Network Working Group                                           D. Simon
Request for Comments: 5216                                      B. Aboba
Obsoletes: 2716                                                 R. Hurst
Category: Standards Track                          Microsoft Corporation
                                                             March 2008


                 The EAP-TLS Authentication Protocol

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  The Extensible Authentication Protocol (EAP), defined in RFC 3748,
  provides support for multiple authentication methods.  Transport
  Layer Security (TLS) provides for mutual authentication, integrity-
  protected ciphersuite negotiation, and key exchange between two
  endpoints.  This document defines EAP-TLS, which includes support for
  certificate-based mutual authentication and key derivation.

  This document obsoletes RFC 2716.  A summary of the changes between
  this document and RFC 2716 is available in Appendix A.























Simon, et al.               Standards Track                     [Page 1]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


Table of Contents

  1. Introduction ....................................................2
     1.1. Requirements ...............................................3
     1.2. Terminology ................................................3
  2. Protocol Overview ...............................................4
     2.1. Overview of the EAP-TLS Conversation .......................4
          2.1.1. Base Case ...........................................4
          2.1.2. Session Resumption ..................................7
          2.1.3. Termination .........................................8
          2.1.4. Privacy ............................................11
          2.1.5. Fragmentation ......................................14
     2.2. Identity Verification .....................................16
     2.3. Key Hierarchy .............................................17
     2.4. Ciphersuite and Compression Negotiation ...................19
  3. Detailed Description of the EAP-TLS Protocol ...................20
     3.1. EAP-TLS Request Packet ....................................20
     3.2. EAP-TLS Response Packet ...................................22
  4. IANA Considerations ............................................23
  5. Security Considerations ........................................24
     5.1. Security Claims ...........................................24
     5.2. Peer and Server Identities ................................25
     5.3. Certificate Validation ....................................26
     5.4. Certificate Revocation ....................................27
     5.5. Packet Modification Attacks ...............................28
  6. References .....................................................29
     6.1. Normative References ......................................29
     6.2. Informative References ....................................29
  Acknowledgments ...................................................31
  Appendix A -- Changes from RFC 2716 ...............................32

1.  Introduction

  The Extensible Authentication Protocol (EAP), described in [RFC3748],
  provides a standard mechanism for support of multiple authentication
  methods.  Through the use of EAP, support for a number of
  authentication schemes may be added, including smart cards, Kerberos,
  Public Key, One Time Passwords, and others.  EAP has been defined for
  use with a variety of lower layers, including the Point-to-Point
  Protocol (PPP) [RFC1661], Layer 2 tunneling protocols such as the
  Point-to-Point Tunneling Protocol (PPTP) [RFC2637] or Layer 2
  Tunneling Protocol (L2TP) [RFC2661], IEEE 802 wired networks
  [IEEE-802.1X], and wireless technologies such as IEEE 802.11 [IEEE-
  802.11] and IEEE 802.16 [IEEE-802.16e].

  While the EAP methods defined in [RFC3748] did not support mutual
  authentication, the use of EAP with wireless technologies such as
  [IEEE-802.11] has resulted in development of a new set of



Simon, et al.               Standards Track                     [Page 2]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  requirements.  As described in "Extensible Authentication Protocol
  (EAP) Method Requirements for Wireless LANs" [RFC4017], it is
  desirable for EAP methods used for wireless LAN authentication to
  support mutual authentication and key derivation.  Other link layers
  can also make use of EAP to enable mutual authentication and key
  derivation.

  This document defines EAP-Transport Layer Security (EAP-TLS), which
  includes support for certificate-based mutual authentication and key
  derivation, utilizing the protected ciphersuite negotiation, mutual
  authentication and key management capabilities of the TLS protocol,
  described in "The Transport Layer Security (TLS) Protocol
  Version 1.1" [RFC4346].  While this document obsoletes RFC 2716
  [RFC2716], it remains backward compatible with it.  A summary of the
  changes between this document and RFC 2716 is available in Appendix
  A.

1.1.  Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

1.2.  Terminology

  This document frequently uses the following terms:

  authenticator
    The entity initiating EAP authentication.

  peer
    The entity that responds to the authenticator.  In [IEEE-802.1X],
    this entity is known as the Supplicant.

  backend authentication server
    A backend authentication server is an entity that provides an
    authentication service to an authenticator.  When used, this server
    typically executes EAP methods for the authenticator.  This
    terminology is also used in [IEEE-802.1X].

  EAP server
    The entity that terminates the EAP authentication method with the
    peer.  In the case where no backend authentication server is used,
    the EAP server is part of the authenticator.  In the case where the
    authenticator operates in pass-through mode, the EAP server is
    located on the backend authentication server.





Simon, et al.               Standards Track                     [Page 3]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  Master Session Key (MSK)
    Keying material that is derived between the EAP peer and server and
    exported by the EAP method.

  Extended Master Session Key (EMSK)
    Additional keying material derived between the EAP peer and server
    that is exported by the EAP method.

2.  Protocol Overview

2.1.  Overview of the EAP-TLS Conversation

  As described in [RFC3748], the EAP-TLS conversation will typically
  begin with the authenticator and the peer negotiating EAP.  The
  authenticator will then typically send an EAP-Request/Identity packet
  to the peer, and the peer will respond with an EAP-Response/Identity
  packet to the authenticator, containing the peer's user-Id.

  From this point forward, while nominally the EAP conversation occurs
  between the EAP authenticator and the peer, the authenticator MAY act
  as a pass-through device, with the EAP packets received from the peer
  being encapsulated for transmission to a backend authentication
  server.  In the discussion that follows, we will use the term "EAP
  server" to denote the ultimate endpoint conversing with the peer.

2.1.1.  Base Case

  Once having received the peer's Identity, the EAP server MUST respond
  with an EAP-TLS/Start packet, which is an EAP-Request packet with
  EAP-Type=EAP-TLS, the Start (S) bit set, and no data.  The EAP-TLS
  conversation will then begin, with the peer sending an EAP-Response
  packet with EAP-Type=EAP-TLS.  The data field of that packet will
  encapsulate one or more TLS records in TLS record layer format,
  containing a TLS client_hello handshake message.  The current cipher
  spec for the TLS records will be TLS_NULL_WITH_NULL_NULL and null

  compression.  This current cipher spec remains the same until the
  change_cipher_spec message signals that subsequent records will have
  the negotiated attributes for the remainder of the handshake.

  The client_hello message contains the peer's TLS version number, a
  sessionId, a random number, and a set of ciphersuites supported by
  the peer.  The version offered by the peer MUST correspond to TLS
  v1.0 or later.

  The EAP server will then respond with an EAP-Request packet with
  EAP-Type=EAP-TLS.  The data field of this packet will encapsulate one
  or more TLS records.  These will contain a TLS server_hello handshake



Simon, et al.               Standards Track                     [Page 4]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  message, possibly followed by TLS certificate, server_key_exchange,
  certificate_request, server_hello_done and/or finished handshake
  messages, and/or a TLS change_cipher_spec message.  The server_hello
  handshake message contains a TLS version number, another random
  number, a sessionId, and a ciphersuite.  The version offered by the
  server MUST correspond to TLS v1.0 or later.

  If the peer's sessionId is null or unrecognized by the server, the
  server MUST choose the sessionId to establish a new session.
  Otherwise, the sessionId will match that offered by the peer,
  indicating a resumption of the previously established session with
  that sessionId.  The server will also choose a ciphersuite from those
  offered by the peer.  If the session matches the peer's, then the
  ciphersuite MUST match the one negotiated during the handshake
  protocol execution that established the session.

  If the EAP server is not resuming a previously established session,
  then it MUST include a TLS server_certificate handshake message, and
  a server_hello_done handshake message MUST be the last handshake
  message encapsulated in this EAP-Request packet.

  The certificate message contains a public key certificate chain for
  either a key exchange public key (such as an RSA or Diffie-Hellman
  key exchange public key) or a signature public key (such as an RSA or
  Digital Signature Standard (DSS) signature public key).  In the
  latter case, a TLS server_key_exchange handshake message MUST also be
  included to allow the key exchange to take place.

  The certificate_request message is included when the server desires
  the peer to authenticate itself via public key.  While the EAP server
  SHOULD require peer authentication, this is not mandatory, since
  there are circumstances in which peer authentication will not be
  needed (e.g., emergency services, as described in [UNAUTH]), or where
  the peer will authenticate via some other means.

  If the peer supports EAP-TLS and is configured to use it, it MUST
  respond to the EAP-Request with an EAP-Response packet of EAP-
  Type=EAP-TLS.  If the preceding server_hello message sent by the EAP
  server in the preceding EAP-Request packet did not indicate the
  resumption of a previous session, the data field of this packet MUST
  encapsulate one or more TLS records containing a TLS
  client_key_exchange, change_cipher_spec, and finished messages.  If
  the EAP server sent a certificate_request message in the preceding
  EAP-Request packet, then unless the peer is configured for privacy
  (see Section 2.1.4) the peer MUST send, in addition, certificate and
  certificate_verify messages.  The former contains a certificate for
  the peer's signature public key, while the latter contains the peer's
  signed authentication response to the EAP server.  After receiving



Simon, et al.               Standards Track                     [Page 5]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  this packet, the EAP server will verify the peer's certificate and
  digital signature, if requested.

  If the preceding server_hello message sent by the EAP server in the
  preceding EAP-Request packet indicated the resumption of a previous
  session, then the peer MUST send only the change_cipher_spec and
  finished handshake messages.  The finished message contains the
  peer's authentication response to the EAP server.

  In the case where the EAP-TLS mutual authentication is successful,
  the conversation will appear as follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- EAP-Request/
                          Identity
  EAP-Response/
  Identity (MyID) ->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start)
  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS client_hello)->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS server_hello,
                            TLS certificate,
                   [TLS server_key_exchange,]
                    TLS certificate_request,
                       TLS server_hello_done)
  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS certificate,
   TLS client_key_exchange,
   TLS certificate_verify,
   TLS change_cipher_spec,
   TLS finished) ->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS change_cipher_spec,
                           TLS finished)
  EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- EAP-Success






Simon, et al.               Standards Track                     [Page 6]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


2.1.2.  Session Resumption

  The purpose of the sessionId within the TLS protocol is to allow for
  improved efficiency in the case where a peer repeatedly attempts to
  authenticate to an EAP server within a short period of time.  While
  this model was developed for use with HTTP authentication, it also
  can be used to provide "fast reconnect" functionality as defined in
  Section 7.2.1 of [RFC3748].

  It is left up to the peer whether to attempt to continue a previous
  session, thus shortening the TLS conversation.  Typically, the peer's
  decision will be made based on the time elapsed since the previous
  authentication attempt to that EAP server.  Based on the sessionId
  chosen by the peer, and the time elapsed since the previous
  authentication, the EAP server will decide whether to allow the
  continuation or to choose a new session.

  In the case where the EAP server and authenticator reside on the same
  device, the peer will only be able to continue sessions when
  connecting to the same authenticator.  Should the authenticators be
  set up in a rotary or round-robin, then it may not be possible for
  the peer to know in advance the authenticator to which it will be
  connecting, and therefore which sessionId to attempt to reuse.  As a
  result, it is likely that the continuation attempt will fail.  In the
  case where the EAP authentication is remoted, then continuation is
  much more likely to be successful, since multiple authenticators will
  utilize the same backend authentication server.

  If the EAP server is resuming a previously established session, then
  it MUST include only a TLS change_cipher_spec message and a TLS
  finished handshake message after the server_hello message.  The
  finished message contains the EAP server's authentication response to
  the peer.


















Simon, et al.               Standards Track                     [Page 7]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  In the case where a previously established session is being resumed,
  and both sides authenticate successfully, the conversation will
  appear as follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- EAP-Request/
                          Identity
  EAP-Response/
  Identity (MyID) ->
                          <- EAP-Request/
                          EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start)
  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS client_hello)->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS server_hello,
                          TLS change_cipher_spec
                          TLS finished)
  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS change_cipher_spec,
   TLS finished) ->
                          <- EAP-Success

2.1.3.  Termination

  If the peer's authentication is unsuccessful, the EAP server SHOULD
  send an EAP-Request packet with EAP-Type=EAP-TLS, encapsulating a TLS
  record containing the appropriate TLS alert message.  The EAP server
  SHOULD send a TLS alert message immediately terminating the
  conversation so as to allow the peer to inform the user or log the
  cause of the failure and possibly allow for a restart of the
  conversation.

  To ensure that the peer receives the TLS alert message, the EAP
  server MUST wait for the peer to reply with an EAP-Response packet.
  The EAP-Response packet sent by the peer MAY encapsulate a TLS
  client_hello handshake message, in which case the EAP server MAY
  allow the EAP-TLS conversation to be restarted, or it MAY contain an
  EAP-Response packet with EAP-Type=EAP-TLS and no data, in which case
  the EAP-Server MUST send an EAP-Failure packet and terminate the
  conversation.  It is up to the EAP server whether to allow restarts,
  and if so, how many times the conversation can be restarted.  An EAP
  Server implementing restart capability SHOULD impose a per-peer limit



Simon, et al.               Standards Track                     [Page 8]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  on the number of restarts, so as to protect against denial-of-service
  attacks.

  If the peer authenticates successfully, the EAP server MUST respond
  with an EAP-Request packet with EAP-Type=EAP-TLS, which includes, in
  the case of a new TLS session, one or more TLS records containing TLS
  change_cipher_spec and finished handshake messages.  The latter
  contains the EAP server's authentication response to the peer.  The
  peer will then verify the finished message in order to authenticate
  the EAP server.

  If EAP server authentication is unsuccessful, the peer SHOULD delete
  the session from its cache, preventing reuse of the sessionId.  The
  peer MAY send an EAP-Response packet of EAP-Type=EAP-TLS containing a
  TLS Alert message identifying the reason for the failed
  authentication.  The peer MAY send a TLS alert message rather than
  immediately terminating the conversation so as to allow the EAP
  server to log the cause of the error for examination by the system
  administrator.

  To ensure that the EAP Server receives the TLS alert message, the
  peer MUST wait for the EAP Server to reply before terminating the
  conversation.  The EAP Server MUST reply with an EAP-Failure packet
  since server authentication failure is a terminal condition.

  If the EAP server authenticates successfully, the peer MUST send an
  EAP-Response packet of EAP-Type=EAP-TLS, and no data.  The EAP Server
  then MUST respond with an EAP-Success message.























Simon, et al.               Standards Track                     [Page 9]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  In the case where the server authenticates to the peer successfully,
  but the peer fails to authenticate to the server, the conversation
  will appear as follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- EAP-Request/
                          Identity
  EAP-Response/
  Identity (MyID) ->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start)
  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS client_hello)->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS server_hello,
                            TLS certificate,
                   [TLS server_key_exchange,]
              TLS certificate_request,
                TLS server_hello_done)

  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS certificate,
   TLS client_key_exchange,
   TLS certificate_verify,
   TLS change_cipher_spec,
   TLS finished) ->

                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS change_cipher_spec,
                          TLS finished)
  EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- EAP-Request
                          EAP-Type=EAP-TLS
                          (TLS Alert message)
  EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- EAP-Failure
                          (User Disconnected)






Simon, et al.               Standards Track                    [Page 10]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  In the case where server authentication is unsuccessful, the
  conversation will appear as follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- EAP-Request/
                          Identity
  EAP-Response/
  Identity (MyID) ->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start)
  EAP-Response/
  EAP-Type=EAP-TLS
   (TLS client_hello)->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS server_hello,
                           TLS certificate,
                 [TLS server_key_exchange,]
                  TLS certificate_request,
                  TLS server_hello_done)
  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS Alert message) ->
                          <- EAP-Failure
                          (User Disconnected)

2.1.4.  Privacy

  EAP-TLS peer and server implementations MAY support privacy.
  Disclosure of the username is avoided by utilizing a privacy Network
  Access Identifier (NAI) [RFC4282] in the EAP-Response/Identity, and
  transmitting the peer certificate within a TLS session providing
  confidentiality.

  In order to avoid disclosing the peer username, an EAP-TLS peer
  configured for privacy MUST negotiate a TLS ciphersuite supporting
  confidentiality and MUST provide a client certificate list containing
  no entries in response to the initial certificate_request from the
  EAP-TLS server.

  An EAP-TLS server supporting privacy MUST NOT treat a certificate
  list containing no entries as a terminal condition; instead, it MUST
  bring up the TLS session and then send a hello_request.  The
  handshake then proceeds normally; the peer sends a client_hello and
  the server replies with a server_hello, certificate,
  server_key_exchange, certificate_request, server_hello_done, etc.



Simon, et al.               Standards Track                    [Page 11]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  For the calculation of exported keying material (see Section 2.3),
  the master_secret derived within the second handshake is used.

  An EAP-TLS peer supporting privacy MUST provide a certificate list
  containing at least one entry in response to the subsequent
  certificate_request sent by the server.  If the EAP-TLS server
  supporting privacy does not receive a client certificate in response
  to the subsequent certificate_request, then it MUST abort the
  session.

  EAP-TLS privacy support is designed to allow EAP-TLS peers that do
  not support privacy to interoperate with EAP-TLS servers supporting
  privacy.  EAP-TLS servers supporting privacy MUST request a client
  certificate, and MUST be able to accept a client certificate offered
  by the EAP-TLS peer, in order to preserve interoperability with EAP-
  TLS peers that do not support privacy.

  However, an EAP-TLS peer configured for privacy typically will not be
  able to successfully authenticate with an EAP-TLS server that does
  not support privacy, since such a server will typically treat the
  refusal to provide a client certificate as a terminal error.  As a
  result, unless authentication failure is considered preferable to
  disclosure of the username, EAP-TLS peers SHOULD only be configured
  for privacy on networks known to support it.

  This is most easily achieved with EAP lower layers that support
  network advertisement, so that the network and appropriate privacy
  configuration can be determined.  In order to determine the privacy
  configuration on link layers (such as IEEE 802 wired networks) that
  do not support network advertisement, it may be desirable to utilize
  information provided in the server certificate (such as the subject
  and subjectAltName fields) or within identity selection hints
  [RFC4284] to determine the appropriate configuration.

  In the case where the peer and server support privacy and mutual
  authentication, the conversation will appear as follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- EAP-Request/
                          Identity
  EAP-Response/
  Identity (Anonymous NAI) ->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start)





Simon, et al.               Standards Track                    [Page 12]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS client_hello)->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS server_hello,
                           TLS certificate,
                   [TLS server_key_exchange,]
                    TLS certificate_request,
                       TLS server_hello_done)
  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS certificate (no cert),
   TLS client_key_exchange,
   TLS change_cipher_spec,
   TLS finished) ->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS change_cipher_spec,
                            finished,
                            hello_request)
  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS client_hello)->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS server_hello,
                            TLS certificate,
                    TLS server_key_exchange,
                    TLS certificate_request,
                       TLS server_hello_done)
  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS certificate,
   TLS client_key_exchange,
   TLS certificate_verify,
   TLS change_cipher_spec,
   TLS finished) ->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS change_cipher_spec,
                           TLS finished)
  EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- EAP-Success






Simon, et al.               Standards Track                    [Page 13]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


2.1.5.  Fragmentation

  A single TLS record may be up to 16384 octets in length, but a TLS
  message may span multiple TLS records, and a TLS certificate message
  may in principle be as long as 16 MB.  The group of EAP-TLS messages
  sent in a single round may thus be larger than the MTU size or the
  maximum Remote Authentication Dail-In User Service (RADIUS) packet
  size of 4096 octets.  As a result, an EAP-TLS implementation MUST
  provide its own support for fragmentation and reassembly.  However,
  in order to ensure interoperability with existing implementations,
  TLS handshake messages SHOULD NOT be fragmented into multiple TLS
  records if they fit within a single TLS record.

  In order to protect against reassembly lockup and denial-of-service
  attacks, it may be desirable for an implementation to set a maximum
  size for one such group of TLS messages.  Since a single certificate
  is rarely longer than a few thousand octets, and no other field is
  likely to be anywhere near as long, a reasonable choice of maximum
  acceptable message length might be 64 KB.

  Since EAP is a simple ACK-NAK protocol, fragmentation support can be
  added in a simple manner.  In EAP, fragments that are lost or damaged
  in transit will be retransmitted, and since sequencing information is
  provided by the Identifier field in EAP, there is no need for a
  fragment offset field as is provided in IPv4.

  EAP-TLS fragmentation support is provided through addition of a flags
  octet within the EAP-Response and EAP-Request packets, as well as a
  TLS Message Length field of four octets.  Flags include the Length
  included (L), More fragments (M), and EAP-TLS Start (S) bits.  The L
  flag is set to indicate the presence of the four-octet TLS Message
  Length field, and MUST be set for the first fragment of a fragmented
  TLS message or set of messages.  The M flag is set on all but the
  last fragment.  The S flag is set only within the EAP-TLS start
  message sent from the EAP server to the peer.  The TLS Message Length
  field is four octets, and provides the total length of the TLS
  message or set of messages that is being fragmented; this simplifies
  buffer allocation.

  When an EAP-TLS peer receives an EAP-Request packet with the M bit
  set, it MUST respond with an EAP-Response with EAP-Type=EAP-TLS and
  no data.  This serves as a fragment ACK.  The EAP server MUST wait
  until it receives the EAP-Response before sending another fragment.
  In order to prevent errors in processing of fragments, the EAP server
  MUST increment the Identifier field for each fragment contained
  within an EAP-Request, and the peer MUST include this Identifier
  value in the fragment ACK contained within the EAP-Response.
  Retransmitted fragments will contain the same Identifier value.



Simon, et al.               Standards Track                    [Page 14]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  Similarly, when the EAP server receives an EAP-Response with the M
  bit set, it MUST respond with an EAP-Request with EAP-Type=EAP-TLS
  and no data.  This serves as a fragment ACK.  The EAP peer MUST wait
  until it receives the EAP-Request before sending another fragment.
  In order to prevent errors in the processing of fragments, the EAP
  server MUST increment the Identifier value for each fragment ACK
  contained within an EAP-Request, and the peer MUST include this
  Identifier value in the subsequent fragment contained within an EAP-
  Response.

  In the case where the EAP-TLS mutual authentication is successful,
  and fragmentation is required, the conversation will appear as
  follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- EAP-Request/
                          Identity
  EAP-Response/
  Identity (MyID) ->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start, S bit set)
  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS client_hello)->
                          <- EAP-Request/
                             EAP-Type=EAP-TLS
                            (TLS server_hello,
                              TLS certificate,
                    [TLS server_key_exchange,]
                      TLS certificate_request,
                        TLS server_hello_done)
                   (Fragment 1: L, M bits set)
  EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- EAP-Request/
                             EAP-Type=EAP-TLS
                          (Fragment 2: M bit set)
  EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (Fragment 3)







Simon, et al.               Standards Track                    [Page 15]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  EAP-Response/
  EAP-Type=EAP-TLS
  (TLS certificate,
   TLS client_key_exchange,
   TLS certificate_verify,
   TLS change_cipher_spec,
   TLS finished)(Fragment 1:
   L, M bits set)->
                           <- EAP-Request/
                          EAP-Type=EAP-TLS
  EAP-Response/
  EAP-Type=EAP-TLS
  (Fragment 2)->
                         <- EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS change_cipher_spec,
                           TLS finished)
  EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- EAP-Success

2.2.  Identity Verification

  As noted in Section 5.1 of [RFC3748]:

     It is RECOMMENDED that the Identity Response be used primarily for
     routing purposes and selecting which EAP method to use.  EAP
     Methods SHOULD include a method-specific mechanism for obtaining
     the identity, so that they do not have to rely on the Identity
     Response.

  As part of the TLS negotiation, the server presents a certificate to
  the peer, and if mutual authentication is requested, the peer
  presents a certificate to the server.  EAP-TLS therefore provides a
  mechanism for determining both the peer identity (Peer-Id in
  [KEYFRAME]) and server identity (Server-Id in [KEYFRAME]).  For
  details, see Section 5.2.

  Since the identity presented in the EAP-Response/Identity need not be
  related to the identity presented in the peer certificate, EAP-TLS
  implementations SHOULD NOT require that they be identical.  However,
  if they are not identical, the identity presented in the EAP-
  Response/Identity is unauthenticated information, and SHOULD NOT be
  used for access control or accounting purposes.







Simon, et al.               Standards Track                    [Page 16]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


2.3.  Key Hierarchy

  Figure 1 illustrates the TLS Key Hierarchy, described in [RFC4346]
  Section 6.3.  The derivation proceeds as follows:

  master_secret = TLS-PRF-48(pre_master_secret, "master secret",
                   client.random || server.random) key_block     =
  TLS-PRF-X(master_secret, "key expansion",
                   server.random || client.random)

  Where:

  TLS-PRF-X =     TLS pseudo-random function defined in [RFC4346],
                  computed to X octets.

  In EAP-TLS, the MSK, EMSK, and Initialization Vector (IV) are derived
  from the TLS master secret via a one-way function.  This ensures that
  the TLS master secret cannot be derived from the MSK, EMSK, or IV
  unless the one-way function (TLS PRF) is broken.  Since the MSK and
  EMSK are derived from the TLS master secret, if the TLS master secret
  is compromised then the MSK and EMSK are also compromised.

  The MSK is divided into two halves, corresponding to the "Peer to
  Authenticator Encryption Key" (Enc-RECV-Key, 32 octets) and
  "Authenticator to Peer Encryption Key" (Enc-SEND-Key, 32 octets).

  The IV is a 64-octet quantity that is a known value; octets 0-31 are
  known as the "Peer to Authenticator IV" or RECV-IV, and octets 32-63
  are known as the "Authenticator to Peer IV", or SEND-IV.






















Simon, et al.               Standards Track                    [Page 17]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


           |                       | pre_master_secret       |
     server|                       |                         | client
     Random|                       V                         | Random
           |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |
           |     |                                     |     |
           +---->|             master_secret           |<----+
           |     |               (TMS)                 |     |
           |     |                                     |     |
           |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |
           |                       |                         |
           V                       V                         V
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                         |
     |                         key_block                       |
     |                   label == "key expansion"              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |         |         |         |         |         |
       | client  | server  | client  | server  | client  | server
       | MAC     | MAC     | write   | write   | IV      | IV
       |         |         |         |         |         |
       V         V         V         V         V         V

                 Figure 1 - TLS [RFC4346] Key Hierarchy

  EAP-TLS derives exported keying material and parameters as follows:

  Key_Material = TLS-PRF-128(master_secret, "client EAP encryption",
                    client.random || server.random)
  MSK          = Key_Material(0,63)
  EMSK         = Key_Material(64,127)
  IV           = TLS-PRF-64("", "client EAP encryption",
                    client.random || server.random)

  Enc-RECV-Key = MSK(0,31) = Peer to Authenticator Encryption Key
                 (MS-MPPE-Recv-Key in [RFC2548]).  Also known as the
                 PMK in [IEEE-802.11].
  Enc-SEND-Key = MSK(32,63) = Authenticator to Peer Encryption Key
                 (MS-MPPE-Send-Key in [RFC2548])
  RECV-IV      = IV(0,31) = Peer to Authenticator Initialization Vector
  SEND-IV      = IV(32,63) = Authenticator to Peer Initialization
                             Vector
  Session-Id   = 0x0D || client.random || server.random









Simon, et al.               Standards Track                    [Page 18]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  Where:

  Key_Material(W,Z) = Octets W through Z inclusive of the key material.
  IV(W,Z)           = Octets W through Z inclusive of the IV.
  MSK(W,Z)          = Octets W through Z inclusive of the MSK.
  EMSK(W,Z)         = Octets W through Z inclusive of the EMSK.
  TLS-PRF-X         = TLS PRF function computed to X octets.
  client.random     = Nonce generated by the TLS client.
  server.random     = Nonce generated by the TLS server.

        |                       | pre_master_secret       |
  server|                       |                         | client
  Random|                       V                         | Random
        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |
        |     |                                     |     |
        +---->|             master_secret           |<----+
        |     |                                     |     |
        |     |                                     |     |
        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |
        |                       |                         |
        V                       V                         V
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                         |
  |                        MSK, EMSK                        |
  |               label == "client EAP encryption"          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             |             |
    | MSK(0,31)   | MSK(32,63)  | EMSK(0,63)
    |             |             |
    |             |             |
    V             V             V

                    Figure 2 - EAP-TLS Key Hierarchy

  The use of these keys is specific to the lower layer, as described in
  Section 2.1 of [KEYFRAME].

2.4.  Ciphersuite and Compression Negotiation

  EAP-TLS implementations MUST support TLS v1.0.

  EAP-TLS implementations need not necessarily support all TLS
  ciphersuites listed in [RFC4346].  Not all TLS ciphersuites are
  supported by available TLS tool kits, and licenses may be required in
  some cases.






Simon, et al.               Standards Track                    [Page 19]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  To ensure interoperability, EAP-TLS peers and servers MUST support
  the TLS [RFC4346] mandatory-to-implement ciphersuite:

     TLS_RSA_WITH_3DES_EDE_CBC_SHA

  EAP-TLS peers and servers SHOULD also support and be able to
  negotiate the following TLS ciphersuites:

     TLS_RSA_WITH_RC4_128_SHA [RFC4346]
     TLS_RSA_WITH_AES_128_CBC_SHA [RFC3268]

  In addition, EAP-TLS servers SHOULD support and be able to negotiate
  the following TLS ciphersuite:

     TLS_RSA_WITH_RC4_128_MD5 [RFC4346]

  Since TLS supports ciphersuite negotiation, peers completing the TLS
  negotiation will also have selected a ciphersuite, which includes
  encryption and hashing methods.  Since the ciphersuite negotiated
  within EAP-TLS applies only to the EAP conversation, TLS ciphersuite
  negotiation MUST NOT be used to negotiate the ciphersuites used to
  secure data.

  TLS also supports compression as well as ciphersuite negotiation.
  However, during the EAP-TLS conversation the EAP peer and server MUST
  NOT request or negotiate compression.

3.  Detailed Description of the EAP-TLS Protocol

3.1.  EAP-TLS Request Packet

  A summary of the EAP-TLS Request packet format is shown below.  The
  fields are transmitted from left to right.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |   Identifier  |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Flags     |      TLS Message Length
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     TLS Message Length        |       TLS Data...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Code

     1




Simon, et al.               Standards Track                    [Page 20]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  Identifier

     The Identifier field is one octet and aids in matching responses
     with requests.  The Identifier field MUST be changed on each
     Request packet.

  Length

     The Length field is two octets and indicates the length of the EAP
     packet including the Code, Identifier, Length, Type, and Data
     fields.  Octets outside the range of the Length field should be
     treated as Data Link Layer padding and MUST be ignored on
     reception.

  Type

     13 -- EAP-TLS

  Flags

     0 1 2 3 4 5 6 7 8
     +-+-+-+-+-+-+-+-+
     |L M S R R R R R|
     +-+-+-+-+-+-+-+-+

     L = Length included
     M = More fragments
     S = EAP-TLS start
     R = Reserved

     The L bit (length included) is set to indicate the presence of the
     four-octet TLS Message Length field, and MUST be set for the first
     fragment of a fragmented TLS message or set of messages.  The M
     bit (more fragments) is set on all but the last fragment.  The S
     bit (EAP-TLS start) is set in an EAP-TLS Start message.  This
     differentiates the EAP-TLS Start message from a fragment
     acknowledgment.  Implementations of this specification MUST set
     the reserved bits to zero, and MUST ignore them on reception.

  TLS Message Length

     The TLS Message Length field is four octets, and is present only
     if the L bit is set.  This field provides the total length of the
     TLS message or set of messages that is being fragmented.







Simon, et al.               Standards Track                    [Page 21]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  TLS data

     The TLS data consists of the encapsulated TLS packet in TLS record
     format.

3.2.  EAP-TLS Response Packet

     A summary of the EAP-TLS Response packet format is shown below.
     The fields are transmitted from left to right.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Code      |   Identifier  |            Length             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Flags     |      TLS Message Length
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     TLS Message Length        |       TLS Data...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Code

     2

  Identifier

     The Identifier field is one octet and MUST match the Identifier
     field from the corresponding request.

  Length

     The Length field is two octets and indicates the length of the EAP
     packet including the Code, Identifier, Length, Type, and Data
     fields.  Octets outside the range of the Length field should be
     treated as Data Link Layer padding and MUST be ignored on
     reception.

  Type

     13 -- EAP-TLS











Simon, et al.               Standards Track                    [Page 22]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  Flags

     0 1 2 3 4 5 6 7 8
     +-+-+-+-+-+-+-+-+
     |L M R R R R R R|
     +-+-+-+-+-+-+-+-+

     L = Length included
     M = More fragments
     R = Reserved

     The L bit (length included) is set to indicate the presence of the
     four-octet TLS Message Length field, and MUST be set for the first
     fragment of a fragmented TLS message or set of messages.  The M
     bit (more fragments) is set on all but the last fragment.
     Implementations of this specification MUST set the reserved bits
     to zero, and MUST ignore them on reception.

  TLS Message Length

     The TLS Message Length field is four octets, and is present only
     if the L bit is set.  This field provides the total length of the
     TLS message or set of messages that is being fragmented.

  TLS data

     The TLS data consists of the encapsulated TLS packet in TLS record
     format.

4.  IANA Considerations

  IANA has allocated EAP Type 13 for EAP-TLS.  The allocation has been
  updated to reference this document.


















Simon, et al.               Standards Track                    [Page 23]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


5.  Security Considerations

5.1.  Security Claims

  EAP security claims are defined in Section 7.2.1 of [RFC3748].  The
  security claims for EAP-TLS are as follows:

  Auth. mechanism:           Certificates
  Ciphersuite negotiation:   Yes [4]
  Mutual authentication:     Yes [1]
  Integrity protection:      Yes [1]
  Replay protection:         Yes [1]
  Confidentiality:           Yes [2]
  Key derivation:            Yes
  Key strength:              [3]
  Dictionary attack prot.:   Yes
  Fast reconnect:            Yes
  Crypt. binding:            N/A
  Session independence:      Yes [1]
  Fragmentation:             Yes
  Channel binding:           No

  Notes
  -----

  [1] A formal proof of the security of EAP-TLS when used with
  [IEEE-802.11] is provided in [He].  This proof relies on the
  assumption that the private key pairs used by the EAP peer and server
  are not shared with other parties or applications.  For example, a
  backend authentication server supporting EAP-TLS SHOULD NOT utilize
  the same certificate with https.

  [2] Privacy is an optional feature described in Section 2.1.4.

  [3] Section 5 of BCP 86 [RFC3766] offers advice on the required RSA
  or Diffie-Hellman (DH) module and Digital Signature Algorithm (DSA)
  subgroup size in bits, for a given level of attack resistance in
  bits.  For example, a 2048-bit RSA key is recommended to provide
  128-bit equivalent key strength.  The National Institute of Standards
  and Technology (NIST) also offers advice on appropriate key sizes in
  [SP800-57].

  [4] EAP-TLS inherits the secure ciphersuite negotiation features of
  TLS, including key derivation function negotiation when utilized with
  TLS v1.2 [RFC4346bis].






Simon, et al.               Standards Track                    [Page 24]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


5.2.  Peer and Server Identities

  The EAP-TLS peer name (Peer-Id) represents the identity to be used
  for access control and accounting purposes.  The Server-Id represents
  the identity of the EAP server.  Together the Peer-Id and Server-Id
  name the entities involved in deriving the MSK/EMSK.

  In EAP-TLS, the Peer-Id and Server-Id are determined from the subject
  or subjectAltName fields in the peer and server certificates.  For
  details, see Section 4.1.2.6 of [RFC3280].  Where the subjectAltName
  field is present in the peer or server certificate, the Peer-Id or
  Server-Id MUST be set to the contents of the subjectAltName.  If
  subject naming information is present only in the subjectAltName
  extension of a peer or server certificate, then the subject field
  MUST be an empty sequence and the subjectAltName extension MUST be
  critical.

  Where the peer identity represents a host, a subjectAltName of type
  dnsName SHOULD be present in the peer certificate.  Where the peer
  identity represents a user and not a resource, a subjectAltName of
  type rfc822Name SHOULD be used, conforming to the grammar for the
  Network Access Identifier (NAI) defined in Section 2.1 of [RFC4282].
  If a dnsName or rfc822Name are not available, other field types (for
  example, a subjectAltName of type ipAddress or
  uniformResourceIdentifier) MAY be used.

  A server identity will typically represent a host, not a user or a
  resource.  As a result, a subjectAltName of type dnsName SHOULD be
  present in the server certificate.  If a dnsName is not available
  other field types (for example, a subjectAltName of type ipAddress or
  uniformResourceIdentifier) MAY be used.

  Conforming implementations generating new certificates with Network
  Access Identifiers (NAIs) MUST use the rfc822Name in the subject
  alternative name field to describe such identities.  The use of the
  subject name field to contain an emailAddress Relative Distinguished
  Name (RDN) is deprecated, and MUST NOT be used.  The subject name
  field MAY contain other RDNs for representing the subject's identity.

  Where it is non-empty, the subject name field MUST contain an X.500
  distinguished name (DN).  If subject naming information is present
  only in the subject name field of a peer certificate and the peer
  identity represents a host or device, the subject name field SHOULD
  contain a CommonName (CN) RDN or serialNumber RDN.  If subject naming
  information is present only in the subject name field of a server
  certificate, then the subject name field SHOULD contain a CN RDN or
  serialNumber RDN.




Simon, et al.               Standards Track                    [Page 25]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  It is possible for more than one subjectAltName field to be present
  in a peer or server certificate in addition to an empty or non-empty
  subject distinguished name.  EAP-TLS implementations supporting
  export of the Peer-Id and Server-Id SHOULD export all the
  subjectAltName fields within Peer-Ids or Server-Ids, and SHOULD also
  export a non-empty subject distinguished name field within the Peer-
  Ids or Server-Ids.  All of the exported Peer-Ids and Server-Ids are
  considered valid.

  EAP-TLS implementations supporting export of the Peer-Id and Server-
  Id SHOULD export Peer-Ids and Server-Ids in the same order in which
  they appear within the certificate.  Such canonical ordering would
  aid in comparison operations and would enable using those identifiers
  for key derivation if that is deemed useful.  However, the ordering
  of fields within the certificate SHOULD NOT be used for access
  control.

5.3.  Certificate Validation

  Since the EAP-TLS server is typically connected to the Internet, it
  SHOULD support validating the peer certificate using RFC 3280
  [RFC3280] compliant path validation, including the ability to
  retrieve intermediate certificates that may be necessary to validate
  the peer certificate.  For details, see Section 4.2.2.1 of [RFC3280].

  Where the EAP-TLS server is unable to retrieve intermediate
  certificates, either it will need to be pre-configured with the
  necessary intermediate certificates to complete path validation or it
  will rely on the EAP-TLS peer to provide this information as part of
  the TLS handshake (see Section 7.4.6 of [RFC4346]).

  In contrast to the EAP-TLS server, the EAP-TLS peer may not have
  Internet connectivity.  Therefore, the EAP-TLS server SHOULD provide
  its entire certificate chain minus the root to facilitate certificate
  validation by the peer.  The EAP-TLS peer SHOULD support validating
  the server certificate using RFC 3280 [RFC3280] compliant path
  validation.

  Once a TLS session is established, EAP-TLS peer and server
  implementations MUST validate that the identities represented in the
  certificate are appropriate and authorized for use with EAP-TLS.  The
  authorization process makes use of the contents of the certificates
  as well as other contextual information.  While authorization
  requirements will vary from deployment to deployment, it is
  RECOMMENDED that implementations be able to authorize based on the
  EAP-TLS Peer-Id and Server-Id determined as described in Section 5.2.





Simon, et al.               Standards Track                    [Page 26]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  In the case of the EAP-TLS peer, this involves ensuring that the
  certificate presented by the EAP-TLS server was intended to be used
  as a server certificate.  Implementations SHOULD use the Extended Key
  Usage (see Section 4.2.1.13 of [RFC3280]) extension and ensure that
  at least one of the following is true:

  1) The certificate issuer included no Extended Key Usage identifiers
     in the certificate.
  2) The issuer included the anyExtendedKeyUsage identifier in the
     certificate (see Section 4.2.1.13 of [RFC3280]).
  3) The issuer included the id-kp-serverAuth identifier in the
     certificate (see Section 4.2.1.13 [RFC3280]).

  When performing this comparison, implementations MUST follow the
  validation rules specified in Section 3.1 of [RFC2818].  In the case
  of the server, this involves ensuring the certificate presented by
  the EAP-TLS peer was intended to be used as a client certificate.
  Implementations SHOULD use the Extended Key Usage (see Section
  4.2.1.13 [RFC3280]) extension and ensure that at least one of the
  following is true:

  1) The certificate issuer included no Extended Key Usage identifiers
     in the certificate.
  2) The issuer included the anyExtendedKeyUsage identifier in the
     certificate (see Section 4.2.1.13 of [RFC3280]).
  3) The issuer included the id-kp-clientAuth identifier in the
     certificate (see Section 4.2.1.13 of [RFC3280]).

5.4.  Certificate Revocation

  Certificates are long-lived assertions of identity.  Therefore, it is
  important for EAP-TLS implementations to be capable of checking
  whether these assertions have been revoked.

  EAP-TLS peer and server implementations MUST support the use of
  Certificate Revocation Lists (CRLs); for details, see Section 3.3 of
  [RFC3280].  EAP-TLS peer and server implementations SHOULD also
  support the Online Certificate Status Protocol (OCSP), described in
  "X.509 Internet Public Key Infrastructure Online Certificate Status
  Protocol - OCSP" [RFC2560].  OCSP messages are typically much smaller
  than CRLs, which can shorten connection times especially in
  bandwidth-constrained environments.  While EAP-TLS servers are
  typically connected to the Internet during the EAP conversation, an
  EAP-TLS peer may not have Internet connectivity until authentication
  completes.






Simon, et al.               Standards Track                    [Page 27]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  In the case where the peer is initiating a voluntary Layer 2 tunnel
  using PPTP [RFC2637] or L2TP [RFC2661], the peer will typically
  already have a PPP interface and Internet connectivity established at
  the time of tunnel initiation.

  However, in the case where the EAP-TLS peer is attempting to obtain
  network access, it will not have network connectivity and is
  therefore not capable of checking for certificate revocation until
  after authentication completes and network connectivity is available.
  For this reason, EAP-TLS peers and servers SHOULD implement
  Certificate Status Request messages, as described in "Transport Layer
  Security (TLS) Extensions", Section 3.6 of [RFC4366].  To enable
  revocation checking in situations where servers do not support
  Certificate Status Request messages and network connectivity is not
  available prior to authentication completion, peer implementations
  MUST also support checking for certificate revocation after
  authentication completes and network connectivity is available, and
  they SHOULD utilize this capability by default.

5.5.  Packet Modification Attacks

  The integrity protection of EAP-TLS packets does not extend to the
  EAP header fields (Code, Identifier, Length) or the Type or Flags
  fields.  As a result, these fields can be modified by an attacker.

  In most cases, modification of the Code or Identifier fields will
  only result in a denial-of-service attack.  However, an attacker can
  add additional data to an EAP-TLS packet so as to cause it to be
  longer than implied by the Length field.  EAP peers, authenticators,
  or servers that do not check for this could be vulnerable to a buffer
  overrun.

  It is also possible for an attacker to modify the Type or Flags
  fields.  By modifying the Type field, an attacker could cause one
  TLS-based EAP method to be negotiated instead of another.  For
  example, the EAP-TLS Type field (13) could be changed to indicate
  another TLS-based EAP method.  Unless the alternative TLS-based EAP
  method utilizes a different key derivation formula, it is possible
  that an EAP method conversation altered by a man-in-the-middle could
  run all the way to completion without detection.  Unless the
  ciphersuite selection policies are identical for all TLS-based EAP
  methods utilizing the same key derivation formula, it may be possible
  for an attacker to mount a successful downgrade attack, causing the
  peer to utilize an inferior ciphersuite or TLS-based EAP method.







Simon, et al.               Standards Track                    [Page 28]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


6.  References

6.1.  Normative References

  [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2560]      Myers, M., Ankney, R., Malpani, A., Galperin, S., and
                 C. Adams, "X.509 Internet Public Key Infrastructure
                 Online Certificate Status Protocol - OCSP", RFC 2560,
                 June 1999.

  [RFC2818]      Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

  [RFC3268]      Chown, P., "Advanced Encryption Standard (AES)
                 Ciphersuites for Transport Layer Security (TLS)", RFC
                 3268, June 2002.

  [RFC3280]      Housley, R., Polk, W., Ford, W., and D. Solo,
                 "Internet X.509 Public Key Infrastructure Certificate
                 and Certificate Revocation List (CRL) Profile", RFC
                 3280, April 2002.

  [RFC3748]      Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and
                 H. Levkowetz, Ed., "Extensible Authentication Protocol
                 (EAP)", RFC 3748, June 2004.

  [RFC4282]      Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
                 Network Access Identifier", RFC 4282, December 2005.

  [RFC4346]      Dierks, T. and E. Rescorla, "The Transport Layer
                 Security (TLS) Protocol Version 1.1", RFC 4346, April
                 2006.

  [RFC4366]      Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen,
                 J., and T. Wright, "Transport Layer Security (TLS)
                 Extensions", RFC 4366, April 2006.

6.2.  Informative References

  [IEEE-802.1X]  Institute of Electrical and Electronics Engineers,
                 "Local and Metropolitan Area Networks: Port-Based
                 Network Access Control", IEEE Standard 802.1X-2004,
                 December 2004.







Simon, et al.               Standards Track                    [Page 29]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  [IEEE-802.11]  Information technology - Telecommunications and
                 information exchange between systems - Local and
                 metropolitan area networks - Specific Requirements
                 Part 11:  Wireless LAN Medium Access Control (MAC) and
                 Physical Layer (PHY) Specifications, IEEE Std.
                 802.11-2007, 2007.

  [IEEE-802.16e] Institute of Electrical and Electronics Engineers,
                 "IEEE Standard for Local and Metropolitan Area
                 Networks: Part 16: Air Interface for Fixed and Mobile
                 Broadband Wireless Access Systems: Amendment for
                 Physical and Medium Access Control Layers for Combined
                 Fixed and Mobile Operations in Licensed Bands", IEEE
                 802.16e, August 2005.

  [He]           He, C., Sundararajan, M., Datta, A., Derek, A. and J.
                 Mitchell, "A Modular Correctness Proof of IEEE 802.11i
                 and TLS", CCS '05, November 7-11, 2005, Alexandria,
                 Virginia, USA

  [KEYFRAME]     Aboba, B., Simon, D. and P. Eronen, "Extensible
                 Authentication Protocol (EAP) Key Management
                 Framework", Work in Progress, November 2007.

  [RFC1661]      Simpson, W., Ed., "The Point-to-Point Protocol (PPP)",
                 STD 51, RFC 1661, July 1994.

  [RFC2548]      Zorn, G., "Microsoft Vendor-specific RADIUS
                 Attributes", RFC 2548, March 1999.

  [RFC2637]      Hamzeh, K., Pall, G., Verthein, W., Taarud, J.,
                 Little, W., and G. Zorn, "Point-to-Point Tunneling
                 Protocol (PPTP)", RFC 2637, July 1999.

  [RFC2661]      Townsley, W., Valencia, A., Rubens, A., Pall, G.,
                 Zorn, G., and B. Palter, "Layer Two Tunneling Protocol
                 "L2TP"", RFC 2661, August 1999.

  [RFC2716]      Aboba, B. and D. Simon, "PPP EAP TLS Authentication
                 Protocol", RFC 2716, October 1999.

  [RFC3766]      Orman, H. and P. Hoffman, "Determining Strengths For
                 Public Keys Used For Exchanging Symmetric Keys", BCP
                 86, RFC 3766, April 2004.

  [RFC4017]      Stanley, D., Walker, J., and B. Aboba, "Extensible
                 Authentication Protocol (EAP) Method Requirements for
                 Wireless LANs", RFC 4017, March 2005.



Simon, et al.               Standards Track                    [Page 30]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  [RFC4284]      Adrangi, F., Lortz, V., Bari, F., and P. Eronen,
                 "Identity Selection Hints for the Extensible
                 Authentication Protocol (EAP)", RFC 4284, January
                 2006.

  [SP800-57]     National Institute of Standards and Technology,
                 "Recommendation for Key Management", Special
                 Publication 800-57, May 2006.

  [RFC4346bis]   Dierks, T. and E. Rescorla, "The TLS Protocol Version
                 1.2", Work in Progress, February 2008.

  [UNAUTH]       Schulzrinne. H., McCann, S., Bajko, G. and H.
                 Tschofenig, "Extensions to the Emergency Services
                 Architecture for dealing with Unauthenticated and
                 Unauthorized Devices", Work in Progress, November
                 2007.

Acknowledgments

  Thanks to Terence Spies, Mudit Goel, Anthony Leibovitz, and Narendra
  Gidwani of Microsoft, Glen Zorn of NetCube, Joe Salowey of Cisco, and
  Pasi Eronen of Nokia for useful discussions of this problem space.




























Simon, et al.               Standards Track                    [Page 31]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


Appendix A -- Changes from RFC 2716

  This appendix lists the major changes between [RFC2716] and this
  document.  Minor changes, including style, grammar, spelling, and
  editorial changes, are not mentioned here.

  o  As EAP is now in use with a variety of lower layers, not just PPP
     for which it was first designed, mention of PPP is restricted to
     situations relating to PPP-specific behavior and reference is made
     to other lower layers such as IEEE 802.11, IEEE 802.16, etc.

  o  The document now cites TLS v1.1 as a normative reference (Sections
     1 and 6.1).

  o  The terminology section has been updated to reflect definitions
     from [RFC3748] (Section 1.2), and the EAP Key Management Framework
     [KEYFRAME] (Section 1.2).

  o  Use for peer unauthenticated access is clarified (Section 2.1.1).

  o  Privacy is supported as an optional feature (Section 2.1.4).

  o  It is no longer recommended that the identity presented in the
     EAP-Response/Identity be compared to the identity provided in the
     peer certificate (Section 2.2).

  o  The EAP-TLS key hierarchy is defined, using terminology from
     [RFC3748].  This includes formulas for the computation of TEKs as
     well as the MSK, EMSK, IV, and Session-Id (Section 2.3).

  o  Mandatory and recommended TLS ciphersuites are provided.  The use
     of TLS ciphersuite negotiation for determining the lower layer
     ciphersuite is prohibited (Section 2.4).

  o  The Start bit is not set within an EAP-Response packet (Section
     3.2).

  o  A section on security claims has been added and advice on key
     strength is provided (Section 5.1).

  o  The Peer-Id and Server-Id are defined (Section 5.2), and
     requirements for certificate validation (Section 5.3) and
     revocation (Section 5.4) are provided.

  o  Packet modification attacks are described (Section 5.5).






Simon, et al.               Standards Track                    [Page 32]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


  o  The examples have been updated to reflect typical messages sent in
     the described scenarios.  For example, where mutual authentication
     is performed, the EAP-TLS server is shown to request a client
     certificate and the peer is shown to provide a certificate_verify
     message.  A privacy example is provided, and two faulty examples
     of session resume failure were removed.

Authors' Addresses

  Dan Simon
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA 98052-6399

  Phone: +1 425 882 8080
  Fax:   +1 425 936 7329
  EMail: [email protected]


  Bernard Aboba
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA 98052-6399

  Phone: +1 425 706 6605
  Fax:   +1 425 936 7329
  EMail: [email protected]


  Ryan Hurst
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA 98052-6399

  Phone: +1 425 882 8080
  Fax:   +1 425 936 7329
  EMail: [email protected]














Simon, et al.               Standards Track                    [Page 33]

RFC 5216            EAP-TLS Authentication Protocol           March 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Simon, et al.               Standards Track                    [Page 34]