Network Working Group                                     H. Schulzrinne
Request for Comments: 5244                                   Columbia U.
Updates: 4733                                                  T. Taylor
Category: Standards Track                                         Nortel
                                                              June 2008


    Definition of Events for Channel-Oriented Telephony Signalling

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This memo updates RFC 4733 to add event codes for telephony signals
  used for channel-associated signalling when carried in the telephony
  event RTP payload.  It supersedes and adds to the original assignment
  of event codes for this purpose in Section 3.14 of RFC 2833.  As
  documented in Appendix A of RFC 4733, some of the RFC 2833 events
  have been deprecated because their specification was ambiguous,
  erroneous, or redundant.  In fact, the degree of change from Section
  3.14 of RFC 2833 is such that implementations of the present document
  will be fully backward compatible with RFC 2833 implementations only
  in the case of full ABCD-bit signalling.  This document expands and
  improves the coverage of signalling systems compared to RFC 2833.





















Schulzrinne & Taylor        Standards Track                     [Page 1]

RFC 5244           Channel-Oriented Signalling Events          June 2008


Table of Contents
  1. Introduction ....................................................2
     1.1. Overview ...................................................2
     1.2. Terminology ................................................3
  2. Event Definitions ...............................................4
     2.1. Signalling System No. 5 ....................................6
          2.1.1. Signalling System No. 5 Line Signals ................6
          2.1.2. Signalling System No. 5 Register Signals ............7
     2.2. Signalling System R1 and North American MF .................8
          2.2.1. Signalling System R1 Line Signals ...................8
          2.2.2. Signalling System R1 Register Signals ...............8
     2.3. Signalling System R2 ......................................10
          2.3.1. Signalling System R2 Line Signals ..................10
          2.3.2. Signalling System R2 Register Signals ..............10
     2.4. ABCD Transitional Signalling for Digital Trunks ...........12
     2.5. Continuity Tones ..........................................14
     2.6. Trunk Unavailable Event ...................................14
     2.7. Metering Pulse Event ......................................15
  3. Congestion Considerations ......................................15
  4. Security Considerations ........................................16
  5. IANA Considerations ............................................17
  6. Acknowledgements ...............................................20
  7. References .....................................................20
     7.1. Normative References ......................................20
     7.2. Informative References ....................................21

1.  Introduction

1.1.  Overview

  This document extends the set of telephony events defined within the
  framework of RFC 4733 [4] to include signalling events that can
  appear on a circuit in the telephone network.  Most of these events
  correspond to signals within one of several channel-associated
  signalling systems still in use in the PSTN.

  Trunks (or circuits) in the PSTN are the media paths between
  telephone switches.  A succession of protocols have been developed
  using tones and electrical conditions on individual trunks to set up
  telephone calls using them.  The events defined in this document
  support an application where such PSTN signalling is carried between
  two gateways without being signalled in the IP network: the "RTP
  trunk" application.

  In the "RTP trunk" application, RTP is used to replace a normal
  circuit-switched trunk between two nodes.  This is particularly of
  interest in a telephone network that is still mostly
  circuit-switched.  In this case, each end of the RTP trunk encodes



Schulzrinne & Taylor        Standards Track                     [Page 2]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  audio channels into the appropriate encoding, such as G.723.1 [13] or
  G.729 [14].  However, this encoding process destroys in-band
  signalling information that is carried using the least-significant
  bit ("robbed bit signalling") and may also interfere with in-band
  signalling tones, such as the MF (multi-frequency) digit tones.

  In a typical application, the gateways may exchange roles from one
  call to the next: they must be capable of either sending or receiving
  each implemented signal in Table 1.

  This document defines events related to four different signalling
  systems.  Three of these are based on the exchange of multi-frequency
  tones.  The fourth operates on digital trunks only, and makes use of
  low-order bits stolen from the encoded media.  In addition, this
  document defines tone events for supporting tasks such as continuity
  testing of the media path.

     Implementors are warned that the descriptions of signalling
     systems given below are incomplete.  They are provided to give
     context to the related event definitions, but omit many details
     important to implementation.

1.2.  Terminology

  In this document, the key words "MUST", "MUST NOT", "REQUIRED",
  "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
  and "OPTIONAL" are to be interpreted as described in RFC 2119 [1] and
  indicate requirement levels for compliant implementations.

  In addition to the abbreviations defined below for specific events,
  this document uses the following abbreviations:

  KP     Key Pulse

  MF     Multi-frequency

  PSTN   Public Switched (circuit) Telephone Network

  RTP    Real-time Transport Protocol [2]

  ST     Start










Schulzrinne & Taylor        Standards Track                     [Page 3]

RFC 5244           Channel-Oriented Signalling Events          June 2008


2.  Event Definitions

  Table 1 lists all of the events defined in this document.  As
  indicated in Table 8 (Appendix A) of RFC 4733 [4], use of some of the
  RFC 2833 [11] event codes has been deprecated because their
  specification was ambiguous, erroneous, or redundant.  In fact, the
  degree of change from Section 3.14 of RFC 2833 is such that
  implementations of the present document will be fully backward
  compatible with RFC 2833 implementations only in the case of full
  ABCD-bit signalling.  This document expands and improves the coverage
  of signalling systems compared to RFC 2833.

  Note that the IANA registry for telephony event codes was set up by
  RFC 4733, not by RFC 2833.  Thus, event code assignments originally
  made in RFC 2833 appear in the registry only if reaffirmed in RFC
  4733 or an update to RFC 4733, such as the present document.



































Schulzrinne & Taylor        Standards Track                     [Page 4]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  +---------------------+------------+-------------+--------+---------+
  | Event               |  Frequency |  Event Code | Event  | Volume? |
  |                     |    (Hz)    |             | Type   |         |
  +---------------------+------------+-------------+--------+---------+
  | MF 0...9            |  (Table 2) |  128...137  | tone   | yes     |
  |                     |            |             |        |         |
  | MF Code 11 (SS No.  |  700+1700  |     123     | tone   | yes     |
  | 5) or KP3P/ST3P     |            |             |        |         |
  | (R1)                |            |             |        |         |
  |                     |            |             |        |         |
  | MF KP (SS No. 5) or |  1100+1700 |     124     | tone   | yes     |
  | KP1 (R1)            |            |             |        |         |
  |                     |            |             |        |         |
  | MF KP2 (SS No. 5)   |  1300+1700 |     125     | tone   | yes     |
  | or KP2P/ST2P (R1)   |            |             |        |         |
  |                     |            |             |        |         |
  | MF ST (SS No. 5 and |  1500+1700 |     126     | tone   | yes     |
  | R1)                 |            |             |        |         |
  |                     |            |             |        |         |
  | MF Code 12 (SS No.  |  900+1700  |     127     | tone   | yes     |
  | 5) or KP'/STP (R1)  |            |             |        |         |
  |                     |            |             |        |         |
  | ABCD signalling     |     N/A    |  144...159  | state  | no      |
  |                     |            |             |        |         |
  | AB signalling (C, D |     N/A    |  208...211  | state  | no      |
  | unused)             |            |             |        |         |
  |                     |            |             |        |         |
  | A bit signalling    |     N/A    |  206...207  | state  | no      |
  | (B, C, D unused)    |            |             |        |         |
  |                     |            |             |        |         |
  | Continuity          |    2000    |     121     | tone   | yes     |
  | check-tone          |            |             |        |         |
  |                     |            |             |        |         |
  | Continuity          |    1780    |     122     | tone   | yes     |
  | verify-tone         |            |             |        |         |
  |                     |            |             |        |         |
  | Metering pulse      |     N/A    |     174     | other  | no      |
  |                     |            |             |        |         |
  | Trunk unavailable   |     N/A    |     175     | other  | no      |
  |                     |            |             |        |         |
  | MFC Forward 1...15  |  (Table 4) |  176...190  | tone   | yes     |
  |                     |            |             |        |         |
  | MFC Backward 1...15 |  (Table 5) |  191...205  | tone   | yes     |
  +---------------------+------------+-------------+--------+---------+

                    Table 1: Trunk Signalling Events





Schulzrinne & Taylor        Standards Track                     [Page 5]

RFC 5244           Channel-Oriented Signalling Events          June 2008


2.1.  Signalling System No. 5

  Signalling System No. 5 (SS No. 5) is defined in ITU-T
  Recommendations Q.140 through Q.180 [5].  It has two systems of
  signals: "line" signalling to acquire and release the trunk, and
  "register" signalling to pass digits forward from one switch to the
  next.

2.1.1.  Signalling System No. 5 Line Signals

  No. 5 line signalling uses tones at two frequencies: 2400 and 2600
  Hz.  The tones are used singly for most signals, but together for the
  Clear-forward and Release-guard.  (This reduces the chance of an
  accidental call release due to carried media content duplicating one
  of the frequencies.)  The specific signal indicated by a tone depends
  on the stage of call set-up at which it is applied.

  No events are defined in support of No. 5 line signalling.  However,
  implementations MAY use the AB bit events described in Section 2.4
  and shown in Table 1 to propagate SS No. 5 line signals.  If they do
  so, they MUST use the following mappings.  These mappings are based
  on an underlying mapping equating A=0 to presence of 2400 Hz signal
  and B=0 to presence of 2600 Hz signal in the indicated direction.

  o  both 2400 and 2600 Hz present: event code 208;

  o  2400 Hz present: event code 210;

  o  2600 Hz present: event code 209;

  o  neither signal present: event code 211.

  The initial event report for each signal SHOULD be generated as soon
  as the signal is recognized, and in any case no later than the time
  of recognition as indicated in ITU-T Recommendation Q.141, Table 1
  (i.e., 40 ms for "seizing" and "proceed-to-send", 125 ms for all
  other signals).  The packetization interval following the initial
  report SHOULD be chosen with considerations of reliable transmission
  given first priority.  Note that the receiver must supply its own
  volume values for converting these events back to tones.  Moreover,
  the receiver MAY extend the playout of "seizing" until it has
  received the first report of a KP event (see below), so that it has
  better control of the interval between ending of the seizing signal
  and start of KP playout.

     The KP has to be sent beginning 80 +/- 20 ms after the SS No. 5
     "seizing" signal has stopped.




Schulzrinne & Taylor        Standards Track                     [Page 6]

RFC 5244           Channel-Oriented Signalling Events          June 2008


2.1.2.  Signalling System No. 5 Register Signals

  No. 5 register signalling uses pairs of tones to convey digits and
  signals framing them.  The tone combinations and corresponding
  signals are shown in the Table 2.  All signals except KP1 and KP2 are
  sent for a duration of 55 ms.  KP1 and KP2 are sent for a duration of
  100 ms.  Inter-signal pauses are always 55 ms.

                                Upper Frequency (Hz)

  +-----------------+---------+---------+---------+---------+---------+
  | Lower Frequency |     900 |    1100 |    1300 |    1500 |    1700 |
  |            (Hz) |         |         |         |         |         |
  +-----------------+---------+---------+---------+---------+---------+
  |             700 | Digit 1 | Digit 2 | Digit 4 | Digit 7 | Code 11 |
  |                 |         |         |         |         |         |
  |             900 |         | Digit 3 | Digit 5 | Digit 8 | Code 12 |
  |                 |         |         |         |         |         |
  |            1100 |         |         | Digit 6 | Digit 9 |     KP1 |
  |                 |         |         |         |         |         |
  |            1300 |         |         |         | Digit 0 |     KP2 |
  |                 |         |         |         |         |         |
  |            1500 |         |         |         |         |      ST |
  +-----------------+---------+---------+---------+---------+---------+

                   Table 2: SS No. 5 Register Signals

  The KP signals are used to indicate the start of digit signalling.
  KP1 indicates a call expected to terminate in a national network
  served by the switch to which the signalling is being sent.  KP2
  indicates a call that is expected to transit through the switch to
  which the signalling is being sent, to another international
  exchange.  The end of digit signalling is indicated by the ST signal.
  Code 11 or Code 12 following a country code (and possibly another
  digit) indicates a call to be directed to an operator position in the
  destination country.  A Code 12 may be followed by other digits
  indicating a particular operator to whom the call is to be directed.

  Implementations using the telephone-events payload to carry SS No. 5
  register signalling MUST use the following events from Table 1 to
  convey the register signals shown in Table 2:

  o  event code 128 to convey Digit 0;

  o  event codes 129-137 to convey Digits 1 through 9, respectively;

  o  event code 123 to convey Code 11;




Schulzrinne & Taylor        Standards Track                     [Page 7]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  o  event code 124 to convey KP1;

  o  event code 125 to convey KP2;

  o  event code 126 to convey ST;

  o  event code 127 to convey Code 12.

  The sending implementation SHOULD send an initial event report for
  the KP signals as soon as they are recognized, and it MUST send an
  event report for all of these signals as soon as they have completed.

2.2.  Signalling System R1 and North American MF

  Signalling System R1 is mainly used in North America, as is the more
  common variant designated simply as "MF".  R1 is defined in ITU-T
  Recommendations Q.310-Q.332 [6], while MF is defined in [9].

  Like SS No. 5, R1/MF has both line and register signals.  The line
  signals (not counting Busy and Reorder) are implemented on analog
  trunks through the application of a 2600 Hz tone, and on digital
  trunks by using ABCD signalling.  Interpretation of the line signals
  is state-dependent (as with SS No. 5).

2.2.1.  Signalling System R1 Line Signals

  In accordance with Table 1/Q.311, implementations MAY use the A bit
  events described in Section 2.4 and shown in Table 1 to propagate R1
  line signals.  If they do so, they MUST use the following mappings.
  These mappings are based on an underlying mapping equating A=0 to the
  presence of a 2600 Hz signal in the indicated direction and A=1 to
  the absence of that signal.

  o  2600 Hz present: event code 206;

  o  no signal present: event code 207.

2.2.2.  Signalling System R1 Register Signals

  R1 has a signal capacity of 15 codes for forward inter-register
  signals but no backward inter-register signals.  Each code or digit
  is transmitted by a tone pair from a set of 6 frequencies.  The R1
  register signals consist of KP, ST, and the digits "0" through "9".
  The frequencies allotted to the signals are shown in Table 3.  Note







Schulzrinne & Taylor        Standards Track                     [Page 8]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  that these frequencies are the same as those allotted to the
  similarly named SS No. 5 register signals, except that KP uses the
  frequency combination corresponding to KP1 in SS No. 5.  Table 3 also
  shows additional signals used in North American practice: KP', KP2P,
  KP3P, STP or ST', ST2P, and ST3P [9].

                                Upper Frequency (Hz)

  +------------+---------+---------+---------+---------+--------------+
  |      Lower |     900 |    1100 |    1300 |    1500 |         1700 |
  |  Frequency |         |         |         |         |              |
  |       (Hz) |         |         |         |         |              |
  +------------+---------+---------+---------+---------+--------------+
  |        700 | Digit 1 | Digit 2 | Digit 4 | Digit 7 | KP3P or ST3P |
  |            |         |         |         |         |              |
  |        900 |         | Digit 3 | Digit 5 | Digit 8 |   KP' or STP |
  |            |         |         |         |         |              |
  |       1100 |         |         | Digit 6 | Digit 9 |           KP |
  |            |         |         |         |         |              |
  |       1300 |         |         |         | Digit 0 | KP2P or ST2P |
  |            |         |         |         |         |              |
  |       1500 |         |         |         |         |           ST |
  +------------+---------+---------+---------+---------+--------------+

                     Table 3: R1/MF Register Signals

  Implementations using the telephone-events payload to carry North
  American R1 register signalling MUST use the following events from
  Table 1 to convey the register signals shown in Table 3:

  o  event code 128 to convey Digit 0;

  o  event codes 129-137 to convey Digits 1 through 9, respectively;

  o  event code 123 to convey KP3P or ST3P;

  o  event code 124 to convey KP;

  o  event code 125 to convey KP2P or ST2P;

  o  event code 126 to convey ST;

  o  event code 127 to convey KP' or STP.

     As with the original telephony signals, the receiver interprets
     codes 123, 125, and 127 as KPx or STx signals based on their
     position in the signalling sequence.




Schulzrinne & Taylor        Standards Track                     [Page 9]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  Unlike SS No. 5, R1 allows a large tolerance for the time of onset of
  register signalling following the recognition of start-dialling line
  signal.  This means that sending implementations MAY wait to send a
  KP event report until the KP has completed.

2.3.  Signalling System R2

  The International Signalling System R2 is described in ITU-T
  Recommendations Q.400-Q.490 [7], but there are many national
  variants.  R2 line signals are continuous, out-of-band, link by link,
  and channel associated.  R2 (inter)register signals are multi-
  frequency, compelled, in-band, end-to-end, and also channel
  associated.

2.3.1.  Signalling System R2 Line Signals

  R2 line signals may be analog, one-bit digital using the A bit in the
  16th channel, or digital using both A and B bits.  Implementations
  MAY use the A bit or AB bit events described in Section 2.4 and shown
  in Table 1 to propagate these signals.  If they do so, they MUST use
  the following mappings.

  1.  For the analog R2 line signals shown in Table 1 of ITU-T
      Recommendation Q.411, implementations MUST map as follows.  This
      mapping is based on an underlying mapping of A bit = 0 when tone
      is present.

     *  event code 206 (Table 1) is used to indicate the Q.411 "tone-
        on" condition;

     *  event code 207 (Table 1), is used to indicate the Q.411 "tone-
        off" condition.

  2.  The digital R2 line signals, as described by ITU-T Recommendation
      Q.421, are carried in two bits, A and B.  The mapping between A
      and B bit values and event codes SHALL be the same in both
      directions and SHALL follow the principles for A and B bit
      mapping specified in Section 2.4.

2.3.2.  Signalling System R2 Register Signals

  In R2 signalling, the signalling sequence is initiated from the
  outgoing exchange by sending a line "seizing" signal.  After the line
  "seizing" signal (and "seizing acknowledgment" signal in R2D), the
  signalling sequence continues using MF register signals.  ITU-T
  Recommendation Q.441 classifies the forward MF register signals





Schulzrinne & Taylor        Standards Track                    [Page 10]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  (upper frequencies) into Groups I and II, the backward MF register
  signals (lower frequencies) into Groups A and B.  These groups are
  significant with respect both to what sort of information they convey
  and where they can occur in the signalling sequence.

  The tones used in R2 register signalling are combinations of two out
  of six frequencies.  National versions may be reduced to 10 signals
  (two out of five frequencies) or 6 signals (two out of four
  frequencies).

  R2 register signalling is a compelled tone signalling protocol,
  meaning that one tone is played until an "acknowledgment or directive
  for the next tone" is received that indicates that the original tone
  should cease.  A R2 forward register signal is acknowledged by a
  backward signal.  A backward signal is acknowledged by the end of the
  forward signal.  In exceptional circumstances specified in ITU-T Rec.
  Q.442, the downstream entity may send backward signals autonomously
  rather than in response to specific forward signals.

  In R2 signalling, the signalling sequence is initiated from the
  outgoing exchange by sending a forward Group I signal.  The first
  forward signal is typically the first digit of the called number.
  The incoming exchange typically replies with a backward Group A-1
  indicating to the outgoing exchange to send the next digit of the
  called number.

  The tones have meaning; however, the meaning varies depending on
  where the tone occurs in the signalling.  The meaning may also depend
  on the country.  Thus, to avoid an unmanageable number of events,
  this document simply provides means to indicate the 15 forward and 15
  backward MF R2 tones (i.e., using event codes 176-190 and 191-205,
  respectively, as shown in Table 1).  The frequency pairs for these
  tones are shown in Table 4 and Table 5.

  Note that a naive strategy for onward relay of R2 inter-register
  signals may result in unacceptably long call setup times and timeouts
  when the call passes through several exchanges as well as a gateway
  before terminating.  Several strategies are available for speeding up
  the transfer of signalling information across a given relay point.
  In the worst case, the relay point has to act as an exchange,
  terminating the signalling on one side and reoriginating the call on
  the other.









Schulzrinne & Taylor        Standards Track                    [Page 11]

RFC 5244           Channel-Oriented Signalling Events          June 2008


                                Upper Frequency (Hz)

   +----------------------+-------+-------+-------+--------+--------+
   | Lower Frequency (Hz) | 1500  | 1620  | 1740  | 1860   | 1980   |
   +----------------------+-------+-------+-------+--------+--------+
   | 1380                 | Fwd 1 | Fwd 2 | Fwd 4 | Fwd 7  | Fwd 11 |
   |                      |       |       |       |        |        |
   | 1500                 |       | Fwd 3 | Fwd 5 | Fwd 8  | Fwd 12 |
   |                      |       |       |       |        |        |
   | 1620                 |       |       | Fwd 6 | Fwd 9  | Fwd 13 |
   |                      |       |       |       |        |        |
   | 1740                 |       |       |       | Fwd 10 | Fwd 14 |
   |                      |       |       |       |        |        |
   | 1860                 |       |       |       |        | Fwd 15 |
   +----------------------+-------+-------+-------+--------+--------+

                  Table 4: R2 Forward Register Signals

                                Upper Frequency (Hz)

  +-----------------+---------+---------+---------+---------+---------+
  | Lower Frequency | 1140    | 1020    | 900     | 780     | 660     |
  | (Hz)            |         |         |         |         |         |
  +-----------------+---------+---------+---------+---------+---------+
  | 1020            | Bkwd 1  |         |         |         |         |
  |                 |         |         |         |         |         |
  | 900             | Bkwd 2  | Bkwd 3  |         |         |         |
  |                 |         |         |         |         |         |
  | 780             | Bkwd 4  | Bkwd 5  | Bkwd 6  |         |         |
  |                 |         |         |         |         |         |
  | 660             | Bkwd 7  | Bkwd 8  | Bkwd 9  | Bkwd 10 |         |
  |                 |         |         |         |         |         |
  | 540             | Bkwd 11 | Bkwd 12 | Bkwd 13 | Bkwd 14 | Bkwd 15 |
  +-----------------+---------+---------+---------+---------+---------+

                  Table 5: R2 Backward Register Signals

2.4.  ABCD Transitional Signalling for Digital Trunks

  ABCD is a 4-bit signalling system used by digital trunks, where A, B,
  C, and D are the designations of the individual bits.  Signalling may
  be 16-state (all four bits used), 4-state (A and B bits used), or
  2-state (A-bit only used).  ABCD signalling events are all mutually
  exclusive states.  The most recent state transition determines the
  current state.






Schulzrinne & Taylor        Standards Track                    [Page 12]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  When using Extended Super Frame (ESF) T1 framing, signalling
  information is sent as robbed bits in frames 6, 12, 18, and 24.  A D4
  superframe only transmits 4-state signalling with A and B bits.  On
  the Conference of European Postal and Telecommunications (CEPT) E1
  frame, all signalling is carried in timeslot 16, and two channels of
  16-state (ABCD) signalling are sent per frame.  ITU-T Recommendation
  G.704 [10] gives the details of ABCD bit placement within the various
  framing arrangements.

  The meaning of ABCD signals varies with the application.  One example
  of a specification of ABCD signalling codes is T1.403.02 [16], which
  reflects North American practice for "loop" signalling as opposed to
  the trunk signalling discussed in previous sections.

  Since ABCD information is a state rather than a changing signal,
  implementations SHOULD use the following triple-redundancy mechanism,
  similar to the one specified in ITU-T Rec. I.366.2 [15], Annex L.  At
  the time of a transition, the same ABCD information is sent 3 times
  at an interval of 5 ms.  If another transition occurs during this
  time, then this continues.  After a period of no change, the ABCD
  information is sent every 5 seconds.

  As shown in Table 1, the 16 possible states are represented by event
  codes 144 to 159, respectively.  Implementations using these event
  codes MUST map them to and from the ABCD information based on the
  following principles:

  1.  State numbers are derived from the used subset of ABCD bits by
      treating them as a single binary number, where the A bit is the
      high-order bit.

  2.  State numbers map to event codes by order of increasing value
      (i.e., state number 0 maps to event code 144, ..., state number
      15 maps to event code 159).

  If only the A and B bits are being used, then the mapping to event
  codes shall be as follows:

  o  A=0, B=0 maps to event code 208;

  o  A=0, B=1 maps to event code 209;

  o  A=1, B=0 maps to event code 210;

  o  A=1, B=1 maps to event code 211;






Schulzrinne & Taylor        Standards Track                    [Page 13]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  Finally, if only the A bit is used,

  o  A = 0 maps to event code 206;

  o  A = 1 maps to event code 207;

     Separate event codes are assigned to A-bit and AB-bit signalling
     because, as indicated in Rec. G.704 [10], when the B, C, and D
     bits are unused, their default values differ between transmission
     systems.  By specifying codes for only the used bits, this memo
     allows the receiving gateway to fill in the remaining bits
     according to local configuration.

2.5.  Continuity Tones

  Continuity tones are used for testing circuit continuity during call
  setup.  Two basic procedures are used.  In international practice,
  clause 7 of ITU-T Recommendation Q.724 [8] describes a procedure
  applicable to four-wire trunk circuits, where a single 2000 +/- 20 Hz
  check-tone is transmitted from the initiating telephone switch.  The
  remote switch sets up a loopback, and the continuity check passes if
  the sending switch can detect the tone on the return path.  Clause 8
  of Q.724 describes the procedure for two-wire trunk circuits.  The
  two-wire procedure involves two tones: a 2000 Hz tone sent in the
  forward direction and a 1780 +/- 20 Hz tone sent in response.

  Note that implementations often send a slightly different check-tone,
  e.g., 2010 Hz, because of undesirable aliasing properties of 2000 Hz.

  If implementations use the telephone-events payload type to propagate
  continuity check-tones, they MUST map these tones to event codes as
  follows:

  o  For four-wire continuity testing, the 2000 Hz check-tone is mapped
     to event code 121.

  o  For two-wire continuity testing, the initial 2000 Hz check-tone Hz
     tone is mapped to event code 121.  The 1780 Hz continuity
     verify-tone is mapped to event code 122.

2.6.  Trunk Unavailable Event

  This event indicates that the trunk is unavailable for service.  The
  length of the downtime is indicated in the duration field.  The
  duration field is set to a value that allows adequate granularity in
  describing downtime.  A value of 1 second is RECOMMENDED.  When the





Schulzrinne & Taylor        Standards Track                    [Page 14]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  trunk becomes unavailable, this event is sent with the same timestamp
  three times at an interval of 20 ms.  If the trunk persists in the
  unavailable state at the end of the indicated duration, then the
  event is retransmitted, preferably with the same redundancy scheme.

  Unavailability of the trunk might result from a failure or an
  administrative action.  This event is used in a stateless manner to
  synchronize trunk unavailability between equipment connected through
  provisioned RTP trunks.  It avoids the unnecessary consumption of
  bandwidth in sending a continuous stream of RTP packets with a fixed
  payload for the duration of the downtime, as would be required in
  certain E1-based applications.  In T1-based applications, trunk
  conditioning via the ABCD transitional events can be used instead.

2.7.  Metering Pulse Event

  The metering pulse event may be used to transmit meter pulsing for
  billing purposes.  For background information, one possible reference
  is http://www.seg.co.uk/telecomm/automat3.htm.  Since the metering
  pulse is a discrete event, each metering pulse event report MUST have
  both the 'M' and 'E' bits set.  Meter pulsing is normally transmitted
  by out-of-band means while conversation is in progress.  Senders MUST
  therefore be prepared to transmit both the telephone-event and audio
  payload types simultaneously.  Metering pulse events MUST be
  retransmitted as recommended in Section 2.5.1.4 of RFC 4733 [4].  It
  is RECOMMENDED that the retransmission interval be the lesser of 50
  ms and the pulsing rate but no less than audio packetization rate.

3.  Congestion Considerations

  The ability to adapt to congestion varies with the signalling system
  being used and also differs between line and register signals.

  With the specific exception of register signalling for S.S. No. 5 and
  R1/MF, the signals described in this document are fairly tolerant of
  lengthened durations, should these be necessary.  Thus in congested
  conditions, the sender may adapt by lengthening the reporting
  interval for the tones concerned.  At the receiving end, if a tone is
  being played out and an under-run occurs due to delayed or lost
  packets, it is best to continue playing the tone until the next
  packet arrives.  Interrupting a tone prematurely, with or without
  resumption, can cause the call setup attempt to fail, whereas
  extended playout just increases the call setup time.

  Register signalling for S.S. No. 5 and R1/MF is subject to time
  constraints.  Both the tone signals and the silent periods between
  them have specified durations and tolerances of the order of 5 to 10
  ms.  The durations of the individual tones are of the order of two to



Schulzrinne & Taylor        Standards Track                    [Page 15]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  three packetization intervals (55/68 ms, with the initial KP lasting
  100 ms).  The critical requirement for transmission of the
  telephony-event payload is that the receiver knows which signal to
  play out at a given moment.  It is less important that the receiver
  receive timely notification of the end of each tone.  Rather, it
  should play out the sequence with the durations specified by the
  signalling standard instead of the actual durations reported.

  These considerations suggest that as soon as a register signal has
  been reliably identified, the sender should emit a report of that
  tone.  It should then provide an update within 5 ms for reliability
  and no more updates until reporting the end of the tone.

  Increasing the playout buffer at the receiver during register
  signalling will increase reliability.  This has to be weighed against
  the implied increase in call setup time.

4.  Security Considerations

  The events for which event codes are provided in this document relate
  directly to the setup, billing, and takedown of telephone calls.  As
  such, they are subject, using the terminology of RFC 3552 [12], to
  threats to both communications and system security.  The attacks of
  concern are:

  o  confidentiality violations (monitoring of calling and called
     numbers);

  o  establishment of unauthorized telephone connections through
     message insertion;

  o  hijacking of telephone connections through message insertion or
     man-in-the-middle modification of messages;

  o  denial of service to individual telephone calls through message
     insertion, modification, deletion, or delay.

  These attacks can be prevented by the use of appropriate
  confidentiality, authentication, or integrity protection.  If
  confidentiality, authentication, or integrity protection are needed,
  then Secure Real-time Transport Protocol (SRTP) [3] SHOULD be used
  with automated key management.

  Additional security considerations are described in RFC 4733 [4].







Schulzrinne & Taylor        Standards Track                    [Page 16]

RFC 5244           Channel-Oriented Signalling Events          June 2008


5.  IANA Considerations

  This document defines the event codes shown in Table 6.  These events
  are additions to the telephone-event registry established by RFC 4733
  [4].  The reference for all of them is the present document.

  +------------+-----------------------------------------+-----------+
  | Event Code | Event Name                              | Reference |
  +------------+-----------------------------------------+-----------+
  |        121 | Continuity check-tone                   | [RFC5244] |
  |            |                                         |           |
  |        122 | Continuity verify-tone                  | [RFC5244] |
  |            |                                         |           |
  |        123 | MF Code 11 (SS No. 5) or KP3P/ST3P (R1) | [RFC5244] |
  |            |                                         |           |
  |        124 | MF KP (SS No. 5) or KP1 (R1)            | [RFC5244] |
  |            |                                         |           |
  |        125 | MF KP2 (SS No. 5) or KP2P/ST2P (R1)     | [RFC5244] |
  |            |                                         |           |
  |        126 | MF ST (SS No. 5 and R1)                 | [RFC5244] |
  |            |                                         |           |
  |        127 | MF Code 12 (SS No. 5) or KP'/STP (R1)   | [RFC5244] |
  |            |                                         |           |
  |        128 | SS No. 5 or R1 digit "0"                | [RFC5244] |
  |            |                                         |           |
  |        129 | SS No. 5 or R1 digit "1"                | [RFC5244] |
  |            |                                         |           |
  |        130 | SS No. 5 or R1 digit "2"                | [RFC5244] |
  |            |                                         |           |
  |        131 | SS No. 5 or R1 digit "3"                | [RFC5244] |
  |            |                                         |           |
  |        132 | SS No. 5 or R1 digit "4"                | [RFC5244] |
  |            |                                         |           |
  |        133 | SS No. 5 or R1 digit "5"                | [RFC5244] |
  |            |                                         |           |
  |        134 | SS No. 5 or R1 digit "6"                | [RFC5244] |
  |            |                                         |           |
  |        135 | SS No. 5 or R1 digit "7"                | [RFC5244] |
  |            |                                         |           |
  |        136 | SS No. 5 or R1 digit "8"                | [RFC5244] |
  |            |                                         |           |
  |        137 | SS No. 5 or R1 digit "9"                | [RFC5244] |
  |            |                                         |           |
  |        144 | ABCD signalling state '0000'            | [RFC5244] |
  |            |                                         |           |
  |        145 | ABCD signalling state '0001'            | [RFC5244] |
  |            |                                         |           |
  |        146 | ABCD signalling state '0010'            | [RFC5244] |



Schulzrinne & Taylor        Standards Track                    [Page 17]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  |            |                                         |           |
  |        147 | ABCD signalling state '0011'            | [RFC5244] |
  |            |                                         |           |
  |        148 | ABCD signalling state '0100'            | [RFC5244] |
  |            |                                         |           |
  |        149 | ABCD signalling state '0101'            | [RFC5244] |
  |            |                                         |           |
  |        150 | ABCD signalling state '0110'            | [RFC5244] |
  |            |                                         |           |
  |        151 | ABCD signalling state '0111'            | [RFC5244] |
  |            |                                         |           |
  |        152 | ABCD signalling state '1000'            | [RFC5244] |
  |            |                                         |           |
  |        153 | ABCD signalling state '1001'            | [RFC5244] |
  |            |                                         |           |
  |        154 | ABCD signalling state '1010'            | [RFC5244] |
  |            |                                         |           |
  |        155 | ABCD signalling state '1011'            | [RFC5244] |
  |            |                                         |           |
  |        156 | ABCD signalling state '1100'            | [RFC5244] |
  |            |                                         |           |
  |        157 | ABCD signalling state '1101'            | [RFC5244] |
  |            |                                         |           |
  |        158 | ABCD signalling state '1110'            | [RFC5244] |
  |            |                                         |           |
  |        159 | ABCD signalling state '1111'            | [RFC5244] |
  |            |                                         |           |
  |        174 | Metering pulse                          | [RFC5244] |
  |            |                                         |           |
  |        175 | Trunk unavailable                       | [RFC5244] |
  |            |                                         |           |
  |        176 | MFC forward signal 1                    | [RFC5244] |
  |            |                                         |           |
  |        177 | MFC forward signal 2                    | [RFC5244] |
  |            |                                         |           |
  |        178 | MFC forward signal 3                    | [RFC5244] |
  |            |                                         |           |
  |        179 | MFC forward signal 4                    | [RFC5244] |
  |            |                                         |           |
  |        180 | MFC forward signal 5                    | [RFC5244] |
  |            |                                         |           |
  |        181 | MFC forward signal 6                    | [RFC5244] |
  |            |                                         |           |
  |        182 | MFC forward signal 7                    | [RFC5244] |
  |            |                                         |           |
  |        183 | MFC forward signal 8                    | [RFC5244] |
  |            |                                         |           |
  |        184 | MFC forward signal 9                    | [RFC5244] |



Schulzrinne & Taylor        Standards Track                    [Page 18]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  |            |                                         |           |
  |        185 | MFC forward signal 10                   | [RFC5244] |
  |            |                                         |           |
  |        186 | MFC forward signal 11                   | [RFC5244] |
  |            |                                         |           |
  |        187 | MFC forward signal 12                   | [RFC5244] |
  |            |                                         |           |
  |        188 | MFC forward signal 13                   | [RFC5244] |
  |            |                                         |           |
  |        189 | MFC forward signal 14                   | [RFC5244] |
  |            |                                         |           |
  |        190 | MFC forward signal 15                   | [RFC5244] |
  |            |                                         |           |
  |        191 | MFC backward signal 1                   | [RFC5244] |
  |            |                                         |           |
  |        192 | MFC backward signal 2                   | [RFC5244] |
  |            |                                         |           |
  |        193 | MFC backward signal 3                   | [RFC5244] |
  |            |                                         |           |
  |        194 | MFC backward signal 4                   | [RFC5244] |
  |            |                                         |           |
  |        195 | MFC backward signal 5                   | [RFC5244] |
  |            |                                         |           |
  |        196 | MFC backward signal 6                   | [RFC5244] |
  |            |                                         |           |
  |        197 | MFC backward signal 7                   | [RFC5244] |
  |            |                                         |           |
  |        198 | MFC backward signal 8                   | [RFC5244] |
  |            |                                         |           |
  |        199 | MFC backward signal 9                   | [RFC5244] |
  |            |                                         |           |
  |        200 | MFC backward signal 10                  | [RFC5244] |
  |            |                                         |           |
  |        201 | MFC backward signal 11                  | [RFC5244] |
  |            |                                         |           |
  |        202 | MFC backward signal 12                  | [RFC5244] |
  |            |                                         |           |
  |        203 | MFC backward signal 13                  | [RFC5244] |
  |            |                                         |           |
  |        204 | MFC backward signal 14                  | [RFC5244] |
  |            |                                         |           |
  |        205 | MFC backward signal 15                  | [RFC5244] |
  |            |                                         |           |
  |        206 | A bit signalling state '0'              | [RFC5244] |
  |            |                                         |           |
  |        207 | A bit signalling state '1'              | [RFC5244] |
  |            |                                         |           |
  |        208 | AB bit signalling state '00'            | [RFC5244] |



Schulzrinne & Taylor        Standards Track                    [Page 19]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  |            |                                         |           |
  |        209 | AB bit signalling state '01'            | [RFC5244] |
  |            |                                         |           |
  |        210 | AB bit signalling state '10'            | [RFC5244] |
  |            |                                         |           |
  |        211 | AB bit signalling state '11'            | [RFC5244] |
  +------------+-----------------------------------------+-----------+

          Table 6: Channel-Oriented Signalling Events in the
                   Audio/Telephone-Event Event Code Registry

6.  Acknowledgements

  The complete list of acknowledgements for contribution to the
  development and revision of RFC 2833 is contained in RFC 4733 [4].
  The Editor believes or is aware that the following people contributed
  specifically to the present document: Flemming Andreasen, Rex
  Coldren, Bill Foster, Alfred Hoenes, Rajesh Kumar, Aleksandar Lebl,
  Zarko Markov, Oren Peleg, Moshe Samoha, Adrian Soncodi, and Yaakov
  Stein.  Steve Norreys and Roni Even provided useful review comments.

7.  References

7.1.  Normative References

  [1]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

  [2]   Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
        "RTP: A Transport Protocol for Real-Time Applications", STD 64,
        RFC 3550, July 2003.

  [3]   Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
        Norrman, "The Secure Real-time Transport Protocol (SRTP)", RFC
        3711, March 2004.

  [4]   Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF Digits,
        Telephony Tones, and Telephony Signals", RFC 4733, December
        2006.

  [5]   International Telecommunication Union, "Specifications for
        signalling system no. 5", ITU-T Recommendation Q.140-Q.180,
        November 1988.

  [6]   International Telecommunication Union, "Specifications of
        Signalling System R1", ITU-T Recommendation Q.310-Q.332,
        November 1988.




Schulzrinne & Taylor        Standards Track                    [Page 20]

RFC 5244           Channel-Oriented Signalling Events          June 2008


  [7]   International Telecommunication Union, "Specifications of
        Signalling System R2", ITU-T Recommendation Q.400-Q.490,
        November 1988.

  [8]   International Telecommunication Union, "Telephone user part
        signalling procedures", ITU-T Recommendation Q.724, November
        1988.

  [9]   Telcordia Technologies, "LSSGR: signalling for Analog
        Interfaces", Generic Requirement GR-506, June 1996.

  [10]  International Telecommunication Union, "Synchronous frame
        structures used at 1544, 6312, 2048, 8448 and 44 736 kbit/s
        hierarchical levels", ITU-T Recommendation G.704, October 1998.

7.2.  Informative References

  [11]  Schulzrinne, H. and S. Petrack, "RTP Payload for DTMF Digits,
        Telephony Tones and Telephony Signals", RFC 2833, May 2000.

  [12]  Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on
        Security Considerations", BCP 72, RFC 3552, July 2003.

  [13]  International Telecommunication Union, "Speech coders : Dual
        rate speech coder for multimedia communications transmitting at
        5.3 and 6.3 kbit/s", ITU-T Recommendation G.723.1, March 1996.

  [14]  International Telecommunication Union, "Coding of speech at 8
        kbit/s using conjugate-structure algebraic-code-excited linear-
        prediction (CS-ACELP)", ITU-T Recommendation G.729, March 1996.

  [15]  International Telecommunication Union, "AAL type 2 service
        specific convergence sublayer for trunking", ITU-T
        Recommendation I.366.2, February 1999.

  [16]  ANSI/T1, "Network and Customer Installation Interfaces -- DS1
        Robbed-Bit signalling State Definitions", American National
        Standard for Telecommunications T1.403.02-1999, May 1999.













Schulzrinne & Taylor        Standards Track                    [Page 21]

RFC 5244           Channel-Oriented Signalling Events          June 2008


Authors' Addresses

  Henning Schulzrinne
  Columbia U.
  Dept. of Computer Science
  Columbia University
  1214 Amsterdam Avenue
  New York, NY  10027
  US

  EMail: [email protected]


  Tom Taylor
  Nortel
  1852 Lorraine Ave
  Ottawa, Ontario  K1H 6Z8
  CA

  EMail: [email protected]































Schulzrinne & Taylor        Standards Track                    [Page 22]

RFC 5244           Channel-Oriented Signalling Events          June 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Schulzrinne & Taylor        Standards Track                    [Page 23]