Network Working Group                                   M. Shimaoka, Ed.
Request for Comments: 5217                                         SECOM
Category: Informational                                      N. Hastings
                                                                   NIST
                                                             R. Nielsen
                                                    Booz Allen Hamilton
                                                              July 2008


Memorandum for Multi-Domain Public Key Infrastructure Interoperability

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Abstract

  The objective of this document is to establish a terminology
  framework and to suggest the operational requirements of Public Key
  Infrastructure (PKI) domain for interoperability of multi-domain
  Public Key Infrastructure, where each PKI domain is operated under a
  distinct policy.  This document describes the relationships between
  Certification Authorities (CAs), provides the definition and
  requirements for PKI domains, and discusses typical models of multi-
  domain PKI.
























Shimaoka, et al.             Informational                      [Page 1]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
    1.1.  Objective  . . . . . . . . . . . . . . . . . . . . . . . .  3
    1.2.  Document Outline . . . . . . . . . . . . . . . . . . . . .  3
  2.  Public Key Infrastructure (PKI) Basics . . . . . . . . . . . .  3
    2.1.  Basic Terms  . . . . . . . . . . . . . . . . . . . . . . .  3
    2.2.  Relationships between Certification Authorities  . . . . .  4
      2.2.1.  Hierarchical CA Relationships  . . . . . . . . . . . .  5
      2.2.2.  Peer-to-Peer CA Relationships  . . . . . . . . . . . .  6
    2.3.  Public Key Infrastructure (PKI) Architectures  . . . . . .  7
      2.3.1.  Single CA Architecture . . . . . . . . . . . . . . . .  7
      2.3.2.  Multiple CA Architectures  . . . . . . . . . . . . . .  8
    2.4.  Relationships between PKIs and Relying Parties . . . . . . 12
  3.  PKI Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 12
    3.1.  PKI Domain Properties  . . . . . . . . . . . . . . . . . . 13
    3.2.  Requirements for Establishing and Participating in PKI
          Domains  . . . . . . . . . . . . . . . . . . . . . . . . . 13
      3.2.1.  PKI Requirements . . . . . . . . . . . . . . . . . . . 13
      3.2.2.  PKI Domain Documentation . . . . . . . . . . . . . . . 14
      3.2.3.  PKI Domain Membership Notification . . . . . . . . . . 15
      3.2.4.  Considerations for PKIs and PKI Domains with
              Multiple Policies  . . . . . . . . . . . . . . . . . . 16
    3.3.  PKI Domain Models  . . . . . . . . . . . . . . . . . . . . 16
      3.3.1.  Unifying Trust Point (Unifying Domain) Model . . . . . 16
      3.3.2.  Independent Trust Point Models . . . . . . . . . . . . 17
    3.4.  Operational Considerations . . . . . . . . . . . . . . . . 21
  4.  Trust Models External to PKI Relationships . . . . . . . . . . 22
    4.1.  Trust List Models  . . . . . . . . . . . . . . . . . . . . 22
      4.1.1.  Local Trust List Model . . . . . . . . . . . . . . . . 22
      4.1.2.  Trust Authority Model  . . . . . . . . . . . . . . . . 23
    4.2.  Trust List Considerations  . . . . . . . . . . . . . . . . 24
      4.2.1.  Considerations for a PKI . . . . . . . . . . . . . . . 24
      4.2.2.  Considerations for Relying Parties and Trust
              Authorities  . . . . . . . . . . . . . . . . . . . . . 24
      4.2.3.  Additional Considerations for Trust Authorities  . . . 25
  5.  Abbreviations  . . . . . . . . . . . . . . . . . . . . . . . . 25
  6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 25
    6.1.  PKI Domain Models  . . . . . . . . . . . . . . . . . . . . 25
    6.2.  Trust List Models  . . . . . . . . . . . . . . . . . . . . 26
  7.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 27
    7.1.  Normative References . . . . . . . . . . . . . . . . . . . 27
    7.2.  Informative References . . . . . . . . . . . . . . . . . . 27








Shimaoka, et al.             Informational                      [Page 2]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


1.  Introduction

1.1.  Objective

  The objective of this document is to establish a terminology
  framework and to provide the operational requirements, which can be
  used by different Public Key Infrastructure (PKI) authorities who are
  considering establishing trust relationships with each other.  The
  document defines different types of possible trust relationships,
  identifies design and implementation considerations that PKIs should
  implement to facilitate trust relationships across PKIs, and
  identifies issues that should be considered when implementing trust
  relationships.  This document defines terminology and
  interoperability requirements for multi-domain PKIs from one
  perspective.  A PKI domain can achieve multi-domain PKI
  interoperability by complying with the requirements in this document.
  However, there are other ways to define and realize multi-domain PKI
  interoperability.

1.2.  Document Outline

  Section 2 introduces the PKI basics, which provide a background for
  multi-domain PKI.  Section 3 provides the definitions and
  requirements of 'PKI domain' and describes the typical models of
  multi-domain PKI.  Section 4 considers the Trust List Models
  depending on relying party-CA relationships (not CA-CA trust
  relationships, as they are not a focus of this document).  Section 5
  identifies abbreviations used in the document.

2.  Public Key Infrastructure (PKI) Basics

2.1.  Basic Terms

  The following terms are used throughout this document.  Where
  possible, definitions found in RFC 4949 [RFC4949] have been used.

  Certificate:  A digitally signed data structure that attests to the
     binding of a system entity's identity to a public key value (based
     on the definition of public key certificate in RFC 4949
     [RFC4949]).

  Certificate Policy:  A named set of rules that indicates the
     applicability of a certificate to a particular community and/or
     class of application with common security requirements (X.509
     [CCITT.X509.2000]).  Note that to avoid confusion, this document
     uses the terminology "Certificate Policy Document" to refer to the
     document that defines the rules and "Policy Object Identifier
     (OID)" to specify a particular rule set.



Shimaoka, et al.             Informational                      [Page 3]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


  Certificate Policy Document:  A document that defines the rules for
     the issuance and management of certificates and identifies Policy
     Object Identifiers (OIDs) for these rules.  A Certificate Policy
     Document may define more than one Policy OID.

  Policy Object Identifier (Policy OID):  An identifier applied to a
     set of rules governing the issuance and management of
     certificates.  Policy OIDs are defined in the Certificate Policy
     Documents.

  Certification Authority (CA):  An entity that issues certificates
     (especially X.509 certificates) and vouches for the binding
     between the data items in a certificate (RFC 4949 [RFC4949]).

  End Entity (EE):  A system entity that is the subject of a
     certificate and that is using, or is permitted and able to use,
     the matching private key only for a purpose or purposes other than
     signing a certificate; i.e., an entity that is not a CA (RFC 4949
     [RFC4949]).

  Relying party:  A system entity that depends on the validity of
     information (such as another entity's public key value) provided
     by a certificate (from the RFC 4949 [RFC4949] definition of
     certificate user).

2.2.  Relationships between Certification Authorities

  CAs establish trust relationships by issuing certificates to other
  CAs.  CA relationships are divided into 'certification hierarchy'
  [RFC4949] and 'cross-certification' [RFC4949].

  In a certification hierarchy, there are two types of CAs: 'superior
  CA' and 'subordinate CA', as described in RFC 4949 [RFC4949].

  Superior CA:  A CA that is an issuer of a subordinate CA certificate.

  A cross-certification can be either unilateral or bilateral.

  Unilateral cross-certification:  Cross-certification of one CA (CA1)
     by another CA (CA2) but no cross-certification of CA2 by CA1.

  Bilateral cross-certification:  Cross-certification of one CA (CA1)
     by another CA (CA2) and cross-certification of CA2 by CA1.








Shimaoka, et al.             Informational                      [Page 4]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


2.2.1.  Hierarchical CA Relationships

  In a hierarchical relationship, as shown in Figure 1, one CA assumes
  a parent relationship to the other CA.

                                  +----+
                                  | CA |
                                  +----+
                                    |
                                    v
                                  +----+
                                  | CA |
                                  +----+

                 Figure 1: Hierarchical CA Relationship

  There are two types of hierarchical relationships, depending on
  whether a subordinate CA certificate or a unilateral cross-
  certificate is used.  In the case where one (superior) CA issues a
  subordinate CA certificate to another, the CA at the top of the
  hierarchy, which must itself have a self-signed certificate, is
  called a root CA.  In the case where one CA issues unilateral cross-
  certificates to other CAs, the CA issuing unilateral cross-
  certificates is called a Unifying CA.  Unifying CAs use only
  unilateral cross-certificates.

  NOTE: In this document, the definition of root CA is according to the
  second definition (context for hierarchical PKI) of 'root CA' in RFC
  4949 [RFC4949].  This document uses the terminology 'trust anchor CA'
  for the first definition (context for PKI) of 'root CA' in RFC 4949.

  Root CA:  A CA that is at the top of a hierarchy, and itself should
     not issue certificates to end entities (except those required for
     its own operation) but issues subordinate CA certificates to one
     or more CAs.

  Subordinate CA:  A CA whose public key certificate is issued by
     another superior CA, and itself must not be used as a trust anchor
     CA.

  Unifying CA:  A CA that is at the top of a hierarchy, and itself
     should not issue certificates to end entities (except those
     required for its own operation) but establishes unilateral cross-
     certification with other CAs.  A Unifying CA must permit CAs to
     which it issues cross-certificates to have self-signed
     certificates.





Shimaoka, et al.             Informational                      [Page 5]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


2.2.2.  Peer-to-Peer CA Relationships

  In a peer relationship, no parent-child relationship is created.  To
  establish peer relationships, only cross-certificates are used.  Peer
  relationships can be either unilateral or bilateral, as shown in
  Figure 2.

                                             Bilateral
                   Unilateral           Cross-Certification
               Cross-Certification      +----+      +----+
               +----+      +----+       |    | ---> |    |
               | CA | ---> | CA |       | CA |      | CA |
               +----+      +----+       |    | <--- |    |
                                        +----+      +----+

                 Figure 2: Peer-to-Peer CA Relationships

  In the case where a CA exists only to manage cross-certificates, that
  CA is called a Bridge CA.  CAs can establish unilateral or bilateral
  cross-certification with a Bridge CA, as shown in Figure 3.

  Bridge CA:  A CA that, itself, does not issue certificates to end
     entities (except those required for its own operation) but
     establishes unilateral or bilateral cross-certification with other
     CAs.

                                 Bilateral
                            Cross-Certification
                 +----+ ----------+    +--------- +----+
                 | CA |           |    |          | CA |
                 +----+ <-------+ |    | +------> +----+
                                | v    v |
                              +-----------+
                              | Bridge CA |
                              +-----------+
                 +----+         |       |         +----+
                 | CA | <-------+       +-------> | CA |
                 +----+         Unilateral        +----+
                           Cross-Certification

                           Figure 3: Bridge CA










Shimaoka, et al.             Informational                      [Page 6]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


2.3.  Public Key Infrastructure (PKI) Architectures

  Public Key Infrastructure (PKI):  A system of CAs that perform some
     set of certificate management, archive management, key management,
     and token management functions for a community of users in an
     application of asymmetric cryptography and share trust
     relationships, operate under the same Certificate Policy Document
     specifying a shared set of Policy OID(s), and are either operated
     by a single organization or under the direction of a single
     organization.

  In addition, a PKI that intends to enter into trust relationships
  with other PKIs must designate a Principal CA (PCA) that will manage
  all trust relationships.  This Principal CA should also be the trust
  anchor CA for relying parties of that PKI.

  Principal CA (PCA):  A CA that should have a self-signed certificate
     is designated as the CA that will issue cross-certificates to
     Principal CAs in other PKIs, and may be the subject of cross-
     certificates issued by Principal CAs in other PKIs.

  In discussing different possible architectures for PKI, the concept
  of a certification path is necessary.  A certification path is built
  based on trust relationships between CAs.

  Certification Path:  An ordered sequence of certificates where the
     subject of each certificate in the path is the issuer of the next
     certificate in the path.  A certification path begins with a trust
     anchor certificate and ends with an end entity certificate.

2.3.1.  Single CA Architecture

  Definition:  A simple PKI consists of a single CA with a self-signed
     certificate that issues certificates to End Entities (EEs), as
     shown in Figure 4.

                                  +----+
                                  | CA |
                                  +----+
                                     |
                              +------+-----+
                              v      v     v
                           +----+ +----+ +----+
                           | EE | | EE | | EE |
                           +----+ +----+ +----+

                    Figure 4: Simple PKI Architecture




Shimaoka, et al.             Informational                      [Page 7]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


  Trust anchor CA:  The trust anchor CA must be the CA that has a self-
     signed certificate.

  Principal CA:  Since this PKI architecture has one CA, the Principal
     CA must be that CA.

2.3.2.  Multiple CA Architectures

2.3.2.1.  Hierarchical PKI Architecture

  Definition:  A hierarchical PKI consists of a single root CA and one
     or more subordinate CAs that issue certificates to EEs.  A
     hierarchical PKI may have intermediate CAs, which are subordinate
     CAs that themselves have subordinate CAs.  The root CA must
     distribute a trust anchor (public key and associated data), but
     the format and protocol are irrelevant for this specification.
     And all subordinate CAs must have subordinate CA certificates, as
     shown in Figure 5.

  Trust anchor CA:  The trust anchor CA must be the root CA.

  Principal CA:  The Principal CA must be the root CA.

                           +---------+
                           | Root CA |
                           +---------+
                                |
                   +------------+------------+
                   v                         v
                 +----+                    +----+
                 | CA |                    | CA |
                 +----+                    +----+
                   |                         |
            +------+------+         +--------+-------+
            v      v      v         v                v
          +----+ +----+ +----+    +----+           +----+
          | EE | | EE | | EE |    | CA |           | CA |
          +----+ +----+ +----+    +----+           +----+
                                    |                |
                                +---+--+      +------+------+
                                v      v      v      v      v
                              +----+ +----+ +----+ +----+ +----+
                              | EE | | EE | | EE | | EE | | EE |
                              +----+ +----+ +----+ +----+ +----+

                 Figure 5: Hierarchical PKI Architecture





Shimaoka, et al.             Informational                      [Page 8]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


2.3.2.2.  Mesh PKI Architectures

  Definition:  A mesh PKI consists of multiple CAs with self-signed
     certificates that issue certificates to EEs and issue cross-
     certificates to each other.  A mesh PKI may be a full mesh, where
     all CAs issue cross-certificates to all other CAs, as shown in
     Figure 6.  A mesh PKI may also be a partial mesh, where all CAs do
     not issue cross-certificates to all other CAs.  In a partial mesh
     PKI, certification paths may not exist from all CAs to all other
     CAs, as shown in Figure 7.

                    +--------- +-----+ <--------+
                    |          | CA1 |          |
                    | +------> +-----+ -------+ |
                    | |           |           | |
                    | |       +---+--+        | |
                    | |       v      v        | |
                    | |     +----+ +----+     | |
                    | |     | EE | | EE |     | |
                    | |     +----+ +----+     | |
                    v |                       v |
                  +-----+ ----------------> +-----+
                  | CA2 |                   | CA3 |
                  +-----+ <---------------- +-----+
                     |                         |
                 +---+--+               +------+------+
                 v      v               v      v      v
               +----+ +----+          +----+ +----+ +----+
               | EE | | EE |          | EE | | EE | | EE |
               +----+ +----+          +----+ +----+ +----+

                  Figure 6: Full Mesh PKI Architecture



















Shimaoka, et al.             Informational                      [Page 9]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


                    +--------- +-----+
                    |          | CA1 | --------+
                    | +------> +-----+         |
                    | |           |            |
                    | |       +---+--+         |
                    | |       v      v         |
                    | |     +----+ +----+      |
                    | |     | EE | | EE |      |
                    | |     +----+ +----+      |
                    v |                        v
                  +-----+                   +-----+
                  | CA2 | ----------------> | CA3 |
                  +-----+                   +-----+
                     |                         |
                 +---+--+               +------+------+
                 v      v               v      v      v
               +----+ +----+          +----+ +----+ +----+
               | EE | | EE |          | EE | | EE | | EE |
               +----+ +----+          +----+ +----+ +----+

                 Figure 7: Partial Mesh PKI Architecture

  Trust anchor CA:  The trust anchor CA for an end entity is usually
     the CA that issued the end entity's certificate.  The trust anchor
     CA for an end entity that is not issued a certificate from the
     mesh PKI may be any CA in the PKI.  In a partial mesh, selection
     of the trust anchor may result in no certification path from the
     trust anchor to one or more CAs in the mesh.  For example, in
     Figure 7 above, the selection of CA1 or CA2 as the trust anchor CA
     will result in paths from all end entities in the figure.
     However, the selection of CA3 as the trust anchor CA will result
     in certification paths only for those EEs whose certificates were
     issued by CA3.  No certification path exists to CA1 or CA2.

  Principal CA:  The Principal CA may be any CA within the mesh PKI.
     However, the mesh PKI must have only one Principal CA, and a
     certification path should exist from the Principal CA to all other
     CAs within the mesh PKI.

  Considerations:  This model should be used sparingly, especially the
     partial mesh model, because of the complexity of determining trust
     anchors and building certification paths.  A full mesh PKI may be
     useful for certification path building because paths of length one
     exist from all CAs to all other CAs in the mesh.







Shimaoka, et al.             Informational                     [Page 10]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


2.3.2.3.  Hybrid PKI Architectures

  Definition:  A hybrid PKI is a PKI that uses a combination of the
     pure hierarchical model using subordinate CA certificates and the
     pure mesh model using cross-certificates.

                   +-----+ <----- +-----+
                   | CA2 |        | CA1 |
                   +-----+ -----> +-----+
                      |              |
                  +---+--+       +---+--+-------+
                  v      v       v      v       v
               +----+ +----+   +----+ +----+ +-----+
               | EE | | EE |   | EE | | EE | | CA3 |
               +----+ +----+   +----+ +----+ +-----+
                                                |
                                         +------+------+
                                         v      v      v
                                       +----+ +----+ +----+
                                       | EE | | EE | | EE |
                                       +----+ +----+ +----+

                     Figure 8: Hybrid PKI Architecture

  Trust anchor CA:  The trust anchor CA for a hybrid PKI may be any CA
     with self-issued certificates in the hybrid PKI.  However, because
     of the potential complexity of a hybrid PKI, the PKI should
     provide guidance regarding the selection of the trust anchor to
     relying parties because a relying party may fail to build an
     appropriate certification path to a subscriber if they choose an
     inappropriate trust anchor.

  Principal CA:  The Principal CA may be any CA within the hybrid PKI
     and should have a self-signed certificate for cross-certification
     with other PKI domains.  However, the hybrid PKI must have only
     one Principal CA and a certification path must exist from the
     Principal CA to every CA within the PKI.

  Considerations:  This model should be used sparingly because of the
     complexity of determining trust anchors and building certification
     paths.  However, hybrid PKIs may occur as a result of the
     evolution of a PKI over time, such as CAs within an organization
     joining together to become a single PKI.








Shimaoka, et al.             Informational                     [Page 11]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


2.4.  Relationships between PKIs and Relying Parties

  Relying Parties establish trust relationships by trust anchor to a
  PKI.  Relying Parties may use a Trust List for establishing trust
  relationships to one or more PKIs.  A Trust List is a set of one or
  more trust anchors for trusting one or more PKIs.

  There are two types of maintenance models of Trust List, Local Trust
  List Model and Trust Authority Model.  The two models are described
  in detail in Section 4.1.

3.  PKI Domain

  Two or more PKIs may choose to enter into trust relationships with
  each other.  For these relationships, each PKI retains its own set of
  Certificate Policy OIDs and its own Principal CA.  In addition to
  making a business decision to consider a trust relationship, each PKI
  determines the level of trust of each external PKI by reviewing
  external PKI Certificate Policy Document(s) and any other PKI
  governance documentation through a process known as policy mapping.
  Trust relationships are technically formalized through the issuance
  of cross-certificates.  Such a collection of two or more PKIs is
  known as a PKI domain.

  PKI domain:  A set of two or more PKIs that have chosen to enter into
     trust relationships with each other through the use of cross-
     certificates.  Each PKI that has entered into the PKI domain is
     considered a member of that PKI domain.

     NOTE:  This definition specifies a PKI domain recursively in terms
        of its constituent domains and associated trust relationships;
        this is different to the definition in RFC 4949 [RFC4949] that
        gives PKI domain as a synonym for CA domain and defines it in
        terms of a CA and its subject entities.

  Domain Policy Object Identifier:  A domain Policy Object Identifier
     (OID) is a Policy OID that is shared across a PKI domain.  Each CA
     in the PKI domain must be operated under the domain Policy OID.
     Each CA may also have its own Policy OID(s) in addition to the
     domain Policy OID.  In such a case, the CA must comply with both
     policies.  The domain Policy OID is used to identify the PKI
     domain.

  Policy Mapping:  A process by which members of a PKI domain evaluate
     the Certificate Policies (CPs) and other governance documentation
     of other potential PKI domain members to determine the level of
     trust that each PKI in the PKI domain places on certificates
     issued by each other PKI in the PKI domain.



Shimaoka, et al.             Informational                     [Page 12]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


3.1.  PKI Domain Properties

  o  A PKI domain may operate a Bridge CA or a Unifying CA that defines
     members of the domain by issuing cross-certificates to those
     members.

  o  A single PKI may simultaneously belong to two or more PKI domains.

  o  A PKI domain may contain PKI domains within its own membership.

  o  Two or more PKI domains may enter into a trust relationship with
     each other, creating a new PKI domain.  They may choose to retain
     the existing PKI domains in addition to the new PKI domain or
     collapse the existing PKI domains into the new PKI domain.

  o  A member of a PKI domain may choose to participate in the PKI
     domain but restrict or deny trust in one or more other member PKIs
     of that same PKI domain.

3.2.  Requirements for Establishing and Participating in PKI Domains

  The establishment of trust relationships has a direct impact on the
  trust model of relying parties.  As a result, consideration must be
  taken in the creation and maintenance of PKI domains to prevent
  creating inadvertent trust relationships.

3.2.1.  PKI Requirements

  In order for a PKI to participate in one or more PKI domains, that
  PKI must have the following:

  o  A Certificate Policy Document documenting the requirements for
     operation of that PKI.  The Certificate Policy Document should be
     in RFC 3647 [RFC3647] format.

  o  One or more Policy OIDs defined in the Certificate Policy Document
     that are also asserted in all certificates issued by that PKI.

  o  A defined Principal CA.

  PKI domains may also impose additional technical, documentation, or
  policy requirements for membership in the PKI domain.

  When participating in a PKI domain, the domain Policy OID(s) must be
  asserted at least in cross-certificates issued by a participating
  PKI.  After the participation, the PKI can assert the domain Policy
  OID(s) in certificates issued by that PKI, or may map the domain




Shimaoka, et al.             Informational                     [Page 13]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


  Policy OID(s) to the Policy OID(s) asserted in certificates issued by
  that PKI.

3.2.2.  PKI Domain Documentation

  PKI domains must be formally defined and documented.  This
  documentation may vary greatly depending on the PKI domain.  However,
  it must:

  o  Establish the existence of the PKI domain;

  o  Define the authority for maintaining the PKI domain;

        Examples of PKI domain Authorities are (1) Representatives from
        two PKIs that agree to form a simple PKI domain, (2) A single
        entity that may or may not be related to any of the PKIs in the
        PKI domain, (3) A governance board made up of representatives
        from each PKI domain member.

  o  Define how the PKI domain is governed;

  o  Define the purpose and community of interest of the PKI domain;
     and

        Examples of PKI domain intents are (1) allow relying parties of
        one PKI to trust certificates issued by another PKI, (2) allow
        PKIs that support similar subscriber communities of interest to
        interact with each other, and (3) allow relying parties to
        trust certificates issued by a number of PKIs that all meet a
        set of requirements.

  o  Unless the PKI domain has a predetermined membership, describe the
     requirements and methods for joining the PKI domain, such as
     FPKIMETHOD [FPKIMETHOD].

  Examples of governance documents that PKI domains may choose to use
  are:

  o  Statement of intent between two or more parties;

  o  Memorandum of Agreement between two or more parties;

  o  Certificate Policy Document for the PKI domain;

  o  Charter for the PKI domain; or

  o  Methodology for PKI domain membership.




Shimaoka, et al.             Informational                     [Page 14]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


3.2.3.  PKI Domain Membership Notification

  A cross-certificate from the Principal CA of one PKI to the Principal
  CA of another PKI indicates a mapping between one or more policies of
  the first PKI and one or more policies of the second PKI.  When a
  relying party is determining if a certificate can be validated, it
  builds a certification path from the certificate being presented to a
  trust anchor.  To prevent creating inadvertent trust relationships
  across PKI domains when a single PKI is a member of two or more
  disparate PKI domains, each PKI domain must be cognizant of what PKI
  domains in which its member PKIs participate.  Figure 9 illustrates
  this concept.

                             +-----------------------------+
                             |                PKI domain 2 |
              +----------------------------+               |
              |              |             |               |
              | +------+ <------ +------+ <------ +------+ |
              | | PKI1 |     |   | PKI2 |  |      | PKI3 | |
              | +------+ ------> +------+ ------> +------+ |
              |              |             |               |
              |              +-----------------------------+
              | PKI domain 1               |
              +----------------------------+

             Figure 9: Participation in Multiple PKI Domains

  As shown in Figure 9, PKI2 is a member of both PKI domain 1 and PKI
  domain 2.  Since a certification path exists from PKI1 to PKI2, and
  from PKI2 to PKI3, a certification path also exists from PKI1 to
  PKI3.  However, PKI1 does not share domain membership with PKI3, so
  the certification path validation from PKI1 to PKI3 with a validation
  policy for PKI domain 1 must not succeed.  To ensure correct
  certification path validation and policy mapping, the cross-
  certificates issued by both PKI1 and PKI3 to PKI2 must contain
  constraints such as policy mapping or name constraints disallowing
  the validation of certification paths outside their respective
  domains.

  To fully prevent inadvertent trust, any PKI that is a member of one
  or more PKI domains must inform all those PKI domains of its
  membership in all other PKI domains.  In addition, that PKI must
  inform all those PKI domains of which it is a member, any time its
  membership status changes with regards to any other PKI domain.  If a
  PKI domain is informed of the change in status of one of its member
  PKIs with regards to other PKI domains, that PKI domain must review
  the constraints in any cross-certificate issued to that PKI.  If the
  change in membership would result in a change to the allowed or



Shimaoka, et al.             Informational                     [Page 15]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


  disallowed certification paths, the PKI domain must ensure that all
  such cross-certificates are revoked and re-issued with correct
  constraints.

3.2.4.  Considerations for PKIs and PKI Domains with Multiple Policies

  In some cases, a single PKI may issue certificates at more than one
  assurance level.  If so, the Certificate Policy Document must define
  separate Policy OIDs for each assurance level, and must define the
  differences between certificates of different assurance levels.

  A PKI domain may also support more than one assurance level.  If so,
  the PKI domain must also define separate Policy OIDs for each
  assurance level, and must define the differences in requirements for
  each level.

  When PKIs and PKI domains choose to establish trust relationships,
  these trust relationships may exist for only one defined assurance
  level, may have a one-to-one relationship between PKI assurance
  levels and PKI domain assurance levels, or may have many-to-one or
  one-to-many relationships between assurance levels.  These
  relationships must be defined in cross-certificates issued between
  PKIs in the PKI domain.

3.3.  PKI Domain Models

  Two or more PKI domains may choose to enter into trust relationships
  with each other.  In that case, they may form a larger PKI domain by
  establishing a new Unifying or Bridge CA or by issuing cross-
  certificates between their Principal CAs.

3.3.1.  Unifying Trust Point (Unifying Domain) Model

  In the Unifying Trust Point Model, a PKI domain is created by
  establishing a joint, superior CA that issues unilateral cross-
  certificates to each PKI domain, as shown in Figure 10.  Such a
  joint, superior CA is defined as a Unifying CA, and the Principal CAs
  in each PKI domain have the hierarchical CA relationship with that
  Unifying CA.  In this model, any relying party from any of the PKI
  domains must specify the Unifying CA as its trust anchor CA in order
  to validate a subscriber in the other PKI domains.  If the relying
  party does not desire to validate subscribers in other PKI domains,
  the relying party may continue to use the Principal CA from the old
  PKI domain as its trust anchor CA.

  This model may be used for merging multiple PKI domains into a single
  PKI domain with less change to existing PKI domains, or may be used
  to combine multiple PKI domains into one PKI domain for relying



Shimaoka, et al.             Informational                     [Page 16]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


  parties.  The unilateral cross-certificate issued by the Unifying CA
  to the Principal CAs in each PKI domain may include any policy
  mapping.

             Cross-certified                   Cross-certified
              Unifying CA                       Unifying CA
             to PKI domain 1 +--------------+  to PKI domain 3
                   +---------|  Unifying CA |---+
                   |         +--------------+   |
                   |                 |          |
                   |  Cross-certified|          |
                   |   Unifying CA   |          |
                   |  to PKI domain 2|          |
       +-----------|---+ +-----------|---+ +----|-----------------+
       |    PKI    |   | |    PKI    |   | |    |    PKI          |
       |  domain 1 |   | |  domain 2 |   | |    |  domain 3       |
       |           v   | |           v   | |    v                 |
       |       +-----+ | |       +-----+ | | +-----+ ----+        |
       |   +---| PCA | | |       | PCA | | | | PCA |     |        |
       |   |   +-----+ | |       +-----+ | | +-----+ <-+ |        |
       |   |      |    | |          |    | |   | ^     | v        |
       |   |      |    | |          |    | |   | |   +----+       |
       |   |      |    | |          |    | |   | |   | CA |---+   |
       |   |      |    | |          |    | |   | |   +----+   |   |
       |   |      |    | |          v    | |   v |    ^ |     |   |
       |   |      |    | |       +----+  | | +----+   | |     |   |
       |   |      |    | |   +---| CA |  | | | CA |---+ |     |   |
       |   |      |    | |   |   +----+  | | +----+     |     |   |
       |   |      |    | |   |      |    | |   |        |     |   |
       |   v      v    | |   v      v    | |   v        v     v   |
       | +----+ +----+ | | +----+ +----+ | | +----+ +----+ +----+ |
       | | EE | | EE | | | | EE | | EE | | | | EE | | EE | | EE | |
       | +----+ +----+ | | +----+ +----+ | | +----+ +----+ +----+ |
       +---------------+ +---------------+ +----------------------+

         Figure 10: Unifying Trust Point (Unifying Domain) Model

3.3.2.  Independent Trust Point Models

  In Independent Trust Point Models, relying parties continue to use
  only the trust anchor of their PKI domain.  A relying party in the
  individual trust point model can continue to use the trust anchor of
  its PKI domain.

3.3.2.1.  Direct Cross-Certification Model

  In this model, each PKI domain trusts each other by issuing a cross-
  certificate directly between each Principal CA, as shown in



Shimaoka, et al.             Informational                     [Page 17]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


  Figure 11.  This model may be used for shortening a certification
  path or establishing a trust relationship expeditiously.

  Considerations:  A PKI domain in this model needs to take into
     account that the other PKI domain may cross-certify with any other
     PKI domains.  If a PKI domain wants to restrict a certification
     path, the PKI domain should not rely on the validation policy of
     the relying party, but should include the constraints in the
     cross-certificate explicitly.  A PKI domain that relies on the
     validation policy of the relying party about such constraints
     cannot guarantee that the constraints will be recognized and
     followed.


       +---------------+                 +------------------------+
       |    PKI        | cross-certified |         PKI            |
       |  domain 1     |    each other   |       domain 2         |
       |      +-----+ --------------------> +-----+ ----+         |
       |      | PCA |  |                 |  | PCA |     |         |
       |      +-----+ <-------------------- +-----+ <-+ |         |
       |         |     |                 |     ^      | v         |
       |         |     |                 |     |    +----+        |
       |         |     |                 |     |    | CA |---+    |
       |         |     |                 |     |    +----+   |    |
       |         v     |                 |     v     ^ |     |    |
       |       +----+  |                 |   +----+  | |     |    |
       |   +---| CA |  |                 |   | CA |--+ |     |    |
       |   |   +----+  |                 |   +----+    |     |    |
       |   |      |    |                 |     |       |     |    |
       |   v      v    |                 |     v       v     v    |
       | +----+ +----+ |                 |   +----+ +----+ +----+ |
       | | EE | | EE | |                 |   | EE | | EE | | EE | |
       | +----+ +----+ |                 |   +----+ +----+ +----+ |
       +---------------+                 +------------------------+

               Figure 11: Direct Cross-Certification Model

3.3.2.2.  Bridge Model

  In this model, every PKI domain trusts each other through a Bridge CA
  by cross-certification, as shown in Figure 12.  The trust
  relationship is not established between a subscriber domain and a
  relying party domain directly, but established from the Principal CA
  of the relying party's PKI domain via a Bridge CA.  This model is
  useful in reducing the number of cross-certifications required for a
  PKI domain to interoperate with other PKI domains.





Shimaoka, et al.             Informational                     [Page 18]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


  Requirements for Bridge model:

  o  The Bridge CA must not be used as the trust anchor CA in any PKI
     domain.

  o  The Bridge CA should issue cross-certificates with other PKI
     domains mutually or may issue cross-certificates unilaterally.

  o  The Bridge CA must not issue End Entity (EE) certificates except
     when it is necessary for the CA's operation.

  o  The Bridge CA must use its own domain Policy OID, not other PKI
     domain Policy OID(s), for the policy mapping.

  o  The Bridge CA should be a neutral position to all PKI domains,
     which trust through the Bridge CA.  For example, in Figure 12, in
     the case that a relying party who trusts the PCA of PKI domain 1
     as its trust anchor CA builds the certification path to a
     subscriber in PKI domain 3:

        Cross-Certificate from PKI domain 1 to the Bridge CA:

           issuerDomainPolicy ::= domain Policy OID of PKI domain 1

           subjectDomainPolicy := domain Policy OID of the Bridge CA

        Cross-Certificate from the Bridge CA to PKI domain 3:

           issuerDomainPolicy ::= domain Policy OID of the Bridge CA

           subjectDomainPolicy ::= domain Policy OID of PKI domain 3

  o  Cross-certificates issued by the Bridge CA and cross-certificate
     issued to the Bridge CA should include the requireExplicitPolicy
     with a value that is greater than zero in the policyConstraints
     extension because a relying party may not set the initial-
     explicit-policy to TRUE.

  o  PKI domains cross-certified with the Bridge CA should not cross-
     certify directly to other PKI domains cross-certified with the
     same Bridge CA.

  o  The Bridge CA should clarify the method for the policy mapping of
     cross-certification to keep its transparency.







Shimaoka, et al.             Informational                     [Page 19]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


  Considerations:  The Bridge CA should be operated by an independent
     third party agreed upon by the PKI domains or a consortium
     consisting of representatives from the PKI domain members.  The
     Bridge CA should do policy mapping in a well-documented and
     agreed-upon manner with all PKI domains.  When applying the name
     constraints, the Bridge CA needs to avoid creating conflicts
     between the name spaces of the cross-certified PKI domains.  The
     PKI domains that perform cross-certification with the Bridge CA
     should confirm the following:

     *  Does the Bridge CA perform the policy mapping via its own
        domain Policy OID?

     *  Does the Bridge CA clarify the method of policy mapping in the
        cross-certification?

     *  Is the Bridge CA able to accept the domain policy that the PKI
        domain desires?

        +  If the domain policy is mapped to one with a lower security
           level, the PKI domain should not accept it.  Otherwise, the
           PKI domain must carefully consider the risks involved with
           accepting certificates with a lower security level.




























Shimaoka, et al.             Informational                     [Page 20]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


         cross-certified                      cross-certified
       PKI domain 1 with BCA               PKI domain 3 with BCA
                 +---------> +-----------+ -----+
                 |           | Bridge CA |      |
                 | +-------- +-----------+ <--+ |
                 | |                 ^ |      | |
                 | | cross-certified | |      | |
                 | |   PKI domain 2  | |      | |
                 | |     with BCA    | |      | |
       +---------|-|---+ +-----------|-|-+ +--|-|-----------------+
       |  PKI    | |   | |   PKI     | | | |  | |    PKI          |
       |domain 1 | v   | | domain 2  | v | |  | v  domain 3       |
       |       +-----+ | |       +-----+ | | +-----+ ----+        |
       |   +---| PCA | | |       | PCA | | | | PCA |     |        |
       |   |   +-----+ | |       +-----+ | | +-----+ <-+ |        |
       |   |      |    | |          |    | |   | ^     | v        |
       |   |      |    | |          |    | |   | |   +----+       |
       |   |      |    | |          |    | |   | |   | CA |---+   |
       |   |      |    | |          |    | |   | |   +----+   |   |
       |   |      |    | |          v    | |   v |    ^ |     |   |
       |   |      |    | |       +----+  | | +----+   | |     |   |
       |   |      |    | |   +---| CA |  | | | CA |---+ |     |   |
       |   |      |    | |   |   +----+  | | +----+     |     |   |
       |   |      |    | |   |      |    | |   |        |     |   |
       |   v      v    | |   v      v    | |   v        v     v   |
       | +----+ +----+ | | +----+ +----+ | | +----+ +----+ +----+ |
       | | EE | | EE | | | | EE | | EE | | | | EE | | EE | | EE | |
       | +----+ +----+ | | +----+ +----+ | | +----+ +----+ +----+ |
       +---------------+ +---------------+ +----------------------+

                         Figure 12: Bridge Model

3.4.  Operational Considerations

  Each PKI domain may use policy mapping for crossing different PKI
  domains.  If a PKI domain wants to restrict a certification path, the
  PKI domain should not rely on the validation policy of the relying
  party, but should include the constraints in the cross-certificate
  explicitly.

  For example, when each PKI domain wants to affect the constraints to
  a certification path, it should set the requireExplicitPolicy to zero
  in the policyConstraints extension of any cross-certificates.  A PKI
  domain that relies on the validation policy of the relying party
  about such constraints cannot guarantee the constraints will be
  recognized and followed.





Shimaoka, et al.             Informational                     [Page 21]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


4.  Trust Models External to PKI Relationships

  As opposed to PKI domain trust relationships entered into by PKIs
  themselves, trust across multiple PKIs can be created by entities
  external to the PKIs through locally configured lists of trust
  anchors.

  Trust List:  A set of one or more trust anchors used by a relying
     party to explicitly trust one or more PKIs.

  Note that Trust Lists are often created without the knowledge of the
  PKIs that are included in the list.

4.1.  Trust List Models

4.1.1.  Local Trust List Model

  A Trust List can be created and maintained by a single relying party
  for its own use.

  Local Trust List:  A Trust List installed and maintained by a single
     relying party for its own use.  NOTE: This definition is similar
     to "trust-file PKI" defined in RFC 4949 [RFC4949].  However, this
     document prefers the term "Local Trust List" contrasting with
     "Trust Authority" defined below.

  Figure 13 illustrates a Local Trust List.

     +-------------------------------------------------------------+
     |  Relying party                                              |
     | +---------------------------------------------------------+ |
     | | Trust List                                              | |
     | | +--------------+  +--------------+     +--------------+ | |
     | | | PKI 1        |  | PKI 2        | ... | PKI n        | | |
     | | | Trust anchor |  | Trust anchor |     | Trust anchor | | |
     | | +--------------+  +--------------+     +--------------+ | |
     | +---------------------------------------------------------+ |
     +-------------------------------------------------------------+

             Figure 13: Relying Party Local Trust List Model

  Creating a Local Trust List is the simplest method for relying
  parties to trust EE certificates.  Using Local Trust Lists does not
  require cross-certification between the PKI that issued the relying
  party's own certificate and the PKI that issued the EE's
  certificate,nor does it require implementing mechanisms for
  processing complex certification paths, as all CAs in a path can be
  included in the Local Trust List.  As a result, Local Trust Lists are



Shimaoka, et al.             Informational                     [Page 22]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


  the most common model in use today.  However, because Local Trust
  Lists are created and managed independently by each relying party,
  the use of Local Trust Lists can be difficult for an enterprise to
  manage.

4.1.2.  Trust Authority Model

  Alternatively, a Trust List can be created and maintained for using
  by multiple relying parties.  In this case, the entity responsible
  for the Trust List is known as a Trust Authority.

  Trust Authority:  An entity that manages a Trust List for use by one
     or more relying parties.

  Figure 14 illustrates a Trust Authority and how it is used by Relying
  Parties.  Note that the Trust Authority replaces the PKI trust
  anchor(s) in the Local Trust List for each participating relying
  party.

     +-------------------------------------------------------------+
     |  Trust Authority                                            |
     | +---------------------------------------------------------+ |
     | | Trust List                                              | |
     | | +--------------+  +--------------+     +--------------+ | |
     | | | PKI 1        |  | PKI 2        | ... | PKI n        | | |
     | | | Trust anchor |  | Trust anchor |     | Trust anchor | | |
     | | +--------------+  +--------------+     +--------------+ | |
     | +---------------------------------------------------------+ |
     +-------------------------------------------------------------+

          +---------------------+  +---------------------+
          |   Relying party 1   |  |   Relying party 2   |
          | +-----------------+ |  | +-----------------+ | ...
          | | Trust Authority | |  | | Trust Authority | |
          | +-----------------+ |  | +-----------------+ |
          +---------------------+  +---------------------+

                    Figure 14: Trust Authority Model

  A Trust Authority may be operated by a PKI, a collection of relying
  parties that share a common set of users, an enterprise on behalf of
  all of its relying parties, or an independent entity.  Although PKIs
  generally establish trust relationships through cross-certificates, a
  PKI may choose to provide a Trust Authority to support relying
  parties that do not support processing of certification paths.  A
  collection of relying parties that share a common set of users may
  choose to maintain a single Trust Authority to simplify the
  management of Trust Lists.  An enterprise may choose to provide a



Shimaoka, et al.             Informational                     [Page 23]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


  Trust Authority to implement enterprise policies and direct all
  Relying Parties within the enterprise to use its Trust Authority.
  Finally, an independent entity may choose to operate a Trust
  Authority as a managed service.

4.2.  Trust List Considerations

4.2.1.  Considerations for a PKI

  A PKI should publish its Certificate Policy Document so that Relying
  Parties and Trust Authorities can determine what, if any, warranties
  are provided by the PKI regarding reliance on EE certificates.

  A PKI should broadly publicize information regarding revocation or
  compromise of a trust anchor CA or Principal CA certificate through
  notice on a web page, press release, and/or other appropriate
  mechanisms so that Relying Parties and Trust Authorities can
  determine if a trust anchor CA or Principal CA certificate installed
  in a Trust List should be removed.

  A PKI should publish Certificate Revocation Lists (CRLs) or other
  information regarding the revocation status of EE certificates to a
  repository that can be accessed by any party that desires to rely on
  the EE certificates.

4.2.2.  Considerations for Relying Parties and Trust Authorities

  Relying Parties and Trust Authorities are responsible for the
  following prior to including a PKI in the Trust List:

  o  Reviewing the Certificate Policy Document of each PKI to determine
     that the PKI is operated to an acceptable level of assurance;

  o  Reviewing the Certificate Policy Document of each PKI to ensure
     any requirements imposed on Relying Parties are met;

  o  Determining if the PKI provides any warranties regarding reliance
     on EE certificates, and if these warranties are acceptable for the
     intended reliance on the EE certificates.  Reliance may be at the
     relying party's own risk; and

  o  Periodically reviewing information published by the PKI to its
     repository, including Certificate Policy Document updates or
     notice of CA revocation or compromise.

  A PKI can choose to join or leave PKI domains in accordance with its
  Certificate Policy Document.  If the relying party or Trust Authority
  does not wish to inherit trust in other members of these PKI domains,



Shimaoka, et al.             Informational                     [Page 24]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


  it is the responsibility of the relying party or Trust Authority to
  inhibit policy mapping.

4.2.3.  Additional Considerations for Trust Authorities

  A Trust Authority should establish a Trust Authority Policy that
  identifies the following:

  o  The intended community of Relying Parties that will use the Trust
     Authority;

  o  The process by which trust anchors are added or removed from the
     Trust List;

  o  Any warranties provided by the Trust Authority for reliance on EE
     certificates.  These warranties may be those provided by the PKIs
     themselves or may be additional warranties provided by the Trust
     Authority;

  o  Information regarding how the Trust Authority protects the
     integrity of its Trust List; and

  o  Information regarding how Relying Parties interact with the Trust
     Authority to obtain information as to whether an EE certificate is
     trusted.

5.  Abbreviations

  CA:  Certification Authority

  EE:  End Entity

  OID:  Object Identifier

  PCA:  Principal Certification Authority

  PKI:  Public Key Infrastructure

6.  Security Considerations

  This section highlights security considerations related to
  establishing PKI domains.

6.1.  PKI Domain Models

  For all PKI domain models described in Section 3.3 created through
  the issuance of cross-certificates, standard threats including
  message insertion, modification, and man-in-the-middle are not



Shimaoka, et al.             Informational                     [Page 25]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


  applicable because all information created by CAs, including policy
  mapping and constraints, is digitally signed by the CA generating the
  cross-certificate.

  Verifying that a given certificate was issued by a member of a PKI
  domain may be a time-critical determination.  If cross-certificates
  and revocation status information cannot be obtained in a timely
  manner, a denial of service may be experienced by the end entity.  In
  situations where such verification is critical, caching of cross-
  certificates and revocation status information may be warranted.

  An additional security consideration for PKI domains is creating
  inadvertent trust relationships, which can occur if a single PKI is a
  member of multiple PKI domains.  See Section 3.2.3 for a discussion
  of creating inadvertent trust relationships and mechanisms to prevent
  it.

  Finally, members of PKI domains must participate in domain
  governance, or at a minimum, be informed anytime a PKI joins or
  leaves the domain, so that domain members can make appropriate
  decisions for maintaining their own membership in the domain or
  choosing to restrict or deny trust in the new member PKI.

6.2.  Trust List Models

  In these models, many standard attacks are not applicable since
  certificates are digitally signed.  Additional security
  considerations apply when trust is created through a Trust List.

  A variation of the modification attack is possible in Trust List
  Models.  If an attacker is able to add or remove CAs from the relying
  party or Trust Authority Trust List, the attacker can affect which
  certificates will or will not be accepted.  To prevent this attack,
  access to Trust Lists must be adequately protected against
  unauthorized modification.  This protection is especially important
  for trust anchors that are used by multiple applications, as it is a
  key vulnerability of this model.  This attack may result in
  unauthorized usage if a CA is added to a Trust List, or denial of
  service if a CA is removed from a Trust List.

  For Trust Authority models, a denial-of-service attack is also
  possible if the application cannot obtain timely information from the
  trust anchor.  Applications should specify service-level agreements
  with Trust Authority.  In addition, applications may choose to
  locally cache the list of CAs maintained by the Trust Authority as a
  backup in the event that the trust anchor's repository (e.g.,
  Lightweight Directory Access Protocol (LDAP) directory) is not
  available.



Shimaoka, et al.             Informational                     [Page 26]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


7.  References

7.1.  Normative References

  [RFC5280]          Cooper, D., Santesson, S., Farrell, S., Boeyen,
                     S., Housley, R., and W. Polk, "Internet X.509
                     Public Key Infrastructure Certificate and
                     Certificate Revocation List (CRL) Profile",
                     RFC 5280, May 2008.

7.2.  Informative References

  [CCITT.X509.2000]  International Telephone and Telegraph Consultative
                     Committee, "Information Technology - Open Systems
                     Interconnection - The Directory: Authentication
                     Framework", CCITT Recommendation X.509,
                     March 2000.

  [FPKIMETHOD]       "US Government PKI Cross-Certification Criteria
                     and Methodology", January 2006, <http://
                     www.cio.gov/fpkia/documents/
                     crosscert_method_criteria.pdf>.

  [RFC3647]          Chokhani, S., Ford, W., Sabett, R., Merrill, C.,
                     and S. Wu, "Internet X.509 Public Key
                     Infrastructure Certificate Policy and
                     Certification Practices Framework", RFC 3647,
                     November 2003.

  [RFC4949]          Shirey, R., "Internet Security Glossary, Version
                     2", RFC 4949, August 2007.




















Shimaoka, et al.             Informational                     [Page 27]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


Authors' Addresses

  Masaki Shimaoka (editor)
  SECOM Co., Ltd. Intelligent System Laboratory
  SECOM SC Center, 8-10-16 Shimorenjaku
  Mitaka, Tokyo  181-8528
  JP

  EMail: [email protected]


  Nelson Hastings
  National Institute of Standard and Technology
  100 Bureau Drive, Stop 8930
  Gaithersburg, MD  20899-8930
  US

  EMail: [email protected]


  Rebecca Nielsen
  Booz Allen Hamilton
  8283 Greensboro Drive
  McLean, VA  22102
  US

  EMail: [email protected]
























Shimaoka, et al.             Informational                     [Page 28]

RFC 5217           Multi-Domain PKI Interoperability           July 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Shimaoka, et al.             Informational                     [Page 29]