB FILE? (EXP)
  -->MYFILE-->MYFILE.                    "MYFILE ENTER"
  OLS FILE?  (MYFILE)
  -->demo11-->demo11                     "demo11 ENTER"
  OLS FILE
  PROTECT CODE?  ()                      "demo11 ENTER"
  -->DEMO-->demo11
  BATCH JOBNAME? (MYFILE)                "PARSET ENTER"
  -->PARSET-->PARSET.

  PRESS ENTER TO SUBMIT JOB              "ENTER"

  VOLUME NEEDED=
  JOB SUBMITTED

  JOB TO RETRIEVE MATHLAB
  EXPRESSIONS IS NOW IN
  UCSB-MOD75 BATCH QUEUE.    Some time elapses and batch job is run.
                             Load the retrieved program.
  WORK AREAS UPDATED         "SYST LOAD demo11 RETURN"
  LOAD demo11
  FILE LOADED





Parrish & Pickins                                               [Page 8]

RFC 525                MIT-MATHLAB MEETS UCSB-OLS            1 June 1973


                         Display the returned expressions.

  (USER LI (+))                    "USER I DISPLAY (+)"
  ------------------------------------------------------------------
  LII REAL LOAD ((X**2 (+)  3)/(X (+) 1)):

  (USER LI (-))                    "USER I DISPLAY (-)"
  LII REAL LOAD ((X**2 (-) 2*X)/2 + 4* LOG (X (+) 1)):
  ------------------------------------------------------------------

  (USER L1 (*))                      "USER I DISPLAY (*)"
  LII REAL LOAD (2*X/(X (+) 1) <> (X**2 (+) 3)/(X (+) 1)**2):

  USER LI SQ UNDEFINED             "USER DISPLAY SQ"



  [The following figure is available in the .ps and .pdf version of
  this document:]

  Sample OLS Curves Generated for -.5 < x < 4.5
                                      -   -

Endnotes

[1]  Supported on a PDP-10 System at MIT and available for the use at
     UCSB by the way of APRA Network.

[2] [In this memo, the notation "(+)", "(-)", and "(*)" has been
     substituted for a circle enclosing a +, -, and * symbol,
     respectively.]


          [This RFC was put into machine readable form for entry]
     [into the online RFC archives by Helene Morin, Via Genie 12/1999]
















Parrish & Pickins                                               [Page 9]