Network Working Group                                        J. Laganier
Request for Comments: 5204                              DoCoMo Euro-Labs
Category: Experimental                                         L. Eggert
                                                                  Nokia
                                                             April 2008


          Host Identity Protocol (HIP) Rendezvous Extension

Status of This Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Abstract

  This document defines a rendezvous extension for the Host Identity
  Protocol (HIP).  The rendezvous extension extends HIP and the HIP
  registration extension for initiating communication between HIP nodes
  via HIP rendezvous servers.  Rendezvous servers improve reachability
  and operation when HIP nodes are multi-homed or mobile.




























Laganier & Eggert             Experimental                      [Page 1]

RFC 5204                HIP Rendezvous Extension              April 2008


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  3
  3.  Overview of Rendezvous Server Operation  . . . . . . . . . . .  4
    3.1.  Diagram Notation . . . . . . . . . . . . . . . . . . . . .  5
    3.2.  Rendezvous Client Registration . . . . . . . . . . . . . .  6
    3.3.  Relaying the Base Exchange . . . . . . . . . . . . . . . .  6
  4.  Rendezvous Server Extensions . . . . . . . . . . . . . . . . .  7
    4.1.  RENDEZVOUS Registration Type . . . . . . . . . . . . . . .  7
    4.2.  Parameter Formats and Processing . . . . . . . . . . . . .  8
      4.2.1.  RVS_HMAC Parameter . . . . . . . . . . . . . . . . . .  8
      4.2.2.  FROM Parameter . . . . . . . . . . . . . . . . . . . .  9
      4.2.3.  VIA_RVS Parameter  . . . . . . . . . . . . . . . . . . 10
    4.3.  Modified Packets Processing  . . . . . . . . . . . . . . . 10
      4.3.1.  Processing Outgoing I1 Packets . . . . . . . . . . . . 10
      4.3.2.  Processing Incoming I1 Packets . . . . . . . . . . . . 11
      4.3.3.  Processing Outgoing R1 Packets . . . . . . . . . . . . 11
      4.3.4.  Processing Incoming R1 Packets . . . . . . . . . . . . 11
  5.  Security Considerations  . . . . . . . . . . . . . . . . . . . 12
  6.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 12
  7.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 13
  8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 13
    8.1.  Normative References . . . . . . . . . . . . . . . . . . . 13
    8.2.  Informative References . . . . . . . . . . . . . . . . . . 14


























Laganier & Eggert             Experimental                      [Page 2]

RFC 5204                HIP Rendezvous Extension              April 2008


1.  Introduction

  The Host Identity Protocol (HIP) Architecture [RFC4423] introduces
  the rendezvous mechanism to help a HIP node to contact a frequently
  moving HIP node.  The rendezvous mechanism involves a third party,
  the rendezvous server (RVS), which serves as an initial contact point
  ("rendezvous point") for its clients.  The clients of an RVS are HIP
  nodes that use the HIP Registration Extension [RFC5203] to register
  their HIT->IP address mappings with the RVS.  After this
  registration, other HIP nodes can initiate a base exchange using the
  IP address of the RVS instead of the current IP address of the node
  they attempt to contact.  Essentially, the clients of an RVS become
  reachable at the RVS's IP address.  Peers can initiate a HIP base
  exchange with the IP address of the RVS, which will relay this
  initial communication such that the base exchange may successfully
  complete.

2.  Terminology

  This section defines terms used throughout the remainder of this
  specification.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

  In addition to the terminology defined in the HIP specification
  [RFC5201] and the HIP Registration Extension [RFC5203], this document
  defines and uses the following terms:

  Rendezvous Service
     A HIP service provided by a rendezvous server to its rendezvous
     clients.  The rendezvous server offers to relay some of the
     arriving base exchange packets between the initiator and
     responder.

  Rendezvous Server (RVS)
     A HIP registrar providing rendezvous service.

  Rendezvous Client
     A HIP requester that has registered for rendezvous service at a
     rendezvous server.

  Rendezvous Registration
     A HIP registration for rendezvous service, established between a
     rendezvous server and a rendezvous client.





Laganier & Eggert             Experimental                      [Page 3]

RFC 5204                HIP Rendezvous Extension              April 2008


3.  Overview of Rendezvous Server Operation

  Figure 1 shows a simple HIP base exchange without a rendezvous
  server, in which the initiator initiates the exchange directly with
  the responder by sending an I1 packet to the responder's IP address,
  as per the HIP specification [RFC5201].

                      +-----+                +-----+
                      |     |-------I1------>|     |
                      |  I  |<------R1-------|  R  |
                      |     |-------I2------>|     |
                      |     |<------R2-------|     |
                      +-----+                +-----+

         Figure 1: HIP base exchange without rendezvous server.

  The End-Host Mobility and Multihoming with the Host Identity Protocol
  specification [RFC5206] allows a HIP node to notify its peers about
  changes in its set of IP addresses.  This specification presumes
  initial reachability of the two nodes with respect to each other.

  However, such a HIP node MAY also want to be reachable to other
  future correspondent peers that are unaware of its location change.
  The HIP Architecture [RFC4423] introduces rendezvous servers with
  whom a HIP node MAY register its host identity tags (HITs) and
  current IP addresses.  An RVS relays HIP packets arriving for these
  HITs to the node's registered IP addresses.  When a HIP node has
  registered with an RVS, it SHOULD record the IP address of its RVS in
  its DNS record, using the HIP DNS resource record type defined in the
  HIP DNS Extension [RFC5205].

                                  +-----+
                         +--I1--->| RVS |---I1--+
                         |        +-----+       |
                         |                      v
                      +-----+                +-----+
                      |     |<------R1-------|     |
                      |  I  |-------I2------>|  R  |
                      |     |<------R2-------|     |
                      +-----+                +-----+

          Figure 2: HIP base exchange with a rendezvous server.

  Figure 2 shows a HIP base exchange involving a rendezvous server.  It
  is assumed that HIP node R previously registered its HITs and current
  IP addresses with the RVS, using the HIP Registration Extension
  [RFC5203].  When the initiator I tries to establish contact with the




Laganier & Eggert             Experimental                      [Page 4]

RFC 5204                HIP Rendezvous Extension              April 2008


  responder R, it must send the I1 of the base exchange either to one
  of R's IP addresses (if known via DNS or other means) or to one of
  R's rendezvous servers.  Here, I obtains the IP address of R's
  rendezvous server from R's DNS record and then sends the I1 packet of
  the HIP base exchange to RVS.  RVS, noticing that the HIT contained
  in the arriving I1 packet is not one of its own, MUST check its
  current registrations to determine if it needs to relay the packets.
  Here, it determines that the HIT belongs to R and then relays the I1
  packet to the registered IP address.  R then completes the base
  exchange without further assistance from RVS by sending an R1
  directly to the I's IP address, as obtained from the I1 packet.  In
  this specification, the client of the RVS is always the responder.
  However, there might be reasons to allow a client to initiate a base
  exchange through its own RVS, like NAT and firewall traversal.  This
  specification does not address such scenarios, which should be
  specified in other documents.

3.1.  Diagram Notation

 Notation       Significance
 --------       ------------

 I, R           I and R are the respective source and destination IP
                addresses in the IP header.

 HIT-I, HIT-R   HIT-I and HIT-R are the initiator's and the
                responder's HITs in the packet, respectively.

 REG_REQ        A REG_REQUEST parameter is present in the HIP header.

 REG_RES        A REG_RESPONSE parameter is present in the HIP header.

 FROM:I         A FROM parameter containing the IP address I is
                present in the HIP header.

 RVS_HMAC       An RVS_HMAC parameter containing an HMAC keyed with the
                appropriate registration key is present in the HIP
                header.

 VIA:RVS        A VIA_RVS parameter containing the IP address RVS of a
                rendezvous server is present in the HIP header.










Laganier & Eggert             Experimental                      [Page 5]

RFC 5204                HIP Rendezvous Extension              April 2008


3.2.  Rendezvous Client Registration

  Before a rendezvous server starts to relay HIP packets to a
  rendezvous client, the rendezvous client needs to register with it to
  receive rendezvous service by using the HIP Registration Extension
  [RFC5203] as illustrated in the following schema:

                +-----+                            +-----+
                |     |            I1              |     |
                |     |--------------------------->|     |
                |     |<---------------------------|     |
                |  I  |         R1(REG_INFO)       | RVS |
                |     |         I2(REG_REQ)        |     |
                |     |--------------------------->|     |
                |     |<---------------------------|     |
                |     |         R2(REG_RES)        |     |
                +-----+                            +-----+

         Rendezvous client registering with a rendezvous server.

3.3.  Relaying the Base Exchange

  If a HIP node and one of its rendezvous servers have a rendezvous
  registration, the rendezvous servers relay inbound I1 packets (that
  contain one of the client's HITs) by rewriting the IP header.  They
  replace the destination IP address of the I1 packet with one of the
  IP addresses of the owner of the HIT, i.e., the rendezvous client.
  They MUST also recompute the IP checksum accordingly.

  Because of egress filtering on the path from the RVS to the client
  [RFC2827][RFC3013], a HIP rendezvous server SHOULD replace the source
  IP address, i.e., the IP address of I, with one of its own IP
  addresses.  The replacement IP address SHOULD be chosen according to
  relevant IPv4 and IPv6 specifications [RFC1122][RFC3484].  Because
  this replacement conceals the initiator's IP address, the RVS MUST
  append a FROM parameter containing the original source IP address of
  the packet.  This FROM parameter MUST be integrity protected by an
  RVS_HMAC keyed with the corresponding rendezvous registration
  integrity key [RFC5203].












Laganier & Eggert             Experimental                      [Page 6]

RFC 5204                HIP Rendezvous Extension              April 2008


                                              I1(RVS, R, HIT-I, HIT-R
        I1(I, RVS, HIT-I, HIT-R) +---------+     FROM:I, RVS_HMAC)
        +----------------------->|         |--------------------+
        |                        |   RVS   |                    |
        |                        |         |                    |
        |                        +---------+                    |
        |                                                       V
       +-----+        R1(R, I, HIT-R, HIT-I, VIA:RVS)       +-----+
       |     |<---------------------------------------------|     |
       |     |                                              |     |
       |  I  |            I2(I, R, HIT-I, HIT-R)            |  R  |
       |     |--------------------------------------------->|     |
       |     |<---------------------------------------------|     |
       +-----+             R2(R, I, HIT-R, HIT-I)           +-----+

                Rendezvous server rewriting IP addresses.

  This modification of HIP packets at a rendezvous server can be
  problematic because the HIP protocol uses integrity checks.  Because
  the I1 does not include HMAC or SIGNATURE parameters, these two end-
  to-end integrity checks are unaffected by the operation of rendezvous
  servers.

  The RVS SHOULD verify the checksum field of an I1 packet before doing
  any modifications.  After modification, it MUST recompute the
  checksum field using the updated HIP header, which possibly included
  new FROM and RVS_HMAC parameters, and a pseudo-header containing the
  updated source and destination IP addresses.  This enables the
  responder to validate the checksum of the I1 packet "as is", without
  having to parse any FROM parameters.

4.  Rendezvous Server Extensions

  This section describes extensions to the HIP Registration Extension
  [RFC5203], allowing a HIP node to register with a rendezvous server
  for rendezvous service and notify the RVS aware of changes to its
  current location.  It also describes an extension to the HIP
  specification [RFC5201] itself, allowing establishment of HIP
  associations via one or more HIP rendezvous server(s).

4.1.  RENDEZVOUS Registration Type

  This specification defines an additional registration for the HIP
  Registration Extension [RFC5203] that allows registering with a
  rendezvous server for rendezvous service.






Laganier & Eggert             Experimental                      [Page 7]

RFC 5204                HIP Rendezvous Extension              April 2008


  Number   Registration Type
  ------   -----------------
  1        RENDEZVOUS

4.2.  Parameter Formats and Processing

4.2.1.  RVS_HMAC Parameter

  The RVS_HMAC is a non-critical parameter whose only difference with
  the HMAC parameter defined in the HIP specification [RFC5201] is its
  "type" code.  This change causes it to be located after the FROM
  parameter (as opposed to the HMAC):

Type        65500
Length      Variable.  Length in octets, excluding Type, Length, and
            Padding.
HMAC        HMAC computed over the HIP packet, excluding the
            RVS_HMAC parameter and any following parameters.  The
            HMAC is keyed with the appropriate HIP integrity key
            (HIP-lg or HIP-gl) established when rendezvous
            registration happened.  The HIP "checksum" field MUST be set
            to zero, and the HIP header length in the HIP common header
            MUST be calculated not to cover any excluded parameter
            when the HMAC is calculated.  The size of the
            HMAC is the natural size of the hash computation
            output depending on the used hash function.

  To allow a rendezvous client and its RVS to verify the integrity of
  packets flowing between them, both SHOULD protect packets with an
  added RVS_HMAC parameter keyed with the HIP-lg or HIP-gl integrity
  key established while registration occurred.  A valid RVS_HMAC SHOULD
  be present on every packet flowing between a client and a server and
  MUST be present when a FROM parameter is processed.


















Laganier & Eggert             Experimental                      [Page 8]

RFC 5204                HIP Rendezvous Extension              April 2008


4.2.2.  FROM Parameter

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                             Address                           |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type        65498
   Length      16
   Address     An IPv6 address or an IPv4-in-IPv6 format IPv4 address.

  A rendezvous server MUST add a FROM parameter containing the original
  source IP address of a HIP packet whenever the source IP address in
  the IP header is rewritten.  If one or more FROM parameters are
  already present, the new FROM parameter MUST be appended after the
  existing ones.

  Whenever an RVS inserts a FROM parameter, it MUST insert an RVS_HMAC
  protecting the packet integrity, especially the IP address included
  in the FROM parameter.

























Laganier & Eggert             Experimental                      [Page 9]

RFC 5204                HIP Rendezvous Extension              April 2008


4.2.3.  VIA_RVS Parameter

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                            Address                            |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   .                               .                               .
   .                               .                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                            Address                            |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type        65502
   Length      Variable
   Address     An IPv6 address or an IPv4-in-IPv6 format IPv4 address.

  After the responder receives a relayed I1 packet, it can begin to
  send HIP packets addressed to the initiator's IP address, without
  further assistance from an RVS.  For debugging purposes, it MAY
  include a subset of the IP addresses of its RVSs in some of these
  packets.  When a responder does so, it MUST append a newly created
  VIA_RVS parameter at the end of the HIP packet.  The main goal of
  using the VIA_RVS parameter is to allow operators to diagnose
  possible issues encountered while establishing a HIP association via
  an RVS.

4.3.  Modified Packets Processing

  The following subsections describe the differences of processing of
  I1 and R1 while a rendezvous server is involved in the base exchange.

4.3.1.  Processing Outgoing I1 Packets

  An initiator SHOULD NOT send an opportunistic I1 with a NULL
  destination HIT to an IP address that is known to be a rendezvous
  server address, unless it wants to establish a HIP association with
  the rendezvous server itself and does not know its HIT.





Laganier & Eggert             Experimental                     [Page 10]

RFC 5204                HIP Rendezvous Extension              April 2008


  When an RVS rewrites the source IP address of an I1 packet due to
  egress filtering, it MUST add a FROM parameter to the I1 that
  contains the initiator's source IP address.  This FROM parameter MUST
  be protected by an RVS_HMAC keyed with the integrity key established
  at rendezvous registration.

4.3.2.  Processing Incoming I1 Packets

  When a rendezvous server receives an I1 whose destination HIT is not
  its own, it consults its registration database to find a registration
  for the rendezvous service established by the HIT owner.  If it finds
  an appropriate registration, it relays the packet to the registered
  IP address.  If it does not find an appropriate registration, it
  drops the packet.

  A rendezvous server SHOULD interpret any incoming opportunistic I1
  (i.e., an I1 with a NULL destination HIT) as an I1 addressed to
  itself and SHOULD NOT attempt to relay it to one of its clients.

  When a rendezvous client receives an I1, it MUST validate any present
  RVS_HMAC parameter.  If the RVS_HMAC cannot be verified, the packet
  SHOULD be dropped.  If the RVS_HMAC cannot be verified and a FROM
  parameter is present, the packet MUST be dropped.

  A rendezvous client acting as responder SHOULD drop opportunistic I1s
  that include a FROM parameter, because this indicates that the I1 has
  been relayed.

4.3.3.  Processing Outgoing R1 Packets

  When a responder replies to an I1 relayed via an RVS, it MUST append
  to the regular R1 header a VIA_RVS parameter containing the IP
  addresses of the traversed RVSs.

4.3.4.  Processing Incoming R1 Packets

  The HIP specification [RFC5201] mandates that a system receiving an
  R1 MUST first check to see if it has sent an I1 to the originator of
  the R1 (i.e., the system is in state I1-SENT).  When the R1 is
  replying to a relayed I1, this check SHOULD be based on HITs only.
  In case the IP addresses are also checked, then the source IP address
  MUST be checked against the IP address included in the VIA_RVS
  parameter.








Laganier & Eggert             Experimental                     [Page 11]

RFC 5204                HIP Rendezvous Extension              April 2008


5.  Security Considerations

  This section discusses the known threats introduced by these HIP
  extensions and the implications on the overall security of HIP.  In
  particular, it argues that the extensions described in this document
  do not introduce additional threats to the Host Identity Protocol.

  It is difficult to encompass the whole scope of threats introduced by
  rendezvous servers because their presence has implications both at
  the IP and HIP layers.  In particular, these extensions might allow
  for redirection, amplification, and reflection attacks at the IP
  layer, as well as attacks on the HIP layer itself, for example, man-
  in-the-middle attacks against the HIP base exchange.

  If an initiator has a priori knowledge of the responder's host
  identity when it first contacts the responder via an RVS, it has a
  means to verify the signatures in the HIP base exchange, which
  protects against man-in-the-middle attacks.

  If an initiator does not have a priori knowledge of the responder's
  host identity (so-called "opportunistic initiators"), it is almost
  impossible to defend the HIP exchange against these attacks, because
  the public keys exchanged cannot be authenticated.  The only approach
  would be to mitigate hijacking threats on HIP state by requiring an
  R1 answering an opportunistic I1 to come from the same IP address
  that originally sent the I1.  This procedure retains a level of
  security that is equivalent to what exists in the Internet today.

  However, for reasons of simplicity, this specification does not allow
  the establishment of a HIP association via a rendezvous server in an
  opportunistic manner.

6.  IANA Considerations

  This section is to be interpreted according to the Guidelines for
  Writing an IANA Considerations Section in RFCs [RFC2434].

  This document updates the IANA Registry for HIP Parameters Types by
  assigning new HIP Parameter Types values for the new HIP Parameters
  defined in Section 4.2:

  o  RVS_HMAC (defined in Section 4.2.1)

  o  FROM (defined in Section 4.2.2)

  o  VIA_RVS (defined in Section 4.2.3)





Laganier & Eggert             Experimental                     [Page 12]

RFC 5204                HIP Rendezvous Extension              April 2008


  This document defines an additional registration for the HIP
  Registration Extension [RFC5203] that allows registering with a
  rendezvous server for rendezvous service.

  Number   Registration Type
  ------   -----------------
  1        RENDEZVOUS

7.  Acknowledgments

  The following people have provided thoughtful and helpful discussions
  and/or suggestions that have improved this document: Marcus Brunner,
  Tom Henderson, Miika Komu, Mika Kousa, Pekka Nikander, Justino
  Santos, Simon Schuetz, Tim Shepard, Kristian Slavov, Martin
  Stiemerling, and Juergen Quittek.

8.  References

8.1.  Normative References

  [RFC1122]  Braden, R., "Requirements for Internet Hosts -
             Communication Layers", STD 3, RFC 1122, October 1989.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2434]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 2434,
             October 1998.

  [RFC3484]  Draves, R., "Default Address Selection for Internet
             Protocol version 6 (IPv6)", RFC 3484, February 2003.

  [RFC5201]  Moskowitz, R., Nikander, P., Jokela, P., Ed., and T.
             Henderson, "Host Identity Protocol", RFC 5201, April 2008.

  [RFC5203]  Laganier, J., Koponen, T., and L. Eggert, "Host Identity
             Protocol (HIP) Registration Extension", RFC 5203,
             April 2008.

  [RFC5205]  Nikander, P. and J. Laganier, "Host Identity Protocol
             (HIP) Domain Name System (DNS) Extensions", RFC 5205,
             April 2008.








Laganier & Eggert             Experimental                     [Page 13]

RFC 5204                HIP Rendezvous Extension              April 2008


8.2.  Informative References

  [RFC2827]  Ferguson, P. and D. Senie, "Network Ingress Filtering:
             Defeating Denial of Service Attacks which employ IP Source
             Address Spoofing", BCP 38, RFC 2827, May 2000.

  [RFC3013]  Killalea, T., "Recommended Internet Service Provider
             Security Services and Procedures", BCP 46, RFC 3013,
             November 2000.

  [RFC4423]  Moskowitz, R. and P. Nikander, "Host Identity Protocol
             (HIP) Architecture", RFC 4423, May 2006.

  [RFC5206]  Henderson, T., Ed., "End-Host Mobility and Multihoming
             with the Host Identity Protocol", RFC 5206, April 2008.

Authors' Addresses

  Julien Laganier
  DoCoMo Communications Laboratories Europe GmbH
  Landsberger Strasse 312
  Munich  80687
  Germany

  Phone: +49 89 56824 231
  EMail: [email protected]
  URI:   http://www.docomolab-euro.com/


  Lars Eggert
  Nokia Research Center
  P.O. Box 407
  Nokia Group  00045
  Finland

  Phone: +358 50 48 24461
  EMail: [email protected]
  URI:   http://research.nokia.com/people/lars_eggert/













Laganier & Eggert             Experimental                     [Page 14]

RFC 5204                HIP Rendezvous Extension              April 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Laganier & Eggert             Experimental                     [Page 15]