Network Working Group                                          D. Pinkas
Request for Comments: 5126                                      Bull SAS
Obsoletes: 3126                                                  N. Pope
Category: Informational                                 Thales eSecurity
                                                                J. Ross
                                                 Security and Standards
                                                          February 2008


              CMS Advanced Electronic Signatures (CAdES)

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Abstract

  This document defines the format of an electronic signature that can
  remain valid over long periods.  This includes evidence as to its
  validity even if the signer or verifying party later attempts to deny
  (i.e., repudiates) the validity of the signature.

  The format can be considered as an extension to RFC 3852 and RFC
  2634, where, when appropriate, additional signed and unsigned
  attributes have been defined.

  The contents of this Informational RFC amount to a transposition of
  the ETSI Technical Specification (TS) 101 733 V.1.7.4 (CMS Advanced
  Electronic Signatures -- CAdES) and is technically equivalent to it.

  The technical contents of this specification are maintained by ETSI.
  The ETSI TS and further updates are available free of charge at:
  http://www.etsi.org/WebSite/Standards/StandardsDownload.aspx
















Pinkas, et al.               Informational                      [Page 1]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


Table of Contents

  1. Introduction ....................................................6
  2. Scope ...........................................................6
  3. Definitions and Abbreviations ...................................8
     3.1. Definitions ................................................8
     3.2. Abbreviations .............................................11
  4. Overview .......................................................12
     4.1. Major Parties .............................................13
     4.2. Signature Policies ........................................14
     4.3. Electronic Signature Formats ..............................15
          4.3.1. CAdES Basic Electronic Signature (CAdES-BES) .......15
          4.3.2. CAdES Explicit Policy-based Electronic
                 Signatures (CAdES-EPES) ............................18
     4.4. Electronic Signature Formats with Validation Data .........19
          4.4.1. Electronic Signature with Time (CAdES-T) ...........20
          4.4.2. ES with Complete Validation Data References
                 (CAdES-C) ..........................................21
          4.4.3. Extended Electronic Signature Formats ..............23
                 4.4.3.1. EXtended Long Electronic Signature
                          (CAdES-X Long) ............................24
                 4.4.3.2. EXtended Electronic Signature with
                          Time Type 1 ...............................25
                 4.4.3.3. EXtended Electronic Signature with
                          Time Type 2 ...............................26
                 4.4.3.4. EXtended Long Electronic Signature
                          with Time (CAdES-X Long ...................27
          4.4.4. Archival Electronic Signature (CAdES-A) ............27
     4.5. Arbitration ...............................................28
     4.6. Validation Process ........................................29
  5. Electronic Signature Attributes ................................30
     5.1. General Syntax ............................................30
     5.2. Data Content Type .........................................30
     5.3. Signed-data Content Type ..................................30
     5.4. SignedData Type ...........................................31
     5.5. EncapsulatedContentInfo Type ..............................31
     5.6. SignerInfo Type ...........................................31
          5.6.1. Message Digest Calculation Process .................32
          5.6.2. Message Signature Generation Process ...............32
          5.6.3. Message Signature Verification Process .............32
     5.7. Basic ES Mandatory Present Attributes .....................32
          5.7.1. content-type .......................................32
          5.7.2. Message Digest .....................................33
          5.7.3. Signing Certificate Reference Attributes ...........33
                 5.7.3.1. ESS signing-certificate Attribute
                          Definition ................................34
                 5.7.3.2. ESS signing-certificate-v2
                          Attribute Definition ......................34



Pinkas, et al.               Informational                      [Page 2]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


                 5.7.3.3. Other signing-certificate
                          Attribute Definition ......................35
     5.8. Additional Mandatory Attributes for Explicit
          Policy-based Electronic Signatures ........................36
          5.8.1. signature-policy-identifier ........................36
     5.9. CMS Imported Optional Attributes ..........................38
          5.9.1. signing-time .......................................38
          5.9.2. countersignature ...................................39
     5.10. ESS-Imported Optional Attributes .........................39
          5.10.1. content-reference Attribute .......................39
          5.10.2. content-identifier Attribute ......................39
          5.10.3. content-hints Attribute ...........................40
     5.11. Additional Optional Attributes Defined in the
           Present Document .........................................40
          5.11.1. commitment-type-indication Attribute ..............41
          5.11.2. signer-location Attribute .........................43
          5.11.3. signer-attributes Attribute .......................43
          5.11.4. content-time-stamp Attribute ......................44
     5.12. Support for Multiple Signatures ..........................44
          5.12.1. Independent Signatures ............................44
          5.12.2. Embedded Signatures ...............................45
  6. Additional Electronic Signature Validation Attributes ..........45
     6.1. signature time-stamp Attribute (CAdES-T) ..................47
          6.1.1. signature-time-stamp Attribute Definition ..........47
     6.2. Complete Validation Data References (CAdES-C) .............48
          6.2.1. complete-certificate-references Attribute
                 Definition .........................................48
          6.2.2. complete-revocation-references Attribute
                 Definition .........................................49
          6.2.3. attribute-certificate-references Attribute
                 Definition .........................................51
          6.2.4. attribute-revocation-references Attribute
                 Definition .........................................52
     6.3. Extended Validation Data (CAdES-X) ........................52
          6.3.1. Time-Stamped Validation Data (CAdES-X Type
                 1 or Type 2) .......................................53
          6.3.2. Long Validation Data (CAdES-X Long, CAdES-X
                 Long Type 1 or 2) ..................................53
          6.3.3. certificate-values Attribute Definition ............54
          6.3.4. revocation-values Attribute Definition .............54
          6.3.5. CAdES-C-time-stamp Attribute Definition ............56
          6.3.6. time-stamped-certs-crls-references
                 Attribute Definition ...............................57
     6.4. Archive Validation Data ...................................58
          6.4.1. archive-time-stamp Attribute Definition ............58
  7. Other Standard Data Structures .................................60
     7.1. Public Key Certificate Format .............................60
     7.2. Certificate Revocation List Format ........................60



Pinkas, et al.               Informational                      [Page 3]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     7.3. OCSP Response Format ......................................60
     7.4. Time-Stamp Token Format ...................................60
     7.5. Name and Attribute Formats ................................60
     7.6. AttributeCertificate ......................................61
  8. Conformance Requirements .......................................61
     8.1. CAdES-Basic Electronic Signature (CAdES-BES) ..............62
     8.2. CAdES-Explicit Policy-based Electronic Signature ..........63
     8.3. Verification Using Time-Stamping ..........................63
     8.4. Verification Using Secure Records .........................63
  9. References .....................................................64
     9.1. Normative References ......................................64
     9.2. Informative References ....................................65
  Annex A (normative): ASN.1 Definitions ............................69
          A.1. Signature Format Definitions Using
               X.208 ASN.1 Syntax ...................................69
          A.2. Signature Format Definitions Using
               X.680 ASN.1 Syntax ...................................77
  Annex B (informative): Extended Forms of Electronic Signatures ....86
          B.1. Extended Forms of Validation Data ....................86
               B.1.1. CAdES-X Long ..................................87
               B.1.2. CAdES-X Type 1 ................................88
               B.1.3. CAdES-X Type 2 ................................90
               B.1.4. CAdES-X Long Type 1 and CAdES-X Long Type 2 ...91
          B.2. Time-Stamp Extensions ................................93
          B.3. Archive Validation Data (CAdES-A) ....................94
          B.4. Example Validation Sequence ..........................97
          B.5. Additional Optional Features ........................102
  Annex C (informative): General Description .......................103
          C.1. The Signature Policy ................................103
          C.2. Signed Information ..................................104
          C.3. Components of an Electronic Signature ...............104
               C.3.1. Reference to the Signature Policy ............104
               C.3.2. Commitment Type Indication ...................105
               C.3.3. Certificate Identifier from the Signer .......106
               C.3.4. Role Attributes ..............................106
                      C.3.4.1.  Claimed Role .......................107
                      C.3.4.2.  Certified Role .....................107
               C.3.5. Signer Location ..............................108
               C.3.6. Signing Time .................................108
               C.3.7. Content Format ...............................108
               C.3.8. content-hints ................................109
               C.3.9. Content Cross-Referencing ....................109
          C.4. Components of Validation Data .......................109
               C.4.1. Revocation Status Information ................109
                      C.4.1.1. CRL Information .....................110
                      C.4.1.2. OCSP Information ....................110
               C.4.2. Certification Path ...........................111
               C.4.3. Time-stamping for Long Life of Signatures ....111



Pinkas, et al.               Informational                      [Page 4]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


               C.4.4. Time-stamping for Long Life of Signature
                      before CA key Compromises ....................113
                       C.4.4.1. Time-stamping the ES with
                                Complete Validation Data ...........113
                       C.4.4.2. Time-Stamping Certificates and
                                Revocation Information References ..114
               C.4.5. Time-stamping for Archive of Signature .......115
               C.4.6. Reference to Additional Data .................116
               C.4.7. Time-Stamping for Mutual Recognition .........116
               C.4.8. TSA Key Compromise ...........................117
          C.5. Multiple Signatures .................................118
  Annex D (informative): Data Protocols to Interoperate with TSPs ..118
          D.1. Operational Protocols ...............................118
               D.1.1. Certificate Retrieval ........................118
               D.1.2. CRL Retrieval ................................118
               D.1.3. Online Certificate Status ....................119
               D.1.4. Time-Stamping ................................119
          D.2. Management Protocols ................................119
               D.2.1. Request for Certificate Revocation ...........119
  Annex E (informative): Security Considerations ...................119
          E.1. Protection of Private Key ...........................119
          E.2. Choice of Algorithms ................................119
  Annex F (informative): Example Structured Contents and MIME ......120
          F.1. General Description .................................120
               F.1.1. Header Information ...........................120
               F.1.2. Content Encoding .............................121
               F.1.3. Multi-Part Content ...........................121
          F.2. S/MIME ..............................................122
               F.2.1. Using application/pkcs7-mime .................123
               F.2.2. Using application/pkcs7-signature ............124
  Annex G (informative): Relationship to the European Directive
                         and EESSI .................................125
          G.1. Introduction ........................................125
          G.2. Electronic Signatures and the Directive .............126
          G.3. ETSI Electronic Signature Formats and the Directive .127
          G.4. EESSI Standards and Classes of Electronic Signature .127
               G.4.1. Structure of EESSI Standardization ...........127
               G.4.2. Classes of Electronic Signatures .............128
               G.4.3. Electronic Signature Classes and the ETSI
                      Electronic Signature Format ..................128
  Annex H (informative): APIs for the Generation and Verification
                         of Electronic Signatures Tokens ...........129
          H.1. Data Framing ........................................129
          H.2. IDUP-GSS-APIs Defined by the IETF ...................131
          H.3. CORBA Security Interfaces Defined by the OMG ........132
  Annex I (informative): Cryptographic Algorithms ..................133
          I.1. Digest Algorithms ...................................133
               I.1.1. SHA-1 ........................................133



Pinkas, et al.               Informational                      [Page 5]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


               I.1.2. General ......................................133
          I.2. Digital Signature Algorithms ........................134
               I.2.1. DSA ..........................................134
               I.2.2. RSA ..........................................135
               I.2.3. General ......................................135
  Annex J (informative): Guidance on Naming ........................137
          J.1. Allocation of Names .................................137
          J.2. Providing Access to Registration Information ........138
          J.3. Naming Schemes ......................................138
               J.3.1. Naming Schemes for Individual Citizens .......138
               J.3.2. Naming Schemes for Employees of an
                      Organization .................................139

1.  Introduction

  This document is intended to cover electronic signatures for various
  types of transactions, including business transactions (e.g.,
  purchase requisition, contract, and invoice applications) where
  long-term validity of such signatures is important.  This includes
  evidence as to its validity even if the signer or verifying party
  later attempts to deny (i.e., repudiates; see ISO/IEC 10181-5
  [ISO10181-5]) the validity of the signature.

  Thus, the present document can be used for any transaction between an
  individual and a company, between two companies, between an
  individual and a governmental body, etc.  The present document is
  independent of any environment; it can be applied to any environment,
  e.g., smart cards, Global System for Mobile Communication Subscriber
  Identity Module (GSM SIM) cards, special programs for electronic
  signatures, etc.

  The European Directive on a community framework for Electronic
  Signatures defines an electronic signature as: "Data in electronic
  form which is attached to or logically associated with other
  electronic data and which serves as a method of authentication".

  An electronic signature, as used in the present document, is a form
  of advanced electronic signature, as defined in the Directive.

2.  Scope

  The scope of the present document covers electronic signature formats
  only.  The aspects of Electronic Signature Policies are defined in
  RFC 3125 [RFC3125] and ETSI TR 102 272 [TR102272].

  The present document defines a number of electronic signature
  formats, including electronic signatures that can remain valid over
  long periods.  This includes evidence as to its validity even if the



Pinkas, et al.               Informational                      [Page 6]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  signer or verifying party later attempts to deny (repudiates) the
  validity of the electronic signature.

  The present document specifies use of Trusted Service Providers
  (e.g., Time-Stamping Authorities) and the data that needs to be
  archived (e.g., cross-certificates and revocation lists) to meet the
  requirements of long-term electronic signatures.

  An electronic signature, as defined by the present document, can be
  used for arbitration in case of a dispute between the signer and
  verifier, which may occur at some later time, even years later.

  The present document includes the concept of signature policies that
  can be used to establish technical consistency when validating
  electronic signatures, but it does not mandate their use.

  The present document is based on the use of public key cryptography
  to produce digital signatures, supported by public key certificates.
  The present document also specifies the use of time-stamping and
  time-marking services to prove the validity of a signature long after
  the normal lifetime of critical elements of an electronic signature.
  This document also, as an option, defines ways to provide very
  long-term protection against key compromise or weakened algorithms.

  The present document builds on existing standards that are widely
  adopted.  These include:

     - RFC 3852 [4]: "Cryptographic Message Syntax (CMS)";

     - ISO/IEC 9594-8/ITU-T Recommendation X.509 [1]: "Information
       technology - Open Systems Interconnection - The Directory:
       Authentication framework";

     - RFC 3280 [2]: "Internet X.509 Public Key Infrastructure (PKIX)
       Certificate and Certificate Revocation List (CRL) Profile";

     - RFC 3161 [7]: "Internet X.509 Public Key Infrastructure
       Time-Stamp Protocol (TSP)".

     NOTE: See Section 11 for a full set of references.

  The present document describes formats for advanced electronic
  signatures using ASN.1 (Abstract Syntax Notation 1) [14].  ASN.1 is
  encoded using X.690 [16].

  These formats are based on CMS (Cryptographic Message Syntax) defined
  in RFC 3852 [4].  These electronic signatures are thus called CAdES,
  for "CMS Advanced Electronic Signatures".



Pinkas, et al.               Informational                      [Page 7]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Another document, TS 101 903 [TS101903], describes formats for XML
  advanced electronic signatures (XAdES) built on XMLDSIG as specified
  in [XMLDSIG].

  In addition, the present document identifies other documents that
  define formats for Public Key Certificates, Attribute Certificates,
  and Certificate Revocation Lists and supporting protocols, including
  protocols for use by trusted third parties to support the operation
  of electronic signature creation and validation.

  Informative annexes include:

     - illustrations of extended forms of Electronic Signature formats
       that protect against various vulnerabilities and examples of
       validation processes (Annex B);

     - descriptions and explanations of some of the concepts used in
       the present document, giving a rationale for normative parts of
       the present document (Annex C);

     - information on protocols to interoperate with Trusted Service
       Providers (Annex D);

     - guidance on naming (Annex E);

     - an example structured content and MIME (Annex F);

     - the relationship between the present document and the directive
       on electronic signature and associated standardization
       initiatives (Annex G);

     - APIs to support the generation and verification of electronic
       signatures (Annex H);

     - cryptographic algorithms that may be used (Annex I); and

     - naming schemes (see Annex J).

3.  Definitions and Abbreviations

3.1.  Definitions

  For the purposes of the present document, the following terms and
  definitions apply:

  Arbitrator: an arbitrator entity may be used to arbitrate a dispute
  between a signer and verifier when there is a disagreement on the
  validity of a digital signature.



Pinkas, et al.               Informational                      [Page 8]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Attribute Authority (AA): an authority that assigns privileges by
  issuing attribute certificates.

  Authority Certificate: a certificate issued to an authority (e.g.,
  either to a certification authority or an attribute authority).

  Attribute Authority Revocation List (AARL): a revocation list
  containing a list of references to certificates issued to AAs that
  are no longer considered valid by the issuing authority.

  Attribute Certificate Revocation List (ACRL): a revocation list
  containing a list of references to attribute certificates that are no
  longer considered valid by the issuing authority.

  Certification Authority Revocation List (CARL): a revocation list
  containing a list of public key certificates issued to certification
  authorities that are no longer considered valid by the certificate
  issuer.

  Certification Authority (CA): an authority trusted by one or more
  users to create and assign public key certificates; optionally, the
  certification authority may create the users' keys.

     NOTE: See ITU-T Recommendation X.509 [1].

  Certificate Revocation List (CRL): a signed list indicating a set of
  public key certificates that are no longer considered valid by the
  certificate issuer.

  Digital Signature: data appended to, or a cryptographic
  transformation of, a data unit that allows a recipient of the data
  unit to prove the source and integrity of the data unit and protect
  against forgery, e.g., by the recipient.

     NOTE: See ISO 7498-2 [ISO7498-2].

  Electronic Signature: data in electronic form that is attached to or
  logically associated with other electronic data and that serves as a
  method of authentication.

     NOTE: See Directive 1999/93/EC of the European Parliament and of
     the Council of 13 December 1999 on a Community framework for
     electronic signatures [EUDirective].

  Extended Electronic Signatures: electronic signatures enhanced by
  complementing the baseline requirements with additional data, such as
  time-stamp tokens and certificate revocation data, to address
  commonly recognized threats.



Pinkas, et al.               Informational                      [Page 9]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Explicit Policy-based Electronic Signature (EPES): an electronic
  signature where the signature policy that shall be used to validate
  it is explicitly specified.

  Grace Period: a time period that permits the certificate revocation
  information to propagate through the revocation process to relying
  parties.

  Initial Verification: a process performed by a verifier done after an
  electronic signature is generated in order to capture additional
  information that could make it valid for long-term verification.

  Public Key Certificate (PKC): public keys of a user, together with
  some other information, rendered unforgeable by encipherment with the
  private key of the certification authority that issued it.

     NOTE: See ITU-T Recommendation X.509 [1].

  Rivest-Shamir-Adleman (RSA): an asymmetric cryptography algorithm
  based on the difficulty to factor very large numbers using a key
  pair: a private key and a public key.

  Signature Policy: a set of rules for the creation and validation of
  an electronic signature that defines the technical and procedural
  requirements for electronic signature creation and validation, in
  order to meet a particular business need, and under which the
  signature can be determined to be valid.

  Signature Policy Issuer: an entity that defines and issues a
  signature policy.

  Signature Validation Policy: part of the signature policy that
  specifies the technical requirements on the signer in creating a
  signature and verifier when validating a signature.

  Signer: an entity that creates an electronic signature.

  Subsequent Verification: a process performed by a verifier to assess
  the signature validity.

     NOTE: Subsequent verification may be done even years after the
     electronic signature was produced by the signer and completed by
     the initial verification, and it might not need to capture more
     data than those captured at the time of initial verification.

  Time-Stamp Token: a data object that binds a representation of a
  datum to a particular time, thus establishing evidence that the datum
  existed before that time.



Pinkas, et al.               Informational                     [Page 10]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Time-Mark: information in an audit trail from a Trusted Service
  Provider that binds a representation of a datum to a particular time,
  thus establishing evidence that the datum existed before that time.

  Time-Marking Authority: a trusted third party that creates records in
  an audit trail in order to indicate that a datum existed before a
  particular point in time.

  Time-Stamping Authority (TSA): a trusted third party that creates
  time-stamp tokens in order to indicate that a datum existed at a
  particular point in time.

  Time-Stamping Unit (TSU): a set of hardware and software that is
  managed as a unit and has a single time-stamp token signing key
  active at a time.

  Trusted Service Provider (TSP): an entity that helps to build trust
  relationships by making available or providing some information upon
  request.

  Validation Data: additional data that may be used by a verifier of
  electronic signatures to determine that the signature is valid.

  Valid Electronic Signature: an electronic signature that passes
  validation.

  Verifier: an entity that verifies evidence.

     NOTE 1: See ISO/IEC 13888-1 [ISO13888-1].

     NOTE 2: Within the context of the present document, this is an
     entity that validates an electronic signature.

3.2.  Abbreviations

  For the purposes of the present document, the following abbreviations
  apply:

  AA           Attribute Authority
  AARL         Attribute Authority Revocation List
  ACRL         Attribute Certificate Revocation List
  API          Application Program Interface
  ASCII        American Standard Code for Information Interchange
  ASN.1        Abstract Syntax Notation 1
  CA           Certification Authority
  CAD          Card Accepting Device
  CAdES        CMS Advanced Electronic Signature
  CAdES-A      CAdES with Archive validation data



Pinkas, et al.               Informational                     [Page 11]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  CAdES-BES    CAdES Basic Electronic Signature
  CAdES-C      CAdES with Complete validation data
  CAdES-EPES   CAdES Explicit Policy Electronic Signature
  CAdES-T      CAdES with Time
  CAdES-X      CAdES with eXtended validation data
  CAdES-X Long CAdES with EXtended Long validation data
  CARL         Certification Authority Revocation List
  CMS          Cryptographic Message Syntax
  CRL          Certificate Revocation List
  CWA          CEN (European Committee for Standardization) Workshop
               Agreement
  DER          Distinguished Encoding Rules (for ASN.1)
  DSA          Digital Signature Algorithm
  EDIFACT      Electronic Data Interchange For Administration,
               Commerce and Transport
  EESSI        European Electronic Signature Standardization
               Initiative
  EPES         Explicit Policy-based Electronic Signature
  ES           Electronic Signature
  ESS          Enhanced Security Services (enhances CMS)
  IDL          Interface Definition Language
  MIME         Multipurpose Internet Mail Extensions
  OCSP         Online Certificate Status Provider
  OID          Object IDentifier
  PKC          Public Key Certificate
  PKIX         Public Key Infrastructure using X.509
               (IETF Working Group)
  RSA          Rivest-Shamir-Adleman
  SHA-1        Secure Hash Algorithm 1
  TSA          Time-Stamping Authority
  TSP          Trusted Service Provider
  TST          Time-Stamp Token
  TSU          Time-Stamping Unit
  URI          Uniform Resource Identifier
  URL          Uniform Resource Locator
  XML          Extensible Markup Language
  XMLDSIG      XML Digital Signature

4.  Overview

  The present document defines a number of Electronic Signature (ES)
  formats that build on CMS (RFC 3852 [4]) by adding signed and
  unsigned attributes.

  This section:

     - provides an introduction to the major parties involved
       (Section 4.1),



Pinkas, et al.               Informational                     [Page 12]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - introduces the concept of signature policies (Section 4.2),

     - provides an overview of the various ES formats (Section 4.3),

     - introduces the concept of validation data, and provides an
       overview of formats that incorporate validation data
       (Section 4.4), and

     - presents relevant considerations on arbitration
       (Section 4.5) and for the validation process (Section 4.6).

  The formal specifications of the attributes are specified in Sections
  5 and 6; Annexes C and D provide rationale for the definitions of the
  different ES forms.

4.1.  Major Parties

  The major parties involved in a business transaction supported by
  electronic signatures, as defined in the present document, are:

     - the signer;
     - the verifier;
     - Trusted Service Providers (TSP); and
     - the arbitrator.

  The signer is the entity that creates the electronic signature.  When
  the signer digitally signs over data using the prescribed format,
  this represents a commitment on behalf of the signing entity to the
  data being signed.

  The verifier is the entity that validates the electronic signature;
  it may be a single entity or multiple entities.

  The Trusted Service Providers (TSPs) are one or more entities that
  help to build trust relationships between the signer and verifier.
  They support the signer and verifier by means of supporting services
  including: user certificates, cross-certificates, time-stamp tokens,
  CRLs, ARLs, and OCSP responses.  The following TSPs are used to
  support the functions defined in the present document:

     - Certification Authorities;
     - Registration Authorities;
     - CRL Issuers;
     - OCSP Responders;
     - Repository Authorities (e.g., a Directory);
     - Time-Stamping Authorities;
     - Time-Marking Authorities; and
     - Signature Policy Issuers.



Pinkas, et al.               Informational                     [Page 13]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Certification Authorities provide users with public key certificates
  and a revocation service.

  Registration Authorities allow the identification and registration of
  entities before a CA generates certificates.

  Repository Authorities publish CRLs issued by CAs, signature policies
  issued by Signature Policy Issuers, and optionally public key
  certificates.

  Time-Stamping Authorities attest that some data was formed before a
  given trusted time.

  Time-Marking Authorities record that some data was formed before a
  given trusted time.

  Signature Policy Issuers define the signature policies to be used by
  signers and verifiers.

  In some cases, the following additional TSPs are needed:

     - Attribute Authorities.

  Attributes Authorities provide users with attributes linked to public
  key certificates.

  An Arbitrator is an entity that arbitrates in disputes between a
  signer and a verifier.

4.2.  Signature Policies

  The present document includes the concept of signature policies that
  can be used to establish technical consistency when validating
  electronic signatures.

  When a comprehensive signature policy used by the verifier is either
  explicitly indicated by the signer or implied by the data being
  signed, then a consistent result can be obtained when validating an
  electronic signature.

  When the signature policy being used by the verifier is neither
  indicated by the signer nor can be derived from other data, or the
  signature policy is incomplete, then verifiers, including
  arbitrators, may obtain different results when validating an
  electronic signature.  Therefore, comprehensive signature policies
  that ensure consistency of signature validation are recommended from
  both the signer's and verifier's point of view.




Pinkas, et al.               Informational                     [Page 14]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Further information on signature policies is provided in:

     - TR 102 038 [TR102038];
     - Sections 5.8.1, C.1, and C.3.1 of the present document;
     - RFC 3125 [RFC3125]; and
     - TR 102 272 [TR102272].

4.3.  Electronic Signature Formats

  The current section provides an overview for two forms of CMS
  advanced electronic signature specified in the present document,
  namely, the CAdES Basic Electronic Signature (CAdES-BES) and the
  CAdES Explicit Policy-based Electronic Signature (CAdES-EPES).
  Conformance to the present document mandates that the signer create
  one of these formats.

4.3.1.  CAdES Basic Electronic Signature (CAdES-BES)

  A CAdES Basic Electronic Signature (CAdES-BES), in accordance with
  the present document, contains:

     - The signed user data (e.g., the signer's document), as defined
       in CMS (RFC 3852 [4]);

     - A collection of mandatory signed attributes, as defined in CMS
       (RFC 3852 [4]) and in ESS (RFC 2634 [5]);

     - Additional mandatory signed attributes, defined in the present
       document; and

     - The digital signature value computed on the user data and, when
       present, on the signed attributes, as defined in CMS (RFC 3852
       [4]).

  A CAdES Basic Electronic Signature (CAdES-BES), in accordance with
  the present document, may contain:

     - a collection of additional signed attributes; and

     - a collection of optional unsigned attributes.

  The mandatory signed attributes are:

     - Content-type.  It is defined in RFC 3852 [4] and specifies the
       type of the EncapsulatedContentInfo value being signed.  Details
       are provided in Section 5.7.1 of the present document.
       Rationale for its inclusion is provided in Annex C.3.7;




Pinkas, et al.               Informational                     [Page 15]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - Message-digest.  It is defined in RFC 3852 [4] and specifies the
       message digest of the eContent OCTET STRING within
       encapContentInfo being signed.  Details are provided in Section
       5.7.2;

     - ESS signing-certificate OR ESS signing-certificate-v2.  The ESS
       signing-certificate attribute is defined in Enhanced Security
       Services (ESS), RFC 2634 [5], and only allows for the use of
       SHA-1 as a digest algorithm.  The ESS signing-certificate-v2
       attribute is defined in "ESS Update: Adding CertID Algorithm
       Agility", RFC 5035 [15], and allows for the use of any digest
       algorithm.  A CAdES-BES claiming compliance with the present
       document must include one of them.  Section 5.7.3 provides the
       details of these attributes.  Rationale for its inclusion is
       provided in Annex C.3.3.

  Optional signed attributes may be added to the CAdES-BES, including
  optional signed attributes defined in CMS (RFC 3852 [4]), ESS (RFC
  2634 [5]), and the present document.  Listed below are optional
  attributes that are defined in Section 5 and have a rationale
  provided in Annex C:

     - Signing-time: as defined in CMS (RFC 3852 [4]), indicates the
       time of the signature, as claimed by the signer.  Details and
       short rationale are provided in Section 5.9.1.  Annex C.3.6
       provides the rationale.

     - content-hints: as defined in ESS (RFC 2634 [5]), provides
       information that describes the innermost signed content of a
       multi-layer message where one content is encapsulated in
       another.  Section 5.10.1 provides the specification details.
       Annex C.3.8 provides the rationale.

     - content-reference: as defined in ESS (RFC 2634 [5]), can be
       incorporated as a way to link request and reply messages in an
       exchange between two parties.  Section 5.10.1 provides the
       specification details.  Annex C.3.9 provides the rationale.

     - content-identifier: as defined in ESS (RFC 2634 [5]), contains
       an identifier that may be used later on in the previous
       content-reference attribute.  Section 5.10.2 provides the
       specification details.

     - commitment-type-indication: this attribute is defined by the
       present document as a way to indicate the commitment endorsed by
       the signer when producing the signature.  Section 5.11.1
       provides the specification details.  Annex C.3.2 provides the
       rationale.



Pinkas, et al.               Informational                     [Page 16]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - signer-location: this attribute is defined by the present
       document.  It allows the signer to indicate the place where the
       signer purportedly produced the signature.  Section 5.11.2
       provides the specification details.  Annex C.3.5 provides the
       rationale.

     - signer-attributes: this attribute is defined by the present
       document.  It allows a claimed or certified role to be
       incorporated into the signed information.  Section 5.11.3
       provides the specification details.  Annex C.3.4 provides the
       rationale.

     - content-time-stamp: this attribute is defined by the present
       document.  It allows a time-stamp token of the data to be signed
       to be incorporated into the signed information.  It provides
       proof of the existence of the data before the signature was
       created.  Section 5.11.4 provides the specification details.
       Annex C.3.6 provides the rationale.

  A CAdES-BES form can also incorporate instances of unsigned
  attributes, as defined in CMS (RFC 3852 [4]) and ESS (RFC 2634 [5]).

     - CounterSignature, as defined in CMS (RFC 3852 [4]); it can be
       incorporated wherever embedded signatures (i.e., a signature on
       a previous signature) are needed.  Section 5.9.2 provides the
       specification details.  Annex C.5 in Annex C provides the
       rationale.

  The structure of the CAdES-BES is illustrated in Figure 1.

               +------Elect.Signature (CAdES-BES)------+
               |+----------------------------------- + |
               ||+---------+ +----------+            | |
               |||Signer's | |  Signed  |  Digital   | |
               |||Document | |Attributes| Signature  | |
               |||         | |          |            | |
               ||+---------+ +----------+            | |
               |+------------------------------------+ |
               +---------------------------------------+

                 Figure 1: Illustration of a CAdES-BES

  The signer's conformance requirements of a CAdES-BES are defined in
  Section 8.1.







Pinkas, et al.               Informational                     [Page 17]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     NOTE: The CAdES-BES is the minimum format for an electronic
     signature to be generated by the signer.  On its own, it does not
     provide enough information for it to be verified in the longer
     term.  For example, revocation information issued by the relevant
     certificate status information issuer needs to be available for
     long-term validation (see Section 4.4.2).

  The CAdES-BES satisfies the legal requirements for electronic
  signatures, as defined in the European Directive on Electronic
  Signatures, (see Annex C for further discussion on the relationship
  of the present document to the Directive).  It provides basic
  authentication and integrity protection.

  The semantics of the signed data of a CAdES-BES or its context may
  implicitly indicate a signature policy to the verifier.

  Specification of the contents of signature policies is outside the
  scope of the present document.  However, further information on
  signature policies is provided in TR 102 038 [TR102038], RFC 3125
  [RFC3125], and Sections 5.8.1, C.1, and C.3.1 of the present
  document.

4.3.2.  CAdES Explicit Policy-based Electronic Signatures (CAdES-EPES)

  A CAdES Explicit Policy-based Electronic Signature (CAdES-EPES), in
  accordance with the present document, extends the definition of an
  electronic signature to conform to the identified signature policy.

  A CAdES Explicit Policy-based Electronic Signature (CAdES-EPES)
  incorporates a signed attribute (sigPolicyID attribute) indicating
  the signature policy that shall be used to validate the electronic
  signature.  This signed attribute is protected by the signature.  The
  signature may also have other signed attributes required to conform
  to the mandated signature policy.

  Section 5.7.3 provides the details on the specification of
  signature-policy-identifier attribute.  Annex C.1 provides a short
  rationale.  Specification of the contents of signature policies is
  outside the scope of the present document.

  Further information on signature policies is provided in TR 102 038
  [TR102038] and Sections 5.8.1, C.1, and C.3.1 of the present
  document.








Pinkas, et al.               Informational                     [Page 18]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  The structure of the CAdES-EPES is illustrated in Figure 2.

         +------------- Elect.Signature (CAdES-EPES) ---------------+
         |                                                          |
         |+-------------------------------------------------------+ |
         || +-----------+                                         | |
         || |           |   +---------------------------+         | |
         || |           |   |   +----------+            |         | |
         || | Signer's  |   |   |Signature | Signed     | Digital | |
         || | Document  |   |   |Policy ID | Attributes |Signature| |
         || |           |   |   +----------+            |         | |
         || |           |   +---------------------------+         | |
         || +-----------+                                         | |
         |+-------------------------------------------------------+ |
         |                                                          |
         +----------------------------------------------------------+

                  Figure 2: Illustration of a CAdES-EPES

  The signer's conformance requirements of CAdES-EPES are defined in
  Section 8.2.

4.4.  Electronic Signature Formats with Validation Data

  Validation of an electronic signature, in accordance with the present
  document, requires additional data needed to validate the electronic
  signature.  This additional data is called validation data, and
  includes:

     - Public Key Certificates (PKCs);

     - revocation status information for each PKC;

     - trusted time-stamps applied to the digital signature, otherwise
       a time-mark shall be available in an audit log.

     - when appropriate, the details of a signature policy to be used
       to verify the electronic signature.

  The validation data may be collected by the signer and/or the
  verifier.  When the signature-policy-identifier signed attribute is
  present, it shall meet the requirements of the signature policy.









Pinkas, et al.               Informational                     [Page 19]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Validation data includes CA certificates as well as revocation status
  information in the form of Certificate Revocation Lists (CRLs) or
  certificate status information (OCSP) provided by an online service.
  Validation data also includes evidence that the signature was created
  before a particular point in time; this may be either a time-stamp
  token or time-mark.

  The present document defines unsigned attributes able to contain
  validation data that can be added to CAdES-BES and CAdES-EPES,
  leading to electronic signature formats that include validation data.
  The sections below summarize these formats and their most relevant
  characteristics.

4.4.1.  Electronic Signature with Time (CAdES-T)

  An electronic signature with time (CAdES-T), in accordance with the
  present document, is when there exits trusted time associated with
  the ES.

  The trusted time may be provided by:

     - a time-stamp attribute as an unsigned attribute added to the ES;
       and

     - a time-mark of the ES provided by a Trusted Service Provider.

  The time-stamp attribute contains a time-stamp token of the
  electronic signature value.  Section 6.1.1 provides the specification
  details.  Annex C.4.3 provides the rationale.

  A time-mark provided by a Trusted Service would have a similar effect
  to the signature-time-stamp attribute, but in this case, no attribute
  is added to the ES, as it is the responsibility of the TSP to provide
  evidence of a time-mark when required to do so.  The management of
  time marks is outside the scope of the present document.

  Trusted time provides the initial steps towards providing long-term
  validity.  Electronic signatures with the time-stamp attribute or a
  time-marked BES/EPES, forming the CAdES-T are illustrated in Figure
  3.











Pinkas, et al.               Informational                     [Page 20]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  +-------------------------------------------------CAdES-T ---------+
  |+------ CAdES-BES or CAdES-EPES -------+                          |
  ||+-----------------------------------+ | +----------------------+ |
  |||+---------+ +----------+           | | |                      | |
  ||||Signer's | |  Signed  |  Digital  | | | Signature-time-stamp | |
  ||||Document | |Attributes| Signature | | | attribute required   | |
  ||||         | |          |           | | | when using time      | |
  |||+---------+ +----------+           | | | stamps.              | |
  ||+-----------------------------------+ | |                      | |
  |+--------------------------------------+ | or the BES/EPES      | |
  |                                         | shall be time-marked | |
  |                                         |                      | |
  |                                         | Management and       | |
  |                                         | provision of time    | |
  |                                         | mark is the          | |
  |                                         | responsibility of    | |
  |                                         | the TSP.             | |
  |                                         +----------------------+ |
  +------------------------------------------------------------------+

               Figure 3: Illustration of CAdES-T formats

     NOTE 1: A time-stamp token is added to the CAdES-BES or CAdES-EPES
     as an unsigned attribute.

     NOTE 2: Time-stamp tokens that may themselves include unsigned
     attributes required to validate the time-stamp token, such as the
     complete-certificate-references and complete-revocation-references
     attributes, as defined by the present document.

4.4.2.  ES with Complete Validation Data References (CAdES-C)

  Electronic Signature with Complete validation data references
  (CAdES-C), in accordance with the present document, adds to the
  CAdES-T the complete-certificate-references and
  complete-revocation-references attributes, as defined by the present
  document.  The complete-certificate-references attribute contains
  references to all the certificates present in the certification path
  used for verifying the signature.  The complete-revocation-references
  attribute contains references to the CRLs and/or OCSPs responses used
  for verifying the signature.  Section 6.2 provides the specification
  details.  Storing the references allows the values of the
  certification path and the CRLs or OCSPs responses to be stored
  elsewhere, reducing the size of a stored electronic signature format.







Pinkas, et al.               Informational                     [Page 21]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Sections C.4.1 to C.4.2 provide rationale on the usage of validation
  data and when it is suitable to generate the CAdES-C form.
  Electronic signatures, with the additional validation data forming
  the CAdES-C, are illustrated in Figure 4.

  +------------------------- CAdES-C --------------------------------+
  |+----------------------------- CAdES-T ---------+                 |
  ||                                  +----------+ | +-------------+ |
  ||                                  |Timestamp | | |             | |
  ||                                  |attribute | | |             | |
  ||+- CAdES-BES or CAdES-EPES ------+|over      | | |             | |
  |||                                ||digital   | | | Complete    | |
  |||+---------++----------+         ||signature | | | certificate | |
  ||||Signer's ||  Signed  | Digital ||is        | | |     and     | |
  ||||Document ||Attributes|Signature||mandatory | | | revocation  | |
  ||||         ||          |         ||if is not | | | references  | |
  |||+---------++----------+         ||timemarked| | |             | |
  ||+--------------------------------++----------+ | |             | |
  |+-----------------------------------------------+ +-------------+ |
  +------------------------------------------------------------------+

            Figure 4: Illustration of CAdES-C format

     NOTE 1: The complete certificate and revocation references are
     added to the CAdES-T as an unsigned attribute.

     NOTE 2: As a minimum, the signer will provide the CAdES-BES or,
     when indicating that the signature conforms to an explicit signing
     policy, the CAdES-EPES.

     NOTE 3: To reduce the risk of repudiating signature creation, the
     trusted time indication needs to be as close as possible to the
     time the signature was created.  The signer or a TSP could provide
     the CAdES-T; if not, the verifier should create the CAdES-T on
     first receipt of an electronic signature because the CAdES-T
     provides independent evidence of the existence of the signature
     prior to the trusted time indication.

     NOTE 4: A CAdES-T trusted time indication must be created before a
     certificate has been revoked or expired.

     NOTE 5: The signer and TSP could provide the CAdES-C to minimize
     this risk, and when the signer does not provide the CAdES-C, the
     verifier should create the CAdES-C when the required component of
     revocation and validation data become available; this may require
     a grace period.





Pinkas, et al.               Informational                     [Page 22]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     NOTE 6: A grace period permits certificate revocation information
     to propagate through the revocation processes.  This period could
     extend from the time an authorized entity requests certificate
     revocation to when the information is available for the relying
     party to use.  In order to make sure that the certificate was not
     revoked at the time the signature was time-marked or time-stamped,
     verifiers should wait until the end of the grace period.  A
     signature policy may define specific values for grace periods.

  An illustration of a grace period is provided in Figure 5.

              +<--------------Grace Period --------->+
  ----+-------+-------+--------+---------------------+----------+
      ^       ^       ^        ^                     ^          ^
      |       |       |        |                     |          |
      |       |       |        |                     |          |
  Signature   |     First      |                   Second       |
   creation   |   revocation   |                  revocation    |
    time      |     status     |                    status      |
              |    checking    |                  checking      |
              |                |                                |
          Time-stamp      Certification                       Build
             or              path                            CAdES-C
          time-mark      construction
            over          & verification
          signature

              Figure 5: Illustration of a grace period

     NOTE 7: CWA 14171 [CWA14171] specifies a signature validation
     process using CAdES-T, CAdES-C, and a grace period.  Annex B
     provides example validation processes.  Annex C.4 provides
     additional information about applying grace periods during the
     validation process.

  The verifier's conformance requirements are defined in Section 8.3
  for time-stamped CAdES-C, and Section 8.4 for time-marked CAdES-C.
  The present document only defines conformance requirements for the
  verifier up to an ES with Complete validation data (CAdES-C).  This
  means that none of the extended and archive forms of electronic
  signatures, as defined in Sections 4.4.3 to 4.4.4, need to be
  implemented to achieve conformance to the present document.

4.4.3.  Extended Electronic Signature Formats

  CAdES-C can be extended by adding unsigned attributes to the
  electronic signature.  The present document defines various unsigned
  attributes that are applicable for very long-term verification, and



Pinkas, et al.               Informational                     [Page 23]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  for preventing some disaster situations that are discussed in Annex
  C.  Annex B provides the details of the various extended formats, all
  the required unsigned attributes for each type, and how they can be
  used within the electronic signature validation process.  The
  sections below give an overview of the various forms of extended
  signature formats in the present document.

4.4.3.1.  EXtended Long Electronic Signature (CAdES-X Long)

  Extended Long format (CAdES-X Long), in accordance with the present
  document, adds the certificate-values and revocation-values
  attributes to the CAdES-C format.  The first one contains the whole
  certificate path required for verifying the signature; the second one
  contains the CRLs and/OCSP responses required for the validation of
  the signature.  This provides a known repository of certificate and
  revocation information required to validate a CAdES-C and prevents
  such information from getting lost.  Sections 6.3.3 and 6.3.4 give
  specification details.  Annex B.1.1 gives details on the production
  of the format.  Annexes C4.1 to C.4.2 provide the rationale.

  The structure of the CAdES-X Long format is illustrated in Figure 6.

  +----------------------- CAdES-X-Long -----------------------------+
  |+------------------------------------ CadES-C --+                 |
  ||                                  +----------+ | +-------------+ |
  ||+------ CAdES -------------------+|Timestamp | | |             | |
  |||                                ||  over    | | | Complete    | |
  |||+---------++----------+         ||digital   | | | certificate | |
  ||||Signer's ||  Signed  | Digital ||signature | | |     and     | |
  ||||Document ||Attributes|Signature||          | | | revocation  | |
  ||||         ||          |         ||Optional  | | |    data     | |
  |||+---------++----------+         ||when      | | |             | |
  ||+--------------------------------+|timemarked| | |             | |
  ||                                  +----------+ | |             | |
  ||                               +-------------+ | +-------------+ |
  ||                               | Complete    | |                 |
  ||                               | certificate | |                 |
  ||                               | and         | |                 |
  ||                               | revocation  | |                 |
  ||                               | references  | |                 |
  ||                               +-------------+ |                 |
  |+-----------------------------------------------+                 |
  |                                                                  |
  +------------------------------------------------------------------+

                 Figure 6: Illustration of CAdES-X-Long





Pinkas, et al.               Informational                     [Page 24]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


4.4.3.2.  EXtended Electronic Signature with Time Type 1
         (CAdES-X Type 1)

  Extended format with time type 1 (CAdES-X Type 1), in accordance with
  the present document, adds the CAdES-C-time-stamp attribute, whose
  content is a time-stamp token on the CAdES-C itself, to the CAdES-C
  format.

  This provides an integrity and trusted time protection over all the
  elements and references.  It may protect the certificates, CRLs, and
  OCSP responses in case of a later compromise of a CA key, CRL key, or
  OCSP issuer key.  Section 6.3.5 provides the specification details.

  Annex B.1.2 gives details on the production of the time-stamping
  process.  Annex C.4.4.1 provides the rationale.

  The structure of the CAdES-X Type 1 format is illustrated in Figure
  7.

 +----------------------- CAdES-X-Type 1 ------------------------------+
 |+-------------------------------------- CAdES-C -----+               |
 ||                                    +-------------+ | +-----------+ |
 ||+--------- CAdES ------------------+| Timestamp   | | |           | |
 |||                                  || over        | | |           | |
 |||+---------++----------+           || digital     | | |           | |
 ||||Signer's ||  Signed  |  Digital  || signature   | | | Timestamp | |
 ||||Document ||Attributes| Signature ||             | | |   over    | |
 ||||         ||          |           || Optional    | | | CAdES-C   | |
 |||+---------++----------+           || when        | | |           | |
 ||+----------------------------------+| time-marked | | |           | |
 ||                                    +-------------+ | |           | |
 ||                                    +-------------+ | +-----------+ |
 ||                                    | Complete    | |               |
 ||                                    | certificate | |               |
 ||                                    | and         | |               |
 ||                                    | revocation  | |               |
 ||                                    | references  | |               |
 ||                                    +-------------+ |               |
 |+----------------------------------------------------+               |
 +---------------------------------------------------------------------+

                 Figure 7: Illustration of CAdES-X Type  1









Pinkas, et al.               Informational                     [Page 25]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


4.4.3.3.  EXtended Electronic Signature with Time Type 2
         (CAdES-X Type 2)

  Extended format with time type 2 (CAdES-X Type 2), in accordance with
  the present document, adds to the CAdES-C format the
  CAdES-C-time-stamped-certs-crls-references attribute, whose content
  is a time-stamp token on the certification path and revocation
  information references.  This provides an integrity and trusted time
  protection over all the references.

  It may protect the certificates, CRLs and OCSP responses in case of a
  later compromise of a CA key, CRL key or OCSP issuer key.

  Both CAdES-X Type 1 and CAdES-X Type 2 counter the same threats, and
  the usage of one or the other depends on the environment.  Section
  6.3.5 provides the specification details.  Annex B.1.3 gives details
  on the production of the time-stamping process.  Annex C.4.4.2
  provides the rationale.

  The structure of the CAdES-X Type 2 format is illustrated in Figure
  8.

+------------------------- CAdES-X-Type 2 ----------------------------+
|+----------------------------------------CAdES-C ---+                |
||                                     +------------+|                |
||+----- CAdES -----------------------+| Timestamp  ||                |
|||                                   || over       ||                |
|||+---------+ +----------+           || digital    || +-------------+|
||||Signer's | |  Signed  |  Digital  || signature  || | Time-stamp  ||
||||Document | |Attributes| signature ||            || | only over   ||
||||         | |          |           || optional   || | complete    ||
|||+---------+ +----------+           || when       || | certificate ||
||+-----------------------------------+| timemarked || |    and      ||
||                                     +------------+| | revocation  ||
||                                   +-------------+ | | references  ||
||                                   | Complete    | | +-------------+|
||                                   | certificate | |                |
||                                   | and         | |                |
||                                   | revocation  | |                |
||                                   | references  | |                |
||                                   +-------------+ |                |
|+---------------------------------------------------+                |
+---------------------------------------------------------------------+

                 Figure 8: Illustration of CAdES-X Type 2






Pinkas, et al.               Informational                     [Page 26]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


4.4.3.4.  EXtended Long Electronic Signature with Time (CAdES-X Long
         Type 1 or 2)

  Extended Long with Time (CAdES-X Long Type 1 or 2), in accordance
  with the present document, is a combination of CAdES-X Long and one
  of the two former types (CAdES-X Type 1 and CAdES-X Type 2).  Annex
  B.1.4 gives details on the production of the time-stamping process.
  Annex C.4.8 in Annex C provides the rationale.

  The structure of the CAdES-X Long Type 1 and CAdES-X Long Type 2
  format is illustrated in Figure 9.

  +------------------ CAdES-X Long Type 1 or 2 -----------------------+
  |                                                   +--------------+|
  |+-------------------------------------- CAdES-C --+|+------------+||
  ||                                                 ||| Timestamp  |||
  ||+------- CAdES --------------------++----------+ |||   over     |||
  |||                                  ||Timestamp | |||  CAdES-C   |||
  |||                                  ||over      | ||+------------+||
  |||+---------++----------+           ||digital   | ||      OR      ||
  ||||Signer's ||  Signed  | Digital   ||signature | ||+------------+||
  ||||Document ||Attributes| signature ||          | ||| Timestamp  |||
  ||||         ||          |           ||Optional  | ||| only over  |||
  |||+---------++----------+           ||when      | ||| complete   |||
  ||+----------------------------------+|timemarked| ||| certificate|||
  ||                                    +----------+ |||    and     |||
  ||                                                 ||| Revocation |||
  ||                                 +-------------+ ||| References |||
  ||                                 | Complete    | ||+------------+||
  ||                                 | certificate | |+--------------+|
  ||                                 | and         | | +------------+ |
  ||                                 | revocation  | | | Complete   | |
  ||                                 | references  | | |certificate | |
  ||                                 +-------------+ | |   and      | |
  |+-------------------------------------------------+ |revocation  | |
  |                                                    |  value     | |
  |                                                    +------------+ |
  +-------------------------------------------------------------------+

    Figure 9: Illustration of CAdES-X Long Type 1 and CAdES Long Type 2

4.4.4.  Archival Electronic Signature (CAdES-A)

  Archival Form (CAdES-A), in accordance with the present document,
  builds on a CAdES-X Long or a CAdES-X Long Type 1 or 2 by adding one
  or more archive-time-stamp attributes.  This form is used for
  archival of long-term signatures.  Successive time-stamps protect the
  whole material against vulnerable hashing algorithms or the breaking



Pinkas, et al.               Informational                     [Page 27]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  of the cryptographic material or algorithms.  Section 6.4 contains
  the specification details.  Sections C.4.5 and C.4.8 provide the
  rationale.

  The structure of the CAdES-A form is illustrated in Figure 10.

 +---------------------------CAdES-A ---------------------------------+
 |+----------------------------------------------------+              |
 ||                                    +--------------+| +----------+ |
 ||+----------------------CAdES-C ----+|+------------+|| |          | |
 |||                     +----------+ ||| Timestamp  ||| |          | |
 |||+---- CAdES-BES ----+|Timestamp | |||    over    ||| |          | |
 ||||    or CAdeS-EPES  ||  over    | |||   CAdES-C  ||| |  Archive | |
 ||||                   ||digital   | ||+------------+|| |          | |
 ||||                   ||signature | ||      or      || |Timestamp | |
 ||||                   ||          | ||+------------+|| |          | |
 ||||                   ||Optional  | ||| Timestamp  ||| |          | |
 ||||                   ||when      | ||| only over  ||| |          | |
 ||||                   ||Timemarked| ||| complete   ||| |          | |
 |||+-------------------+|          | ||| certificate||| +----------+ |
 |||                     +----------+ |||    and     |||              |
 |||                  +-------------+ ||| revocation |||              |
 |||                  | Complete    | ||| references |||              |
 |||                  | certificate | ||+------------+||              |
 |||                  | and         | |+--------------+|              |
 |||                  | revocation  | | +------------+ |              |
 |||                  | references  | | |  Complete  | |              |
 |||                  +-------------+ | |certificate | |              |
 |||                                  | |    and     | |              |
 ||+----------------------------------+ |revocation  | |              |
 ||                                     |  values    | |              |
 ||                                     +------------+ |              |
 |+----------------------------------------------------+              |
 +--------------------------------------------------------------------+

                    Figure 10: Illustration of CAdES-A

4.5.  Arbitration

  The CAdES-C may be used for arbitration should there be a dispute
  between the signer and verifier, provided that:

     - the arbitrator knows where to retrieve the signer's certificate
       (if not already present), all the cross-certificates and the
       required CRLs, ACRLs, or OCSP responses referenced in the
       CAdES-C;





Pinkas, et al.               Informational                     [Page 28]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - when time-stamping in the CAdES-T is being used, the certificate
       from the TSU that has issued the time-stamp token in the CAdES-T
       format is still within its validity period;

     - when time-stamping in the CAdES-T is being used, the certificate
       from the TSU that has issued the time-stamp token in the CAdES-T
       format is not revoked at the time of arbitration;

     - when time-marking in the CAdES-T is being used, a reliable audit
       trail from the Time-Marking Authority is available for
       examination regarding the time;

     - none of the private keys corresponding to the certificates used
       to verify the signature chain have ever been compromised;

     - the cryptography used at the time the CAdES-C was built has not
       been broken at the time the arbitration is performed; and

     - if the signature policy can be explicitly or implicitly
       identified, then an arbitrator is able to determine the rules
       required to validate the electronic signature.

4.6.  Validation Process

  The validation process validates an electronic signature; the output
  status of the validation process can be:

     - invalid;

     - incomplete validation; or

     - valid.

  An invalid response indicates that either the signature format is
  incorrect or that the digital signature value fails verification
  (e.g., the integrity check on the digital signature value fails, or
  any of the certificates on which the digital signature verification
  depends is known to be invalid or revoked).

  An incomplete validation response indicates that the signature
  validation status is currently unknown.  In the case of incomplete
  validation, additional information may be made available to the
  application or user, thus allowing them to decide what to do with the
  electronic signature.  In the case of incomplete validation, the
  electronic signature may be checked again at some later time when
  additional information becomes available.





Pinkas, et al.               Informational                     [Page 29]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     NOTE: For example, an incomplete validation may be because all the
     required certificates are not available or the grace period is not
     completed.

  A valid response indicates that the signature has passed
  verification, and it complies with the signature validation policy.

  Example validation sequences are illustrated in Annex B.

5.  Electronic Signature Attributes

  This section builds upon the existing Cryptographic Message Syntax
  (CMS), as defined in RFC 3852 [4], and Enhanced Security Services
  (ESS), as defined in RFC 2634 [5].  The overall structure of an
  Electronic Signature is as defined in CMS.  The Electronic Signature
  (ES) uses attributes defined in CMS, ESS, and the present document.
  The present document defines ES attributes that it uses and that are
  not defined elsewhere.

  The mandated set of attributes and the digital signature value is
  defined as the minimum Electronic Signature (ES) required by the
  present document.  A signature policy may mandate that other signed
  attributes be present.

5.1.  General Syntax

  The general syntax of the ES is as defined in CMS (RFC 3852 [4]).

     NOTE: CMS defines content types for id-data, id-signedData,
     id-envelopedData, id-digestedData, id-encryptedData, and
     id-authenticatedData.  Although CMS permits other documents to
     define other content types, the ASN.1 type defined should not be a
     CHOICE type.  The present document does not define other content
     types.

5.2.  Data Content Type

  The data content type of the ES is as defined in CMS (RFC 3852 [4]).

     NOTE: If the content type is id-data, it is recommended that the
     content be encoded using MIME, and that the MIME type is used to
     identify the presentation format of the data.  See Annex F.1 for
     an example of using MIME to identify the encoding type.

5.3.  Signed-data Content Type

  The Signed-data content type of the ES is as defined in CMS (RFC 3852
  [4]).



Pinkas, et al.               Informational                     [Page 30]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


5.4.  SignedData Type

  The syntax of the SignedData of the ES is as defined in CMS (RFC 3852
  [4]).

  The fields of type SignedData are as defined in CMS (RFC 3852 [4]).

  The identification of a signer's certificate used to create the
  signature is always signed (see Section 5.7.3).  The validation
  policy may specify requirements for the presence of certain
  certificates.  The degenerate case, where there are no signers, is
  not valid in the present document.

5.5.  EncapsulatedContentInfo Type

  The syntax of the EncapsulatedContentInfo type ES is as defined in
  CMS (RFC 3852 [4]).

  For the purpose of long-term validation, as defined by the present
  document, it is advisable that either the eContent is present, or the
  data that is signed is archived in such as way as to preserve any
  data encoding.  It is important that the OCTET STRING used to
  generate the signature remains the same every time either the
  verifier or an arbitrator validates the signature.

     NOTE: The eContent is optional in CMS :

         - When it is present, this allows the signed data to be
           encapsulated in the SignedData structure, which then
           contains both the signed data and the signature.  However,
           the signed data may only be accessed by a verifier able to
           decode the ASN.1 encoded SignedData structure.

         - When it is missing, this allows the signed data to be sent
           or stored separately from the signature, and the SignedData
           structure only contains the signature.  It is, in the case
           of the signature, only the data that is signed that needs to
           be stored and distributed in such as way as to preserve any
           data encoding.

  The degenerate case where there are no signers is not valid in the
  present document.

5.6.  SignerInfo Type

  The syntax of the SignerInfo type ES is as defined in CMS (RFC 3852
  [4]).




Pinkas, et al.               Informational                     [Page 31]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Per-signer information is represented in the type SignerInfo.  In the
  case of multiple independent signatures (see Annex B.5), there is an
  instance of this field for each signer.

  The fields of type SignerInfo have the meanings defined in CMS (RFC
  3852 [4]), but the signedAttrs field shall contain the following
  attributes:

     - content-type, as defined in Section 5.7.1; and

     - message-digest, as defined in Section 5.7.2;

     - signing-certificate, as defined in Section 5.7.3.

5.6.1.  Message Digest Calculation Process

  The message digest calculation process is as defined in CMS (RFC 3852
  [4]).

5.6.2.  Message Signature Generation Process

  The input to the message signature generation process is as defined
  in CMS (RFC 3852 [4]).

5.6.3.  Message Signature Verification Process

  The procedures for message signature verification are defined in CMS
  (RFC 3852 [4]) and enhanced in the present document: the input to the
  signature verification process must be the signer's public key, which
  shall be verified as correct using the signing certificate reference
  attribute containing a reference to the signing certificate, i.e.,
  when SigningCertificateV2 from RFC 5035 [16] or SigningCertificate
  from ESS [5] is used, the public key from the first certificate
  identified in the sequence of certificate identifiers from
  SigningCertificate must be the key used to verify the digital
  signature.

5.7.  Basic ES Mandatory Present Attributes

  The following attributes shall be present with the signed-data
  defined by the present document.  The attributes are defined in CMS
  (RFC 3852 [4]).

5.7.1.  content-type

  The content-type attribute indicates the type of the signed content.
  The syntax of the content-type attribute type is as defined in CMS
  (RFC 3852 [4]) Section 11.1.



Pinkas, et al.               Informational                     [Page 32]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     NOTE 1: As stated in RFC 3852 [4] , the content-type attribute
     must have its value (i.e., ContentType) equal to the eContentType
     of the EncapsulatedContentInfo value being signed.

     NOTE 2: For implementations supporting signature generation, if
     the content-type attribute is id-data, then it is recommended that
     the eContent be encoded using MIME.  For implementations
     supporting signature verification, if the signed data (i.e.,
     eContent) is MIME-encoded, then the OID of the content-type
     attribute must be id-data.  In both cases, the MIME
     content-type(s) must be used to identify the presentation format
     of the data.  See Annex F for further details about the use of
     MIME.

5.7.2.  Message Digest

  The syntax of the message-digest attribute type of the ES is as
  defined in CMS (RFC 3852 [4]).

5.7.3.  Signing Certificate Reference Attributes

  The Signing certificate reference attributes are supported by using
  either the ESS signing-certificate attribute or the
  ESS-signing-certificate-v2 attribute.

  These attributes shall contain a reference to the signer's
  certificate; they are designed to prevent simple substitution and
  reissue attacks and to allow for a restricted set of certificates to
  be used in verifying a signature.  They have a compact form (much
  shorter than the full certificate) that allows for a certificate to
  be unambiguously identified.

  One, and only one, of the following alternative attributes shall be
  present with the signedData, defined by the present document:

     - The ESS signing-certificate attribute, defined in ESS [5], must
       be used if the SHA-1 hashing algorithm is used.

     - The ESS signing-certificate-v2 attribute, defined in "ESS
       Update: Adding CertID Algorithm Agility", RFC 5035 [15], which
       shall be used when other hashing algorithms are to be used.

  The certificate to be used to verify the signature shall be
  identified in the sequence (i.e., the certificate from the signer),
  and the sequence shall not be empty.  The signature validation policy
  may mandate other certificates be present that may include all the
  certificates up to the trust anchor.




Pinkas, et al.               Informational                     [Page 33]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


5.7.3.1.  ESS signing-certificate Attribute Definition

  The syntax of the signing-certificate attribute type of the ES is as
  defined in Enhanced Security Services (ESS), RFC 2634 [5], and
  further qualified in the present document.

  The sequence of the policy information field is not used in the
  present document.

  The ESS signing-certificate attribute shall be a signed attribute.
  The encoding of the ESSCertID for this certificate shall include the
  issuerSerial field.

  If present, the issuerAndSerialNumber in SignerIdentifier field of
  the SignerInfo shall match the issuerSerial field present in
  ESSCertID.  In addition, the certHash from ESSCertID shall match the
  SHA-1 hash of the certificate.  The certificate identified shall be
  used during the signature verification process.  If the hash of the
  certificate does not match the certificate used to verify the
  signature, the signature shall be considered invalid.

     NOTE: Where an attribute certificate is used by the signer to
     associate a role, or other attributes of the signer, with the
     electronic signature; this is placed in the signer-attributes
     attribute as defined in Section 5.8.3.

5.7.3.2.  ESS signing-certificate-v2 Attribute Definition

  The ESS signing-certificate-v2 attribute is similar to the ESS
  signing-certificate defined above, except that this attribute can be
  used with hashing algorithms other than SHA-1.

  The syntax of the signing-certificate-v2 attribute type of the ES is
  as defined in "ESS Update: Adding CertID Algorithm Agility", RFC 5035
  [15], and further qualified in the present document.

  The sequence of the policy information field is not used in the
  present document.

  This attribute shall be used in the same manner as defined above for
  the ESS signing-certificate attribute.

  The object identifier for this attribute is:
        id-aa-signingCertificateV2 OBJECT IDENTIFIER ::=
        { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
          smime(16) id-aa(2) 47 }





Pinkas, et al.               Informational                     [Page 34]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  If present, the issuerAndSerialNumber in SignerIdentifier field of
  the SignerInfo shall match the issuerSerial field present in
  ESSCertIDv2.  In addition, the certHash from ESSCertIDv2 shall match
  the hash of the certificate computed using the hash function
  specified in the hashAlgorithm field.  The certificate identified
  shall be used during the signature verification process.  If the hash
  of the certificate does not match the certificate used to verify the
  signature, the signature shall be considered invalid.

     NOTE 1: Where an attribute certificate is used by the signer to
     associate a role, or other attributes of the signer, with the
     electronic signature; this is placed in the signer-attributes
     attribute as defined in Section 5.8.3.

     NOTE 2: RFC 3126 was using the other signing-certificate attribute
     (see Section 5.7.3.3) for the same purpose.  Its use is now
     deprecated, since this structure is simpler.

5.7.3.3.  Other signing-certificate Attribute Definition

  RFC 3126 was using the other signing-certificate attribute as an
  alternative to the ESS signing-certificate when hashing algorithms
  other than SHA-1 were being used.  Its use is now deprecated, since
  the structure of the signing-certificate-v2 attribute is simpler.
  Its description is however still present in this version for
  backwards compatibility.

  id-aa-ets-otherSigCert OBJECT IDENTIFIER ::= { iso(1)
      member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
      smime(16) id-aa(2) 19 }

  The other-signing-certificate attribute value has the ASN.1 syntax
  OtherSigningCertificate:

  OtherSigningCertificate ::=  SEQUENCE {
      certs        SEQUENCE OF OtherCertID,
      policies     SEQUENCE OF PolicyInformation OPTIONAL
                   -- NOT USED IN THE PRESENT DOCUMENT }

  OtherCertID ::= SEQUENCE {
      otherCertHash            OtherHash,
      issuerSerial             IssuerSerial OPTIONAL }

  OtherHash ::= CHOICE {
      sha1Hash OtherHashValue,  -- This contains a SHA-1 hash
      otherHash OtherHashAlgAndValue}

  OtherHashValue ::= OCTET STRING



Pinkas, et al.               Informational                     [Page 35]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  OtherHashAlgAndValue ::= SEQUENCE {
      hashAlgorithm     AlgorithmIdentifier,
      hashValue         OtherHashValue }

5.8.  Additional Mandatory Attributes for Explicit Policy-based
     Electronic Signatures

5.8.1.  signature-policy-identifier

  The present document mandates that for CAdES-EPES, a reference to the
  signature policy is included in the signedData.  This reference is
  explicitly identified.  A signature policy defines the rules for
  creation and validation of an electronic signature, and is included
  as a signed attribute with every Explicit Policy-based Electronic
  Signature.  The signature-policy-identifier shall be a signed
  attribute.

  The following object identifier identifies the
  signature-policy-identifier attribute:

     id-aa-ets-sigPolicyId OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
     smime(16) id-aa(2) 15 }

  signature-policy-identifier attribute values have ASN.1 type
  SignaturePolicyIdentifier:

     SignaturePolicyIdentifier ::= CHOICE {
          signaturePolicyId          SignaturePolicyId,
          signaturePolicyImplied     SignaturePolicyImplied
                                     -- not used in this version
  }

     SignaturePolicyId ::= SEQUENCE {
          sigPolicyId           SigPolicyId,
          sigPolicyHash         SigPolicyHash,
          sigPolicyQualifiers   SEQUENCE SIZE (1..MAX) OF
                                  SigPolicyQualifierInfo OPTIONAL}

     SignaturePolicyImplied ::= NULL











Pinkas, et al.               Informational                     [Page 36]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  The sigPolicyId field contains an object-identifier that uniquely
  identifies a specific version of the signature policy.  The syntax of
  this field is as follows:

     SigPolicyId ::= OBJECT IDENTIFIER

  The sigPolicyHash field optionally contains the identifier of the
  hash algorithm and the hash of the value of the signature policy.
  The hashValue within the sigPolicyHash may be set to zero to indicate
  that the policy hash value is not known.

     NOTE: The use of a zero sigPolicyHash value is to ensure backwards
     compatibility with earlier versions of the current document.  If
     sigPolicyHash is zero, then the hash value should not be checked
     against the calculated hash value of the signature policy.

  If the signature policy is defined using ASN.1, then the hash is
  calculated on the value without the outer type and length fields, and
  the hashing algorithm shall be as specified in the field
  sigPolicyHash.

  If the signature policy is defined using another structure, the type
  of structure and the hashing algorithm shall be either specified as
  part of the signature policy, or indicated using a signature policy
  qualifier.

     SigPolicyHash ::= OtherHashAlgAndValue

     OtherHashAlgAndValue ::= SEQUENCE {
        hashAlgorithm   AlgorithmIdentifier,
        hashValue       OtherHashValue }

     OtherHashValue ::= OCTET STRING

  A Signature Policy Identifier may be qualified with other information
  about the qualifier.  The semantics and syntax of the qualifier is as
  associated with the object-identifier in the sigPolicyQualifierId
  field.  The general syntax of this qualifier is as follows:

     SigPolicyQualifierInfo ::= SEQUENCE {
          sigPolicyQualifierId  SigPolicyQualifierId,
          sigQualifier          ANY DEFINED BY sigPolicyQualifierId }









Pinkas, et al.               Informational                     [Page 37]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  The present document specifies the following qualifiers:

     - spuri: this contains the web URI or URL reference to the
       signature policy, and

     - sp-user-notice: this contains a user notice that should be
       displayed whenever the signature is validated.

          sigpolicyQualifierIds defined in the present document:
          SigPolicyQualifierId ::= OBJECT IDENTIFIER

           id-spq-ets-uri OBJECT IDENTIFIER ::= { iso(1)
           member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
           smime(16) id-spq(5) 1 }

       SPuri ::= IA5String

           id-spq-ets-unotice OBJECT IDENTIFIER ::= { iso(1)
           member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
           smime(16) id-spq(5) 2 }

       SPUserNotice ::= SEQUENCE {
               noticeRef        NoticeReference OPTIONAL,
               explicitText     DisplayText OPTIONAL}

       NoticeReference ::= SEQUENCE {

               organization     DisplayText,
               noticeNumbers    SEQUENCE OF INTEGER }

       DisplayText ::= CHOICE {
               visibleString    VisibleString  (SIZE (1..200)),
               bmpString        BMPString      (SIZE (1..200)),
               utf8String       UTF8String     (SIZE (1..200)) }

5.9.  CMS Imported Optional Attributes

  The following attributes may be present with the signed-data; the
  attributes are defined in CMS (RFC 3852 [4]) and are imported into
  the present document.  Where appropriate, the attributes are
  qualified and profiled by the present document.

5.9.1.  signing-time

  The signing-time attribute specifies the time at which the signer
  claims to have performed the signing process.





Pinkas, et al.               Informational                     [Page 38]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Signing-time attribute values for ES have the ASN.1 type SigningTime
  as defined in CMS (RFC 3852 [4]).

     NOTE: RFC 3852 [4] states that dates between January 1, 1950 and
     December 31, 2049 (inclusive) must be encoded as UTCTime.  Any
     dates with year values before 1950 or after 2049 must be encoded
     as GeneralizedTime.

5.9.2.  countersignature

  The countersignature attribute values for ES have ASN.1 type
  CounterSignature, as defined in CMS (RFC 3852 [4]).  A
  countersignature attribute shall be an unsigned attribute.

5.10.  ESS-Imported Optional Attributes

  The following attributes may be present with the signed-data defined
  by the present document.  The attributes are defined in ESS and are
  imported into the present document and are appropriately qualified
  and profiled by the present document.

5.10.1.  content-reference Attribute

  The content-reference attribute is a link from one SignedData to
  another.  It may be used to link a reply to the original message to
  which it refers, or to incorporate by reference one SignedData into
  another.  The content-reference attribute shall be a signed
  attribute.

  content-reference attribute values for ES have ASN.1 type
  ContentReference, as defined in ESS (RFC 2634 [5]).

  The content-reference attribute shall be used as defined in ESS (RFC
  2634 [5]).

5.10.2.  content-identifier Attribute

  The content-identifier attribute provides an identifier for the
  signed content, for use when a reference may be later required to
  that content; for example, in the content-reference attribute in
  other signed data sent later.  The content-identifier shall be a
  signed attribute.

  content-identifier attribute type values for the ES have an ASN.1
  type ContentIdentifier, as defined in ESS (RFC 2634 [5]).

  The minimal content-identifier attribute should contain a
  concatenation of user-specific identification information (such as a



Pinkas, et al.               Informational                     [Page 39]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  user name or public keying material identification information), a
  GeneralizedTime string, and a random number.

5.10.3.  content-hints Attribute

  The content-hints attribute provides information on the innermost
  signed content of a multi-layer message where one content is
  encapsulated in another.

  The syntax of the content-hints attribute type of the ES is as
  defined in ESS (RFC 2634 [5]).

  When used to indicate the precise format of the data to be presented
  to the user, the following rules apply:

     - the contentType indicates the type of the associated content.
       It is an object identifier (i.e., a unique string of integers)
       assigned by an authority that defines the content type; and

     - when the contentType is id-data, the contentDescription shall
       define the presentation format; the format may be defined by
       MIME types.

  When the format of the content is defined by MIME types, the
  following rules apply:

     - the contentType shall be id-data, as defined in CMS (RFC 3852
       [4]);

     - the contentDescription shall be used to indicate the encoding of
       the data, in accordance with the rules defined RFC 2045 [6]; see
       Annex F for an example of structured contents and MIME.

  NOTE 1: id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
  rsadsi(113549) pkcs(1) pkcs7(7) 1 }

  NOTE 2: contentDescription is optional in ESS (RFC 2634 [5]).  It may
  be used to complement contentTypes defined elsewhere; such
  definitions are outside the scope of the present document.

5.11.  Additional Optional Attributes Defined in the Present Document

  This section defines a number of attributes that may be used to
  indicate additional information to a verifier:

     a) the type of commitment from the signer, and/or

     b) the claimed location where the signature is performed, and/or



Pinkas, et al.               Informational                     [Page 40]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     c) claimed attributes or certified attributes of the signer,
        and/or

     d) a content time-stamp applied before the content was signed.

5.11.1.  commitment-type-indication Attribute

  There may be situations where a signer wants to explicitly indicate
  to a verifier that by signing the data, it illustrates a type of
  commitment on behalf of the signer.  The commitment-type-indication
  attribute conveys such information.

  The commitment-type-indication attribute shall be a signed attribute.
  The commitment type may be:

     - defined as part of the signature policy, in which case, the
       commitment type has precise semantics that are defined as part
       of the signature policy; and

     - be a registered type, in which case, the commitment type has
       precise semantics defined by registration, under the rules of
       the registration authority.  Such a registration authority may
       be a trading association or a legislative authority.

  The signature policy specifies a set of attributes that it
  "recognizes".  This "recognized" set includes all those commitment
  types defined as part of the signature policy, as well as any
  externally defined commitment types that the policy may choose to
  recognize.  Only recognized commitment types are allowed in this
  field.

  The following object identifier identifies the
  commitment-type-indication attribute:

id-aa-ets-commitmentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 16}

commitment-type-indication attribute values have ASN.1 type
CommitmentTypeIndication.

CommitmentTypeIndication ::= SEQUENCE {
 commitmentTypeId CommitmentTypeIdentifier,
 commitmentTypeQualifier SEQUENCE SIZE (1..MAX) OF
                CommitmentTypeQualifier OPTIONAL}

CommitmentTypeIdentifier ::= OBJECT IDENTIFIER





Pinkas, et al.               Informational                     [Page 41]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


CommitmentTypeQualifier ::= SEQUENCE {
  commitmentTypeIdentifier   CommitmentTypeIdentifier,
  qualifier                  ANY DEFINED BY commitmentTypeIdentifier }

  The use of any qualifiers to the commitment type is outside the scope
  of the present document.

  The following generic commitment types are defined in the present
  document:

id-cti-ets-proofOfOrigin OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) cti(6) 1}

id-cti-ets-proofOfReceipt OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) cti(6) 2}

id-cti-ets-proofOfDelivery OBJECT IDENTIFIER ::= { iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
cti(6) 3}

id-cti-ets-proofOfSender OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) cti(6) 4}

id-cti-ets-proofOfApproval OBJECT IDENTIFIER ::= { iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
cti(6) 5}

id-cti-ets-proofOfCreation OBJECT IDENTIFIER ::= { iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
cti(6) 6}

  These generic commitment types have the following meanings:

  Proof of origin indicates that the signer recognizes to have created,
  approved, and sent the message.

  Proof of receipt indicates that signer recognizes to have received
  the content of the message.

  Proof of delivery indicates that the TSP providing that indication
  has delivered a message in a local store accessible to the recipient
  of the message.

  Proof of sender indicates that the entity providing that indication
  has sent the message (but not necessarily created it).

  Proof of approval indicates that the signer has approved the content
  of the message.



Pinkas, et al.               Informational                     [Page 42]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Proof of creation indicates that the signer has created the message
  (but not necessarily approved, nor sent it).

5.11.2.  signer-location Attribute

  The signer-location attribute specifies a mnemonic for an address
  associated with the signer at a particular geographical (e.g., city)
  location.  The mnemonic is registered in the country in which the
  signer is located and is used in the provision of the Public Telegram
  Service (according to ITU-T Recommendation F.1 [11]).

  The signer-location attribute shall be a signed attribute.  The
  following object identifier identifies the signer-location attribute:

id-aa-ets-signerLocation OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 17}

  Signer-location attribute values have ASN.1 type SignerLocation:

SignerLocation ::= SEQUENCE {
  -- at least one of the following shall be present:
     countryName    [0]    DirectoryString OPTIONAL,
                           -- As used to name a Country in X.500
     localityName   [1]    DirectoryString OPTIONAL,
                           -- As used to name a locality in X.500
     postalAdddress [2]    PostalAddress OPTIONAL }

PostalAddress ::= SEQUENCE SIZE(1..6) OF DirectoryString

5.11.3.  signer-attributes Attribute

  The signer-attributes attribute specifies additional attributes of
  the signer (e.g., role).  It may be either:

     - claimed attributes of the signer; or

     - certified attributes of the signer.

  The signer-attributes attribute shall be a signed attribute.  The
  following object identifier identifies the signer-attribute
  attribute:

  id-aa-ets-signerAttr OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 18}







Pinkas, et al.               Informational                     [Page 43]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  signer-attributes values have ASN.1 type SignerAttribute:

  SignerAttribute ::= SEQUENCE OF CHOICE {
      claimedAttributes     [0]   ClaimedAttributes,
      certifiedAttributes   [1]   CertifiedAttributes }

  ClaimedAttributes ::= SEQUENCE OF Attribute

  CertifiedAttributes ::= AttributeCertificate
  -- as defined in RFC 3281: see Section 4.1.

     NOTE 1: Only a single signer-attributes can be used.

     NOTE 2: Attribute and AttributeCertificate are as defined
     respectively in ITU-T Recommendations X.501 [9] and X.509 [1].

5.11.4.  content-time-stamp Attribute

  The content-time-stamp attribute is an attribute that is the
  time-stamp token of the signed data content before it is signed.  The
  content-time-stamp attribute shall be a signed attribute.

  The following object identifier identifies the content-time-stamp
  attribute:

  id-aa-ets-contentTimestamp OBJECT IDENTIFIER ::=
  { iso(1) member- body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
  smime(16) id-aa(2) 20}

  content-time-stamp attribute values have ASN.1 type ContentTimestamp:
  ContentTimestamp ::= TimeStampToken

  The value of messageImprint of TimeStampToken (as described in RFC
  3161 [7]) shall be a hash of the value of the eContent field within
  encapContentInfo in the signedData.

  For further information and definition of TimeStampToken, see Section
  7.4.

     NOTE: content-time-stamp indicates that the signed information was
     formed before the date included in the content-time-stamp.

5.12.  Support for Multiple Signatures

5.12.1.  Independent Signatures

  Multiple independent signatures (see Annex B.5) are supported by
  independent SignerInfo from each signer.



Pinkas, et al.               Informational                     [Page 44]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Each SignerInfo shall include all the attributes required under the
  present document and shall be processed independently by the
  verifier.

     NOTE: Independent signatures may be used to provide independent
     signatures from different parties with different signed
     attributes, or to provide multiple signatures from the same party
     using alternative signature algorithms, in which case the other
     attributes, excluding time values and signature policy
     information, will generally be the same.

5.12.2.  Embedded Signatures

  Multiple embedded signatures (see Annex C.5) are supported using the
  countersignature unsigned attribute (see Section 5.9.2).  Each
  counter signature is carried in countersignature held as an unsigned
  attribute to the SignerInfo to which the counter-signature is
  applied.

     NOTE: Counter signatures may be used to provide signatures from
     different parties with different signed attributes, or to provide
     multiple signatures from the same party using alternative
     signature algorithms, in which case the other attributes,
     excluding time values and signature policy information, will
     generally be the same.

6.  Additional Electronic Signature Validation Attributes

  This section specifies attributes that contain different types of
  validation data.  These attributes build on the electronic signature
  specified in Section 5.  This includes:

     - Signature-time-stamp applied to the electronic signature value
       or a Time-Mark in an audit trail.  This is defined as the
       Electronic Signature with Time (CAdES-T); and

     - Complete validation data references that comprise the time-stamp
       of the signature value, plus references to all the certificates
       (complete-certificate-references) and revocation (complete-
       revocation-references) information used for full validation of
       the electronic signature.  This is defined as the Electronic
       Signature with Complete data references (CAdES-C).

     NOTE 1: Formats for CAdES-T are illustrated in Section 4.4, and
     the attributes are defined in Section 6.1.1.






Pinkas, et al.               Informational                     [Page 45]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     NOTE 2: Formats for CAdES-C are illustrated in Section 4.4.  The
     required attributes for the CAdES-C signature format are defined
     in Sections 6.2.1 to 6.2.2; optional attributes are defined in
     Sections 6.2.3 and 6.2.4.

  In addition, the following optional extended forms of validation data
  are also defined; see Annex B for an overview of the extended forms
  of validation data:

     - CAdES-X with time-stamp: there are two types of time-stamps used
       in extended validation data defined by the present document;

        - Type 1(CAdES-X Type 1): comprises a time-stamp over the ES
          with Complete validation data (CAdES-C); and

        - Type 2 (CAdES-X Type2): comprises a time-stamp over the
          certification path references and the revocation information
          references used to support the CAdES-C.

     NOTE 3: Formats for CAdES-X Type 1 and CAdES-X Type 2 are
     illustrated in Sections B.1.2 and B.1.3, respectively.

        - CAdES-X Long: comprises the Complete validation data
          references (CAdES-C), plus the actual values of all the
          certificates and revocation information used in the CAdES-C.

     NOTE 4: Formats for CAdES-X Long are illustrated in Annex B.1.1.

        - CAdES-X Long Type 1 or CAdES-X Long Type 2: comprises an
          X-Time-Stamp (Type 1 or Type 2), plus the actual values of
          all the certificates and revocation information used in the
          CAdES-C as per CAdES-X Long.

  This section also specifies the data structures used in Archive
  validation data format (CAdES-A)of extended forms:

     - Archive form of electronic signature (CAdES-A) comprises:

       - the Complete validation data references (CAdES-C),

       - the certificate and revocation values (as in a CAdES-X Long ),

       - any existing extended electronic signature time-stamps
         (CAdES-X Type 1 or CAdES-X Type 2), if present, and

       - the signed user data and an additional archive time-stamp
         applied over all that data.




Pinkas, et al.               Informational                     [Page 46]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


       An archive time-stamp may be repeatedly applied after long
       periods to maintain validity when electronic signature and
       time-stamping algorithms weaken.

  The additional data required to create the forms of electronic
  signature identified above is carried as unsigned attributes
  associated with an individual signature by being placed in the
  unsignedAttrs field of SignerInfo.  Thus, all the attributes defined
  in Section 6 are unsigned attributes.

     NOTE 5: Where multiple signatures are to be supported, as
     described in Section 5.12, each signature has a separate
     SignerInfo.  Thus, each signature requires its own unsigned
     attribute values to create CAdES-T, CAdES-C, etc.

     NOTE 6: The optional attributes of the extended validation data
     are defined in Sections 6.3 and 6.4.

6.1.  signature time-stamp Attribute (CAdES-T)

  An electronic signature with time-stamp is an electronic signature
  for which part, but not all, of the additional data required for
  validation is available (i.e., some certificates and revocation
  information are available, but not all).

  The minimum structure time-stamp validation data is:

     - the signature time-stamp attribute, as defined in Section 6.1.1,
       over the ES signature value.

6.1.1.  signature-time-stamp Attribute Definition

  The signature-time-stamp attribute is a TimeStampToken computed on
  the signature value for a specific signer; it is an unsigned
  attribute.  Several instances of this attribute may occur with an
  electronic signature, from different TSAs.

  The following object identifier identifies the signature-time-stamp
  attribute:

  id-aa-signatureTimeStampToken OBJECT IDENTIFIER ::=
  { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
  smime(16) id-aa(2) 14}

  The signature-time-stamp attribute value has ASN.1 type
  SignatureTimeStampToken:

  SignatureTimeStampToken ::= TimeStampToken



Pinkas, et al.               Informational                     [Page 47]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  The value of the messageImprint field within TimeStampToken shall be
  a hash of the value of the signature field within SignerInfo for the
  signedData being time-stamped.

  For further information and definition of TimeStampToken, see Section
  7.4.

     NOTE 1: In the case of multiple signatures, it is possible to have
     a:

     - TimeStampToken computed for each and all signers; or

     - TimeStampToken computed on one signer's signature; and no

     - TimeStampToken on another signer's signature.

     NOTE 2: In the case of multiple signatures, several TSTs, issued
     by different TSAs, may be present within the same signerInfo (see
     RFC 3852 [4]).

6.2.  Complete Validation Data References (CAdES-C)

  An electronic signature with Complete validation data references
  (CAdES-C) is an electronic signature for which all the additional
  data required for validation (i.e., all certificates and revocation
  information) is available.  This form is built on the CAdES-T form
  defined above.

  As a minimum, the Complete validation data shall include the
  following:

     - a time, which shall either be a signature-timestamp attribute,
       as defined in Section 6.1.1, or a time-mark operated by a
       Time-Marking Authority;

     - complete-certificate-references, as defined in Section 6.2.1;

     - complete-revocation-references, as defined in Section 6.2.2.

6.2.1.  complete-certificate-references Attribute Definition

  The complete-certificate-references attribute is an unsigned
  attribute.  It references the full set of CA certificates that have
  been used to validate an ES with Complete validation data up to (but
  not including) the signer's certificate.  Only a single instance of
  this attribute shall occur with an electronic signature.





Pinkas, et al.               Informational                     [Page 48]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     NOTE 1: The signer's certificate is referenced in the signing
     certificate attribute (see Section 5.7.3).

id-aa-ets-certificateRefs OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 21}

  The complete-certificate-references attribute value has the ASN.1
  syntax CompleteCertificateRefs.

  CompleteCertificateRefs ::=  SEQUENCE OF OtherCertID

  OtherCertID is defined in Section 5.7.3.3.

  The IssuerSerial that shall be present in OtherCertID.  The certHash
  shall match the hash of the certificate referenced.

     NOTE 2: Copies of the certificate values may be held using the
     certificate-values attribute, defined in Section 6.3.3.

     This attribute may include references to the certification chain
     for any TSUs that provides time-stamp tokens.  In this case, the
     unsigned attribute shall be added to the signedData of the
     relevant time-stamp token as an unsignedAttrs in the signerInfos
     field.

6.2.2.  complete-revocation-references Attribute Definition

  The complete-revocation-references attribute is an unsigned
  attribute.  Only a single instance of this attribute shall occur with
  an electronic signature.  It references the full set of the CRL,
  ACRL, or OCSP responses that have been used in the validation of the
  signer, and CA certificates used in ES with Complete validation data.

  This attribute indicates that the verifier has taken due diligence to
  gather the available revocation information.  The references stored
  in this attribute can be used to retrieve the referenced information,
  if not stored in the CMS structure, but somewhere else.

  The following object identifier identifies the
  complete-revocation-references attribute:

id-aa-ets-revocationRefs OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 22}








Pinkas, et al.               Informational                     [Page 49]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  The complete-revocation-references attribute value has the ASN.1
  syntax CompleteRevocationRefs:

  CompleteRevocationRefs ::=  SEQUENCE OF CrlOcspRef

  CrlOcspRef ::= SEQUENCE {
     crlids      [0]   CRLListID    OPTIONAL,
     ocspids     [1]   OcspListID   OPTIONAL,
     otherRev    [2]   OtherRevRefs OPTIONAL
  }

  CompleteRevocationRefs shall contain one CrlOcspRef for the
  signing-certificate, followed by one for each OtherCertID in the
  CompleteCertificateRefs attribute.  The second and subsequent
  CrlOcspRef fields shall be in the same order as the OtherCertID to
  which they relate.  At least one of CRLListID or OcspListID or
  OtherRevRefs should be present for all but the "trusted" CA of the
  certificate path.

CRLListID ::=  SEQUENCE {
   crls        SEQUENCE OF CrlValidatedID }

CrlValidatedID ::=  SEQUENCE {
    crlHash                   OtherHash,
    crlIdentifier             CrlIdentifier OPTIONAL }

CrlIdentifier ::= SEQUENCE {
   crlissuer                 Name,
   crlIssuedTime             UTCTime,
   crlNumber                 INTEGER OPTIONAL }

OcspListID ::=  SEQUENCE {
   ocspResponses        SEQUENCE OF OcspResponsesID }

OcspResponsesID ::=  SEQUENCE {
   ocspIdentifier              OcspIdentifier,
   ocspRepHash                 OtherHash    OPTIONAL
}

OcspIdentifier ::= SEQUENCE {
  ocspResponderID    ResponderID,
     -- As in OCSP response data
  producedAt         GeneralizedTime
  -- As in OCSP response data
}






Pinkas, et al.               Informational                     [Page 50]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  When creating a crlValidatedID, the crlHash is computed over the
  entire DER encoded CRL including the signature.  The crlIdentifier
  would normally be present unless the CRL can be inferred from other
  information.

  The crlIdentifier is to identify the CRL using the issuer name and
  the CRL issued time, which shall correspond to the time thisUpdate
  contained in the issued CRL, and if present, the crlNumber.  The
  crlListID attribute is an unsigned attribute.  In the case that the
  identified CRL is a Delta CRL, then references to the set of CRLs to
  provide a complete revocation list shall be included.

  The OcspIdentifier is to identify the OCSP response using the issuer
  name and the time of issue of the OCSP response, which shall
  correspond to the time produced as contained in the issued OCSP
  response.  Since it may be needed to make the difference between two
  OCSP responses received within the same second, the hash of the
  response contained in the OcspResponsesID may be needed to solve the
  ambiguity.

     NOTE 1: Copies of the CRL and OCSP responses values may be held
     using the revocation-values attribute defined in Section 6.3.4.

     NOTE 2: It is recommended that this attribute be used in
     preference to the OtherRevocationInfoFormat specified in RFC 3852
     to maintain backwards compatibility with the earlier version of
     this specification.

  The syntax and semantics of other revocation references are outside
  the scope of the present document.  The definition of the syntax of
  the other form of revocation information is as identified by
  OtherRevRefType.

  This attribute may include the references to the full set of the CRL,
  ACRL, or OCSP responses that have been used to verify the
  certification chain for any TSUs that provide time-stamp tokens.  In
  this case, the unsigned attribute shall be added to the signedData of
  the relevant time-stamp token as an unsignedAttrs in the signerInfos
  field.

6.2.3.  attribute-certificate-references Attribute Definition

  This attribute is only used when a user attribute certificate is
  present in the electronic signature.

  The attribute-certificate-references attribute is an unsigned
  attribute.  It references the full set of AA certificates that have




Pinkas, et al.               Informational                     [Page 51]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  been used to validate the attribute certificate.  Only a single
  instance of this attribute shall occur with an electronic signature.

  id-aa-ets-attrCertificateRefs OBJECT IDENTIFIER ::=
  { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
  smime(16) id-aa(2) 44}

  The attribute-certificate-references attribute value has the ASN.1
  syntax AttributeCertificateRefs:

  AttributeCertificateRefs ::=  SEQUENCE OF OtherCertID

  OtherCertID is defined in Section 5.7.3.3.

     NOTE: Copies of the certificate values may be held using the
     certificate-values attribute defined in Section 6.3.3.

6.2.4.  attribute-revocation-references Attribute Definition

  This attribute is only used when a user attribute certificate is
  present in the electronic signature and when that attribute
  certificate can be revoked.

  The attribute-revocation-references attribute is an unsigned
  attribute.  Only a single instance of this attribute shall occur with
  an electronic signature.  It references the full set of the ACRL or
  OCSP responses that have been used in the validation of the attribute
  certificate.  This attribute can be used to illustrate that the
  verifier has taken due diligence of the available revocation
  information.

  The following object identifier identifies the
  attribute-revocation-references attribute:

  id-aa-ets-attrRevocationRefs OBJECT IDENTIFIER ::= { iso(1)
  member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
  id-aa(2) 45}

  The attribute-revocation-references attribute value has the ASN.1
  syntax AttributeRevocationRefs:

  AttributeRevocationRefs ::=  SEQUENCE OF CrlOcspRef

6.3.  Extended Validation Data (CAdES-X)

  This section specifies a number of optional attributes that are used
  by extended forms of electronic signatures (see Annex B for an
  overview of these forms of validation data).



Pinkas, et al.               Informational                     [Page 52]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


6.3.1.  Time-Stamped Validation Data (CAdES-X Type 1 or Type 2)

  The extended validation data may include one of the following
  additional attributes, forming a CAdES-X Time-Stamp validation data
  (CAdES-X Type 1 or CAdES-X Type 2), to provide additional protection
  against later CA compromise and provide integrity of the validation
  data used:

     - CAdES-C Time-stamp, as defined in Section 6.3.5 (CAdES-X Type
       1); or

     - Time-Stamped Certificates and CRLs references, as defined in
       Section 6.3.6 (CAdES-X Type 2).

6.3.2.  Long Validation Data (CAdES-X Long, CAdES-X Long Type 1 or 2)

  The extended validation data may also include the following
  additional information, forming a CAdES-X Long, for use if later
  validation processes may not have access to this information:

     - certificate-values, as defined in Section 6.3.3; and

     - revocation-values, as defined in Section 6.3.4.

  The extended validation data may, in addition to certificate-values
  and revocation-values as defined in Sections 6.3.3 and 6.3.4, include
  one of the following additional attributes, forming a CAdES-X Long
  Type 1 or CAdES-X Long Type 2.

     - CAdES-C Time-stamp, as defined in Section 6.3.3 (CAdES-X long
       Type 1); or

     - Time-Stamped Certificates and CRLs references, as defined in
       Section 6.3.4 (CAdES-X Long Type 2).

  The CAdES-X Long Type 1 or CAdES-X Long Type 2 provides additional
  protection against later CA compromise and provides integrity of the
  validation data used.

     NOTE 1: The CAdES-X-Long signature provides long-term proof of the
     validity of the signature for as long as the CA keys, CRL Issuers
     keys, and OCSP responder keys are not compromised and are
     resistant to cryptographic attacks.

     NOTE 2: As long as the time-stamp data remains valid, the CAdES-X
     Long Type 1 and the CAdES-X Long Type 2 provide the following
     important property for long-standing signatures; that having been
     found once to be valid, it shall continue to be so months or years



Pinkas, et al.               Informational                     [Page 53]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     later, long after the validity period of the certificates has
     expired, or after the user key has been compromised.

6.3.3.  certificate-values Attribute Definition

  This attribute may be used to contain the certificate information
  required for the following forms of extended electronic signature:
  CAdES-X Long, ES X-Long Type 1, and CAdES-X Long Type 2; see Annex
  B.1.1 for an illustration of this form of electronic signature.

  The certificate-values attribute is an unsigned attribute.  Only a
  single instance of this attribute shall occur with an electronic
  signature.  It holds the values of certificates referenced in the
  complete-certificate-references attribute.

     NOTE: If an attribute certificate is used, it is not provided in
     this structure but shall be provided by the signer as a
     signer-attributes attribute (see Section 5.11.3).

  The following object identifier identifies the certificate-values
  attribute:

  id-aa-ets-certValues OBJECT IDENTIFIER ::= { iso(1) member-body(2)
  us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 23}

  The certificate-values attribute value has the ASN.1 syntax
  CertificateValues.

  CertificateValues ::=  SEQUENCE OF Certificate

  Certificate is defined in Section 7.1. (which is as defined in ITU-T
  Recommendation X.509 [1]).

  This attribute may include the certification information for any TSUs
  that have provided the time-stamp tokens, if these certificates are
  not already included in the TSTs as part of the TSUs signatures.  In
  this case, the unsigned attribute shall be added to the signedData of
  the relevant time-stamp token.

6.3.4.  revocation-values Attribute Definition

  This attribute is used to contain the revocation information required
  for the following forms of extended electronic signature: CAdES-X
  Long, ES X-Long Type 1, and CAdES-X Long Type 2; see Annex B.1.1 for
  an illustration of this form of electronic signature.

  The revocation-values attribute is an unsigned attribute.  Only a
  single instance of this attribute shall occur with an electronic



Pinkas, et al.               Informational                     [Page 54]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  signature.  It holds the values of CRLs and OCSP referenced in the
  complete-revocation-references attribute.

     NOTE: It is recommended that this attribute be used in preference
     to the OtherRevocationInfoFormat specified in RFC 3852 to maintain
     backwards compatibility with the earlier version of this
     specification.

  The following object identifier identifies the revocation-values
  attribute:

  id-aa-ets-revocationValues OBJECT IDENTIFIER ::= { iso(1)
  member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
  smime(16) id-aa(2) 24}

  The revocation-values attribute value has the ASN.1 syntax
  RevocationValues

  RevocationValues ::=  SEQUENCE {
     crlVals          [0] SEQUENCE OF CertificateList OPTIONAL,
     ocspVals         [1] SEQUENCE OF BasicOCSPResponse OPTIONAL,
     otherRevVals     [2] OtherRevVals OPTIONAL }

  OtherRevVals ::= SEQUENCE {
     OtherRevValType   OtherRevValType,
     OtherRevVals      ANY DEFINED BY OtherRevValType }

  OtherRevValType ::= OBJECT IDENTIFIER

  The syntax and semantics of the other revocation values
  (OtherRevVals) are outside the scope of the present document.

  The definition of the syntax of the other form of revocation
  information is as identified by OtherRevRefType.

  CertificateList is defined in Section 7.2. (which is as defined in
  ITU-T Recommendation X.509 [1]).

  BasicOCSPResponse is defined in Section 7.3. (which is as defined in
  RFC 2560 [3]).

  This attribute may include the values of revocation data including
  CRLs and OCSPs for any TSUs that have provided the time-stamp tokens,
  if these certificates are not already included in the TSTs as part of
  the TSUs signatures.  In this case, the unsigned attribute shall be
  added to the signedData of the relevant time-stamp token.





Pinkas, et al.               Informational                     [Page 55]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


6.3.5.  CAdES-C-time-stamp Attribute Definition

  This attribute is used to protect against CA key compromise.

  This attribute is used for the time-stamping of the complete
  electronic signature (CAdES-C).  It is used in the following forms of
  extended electronic signature; CAdES-X Type 1 and CAdES-X Long Type
  1; see Annex B.1.2 for an illustration of this form of electronic
  signature.

  The CAdES-C-time-stamp attribute is an unsigned attribute.  It is a
  time-stamp token of the hash of the electronic signature and the
  complete validation data (CAdES-C).  It is a special-purpose
  TimeStampToken Attribute that time-stamps the CAdES-C.  Several
  instances of this attribute may occur with an electronic signature
  from different TSAs.

     NOTE 1: It is recommended that the attributes being time-stamped
     be encoded in DER.  If DER is not employed, then the binary
     encoding of the ASN.1 structures being time-stamped should be
     preserved to ensure that the recalculation of the data hash is
     consistent.

     NOTE 2: Each attribute is included in the hash with the attrType
     and attrValues (including type and length) but without the type
     and length of the outer SEQUENCE.

  The following object identifier identifies the CAdES-C-Timestamp
  attribute:

  id-aa-ets-escTimeStamp OBJECT IDENTIFIER ::= { iso(1) member-body(2)
  us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 25}

  The CAdES-C-timestamp attribute value has the ASN.1 syntax
  ESCTimeStampToken :

  ESCTimeStampToken ::= TimeStampToken

  The value of the messageImprint field within TimeStampToken shall be
  a hash of the concatenated values (without the type or length
  encoding for that value) of the following data objects:

     - OCTETSTRING of the SignatureValue field within SignerInfo;

     - signature-time-stamp, or a time-mark operated by a Time-Marking
       Authority;

     - complete-certificate-references attribute; and



Pinkas, et al.               Informational                     [Page 56]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - complete-revocation-references attribute.

  For further information and definition of the TimeStampToken, see
  Section 7.4.

6.3.6.  time-stamped-certs-crls-references Attribute Definition

  This attribute is used to protect against CA key compromise.  This
  attribute is used for the time-stamping certificate and revocation
  references.  It is used in the following forms of extended electronic
  signature: CAdES-X Type 2 and CAdES-X Long Type 2; see Annex B.1.3
  for an illustration of this form of electronic signature.

  A time-stamped-certs-crls-references attribute is an unsigned
  attribute.  It is a time-stamp token issued for a list of referenced
  certificates and OCSP responses and/or CRLs to protect against
  certain CA compromises.  Its syntax is as follows:

     NOTE 1: It is recommended that the attributes being time-stamped
     be encoded in DER.  If DER is not employed, then the binary
     encoding of the ASN.1 structures being time-stamped should be
     preserved to ensure that the recalculation of the data hash is
     consistent.

     NOTE 2: Each attribute is included in the hash with the attrType
     and attrValues (including type and length) but without the type
     and length of the outer SEQUENCE.

  The following object identifier identifies the
  time-stamped-certs-crls-references attribute:

  id-aa-ets-certCRLTimestamp OBJECT IDENTIFIER ::=
  { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
  smime(16) id-aa(2) 26}

  The attribute value has the ASN.1 syntax TimestampedCertsCRLs:

  TimestampedCertsCRLs ::= TimeStampToken

  The value of the messageImprint field within the TimeStampToken shall
  be a hash of the concatenated values (without the type or length
  encoding for that value) of the following data objects, as present in
  the ES with Complete validation data (CAdES-C):

     - complete-certificate-references attribute; and

     - complete-revocation-references attribute.




Pinkas, et al.               Informational                     [Page 57]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


6.4.  Archive Validation Data

  Where an electronic signature is required to last for a very long
  time, and the time-stamp token on an electronic signature is in
  danger of being invalidated due to algorithm weakness or limits in
  the validity period of the TSA certificate, it may be required to
  time-stamp the electronic signature several times.  When this is
  required, an archive time-stamp attribute may be required for the
  archive form of the electronic signature (CAdES-A).  This archive
  time-stamp attribute may be repeatedly applied over a period of time.

6.4.1.  archive-time-stamp Attribute Definition

  The archive-time-stamp attribute is a time-stamp token of many of the
  elements of the signedData in the electronic signature.  If the
  certificate-values and revocation-values attributes are not present
  in the CAdES-BES or CAdES-EPES, then they shall be added to the
  electronic signature prior to computing the archive time-stamp token.

  The archive-time-stamp attribute is an unsigned attribute.  Several
  instances of this attribute may occur with an electronic signature
  both over time and from different TSUs.

  The following object identifier identifies the nested
  archive-time-stamp attribute:

  id-aa-ets-archiveTimestampV2  OBJECT IDENTIFIER ::=
  { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
  smime(16) id-aa(2) 48}

  Archive-time-stamp attribute values have the ASN.1 syntax
  ArchiveTimeStampToken

  ArchiveTimeStampToken ::= TimeStampToken

  The value of the messageImprint field within TimeStampToken shall be
  a hash of the concatenation of:

     - the encapContentInfo element of the SignedData sequence;

     - any external content being protected by the signature, if the
       eContent element of the encapContentInfo is omitted;

     - the Certificates and crls elements of the SignedData sequence,
       when present, and;

     - all data elements in the SignerInfo sequence including all
       signed and unsigned attributes.



Pinkas, et al.               Informational                     [Page 58]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     NOTE 1: An alternative archiveTimestamp attribute, identified by
     an object identifier { iso(1) member-body(2) us(840)
     rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 27, is defined
     in prior versions of TS 101 733 [TS101733] and in RFC 3126.

     The archiveTimestamp attribute, defined in versions of TS 101 733
     prior to 1.5.1 and in RFC 3126, is not compatible with the
     attribute defined in the current document.  The archiveTimestamp
     attribute, defined in versions 1.5.1 to 1.6.3 of TS 101 733, is
     compatible with the current document if the content is internal to
     encapContentInfo.  Unless the version of TS 101 733 employed by
     the signing party is known by all recipients, use of the
     archiveTimestamp attribute defined in prior versions of TS 101 733
     is deprecated.

     NOTE 2: Counter signatures held as countersignature attributes do
     not require independent archive time-stamps, as they are protected
     by the archive time-stamp against the containing SignedData
     structure.

     NOTE 3: Unless DER is used throughout, it is recommended that the
     binary encoding of the ASN.1 structures being time-stamped be
     preserved when being archived to ensure that the recalculation of
     the data hash is consistent.

     NOTE 4: The hash is calculated over the concatenated data elements
     as received/stored, including the Type and Length encoding.

     NOTE 5: Whilst it is recommended that unsigned attributes be DER
     encoded, it cannot generally be so guaranteed except by prior
     arrangement.  For further information and definition of
     TimeStampToken, see Section 7.4.  The timestamp should be created
     using stronger algorithms (or longer key lengths) than in the
     original electronic signatures and weak algorithm (key length)
     timestamps.

     NOTE 6: This form of ES also provides protection against a TSP key
     compromise.

  The ArchiveTimeStamp will be added as an unsigned attribute in the
  SignerInfo sequence.  For the validation of one ArchiveTimeStamp, the
  data elements of the SignerInfo must be concatenated, excluding all
  later ArchivTimeStampToken attributes.

  Certificates and revocation information required to validate the
  ArchiveTimeStamp shall be provided by one of the following methods:





Pinkas, et al.               Informational                     [Page 59]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - The TSU provides the information in the SignedData of the
       timestamp token;

     - Adding the complete-certificate-references attribute and the
       complete-revocation-references attribute of the TSP as an
       unsigned attribute within TimeStampToken, when the required
       information is stored elsewhere; or

     - Adding the certificate-values attribute and the
       revocation-values attribute of the TSP as an unsigned attribute
       within TimeStampToken, when the required information is stored
       elsewhere.

7.  Other Standard Data Structures

7.1.  Public Key Certificate Format

  The X.509 v3 certificate basis syntax is defined in ITU-T
  Recommendation X.509 [1].  A profile of the X.509 v3 certificate is
  defined in RFC 3280 [2].

7.2.  Certificate Revocation List Format

  The X.509 v2 CRL syntax is defined in ITU-T Recommendation X.509 [1].
  A profile of the X.509 v2 CRL is defined in RFC 3280 [2].

7.3.  OCSP Response Format

  The format of an OCSP token is defined in RFC 2560 [3].

7.4.  Time-Stamp Token Format

  The format of a TimeStampToken type is defined in RFC 3161 [7] and
  profiled in ETSI TS 101 861 [TS101861].

7.5.  Name and Attribute Formats

  The syntax of the naming and other attributes is defined in ITU-T
  Recommendation X.509 [1].

     NOTE: The name used by the signer, held as the subject in the
     signer's certificate, is allocated and verified on registration
     with the Certification Authority, either directly or indirectly
     through a Registration Authority, before being issued with a
     Certificate.






Pinkas, et al.               Informational                     [Page 60]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  The present document places no restrictions on the form of the name.
  The subject's name may be a distinguished name, as defined in ITU-T
  Recommendation X.500 [12], held in the subject field of the
  certificate, or any other name form held in the subjectAltName
  certificate extension field, as defined in ITU-T Recommendation X.509
  [1].  In the case that the subject has no distinguished name, the
  subject name can be an empty sequence and the subjectAltName
  extension shall be critical.

  All Certification Authorities, Attribute Authorities, and
  Time-Stamping Authorities shall use distinguished names in the
  subject field of their certificate.

  The distinguished name shall include identifiers for the organization
  providing the service and the legal jurisdiction (e.g., country)
  under which it operates.

  Where a signer signs as an individual, but wishes to also identify
  him/herself as acting on behalf of an organization, it may be
  necessary to provide two independent forms of identification.  The
  first identity, which is directly associated with the signing key,
  identifies him/her as an individual.  The second, which is managed
  independently, identifies that person acting as part of the
  organization, possibly with a given role.  In this case, one of the
  two identities is carried in the subject/subjectAltName field of the
  signer's certificate as described above.

  The present document does not specify the format of the signer's
  attribute that may be included in public key certificates.

     NOTE: The signer's attribute may be supported by using a claimed
     role in the CMS signed attributes field or by placing an attribute
     certificate containing a certified role in the CMS signed
     attributes field; see Section 7.6.

7.6.  AttributeCertificate

  The syntax of the AttributeCertificate type is defined in RFC 3281
  [13].

8.  Conformance Requirements

  For implementations supporting signature generation, the present
  document defines conformance requirements for the generation of two
  forms of basic electronic signature, one of the two forms must be
  implemented.





Pinkas, et al.               Informational                     [Page 61]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  For implementations supporting signature verification, the present
  document defines conformance requirements for the verification of two
  forms of basic electronic signature, one of the two forms must be
  implemented.

  The present document only defines conformance requirements up to an
  ES with Complete validation data (CAdES-C).  This means that none of
  the extended and archive forms of the electronic signature (CAdES-X,
  CAdES-A) need to be implemented to get conformance to the present
  document.

  On verification the inclusion of optional signed and unsigned
  attributes must be supported only to the extent that the signature is
  verifiable.  The semantics of optional attributes may be unsupported,
  unless specified otherwise by a signature policy.

8.1.  CAdES-Basic Electronic Signature (CAdES-BES)

  A system supporting CAdES-BES signers, according to the present
  document, shall, at a minimum, support generation of an electronic
  signature consisting of the following components:

     - The general CMS syntax and content type, as defined in RFC 3852
       [4] (see Sections 5.1 and 5.2);

     - CMS SignedData, as defined in RFC 3852 [4], with the version set
       to 3 and at least one SignerInfo present (see Sections 5.3 to
       5.6);

        - The following CMS attributes, as defined in RFC 3852 [4]:

        - content-type; this shall always be present (see Section
          5.7.1); and

        - message-digest; this shall always be present (see Section
          5.7.2).

     - One of the following attributes, as defined in the present
       document:

        - signing-certificate: as defined in Section 5.7.3.1; or
        - signing-certificate v2 : as defined in Section 5.7.3.2.

     NOTE: RFC 3126 was using the other signing-certificate attribute
     (see Section 5.7.3.3).  Its use is now deprecated, since the
     structure of the signing-certificate v2 attribute is simpler than
     the other signing-certificate attribute.




Pinkas, et al.               Informational                     [Page 62]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


8.2.  CAdES-Explicit Policy-based Electronic Signature

  A system supporting Policy-based signers, according to the present
  document, shall, at a minimum, support the generation of an
  electronic signature consisting of the previous components defined
  for the basic signer, plus:

     - The following attributes, as defined in Section 5.9:

        - signature-policy-identifier; this shall always be present
          (see Section 5.8.1).

8.3.  Verification Using Time-Stamping

  A system supporting verifiers, according to the present document,
  with time-stamping facilities shall, at a minimum, support:

     - verification of the mandated components of an electronic
       signature, as defined in Section 8.1;

     - signature-time-stamp attribute, as defined in Section 6.1.1;

     - complete-certificate-references attribute, as defined in Section
       6.2.1;

     - complete-revocation-references attribute, as defined in Section
       6.2.2;

     - Public Key Certificates, as defined in ITU-T Recommendation
       X.509 [1] (see Section 8.1); and

     - either of:

        - Certificate Revocation Lists, as defined in ITU-T
          Recommendation X.509 [1] (see Section 8.2); or

        - Online Certificate Status Protocol, as defined in RFC 2560
          [3] (see Section 8.3).

8.4.  Verification Using Secure Records

  A system supporting verifiers, according to the present document,
  shall, at a minimum, support:

     - verification of the mandated components of an electronic
       signature, as defined in Section 8.1;





Pinkas, et al.               Informational                     [Page 63]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - complete-certificate-references attribute, as defined in Section
       6.2.1;

     - complete-revocation-references attribute, as defined in Section
       6.2.2;

     - a record of the electronic signature and the time when the
       signature was first validated, using the referenced certificates
       and revocation information, must be maintained, such that
       records cannot be undetectably modified;

     - Public Key Certificates, as defined in ITU-T Recommendation
       X.509 [1] (see Section 8.1); and

        - either of:

           - Certificate Revocation Lists, as defined in ITU-T
             Recommendation X.509 [1] (see Section 8.2); or

           - online Certificate Status Protocol, as defined in RFC 2560
             [3] (see Section 8.3).

9.  References

9.1.  Normative References

  [1]    ITU-T Recommendation X.509 (2000)/ISO/IEC 9594-8 (2001):
         "Information technology - Open Systems Interconnection - The
         Directory: Public key and Attribute Certificate framework".

  [2]    Housley, R., Polk, W., Ford, W., and D. Solo, "Internet X.509
         Public Key Infrastructure Certificate and Certificate
         Revocation List (CRL) Profile", RFC 3280, April 2002.

  [3]    Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
         Adams, "X.509 Internet Public Key Infrastructure Online
         Certificate Status Protocol - OCSP", RFC 2560, June 1999.

  [4]    Housley, R., "Cryptographic Message Syntax (CMS)", RFC 3852,
         July 2004.

  [5]    Hoffman, P., Ed., "Enhanced Security Services for S/MIME", RFC
         2634, June 1999.

  [6]    Freed, N. and N. Borenstein, "Multipurpose Internet Mail
         Extensions (MIME) Part One: Format of Internet Message
         Bodies", RFC 2045, November 1996.




Pinkas, et al.               Informational                     [Page 64]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  [7]    Adams, C., Cain, P., Pinkas, D., and R. Zuccherato, "Internet
         X.509 Public Key Infrastructure Time-Stamp Protocol (TSP)",
         RFC 3161, August 2001.

  [8]    ITU-T Recommendation X.680 (1997): "Information technology -
         Abstract Syntax Notation One (ASN.1): Specification of basic
         notation".

  [9]    ITU-T Recommendation X.501 (2000)/ISO/IEC 9594-1 (2001):
         "Information technology - Open Systems Interconnection -
         Directory models".

  [10]   Housley, R., "Cryptographic Message Syntax (CMS) Algorithms",
         RFC 3370, August 2002.

  [11]   ITU-T Recommendation F.1: "Operational provisions for the
         international public telegram service".

  [12]   ITU-T Recommendation X.500: "Information technology - Open
         Systems Interconnection - The Directory: Overview of concepts,
         models and services".

  [13]   Farrell, S. and R. Housley, "An Internet Attribute Certificate
         Profile for Authorization", RFC 3281, April 2002.

  [14]   ITU-T Recommendation X.208 (1988): "Specification of Abstract
         Syntax Notation One (ASN.1)".

  [15]   Schaad, J., "Enhanced Security Services (ESS) Update: Adding
         CertID Algorithm Agility", RFC 5035, August 2007.

  [16]   ITU-T Recommendation X.690 (2002): "Information technology
         ASN.1 encoding rules: Specification of Basic Encoding Rules
         (BER), Canonical Encoding Rules (CER) and Distinguished
         Encoding Rules (DER)".

9.2.  Informative References

  [EUDirective]  Directive 1999/93/EC of the European Parliament and of
                 the Council of 13 December 1999 on a community
                 framework for Electronic Signatures.

  [TS101733]     ETSI Standard TS 101 733 V.1.7.3 (2005-06) Electronic
                 Signature Formats.

  [TS101861]     ETSI TS 101 861: "Time stamping profile".





Pinkas, et al.               Informational                     [Page 65]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  [TS101903]     ETSI TS 101 903: "XML Advanced Electronic Signatures
                 (XAdES)".

  [TR102038]     ETSI TR 102 038: "Electronic Signatures and
                 Infrastructures (ESI); XML format for signature
                 policies".

  [TR102272]     ETSI TR 102 272 V1.1.1 (2003-12). "Electronic
                 Signatures and Infrastructures (ESI); ASN.1 format for
                 signature policies".

  [RFC2479]      Adams, C., "Independent Data Unit Protection Generic
                 Security Service Application Program Interface (IDUP-
                 GSS-API)", RFC 2479, December 1998.

  [RFC2743]      Linn, J., "Generic Security Service Application
                 Program Interface Version 2, Update 1", RFC 2743,
                 January 2000.

  [RFC3125]      Ross, J., Pinkas, D., and N. Pope, "Electronic
                 Signature Policies", RFC 3125, September 2001.

  [RFC3447]      Jonsson, J. and B. Kaliski, "Public-Key Cryptography
                 Standards (PKCS) #1: RSA Cryptography Specifications
                 Version 2.1", RFC 3447, February 2003.

  [RFC3494]      Zeilenga, K., "Lightweight Directory Access Protocol
                 version 2 (LDAPv2) to Historic Status", RFC 3494,
                 March 2003.

  [RFC3851]      Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
                 Extensions (S/MIME) Version 3.1 Message
                 Specification", RFC 3851, July 2004.

  [RFC4210]      Adams, C., Farrell, S., Kause, T., and T. Mononen,
                 "Internet X.509 Public Key Infrastructure Certificate
                 Management Protocol (CMP)", RFC 4210, September 2005.

  [RFC4346]      Dierks, T. and E. Rescorla, "The Transport Layer
                 Security (TLS) Protocol Version 1.1", RFC 4346, April
                 2006.

  [RFC4523]      Zeilenga, K., "Lightweight Directory Access Protocol
                 (LDAP) Schema Definitions for X.509 Certificates", RFC
                 4523, June 2006.






Pinkas, et al.               Informational                     [Page 66]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  [ISO7498-2]    ISO 7498-2 (1989): "Information processing systems -
                 Open Systems Interconnection - Basic Reference Model -
                 Part 2: Security Architecture".

  [ISO9796-2]    ISO/IEC 9796-2 (2002): "Information technology -
                 Security techniques - Digital signature schemes giving
                 message recovery - Part 2: Integer factorization based
                 mechanisms".

  [ISO9796-4]    ISO/IEC 9796-4 (1998): "Digital signature schemes
                 giving message recovery - Part 4: Discrete logarithm
                 based mechanisms".

  [ISO10118-1]   ISO/IEC 10118-1 (2000): "Information technology -
                 Security techniques - Hash-functions - Part 1:
                 General".

  [ISO10118-2]   ISO/IEC 10118-2 (2000): "Information technology -
                 Security techniques - Hash-functions - Part 2:
                 Hash-functions using an n-bit block cipher algorithm".

  [ISO10118-3]   ISO/IEC 10118-3 (2004): "Information technology -
                 Security techniques - Hash-functions - Part 3:
                 Dedicated hash-functions".

  [ISO10118-4]   ISO/IEC 10118-4 (1998): "Information technology -
                 Security techniques - Hash-functions - Part 4: Hash-
                 functions using modular arithmetic".

  [ISO10181-5]   ISO/IEC 10181-5:  Security Frameworks in Open Systems.
                 Non-Repudiation Framework.  April 1997.

  [ISO13888-1]   ISO/IEC 13888-1 (2004): "IT security techniques -
                 Non-repudiation - Part 1: General".

  [ISO14888-1]   ISO/IEC 14888-1 (1998): "Information technology -
                 Security techniques - Digital signatures with appendix
                 - Part 1: General".

  [ISO14888-2]   ISO/IEC 14888-2 (1999): "Information technology -
                 Security techniques - Digital signatures with appendix
                 - Part 2: Identity-based mechanisms".

  [ISO14888-3]   ISO/IEC 14888-3 (1998): "Information technology -
                 Security techniques - Digital signatures with appendix
                 - Part 3: Certificate-based mechanisms".





Pinkas, et al.               Informational                     [Page 67]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  [ISO15946-2]   ISO/IEC 15946-2 (2002): "Information technology -
                 Security techniques - Cryptographic techniques based
                 on elliptic curves - Part 2: Digital signatures".

  [CWA14171]     CWA 14171 CEN Workshop Agreement: "General Guidelines
                 for Electronic Signature Verification".

  [XMLDSIG]      XMLDSIG: W3C/IETF Recommendation (February 2002):
                 "XML-Signature Syntax and Processing".

  [X9.30-1]      ANSI X9.30-1 (1997): "Public Key Cryptography for the
                 Financial Services Industry - Part 1: The Digital
                 Signature Algorithm (DSA)".

  [X9.30-2]      ANSI X9.30-2 (1997): "Public Key Cryptography for the
                 Financial Services Industry - Part 2: The Secure Hash
                 Algorithm (SHA-1)".

  [X9.31-1]      ANSI X9.31-1 (1997): "Public Key Cryptography Using
                 Reversible Algorithms for the Financial Services
                 Industry - Part 1: The RSA Signature Algorithm".

  [X9.31-2]      ANSI X9.31-2 (1996): "Public Key Cryptography Using
                 Reversible Algorithms for the Financial Services
                 Industry - Part 2: Hash Algorithms".

  [X9.62]        ANSI X9.62 (1998): "Public Key Cryptography for the
                 Financial Services Industry - The Elliptic Curve
                 Digital Signature Algorithm (ECDSA)".

  [P1363]        IEEE P1363 (2000): "Standard Specifications for
                 Public-Key Cryptography".

  ETSI technical specifications can be downloaded free of charge via
  the Services and Products Download Area at:
  http://www.etsi.org/WebSite/Standards/StandardsDownload.aspx















Pinkas, et al.               Informational                     [Page 68]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


Annex A (Normative): ASN.1 Definitions

  This annex provides a summary of all the ASN.1 syntax definitions for
  new syntax defined in the present document.

A.1.  Signature Format Definitions Using X.208 ASN.1 Syntax

     NOTE: The ASN.1 module defined in Annex A.1 using syntax defined
     in ITU-T Recommendation X.208 [14] has precedence over that
     defined in Annex A.2 in the case of any conflict.

ETS-ElectronicSignatureFormats-ExplicitSyntax88 { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-mod(0)
eSignature-explicit88(28)}

DEFINITIONS EXPLICIT TAGS ::=

BEGIN

-- EXPORTS All

IMPORTS

-- Cryptographic Message Syntax (CMS): RFC 3852

  ContentInfo, ContentType, id-data, id-signedData, SignedData,
  EncapsulatedContentInfo, SignerInfo, id-contentType,
  id-messageDigest, MessageDigest, id-signingTime, SigningTime,
  id-countersignature, Countersignature
     FROM CryptographicMessageSyntax2004
     { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) modules(0) cms-2004(24) }

-- ESS Defined attributes: ESS Update
-- RFC 5035 (Adding CertID Algorithm Agility)

  id-aa-signingCertificate, SigningCertificate, IssuerSerial,
  id-aa-contentReference, ContentReference, id-aa-contentIdentifier,
  ContentIdentifier, id-aa-signingCertificateV2
     FROM ExtendedSecurityServices-2006
       { iso(1) member-body(2) us(840) rsadsi(113549)
         pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-ess-2006(30) }

-- Internet X.509 Public Key Infrastructure - Certificate and CRL
-- Profile: RFC 3280

  Certificate, AlgorithmIdentifier, CertificateList, Name,
  DirectoryString, Attribute, BMPString, UTF8String



Pinkas, et al.               Informational                     [Page 69]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     FROM PKIX1Explicit88
     {iso(1) identified-organization(3) dod(6) internet(1)
     security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit(18)}

  GeneralNames, GeneralName, PolicyInformation
     FROM PKIX1Implicit88
     {iso(1) identified-organization(3) dod(6) internet(1) security(5)
      mechanisms(5) pkix(7) id-mod(0) id-pkix1-implicit (19)}

-- Internet Attribute Certificate Profile for Authorization - RFC 3281

  AttributeCertificate
     FROM PKIXAttributeCertificate {iso(1) identified-organization(3)
               dod(6) internet(1) security(5) mechanisms(5) pkix(7)
               id-mod(0) id-mod-attribute-cert(12)}

-- OCSP - RFC 2560

  BasicOCSPResponse, ResponderID
     FROM OCSP {iso(1) identified-organization(3) dod(6) internet(1)
     security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-ocsp(14)}

-- Time Stamp Protocol RFC 3161

  TimeStampToken
     FROM PKIXTSP
     {iso(1) identified-organization(3) dod(6) internet(1) security(5)
     mechanisms(5) pkix(7) id-mod(0) id-mod-tsp(13)}

;


-- Definitions of Object Identifier arcs used in the present document
-- ==================================================================

-- OID used referencing electronic signature mechanisms based on
-- the present document for use with the Independent Data Unit
-- Protection (IDUP) API (see Annex D)

  id-etsi-es-IDUP-Mechanism-v1 OBJECT IDENTIFIER ::=
  { itu-t(0) identified-organization(4) etsi(0)
    electronic-signature-standard (1733) part1 (1) idupMechanism (4)
    etsiESv1(1) }


-- Basic ES CMS Attributes Defined in the present document
-- =======================================================




Pinkas, et al.               Informational                     [Page 70]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


-- OtherSigningCertificate - deprecated

   id-aa-ets-otherSigCert OBJECT IDENTIFIER ::=
   { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
   smime(16) id-aa(2) 19 }

  OtherSigningCertificate ::=  SEQUENCE {
     certs        SEQUENCE OF OtherCertID,
     policies     SEQUENCE OF PolicyInformation OPTIONAL
                  -- NOT USED IN THE PRESENT DOCUMENT
  }

  OtherCertID ::= SEQUENCE {
     otherCertHash            OtherHash,
     issuerSerial             IssuerSerial OPTIONAL }

  OtherHash ::= CHOICE {
      sha1Hash     OtherHashValue,
      -- This contains a SHA-1 hash
      otherHash    OtherHashAlgAndValue}


-- Policy ES Attributes Defined in the present document
-- ====================================================

-- Mandatory Basic Electronic Signature Attributes as above,
-- plus in addition.

-- Signature-policy-identifier attribute

  id-aa-ets-sigPolicyId OBJECT IDENTIFIER ::=
  { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
  smime(16) id-aa(2) 15 }

  SignaturePolicy ::= CHOICE {
     signaturePolicyId          SignaturePolicyId,
     signaturePolicyImplied     SignaturePolicyImplied
                                --  not used in this version
  }

  SignaturePolicyId ::= SEQUENCE {
     sigPolicyId        SigPolicyId,
     sigPolicyHash      SigPolicyHash,
     sigPolicyQualifiers   SEQUENCE SIZE (1..MAX) OF
                                  SigPolicyQualifierInfo OPTIONAL
  }

  SignaturePolicyImplied ::= NULL



Pinkas, et al.               Informational                     [Page 71]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  SigPolicyId ::= OBJECT IDENTIFIER

  SigPolicyHash ::= OtherHashAlgAndValue

  OtherHashAlgAndValue ::= SEQUENCE {
     hashAlgorithm   AlgorithmIdentifier,
     hashValue       OtherHashValue }

  OtherHashValue ::= OCTET STRING

  SigPolicyQualifierInfo ::= SEQUENCE {
     sigPolicyQualifierId  SigPolicyQualifierId,
     sigQualifier          ANY DEFINED BY sigPolicyQualifierId }

  SigPolicyQualifierId ::=   OBJECT IDENTIFIER

  id-spq-ets-uri OBJECT IDENTIFIER ::=
  { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
  smime(16) id-spq(5) 1 }

  SPuri ::= IA5String

  id-spq-ets-unotice OBJECT IDENTIFIER ::=
  { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
  smime(16) id-spq(5) 2 }

  SPUserNotice ::= SEQUENCE {
      noticeRef        NoticeReference OPTIONAL,
      explicitText     DisplayText OPTIONAL}

  NoticeReference ::= SEQUENCE {
     organization     DisplayText,
     noticeNumbers    SEQUENCE OF INTEGER }

  DisplayText ::= CHOICE {
     visibleString    VisibleString  (SIZE (1..200)),
     bmpString        BMPString      (SIZE (1..200)),

     utf8String       UTF8String     (SIZE (1..200)) }

-- Optional Electronic Signature Attributes

-- Commitment-type attribute

id-aa-ets-commitmentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 16}

  CommitmentTypeIndication ::= SEQUENCE {



Pinkas, et al.               Informational                     [Page 72]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


    commitmentTypeId CommitmentTypeIdentifier,
    commitmentTypeQualifier SEQUENCE SIZE (1..MAX) OF
           CommitmentTypeQualifier OPTIONAL}

  CommitmentTypeIdentifier ::= OBJECT IDENTIFIER

  CommitmentTypeQualifier ::= SEQUENCE {
     commitmentTypeIdentifier CommitmentTypeIdentifier,
     qualifier   ANY DEFINED BY commitmentTypeIdentifier }

id-cti-ets-proofOfOrigin OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) cti(6) 1}

id-cti-ets-proofOfReceipt OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) cti(6) 2}

id-cti-ets-proofOfDelivery OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) cti(6) 3}

id-cti-ets-proofOfSender OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) cti(6) 4}

id-cti-ets-proofOfApproval OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) cti(6) 5}

id-cti-ets-proofOfCreation OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) cti(6) 6}

-- Signer-location attribute

id-aa-ets-signerLocation OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 17}

  SignerLocation ::= SEQUENCE {
      -- at least one of the following shall be present
      countryName    [0]   DirectoryString OPTIONAL,
         -- As used to name a Country in X.500
      localityName   [1]   DirectoryString OPTIONAL,
          -- As used to name a locality in X.500
      postalAdddress [2]   PostalAddress OPTIONAL }

  PostalAddress ::= SEQUENCE SIZE(1..6) OF DirectoryString

-- Signer-attributes attribute




Pinkas, et al.               Informational                     [Page 73]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


id-aa-ets-signerAttr OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 18}

  SignerAttribute ::= SEQUENCE OF CHOICE {
     claimedAttributes   [0] ClaimedAttributes,
     certifiedAttributes [1] CertifiedAttributes }

  ClaimedAttributes ::= SEQUENCE OF Attribute

  CertifiedAttributes ::= AttributeCertificate
  -- as defined in RFC 3281: see Section 4.1

-- Content-time-stamp attribute

id-aa-ets-contentTimestamp OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 20}

  ContentTimestamp ::= TimeStampToken

-- Signature-time-stamp attribute

id-aa-signatureTimeStampToken OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 14}

SignatureTimeStampToken ::= TimeStampToken

-- Complete-certificate-references attribute

id-aa-ets-certificateRefs OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 21}

CompleteCertificateRefs ::=  SEQUENCE OF OtherCertID

-- Complete-revocation-references attribute

id-aa-ets-revocationRefs OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 22}

  CompleteRevocationRefs ::=  SEQUENCE OF CrlOcspRef

  CrlOcspRef ::= SEQUENCE {
     crlids          [0] CRLListID   OPTIONAL,
     ocspids         [1] OcspListID  OPTIONAL,
     otherRev        [2] OtherRevRefs OPTIONAL
  }




Pinkas, et al.               Informational                     [Page 74]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  CRLListID ::=  SEQUENCE {
     crls        SEQUENCE OF CrlValidatedID}

  CrlValidatedID ::=  SEQUENCE {
     crlHash                   OtherHash,
     crlIdentifier             CrlIdentifier OPTIONAL}

  CrlIdentifier ::= SEQUENCE {
     crlissuer                 Name,
     crlIssuedTime             UTCTime,
     crlNumber                 INTEGER OPTIONAL }

  OcspListID ::=  SEQUENCE {
      ocspResponses        SEQUENCE OF OcspResponsesID}

  OcspResponsesID ::=  SEQUENCE {
      ocspIdentifier              OcspIdentifier,
      ocspRepHash                 OtherHash    OPTIONAL
  }

  OcspIdentifier ::= SEQUENCE {
     ocspResponderID      ResponderID,
     -- As in OCSP response data
     producedAt           GeneralizedTime
     -- As in OCSP response data
  }

  OtherRevRefs ::= SEQUENCE {
      otherRevRefType   OtherRevRefType,
      otherRevRefs      ANY DEFINED BY otherRevRefType
   }

  OtherRevRefType ::= OBJECT IDENTIFIER

-- Certificate-values attribute

id-aa-ets-certValues OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 23}

  CertificateValues ::=  SEQUENCE OF Certificate

-- Certificate-revocation-values attribute

id-aa-ets-revocationValues OBJECT IDENTIFIER ::= { iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 24}

  RevocationValues ::=  SEQUENCE {



Pinkas, et al.               Informational                     [Page 75]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     crlVals           [0] SEQUENCE OF CertificateList OPTIONAL,
     ocspVals          [1] SEQUENCE OF BasicOCSPResponse OPTIONAL,
     otherRevVals      [2] OtherRevVals OPTIONAL}

  OtherRevVals ::= SEQUENCE {
      otherRevValType   OtherRevValType,
      otherRevVals      ANY DEFINED BY otherRevValType
  }

  OtherRevValType ::= OBJECT IDENTIFIER

-- CAdES-C time-stamp attribute

id-aa-ets-escTimeStamp OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 25}

ESCTimeStampToken ::= TimeStampToken

-- Time-Stamped Certificates and CRLs

id-aa-ets-certCRLTimestamp OBJECT IDENTIFIER ::= { iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 26}

TimestampedCertsCRLs ::= TimeStampToken

-- Archive time-stamp attribute
id-aa-ets-archiveTimestampV2  OBJECT IDENTIFIER ::= { iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 48}

ArchiveTimeStampToken ::= TimeStampToken

-- Attribute-certificate-references attribute

id-aa-ets-attrCertificateRefs OBJECT IDENTIFIER ::= { iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 44}

AttributeCertificateRefs ::=  SEQUENCE OF OtherCertID

-- Attribute-revocation-references attribute

id-aa-ets-attrRevocationRefs OBJECT IDENTIFIER ::= { iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 45}

AttributeRevocationRefs ::=  SEQUENCE OF CrlOcspRef



Pinkas, et al.               Informational                     [Page 76]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


END

A.2.  Signature Format Definitions Using X.680 ASN.1 Syntax

     NOTE: The ASN.1 module defined in Annex A.1 has precedence over
     that defined in Annex A.2 using syntax defined in ITU-T
     Recommendation X.680 (1997) [8] in the case of any conflict.

ETS-ElectronicSignatureFormats-ExplicitSyntax97 { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-mod(0)
eSignature-explicit97(29)}

DEFINITIONS EXPLICIT TAGS ::=

BEGIN

-- EXPORTS All -

IMPORTS

-- Cryptographic Message Syntax (CMS): RFC 3852

  ContentInfo, ContentType, id-data, id-signedData, SignedData,
  EncapsulatedContentInfo, SignerInfo,
  id-contentType, id-messageDigest, MessageDigest, id-signingTime,
  SigningTime, id-countersignature, Countersignature
     FROM CryptographicMessageSyntax2004
     { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
      smime(16) modules(0) cms-2004(24) }

-- ESS Defined attributes: ESS Update
-- RFC 5035 (Adding CertID Algorithm Agility)

  id-aa-signingCertificate, SigningCertificate, IssuerSerial,
  id-aa-contentReference, ContentReference, id-aa-contentIdentifier,
  ContentIdentifier, id-aa-signingCertificateV2
     FROM ExtendedSecurityServices-2006
       { iso(1) member-body(2) us(840) rsadsi(113549)
         pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-ess-2006(30) }

-- Internet X.509 Public Key Infrastructure
-- Certificate and CRL Profile: RFC 3280

  Certificate, AlgorithmIdentifier, CertificateList, Name,
  Attribute

     FROM PKIX1Explicit88
     {iso(1) identified-organization(3) dod(6) internet(1)



Pinkas, et al.               Informational                     [Page 77]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     security(5) mechanisms(5) pkix(7) id-mod(0)
     id-pkix1-explicit(18)}

  GeneralNames, GeneralName, PolicyInformation
     FROM PKIX1Implicit88 {iso(1) identified-organization(3) dod(6)
     internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
     id-pkix1-implicit(19)}

-- Internet Attribute Certificate Profile for Authorization - RFC 3281

  AttributeCertificate
     FROM PKIXAttributeCertificate {iso(1) identified-organization(3)
     dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
     id-mod-attribute-cert(12)}

-- OCSP RFC 2560

  BasicOCSPResponse, ResponderID
     FROM OCSP {iso(1) identified-organization(3) dod(6) internet(1)
     security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-ocsp(14)}

-- RFC 3161 Internet X.509 Public Key Infrastructure
-- Time-Stamp Protocol

  TimeStampToken
     FROM PKIXTSP {iso(1) identified-organization(3) dod(6) internet(1)
     security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-tsp(13)}

-- X.520

   DirectoryString {}
       FROM SelectedAttributeTypes
        {joint-iso-itu-t ds(5) module(1) selectedAttributeTypes(5) 4}

;

-- Definitions of Object Identifier arcs used in the present document
-- ==================================================================

-- OID used referencing electronic signature mechanisms based
-- on the present document for use with the IDUP API (see Annex D)

id-etsi-es-IDUP-Mechanism-v1 OBJECT IDENTIFIER ::=
{ itu-t(0) identified-organization(4) etsi(0)
electronic-signature-standard (1733) part1 (1) idupMechanism (4)
etsiESv1(1) }





Pinkas, et al.               Informational                     [Page 78]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


-- Basic ES Attributes Defined in the present document
-- ===================================================

-- CMS Attributes defined in the present document

-- OtherSigningCertificate - deprecated

id-aa-ets-otherSigCert OBJECT IDENTIFIER ::= { iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
smime(16) id-aa(2) 19 }


  OtherSigningCertificate ::=  SEQUENCE {
     certs        SEQUENCE OF OtherCertID,
     policies     SEQUENCE OF PolicyInformation OPTIONAL
                  -- NOT USED IN THE PRESENT DOCUMENT
  }

  OtherCertID ::= SEQUENCE {
     otherCertHash            OtherHash,
     issuerSerial             IssuerSerial OPTIONAL }

  OtherHash ::= CHOICE {
     sha1Hash OtherHashValue,
     -- This contains a SHA-1 hash
     otherHash OtherHashAlgAndValue}

-- Policy ES Attributes Defined in the present document
-- ====================================================

-- Mandatory Basic Electronic Signature Attributes, plus in addition.
-- Signature Policy Identifier

id-aa-ets-sigPolicyId OBJECT IDENTIFIER ::= { iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
smime(16) id-aa(2) 15 }

  SignaturePolicy ::= CHOICE {
     signaturePolicyId          SignaturePolicyId,
     signaturePolicyImplied     SignaturePolicyImplied
                             -- not used in this version
  }

  SignaturePolicyId ::= SEQUENCE {
     sigPolicyId           SigPolicyId,
     sigPolicyHash         SigPolicyHash,
     sigPolicyQualifiers   SEQUENCE SIZE (1..MAX) OF
                                SigPolicyQualifierInfo OPTIONAL



Pinkas, et al.               Informational                     [Page 79]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  }

  SignaturePolicyImplied ::= NULL

  SigPolicyId ::= OBJECT IDENTIFIER

  SigPolicyHash ::= OtherHashAlgAndValue

  OtherHashAlgAndValue ::= SEQUENCE {
     hashAlgorithm   AlgorithmIdentifier,
     hashValue       OtherHashValue
  }

  OtherHashValue ::= OCTET STRING

  SigPolicyQualifierInfo ::= SEQUENCE {
     sigPolicyQualifierId       SIG-POLICY-QUALIFIER.&id
     ({SupportedSigPolicyQualifiers}),
     qualifier               SIG-POLICY-QUALIFIER.&Qualifier
                               ({SupportedSigPolicyQualifiers}
                                   {@sigPolicyQualifierId})OPTIONAL }

  SupportedSigPolicyQualifiers SIG-POLICY-QUALIFIER ::=
      { noticeToUser | pointerToSigPolSpec }

  SIG-POLICY-QUALIFIER ::= CLASS {
     &id             OBJECT IDENTIFIER UNIQUE,
     &Qualifier      OPTIONAL }
  WITH SYNTAX {
     SIG-POLICY-QUALIFIER-ID     &id
     [SIG-QUALIFIER-TYPE &Qualifier] }

  noticeToUser SIG-POLICY-QUALIFIER ::= {
     SIG-POLICY-QUALIFIER-ID id-spq-ets-unotice SIG-QUALIFIER-TYPE
     SPUserNotice }

  pointerToSigPolSpec SIG-POLICY-QUALIFIER ::= {
     SIG-POLICY-QUALIFIER-ID id-spq-ets-uri SIG-QUALIFIER-TYPE SPuri }

  id-spq-ets-uri OBJECT IDENTIFIER ::= { iso(1)
   member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
   smime(16) id-spq(5) 1 }

  SPuri ::= IA5String

  id-spq-ets-unotice OBJECT IDENTIFIER ::= { iso(1)
  member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
  smime(16) id-spq(5) 2 }



Pinkas, et al.               Informational                     [Page 80]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  SPUserNotice ::= SEQUENCE {
       noticeRef        NoticeReference OPTIONAL,
       explicitText     DisplayText OPTIONAL}

  NoticeReference ::= SEQUENCE {
       organization     DisplayText,
       noticeNumbers    SEQUENCE OF INTEGER }

  DisplayText ::= CHOICE {
       visibleString    VisibleString  (SIZE (1..200)),
       bmpString        BMPString      (SIZE (1..200)),
       utf8String       UTF8String     (SIZE (1..200)) }

-- Optional Electronic Signature Attributes

-- Commitment Type

 id-aa-ets-commitmentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 16}

  CommitmentTypeIndication ::= SEQUENCE {
     commitmentTypeId CommitmentTypeIdentifier,
     commitmentTypeQualifier SEQUENCE SIZE (1..MAX) OF
        CommitmentTypeQualifier OPTIONAL}

  CommitmentTypeIdentifier ::= OBJECT IDENTIFIER

  CommitmentTypeQualifier ::= SEQUENCE {
     commitmentQualifierId   COMMITMENT-QUALIFIER.&id,
     qualifier               COMMITMENT-QUALIFIER.&Qualifier OPTIONAL }

  COMMITMENT-QUALIFIER ::= CLASS {
     &id             OBJECT IDENTIFIER UNIQUE,
     &Qualifier      OPTIONAL }
  WITH SYNTAX {
     COMMITMENT-QUALIFIER-ID     &id
     [COMMITMENT-TYPE &Qualifier] }

id-cti-ets-proofOfOrigin OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) cti(6) 1}

id-cti-ets-proofOfReceipt OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) cti(6) 2}

id-cti-ets-proofOfDelivery OBJECT IDENTIFIER ::= { iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
cti(6) 3}




Pinkas, et al.               Informational                     [Page 81]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


id-cti-ets-proofOfSender OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) cti(6) 4}

id-cti-ets-proofOfApproval OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) cti(6) 5}

id-cti-ets-proofOfCreation OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) cti(6) 6}

-- Signer Location

id-aa-ets-signerLocation OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 17}

  SignerLocation ::= SEQUENCE {
  -- at least one of the following shall be present
     countryName [0] DirectoryString{maxSize} OPTIONAL,
        -- as used to name a Country in X.520
     localityName [1] DirectoryString{maxSize} OPTIONAL,
        -- as used to name a locality in X.520
     postalAdddress [2] PostalAddress OPTIONAL }

  PostalAddress ::= SEQUENCE SIZE(1..6) OF DirectoryString{maxSize}
                   -- maxSize parametrization as specified in X.683

-- Signer Attributes

id-aa-ets-signerAttr OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 18}

  SignerAttribute ::= SEQUENCE OF CHOICE {
     claimedAttributes   [0] ClaimedAttributes,
     certifiedAttributes [1] CertifiedAttributes }

  ClaimedAttributes ::= SEQUENCE OF Attribute

  CertifiedAttributes ::= AttributeCertificate
  -- as defined in RFC 3281: see Section 4.1

-- Content Timestamp

id-aa-ets-contentTimestamp OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 20}
  ContentTimestamp ::= TimeStampToken




Pinkas, et al.               Informational                     [Page 82]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


-- Signature Timestamp

id-aa-signatureTimeStampToken OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 14}

  SignatureTimeStampToken ::= TimeStampToken

-- Complete Certificate Refs.

id-aa-ets-certificateRefs OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 21}

CompleteCertificateRefs ::=  SEQUENCE OF OtherCertID

-- Complete Revocation Refs

id-aa-ets-revocationRefs OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 22}

  CompleteRevocationRefs ::=  SEQUENCE OF CrlOcspRef

  CrlOcspRef ::= SEQUENCE {
     crlids          [0] CRLListID   OPTIONAL,
     ocspids         [1] OcspListID  OPTIONAL,
     otherRev        [2] OtherRevRefs OPTIONAL
  }

  CRLListID ::=  SEQUENCE {
     crls        SEQUENCE OF CrlValidatedID
  }

  CrlValidatedID ::=  SEQUENCE {
     crlHash                   OtherHash,
     crlIdentifier             CrlIdentifier OPTIONAL   }

  CrlIdentifier ::= SEQUENCE {
      crlissuer                 Name,
      crlIssuedTime             UTCTime,
      crlNumber                 INTEGER OPTIONAL
  }

  OcspListID ::=  SEQUENCE {
      ocspResponses        SEQUENCE OF OcspResponsesID
  }

  OcspResponsesID ::=  SEQUENCE {
      ocspIdentifier              OcspIdentifier,



Pinkas, et al.               Informational                     [Page 83]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


      ocspRepHash                 OtherHash    OPTIONAL
  }

  OcspIdentifier ::= SEQUENCE {
     ocspResponderID      ResponderID,
     -- As in OCSP response data
     producedAt           GeneralizedTime
     -- As in OCSP response data
  }

  OtherRevRefs ::= SEQUENCE {
     otherRevRefType   OTHER-REVOCATION-REF.&id,
     otherRevRefs      SEQUENCE OF OTHER-REVOCATION-REF.&Type
  }

OTHER-REVOCATION-REF ::= CLASS {
     &Type,
     &id   OBJECT IDENTIFIER UNIQUE }
  WITH SYNTAX {
     WITH SYNTAX &Type ID &id }

-- Certificate Values

id-aa-ets-certValues OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 23}

CertificateValues ::=  SEQUENCE OF Certificate

-- Certificate Revocation Values

id-aa-ets-revocationValues OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 24}

  RevocationValues ::=  SEQUENCE {
    crlVals           [0] SEQUENCE OF CertificateList OPTIONAL,
    ocspVals          [1] SEQUENCE OF BasicOCSPResponse OPTIONAL,

    otherRevVals      [2] OtherRevVals OPTIONAL
  }

  OtherRevVals ::= SEQUENCE {
     otherRevValType   OTHER-REVOCATION-VAL.&id,
     otherRevVals      SEQUENCE OF OTHER-REVOCATION-REF.&Type
  }

 OTHER-REVOCATION-VAL ::= CLASS {
     &Type,



Pinkas, et al.               Informational                     [Page 84]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     &id   OBJECT IDENTIFIER UNIQUE }
  WITH SYNTAX {
     WITH SYNTAX &Type ID &id }

-- CAdES-C Timestamp
id-aa-ets-escTimeStamp OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 25}

  ESCTimeStampToken ::= TimeStampToken

-- Time-Stamped Certificates and CRLs

id-aa-ets-certCRLTimestamp OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 26}

  TimestampedCertsCRLs ::= TimeStampToken

-- Archive Timestamp

id-aa-ets-archiveTimestampV2  OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 48}

  ArchiveTimeStampToken ::= TimeStampToken

-- Attribute certificate references

id-aa-ets-attrCertificateRefs OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 44}

  AttributeCertificateRefs ::=  SEQUENCE OF OtherCertID

-- Attribute revocation references

id-aa-ets-attrRevocationRefs OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) id-aa(2) 45}

  AttributeRevocationRefs ::=  SEQUENCE OF CrlOcspRef

END








Pinkas, et al.               Informational                     [Page 85]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


Annex B (Informative): Extended Forms of Electronic Signatures

  Section 4 provides an overview of the various formats of electronic
  signatures included in the present document.  This annex lists the
  attributes that need to be present in the various extended electronic
  signature formats and provides example validation sequences using the
  extended formats.

B.1.  Extended Forms of Validation Data

  The Complete validation data (CAdES-C) described in Section 4.3 and
  illustrated in Figure 3 may be extended to create electronic
  signatures with extended validation data.  Some electronic signature
  forms that include extended validation are explained below.

  An X-Long electronic signature (CAdES-X Long) is the CAdES-C with the
  values of the certificates and revocation information.

  This form of electronic signature can be useful when the verifier
  does not have direct access to the following information:

     - the signer's certificate;

     - all the CA certificates that make up the full certification
       path;

     - all the associated revocation status information, as referenced
       in the CAdES-C.

  In some situations, additional time-stamps may be created and added
  to the Electronic Signatures as additional attributes.  For example:

     - time-stamping all the validation data as held with the ES
       (CAdES-C), this eXtended validation data is called a CAdES-X
       Type 1; or

     - time-stamping individual reference data as used for complete
       validation.  This form of eXtended validation data is called an
       CAdES-X Type 2.

     NOTE 1: The advantages/drawbacks for CAdES-X Type 1 and CAdES-X
     Type 2 are discussed in Annex C.4.4.

  The above time-stamp forms can be useful when it is required to
  counter the risk that any CA keys used in the certificate chain may
  be compromised.





Pinkas, et al.               Informational                     [Page 86]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  A combination of the two formats above may be used.  This form of
  eXtended validation data is called an ES X-Long Type 1 or CAdES-X
  Long Type 2.  This form of electronic signature can be useful when
  the verifier needs both the values and proof of when the validation
  data existed.

     NOTE 2: The advantages/drawbacks for CAdES-X long Type 1 and
     CAdES-X long Type 2 are discussed in Annex C.4.6.

B.1.1.  CAdES-X Long

  An electronic signature with the additional validation data forming
  the CAdES-X Long form (CAdES-X-Long) is illustrated in Figure B.1 and
  comprises the following:

     - CAdES-BES or CAdES-EPES, as defined in Sections 4.3 , 5.7, or
       5.8;

     - complete-certificate-references attribute, as defined in Section
       6.2.1;

     - complete-revocation-references attribute, as defined in Section
       6.2.2.

  The following attributes are required if a TSP is not providing a
  time-mark of the ES:

     - signature-time-stamp attribute, as defined in Section 6.1.1.

  The following attributes are required if the full certificate values
  and revocation values are not already included in the CAdES-BES or
  CAdES-EPES:

     - certificate-values attribute, as defined in Section 6.3.3;

     - revocation-values attribute, as defined in Section 6.3.4.

  If attributes certificates are used, then the following attributes
  may be present:

     - attribute-certificate-references attribute, defined in Section
       6.2.3;

     - attribute-revocation-references attribute, as defined in Section
       6.2.4.

  Other unsigned attributes may be present, but are not required.




Pinkas, et al.               Informational                     [Page 87]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     NOTE: Attribute certificate and revocation references are only
     present if a user attribute certificate is present in the
     electronic signature; see Sections 6.2.2 and 6.2.3.

+---------------------- CAdES-X-Long --------------------------------+
|+-------------------------------------- CAdES-C ---+                |
||                                     +----------+ | +-------------+|
||+----- CAdES-BES or CAdES-EPES ----+ |Timestamp | | |             ||
|||                                  | |over      | | | Complete    ||
|||+---------++----------++---------+| |digital   | | | certificate ||
||||         ||          ||         || |signature | | |    and      ||
||||Signer's ||  Signed  ||Digital  || |          | | | revocation  ||
||||Document ||Attributes||signature|| |Optional  | | |    data     ||
||||         ||          ||         || |when      | | |             ||
|||+---------++----------++---------+| |timemarked| | |             ||
||+----------------------------------+ +----------+ | |             ||
||                                     +-----------+| +-------------+|
||                                     |Complete   ||                |
||                                     |certificate||                |
||                                     |and        ||                |
||                                     |revocation ||                |
||                                     |references ||                |
||                                     +-----------+|                |
|+--------------------------------------------------+                |
|                                                                    |
+--------------------------------------------------------------------+

            Figure B.1: Illustration of CAdES-X-Long

B.1.2.  CAdES-X Type 1

  An electronic signature with the additional validation data forming
  the eXtended validation data - Type 1 X is illustrated in Figure B.2
  and comprises the following:

     - the CAdES-BES or CAdES-EPES, as defined in Sections 4.2, 5.7, or
       5.8;

     - complete-certificate-references attribute, as defined in Section
       6.2.1;

     - complete-revocation-references attribute, as defined in Section
       6.2.2;

     - CAdES-C-Timestamp attribute, as defined in Section 6.3.5.






Pinkas, et al.               Informational                     [Page 88]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  The following attributes are required if a TSP is not providing a
  time-mark of the ES:

     - signature-time-stamp attribute, as defined in Section 6.1.1.

  If attributes certificates are used, then the following attributes
  may be present:

     - attribute-certificate-references attribute, defined in Section
       6.2.3;

     - attribute-revocation-references attribute, as defined in Section
       6.2.4.

  Other unsigned attributes may be present, but are not required.

+------------------------ CAdES-X-Type 1 ----------------------------+
|+---------------------------------- CAdES-C ------+                 |
||                                    +----------+ | +-------------+ |
||+--- CAdES-BES or CAdES-EPES ------+|Timestamp | | |             | |
|||                                  ||over      | | |             | |
|||+---------++----------++---------+||digital   | | |             | |
||||Signer's ||  Signed  || Digital |||signature | | | Timestamp   | |
||||Document ||Attributes||signature|||          | | |    over     | |
||||         ||          ||         |||Optional  | | |   CAdES-C   | |
|||+---------++----------++---------+||when      | | |             | |
||+----------------------------------+|timemarked| | |             | |
||                                    +----------+ | |             | |
||                                    +-----------+| +-------------+ |
||                                    |Complete   ||                 |
||                                    |certificate||                 |
||                                    |   and     ||                 |
||                                    |revocation ||                 |
||                                    |references ||                 |
||                                    +-----------+|                 |
|+-------------------------------------------------+                 |
|                                                                    |
+--------------------------------------------------------------------+

              Figure B.2: Illustration of CAdES-X Type 1











Pinkas, et al.               Informational                     [Page 89]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


B.1.3.  CAdES-X Type 2

  An electronic signature with the additional validation data forming
  the eXtended Validation Data - Type 2 X is illustrated in Figure B.3
  and comprises the following:

     - CAdES-BES or CAdES-EPES, as defined in Sections 4.2, 5.7, or
       5.8;

     - complete-certificate-references attribute, as defined in Section
       6.2.1;

     - complete-revocation-references attribute, as defined in Section
       6.2.2;

     - time-stamped-certs-crls-references attribute, as defined in
       Section 6.3.6.

  The following attributes are required if a TSP is not providing a
  time-mark of the ES:

     - signature-time-stamp attribute, as defined in Section 6.1.1.

  If attributes certificates are used, then the following attributes
  may be present:

     - attribute-certificate-references attribute, defined in Section
       6.2.3;

     - attribute-revocation-references attribute, as defined in Section
       6.2.4.

  Other unsigned attributes may be present, but are not required.


















Pinkas, et al.               Informational                     [Page 90]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


+----------------------- CAdES-X-Type 2 -----------------------------+
|+-------------------------------------- CAdES-C --+                 |
||                                    +----------+ |                 |
||+-- CAdES-BES or CAdES-EPES -------+|Timestamp | |                 |
|||                                  ||over      | |                 |
|||+---------++----------++---------+||digital   | | +-------------+ |
||||         ||          ||         |||Signature | | | Timestamp   | |
||||Signer's ||  Signed  || Digital |||          | | | only over   | |
||||Document ||Attributes||signature|||Optional  | | | Complete    | |
||||         ||          ||         |||when      | | | certificate | |
|||+---------++----------++---------+||Timemarked| | |    and      | |
||+----------------------------------++----------+ | | revocation  | |
||                                    +-----------+| | references  | |
||                                    |Complete   || +-------------+ |
||                                    |certificate||                 |
||                                    |and        ||                 |
||                                    |revocation ||                 |
||                                    |references ||                 |
||                                    +-----------+|                 |
|+-------------------------------------------------+                 |
|                                                                    |
+--------------------------------------------------------------------+

              Figure B.3: Illustration of CAdES-X Type 2

B.1.4.  CAdES-X Long Type 1 and CAdES-X Long Type 2

  An electronic signature with the additional validation data forming
  the CAdES-X Long Type 1 and CAdES-X Long Type 2 is illustrated in
  Figure B.4 and comprises the following:

     - CAdES-BES or CAdES-EPES, as defined in Sections 4.3, 5.7, or
       5.8;

     - complete-certificate-references attribute, as defined in Section
       6.2.1;

     - complete-revocation-references attribute, as defined in Section
       6.2.2;

  The following attributes are required if a TSP is not providing a
  time-mark of the ES:

     - signature-time-stamp attribute, as defined in Section 6.1.1.







Pinkas, et al.               Informational                     [Page 91]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  The following attributes are required if the full certificate values
  and revocation values are not already included in the CAdES-BES or
  CAdES-EPES:

     - certificate-values attribute, as defined in Section 6.3.3;

     - revocation-values attribute, as defined in Section 6.3.4.

  If attributes certificates are used, then the following attributes
  may be present:

     - attribute-certificate-references attribute, defined in Section
       6.2.3;

     - attribute-revocation-references attribute, as defined in Section
       6.2.4.

  Plus one of the following attributes is required:

     - CAdES-C-Timestamp attribute, as defined in Section 6.3.5;

     - time-stamped-certs-crls-references attribute, as defined in
       Section 6.3.6.

  Other unsigned attributes may be present, but are not required.


























Pinkas, et al.               Informational                     [Page 92]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  +---------------------- CAdES-X-Type 1 or 2 ------------------------+
  |                                                   +--------------+|
  |+-------------------------------------- CAdES-C --+|+------------+||
  ||                                    +----------+ ||| Timestamp  |||
  ||+-- CAdES-BES or CAdES-EPES -------+|Timestamp | |||    over    |||
  |||                                  ||over      | |||  CAdES-C   |||
  |||+---------++----------++---------+||digital   | | +------------+ |
  ||||         ||          ||         |||signature | ||      or      ||
  ||||Signer's ||  Signed  || Digital |||          | ||+------------+||
  ||||Document ||Attributes||Signature|||Optional  | ||| Timestamp  |||
  ||||         ||          ||         |||when      | ||| only over  |||
  |||+---------++----------++---------+||timemarked| ||| complete   |||
  ||+----------------------------------++----------+ ||| certificate|||
  ||                                                 |||    and     |||
  ||                                    +-----------+||| revocation |||
  ||                                    |Complete   |||| references |||
  ||                                    |certificate|||+------------+||
  ||                                    |and        ||+--------------+|
  ||                                    |revocation || +------------+ |
  ||                                    |references || |Complete    | |
  ||                                    +-----------+| |certificate | |
  |+-------------------------------------------------+ |   and      | |
  |                                                    |revocation  | |
  |                                                    |  values    | |
  |                                                    +------------+ |
  +-------------------------------------------------------------------+

            Figure B.4: Illustration of CAdES-X Long Type 1
                        and CAdES-X Long Type 2

B.2.  Time-Stamp Extensions

  Each instance of the time-stamp attribute may include, as unsigned
  attributes in the signedData of the time-stamp, the following
  attributes related to the TSU:

     - complete-certificate-references attribute of the TSU, as defined
       in Section 6.2.1;

     - complete-revocation-references attribute of the TSU, as defined
       in Section 6.2.2;

     - certificate-values attribute of the TSU, as defined in Section
       6.3.3;

     - revocation-values attribute of the TSU, as defined in Section
       6.3.4.




Pinkas, et al.               Informational                     [Page 93]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Other unsigned attributes may be present, but are not required.

B.3.  Archive Validation Data (CAdES-A)

  Before the algorithms, keys, and other cryptographic data used at the
  time the CAdES-C was built become weak and the cryptographic
  functions become vulnerable, or the certificates supporting previous
  time-stamps expire, the signed data, the CAdES-C, and any additional
  information (i.e., any CAdES-X) should be time-stamped.  If possible,
  this should use stronger algorithms (or longer key lengths) than in
  the original time-stamp.  This additional data and time-stamp is
  called Archive validation data required for the ES Archive format
  (CAdES-A).  The Time-stamping process may be repeated every time the
  protection used to time-stamp a previous CAdES-A becomes weak.  A
  CAdES-A may thus bear multiple embedded time-stamps.

  An example of an electronic signature (ES), with the additional
  validation data for the CAdES-C and CAdES-X forming the CAdES-A is
  illustrated in Figure B.5.
































Pinkas, et al.               Informational                     [Page 94]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


+--------------------------- CAdES-A---------------------------------+
|+----------------------------------------------------+              |
||                                    +--------------+| +----------+ |
||+--------------------- CAdES-C ----+|+------------+|| |          | |
|||                     +----------+ ||| Timestamp  ||| |          | |
|||+-- CAdES-BES ------+|Timestamp | |||   over     ||| |          | |
||||   or CAdES-EPES   ||over      | |||  CAdES-C   ||| |  Archive | |
||||                   ||digital   | ||+------------+|| |          | |
||||                   ||signature | ||     or       || |Timestamp | |
||||                   ||          | ||+------------+|| |          | |
||||                   ||optional  | ||| Timestamp  ||| |          | |
||||                   ||when      | ||| only over  ||| |          | |
||||                   ||timemarked| ||| complete   ||| |          | |
|||+-------------------++----------+ ||| certificate||| +----------+ |
|||                                  |||    and     |||              |
|||                   +-------------+||| revocation |||              |
|||                   | Complete    |||| references |||              |
|||                   | certificate |||+------------+||              |
|||                   | and         ||+--------------+|              |
|||                   | revocation  || +------------+ |              |
|||                   | references  || |Complete    | |              |
|||                   +-------------+| |certificate | |              |
||+----------------------------------+ |   and      | |              |
||                                     |revocation  | |              |
||                                     |  values    | |              |
||                                     +------------+ |              |
|+----------------------------------------------------+              |
+--------------------------------------------------------------------+

                   Figure B.5: Illustration of CAdES-A

  The CAdES-A comprises the following elements:

     - the CAdES-BES or CAdES-EPES, including their signed and unsigned
       attributes;

     - complete-certificate-references attribute, as defined in Section
       6.2.1;

     - complete-revocation-references attribute, as defined in Section
       6.2.2.

  The following attributes are required if a TSP is not providing a
  time-mark of the ES:

     - signature-time-stamp attribute, as defined in Section 6.1.1.





Pinkas, et al.               Informational                     [Page 95]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  If attributes certificates are used, then the following attributes
  may be present:

     - attribute-certificate-references attribute, defined in Section
       6.2.3;

     - attribute-revocation-references attribute, as defined in Section
       6.2.4.

  The following attributes are required if the full certificate values
  and revocation values are not already included in the CAdES-BES or
  CAdES-EPES:

     - certificate-values attribute, as defined in Section 6.3.3;

     - revocation-values attribute, as defined in Section 6.3.4.

  At least one of the following two attributes is required:

     - CAdES-C-Timestamp attribute, as defined in Section 6.3.5;

     - time-stamped-certs-crls-references attribute, as defined in
       Section 6.3.6.

  The following attribute is required:

     - archive-time-stamp attributes, defined in Section 6.4.1.

  Several instances of the archive-time-stamp attribute may occur with
  an electronic signature, both over time and from different TSUs.  The
  time-stamp should be created using stronger algorithms (or longer key
  lengths) than in the original electronic signatures or time-stamps.

  Other unsigned attributes of the ES may be present, but are not
  required.

  The archive-time-stamp will itself contain the certificate and
  revocation information required to validate the archive-time-stamp;
  this may include the following unsigned attributes:

     - complete-certificate-references attribute of the TSU, as defined
       in Section 6.2.1;

     - complete-revocation-references attribute of the TSU, as defined
       in Section 6.2.2;

     - certificate-values attribute of the TSU, as defined in Section
       6.3.3;



Pinkas, et al.               Informational                     [Page 96]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - revocation-values attribute of the TSU, as defined in Section
       6.3.4.

  Other unsigned attributes may be present, but are not required.

B.4.  Example Validation Sequence

  As described earlier, the signer or initial verifier may collect all
  the additional data that forms the electronic signature.  Figure B.6
  and the subsequent description describe how the validation process
  may build up a complete electronic signature over time.

+------------------------------------------ CAdES-C -------------+
|+------------------------------- CAdES-T ------+                |
||+-------------- CAdES ------------+           |                |
|||+--------------------++---------+|+---------+|  +-----------+ |
|||| ________           ||         |||Timestamp||  |Complete   | |
|||||Sign.Pol|          ||Digital  |||over     ||  |certificate| |
|||||  Id.   | Signed   ||signature|||digital  ||  |   and     | |
||||| option.|attributes||         |||signature||  |revocation | |
|||||________|          |+---------+|+---------+|  |references | |
|||+--------------------+           |    ^      |  +-----------+ |
||+---------------------------------+    |      |        ^       |
||                     1 |              /       |        |       |
|+---------------------- | ------------/--------+        |       |
+----------------------- | ---------- / --------------- / -------+
                        |           /2    ----3--------
     +----------+       |          /     /
     |          |       v         /     |
     | Signer's |      +---------------------+     +-------------+
     | document |----->| Validation Process  |---->|- Valid      |
     |          |      +---------------------+ 4   |- Invalid    |
     +----------+           |  ^       |  ^        |- Validation |
                            v  |       v  |        |  Incomplete |
                        +---------+ +--------+     +-------------+
                        |Signature| |Trusted |
                        | Policy  | |Service |
                        | Issuer  | |Provider|
                        +---------+ +--------+

      Figure B.6: Illustration of a CAdES validation sequence

  Soon after receiving the electronic signature (CAdES) from the signer
  (1), the digital signature value may be checked; the validation
  process shall at least add a time-stamp (2), unless the signer has
  provided one which is trusted by the verifier.  The validation
  process may also validate the electronic signature using additional
  data (e.g., certificates, CRL, etc.) provided by Trusted Service



Pinkas, et al.               Informational                     [Page 97]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Providers.  When applicable, the validation process will also need to
  conform to the requirements specified in a signature policy.  If the
  validation process is validation incomplete, then the output from
  this stage is the CAdES-T.

  To ascertain the validity status as Valid or Invalid and communicate
  that to the user (4), all the additional data required to validate
  the CAdES-C must be available (e.g., the complete certificate and
  revocation information).

  Once the data needed to complete validation data references (CAdES-C)
  is available, then the validation process should:

     - obtain all the necessary additional certificates and revocation
       status information;

     - complete all the validation checks on the ES using the complete
       certificate and revocation information (if a time-stamp is not
       already present, this may be added at the same stage, combining
       the CAdES-T and CAdES-C processes);

     - record the complete certificate and revocation references (3);

     - indicate the validity status to the user (4).

  At the same time as the validation process creates the CAdES-C, the
  validation process may provide and/or record the values of
  certificates and revocation status information used in CAdES-C (5).
  The end result is called CAdES-X Long.

  This is illustrated in Figure B.7.




















Pinkas, et al.               Informational                     [Page 98]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


+----------------------------------------------------- CAdES-X Long -+
|+------------------------------- CAdES-C -------------+             |
||+-------------- CAdES ------------+                  |             |
|||+--------------------++---------+|+---------+       |+-----------+|
|||| ________           ||         |||Timestamp|       ||Complete   ||
|||||Sign.Pol|          ||Digital  |||over     |       ||certificate||
|||||  Id.   | Signed   ||signature|||digital  |       ||   and     ||
||||| option.|attributes||         |||signature|       ||revocation ||
|||||________|          ||         ||+---------+       ||  values   ||
|||+--------------------++---------+|  ^  +-----------+|+-----------+|
||+---------------------------------+  |  |Complete   ||      ^      |
||                         |           |  |certificate||      |      |
||                         |         2 |  |   and     ||      |      |
||                         |           |  |revocation ||      |      |
||                         |           |  |references ||      |      |
||                       1 |          /   +-----------+|      |      |
|+------------------------ | ------- / --------- ^-----+     /       |
+------------------------- | ------ / ---------- |--------- / -------+
                          |       /      ----- /  ------- /
     +----------+         |      /      /  3     /   5
     |          |         v     |      |        |
     | Signer's |      +--------------------+      +-----------+
     | document |----->| Validation Process |----->| - Valid   |
     |          |      +--------------------+  4   | - Invalid |
     +----------+          |  ^       |  ^         +-----------+
                           v  |       v  |
                       +---------+ +--------+
                       |Signature| |Trusted |
                       | Policy  | |Service |
                       | Issuer  | |Provider|
                       +---------+ +--------+

         Figure B.7: Illustration of a CAdES validation sequence
                     with CAdES-X Long

  When the validation process creates the CAdES-C, it may also create
  extended forms of validation data.

  A first alternative is to time-stamp all data forming the CAdES-X
  Type 1.

  This is illustrated in Figure B.8.









Pinkas, et al.               Informational                     [Page 99]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


+------------------------------------------------ CAdES-X Type 1 -----+
|+------------------------------- CAdES-C ------------------+         |
||+-------------- CAdES ------------+                       |         |
|||+--------------------++---------+|+---------++----------+|+-------+|
|||| ________           ||         |||Timestamp|| Complete |||       ||
|||||Sign.Pol|          ||Digital  |||over     ||  cert.   |||Time-  ||
|||||  Id.   | Signed   ||signature|||digital  ||   and    |||stamp  ||
||||| option.|attributes||         |||signature||  revoc.  ||| over  ||
|||||________|          |+---------+|+---------+|references|||CAdES-C||
|||+--------------------+           |    ^      |          |||       ||
||+---------------------------------+    |      +----------+|+-------+|
||                         |             |            ^     |    ^    |
||                       1 |            /             |     |    |    |
|+------------------------ | --------- / ----------- / -----+    |    |
+------------------------- | -------- / ----------- / --------- / ----+
                          |       2 /     ---3----            /
     +----------+         |        /    /   -----------5------
     |          |         v       |    |  /
     | Signer's |      +--------------------+       +-----------+
     | document |----->| Validation Process |-----> | - Valid   |
     |          |      +--------------------+  4    | - Invalid |
     +----------+          |  ^       |  ^          +-----------+
                           v  |       v  |
                       +---------+ +--------+
                       |Signature| |Trusted |
                       | Policy  | |Service |
                       | Issuer  | |Provider|
                       +---------+ +--------+

   Figure B.8: Illustration of CAdES with eXtended validation data
               CAdES-X Type 1

  Another alternative is to time-stamp the certificate and revocation
  information references used to validate the electronic signature (but
  not the signature) (6).  The end result is called CAdES-X Type 2.

  This is illustrated in Figure B.9.














Pinkas, et al.               Informational                    [Page 100]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


+-------------------------------------------- CAdES-X Type 2 --------+
|+------------------------------- CAdES-C -------------+             |
||+-------------- CAdES ------------+                  |             |
|||+--------------------++---------+|+---------+       |+-----------+|
|||| ________           ||         |||Timestamp|       ||Timestamp  ||
|||||Sign.Pol|          ||         |||over     |       ||   over    ||
|||||  Id.   | Signed   ||Digital  |||digital  |       ||complete   ||
||||| option.|attributes||signature|||signature|       ||certificate||
|||||________|          ||         |||         |       ||           ||
|||+--------------------++---------+|+---------+       ||   and     ||
||+---------------------------------+  ^  +-----------+||revocation ||
||                         |           |  |Complete   |||references ||
||                         |           |  |certificate||+-----------+|
||                         |           |  |   and     ||     ^       |
||                       1 |         2 |  |revocation ||     |       |
||                         |           |  |references ||     |       |
||                         |           |  +-----------+|     |       |
|+------------------------ | --------- | --- ^ --------+     |       |
|                          |           |   3 |              /        |
|                          |           |    /    ----------          |
|                          |          /    /    /   6                |
|                          |         /    /    /                     |
|                          |        /    /    /                      |
+------------------------- | ----- | -- | -- / ----------------------+
                          |       |    |   |
                          v       |    |   |
                       +--------------------+      +-----------+
                       | Validation Process |----->| - Valid   |
                       +--------------------+  4   | - Invalid |
                           |  ^       |  ^         +-----------+
                           v  |       v  |
                       +---------+ +--------+
                       |Signature| |Trusted |
                       | Policy  | |Service |
                       | Issuer  | |Provider|
                       +---------+ +--------+

  Figure B.9: Illustration of CAdES with eXtended validation data
              CAdES-X Type 2

  Before the algorithms used in any of the electronic signatures become
  or are likely to be compromised or rendered vulnerable in the future,
  it may be necessary to time-stamp the entire electronic signature,
  including all the values of the validation and user data as an ES
  with Archive validation data (CAdES-A) (7).

  A CAdES-A is illustrated in Figure B.10.




Pinkas, et al.               Informational                    [Page 101]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


+----------------------------- CAdES-A ---------------------------+
|                                                                 |
|  +-- CAdES-X Long Type 1 or 2  ----------+                      |
|  |                                       |   +------------+     |
|  |                                       |   |            |     |
|  |                                       |   |  Archive   |     |
|  |                                       |   | Time-stamp |     |
|  |                                       |   |            |     |
|  |                                       |   +------------+     |
|  +---------------------------------------+         ^            |
|  +----------+          ^   ^   ^   ^               |            |
|  |          |          |   |   |   |              /             |
|  | Signers' |          |   |   |   |             /              |
|  | Document |\         |   |   |   |            /               |
|  |          | \ 1    2 | 3 | 5 | 6 |         7 /                |
|  +----------+  \       |   |   |   |          /                 |
|                 \      |   |   |   |         /                  |
+----------------- \ --- | - | - | - | ------ / ------------------+
                   \    |   |   |   |       |
                    |   |   |   |   |       |
                    |   |   |   |   |       |
                    v   v   |   |   |       |
                +-----------------------------+      +-----------+
                |      Validation Process     |----->| - Valid   |
                +-----------------------------+  4   | - Invalid |
                    |  ^       |  ^                  +-----------+
                    v  |       v  |
                +---------+ +--------+
                |Signature| |Trusted |
                | Policy  | |Service |
                | Issuer  | |Provider|
                +---------+ +--------+

                Figure B.10: Illustration of CAdES-A

B.5.  Additional Optional Features

  The present document also defines additional optional features to:

     - indicate a commitment type being made by the signer;

     - indicate the claimed time when the signature was done;

     - indicate the claimed location of the signer;

     - indicate the claimed or certified role under which a signature
       was created;




Pinkas, et al.               Informational                    [Page 102]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - support counter signatures;

     - support multiple signatures.

Annex C (Informative): General Description

  This annex explains some of the concepts and provides the rationale
  for normative parts of the present document.

  The specification below includes a description of why and when each
  component of an electronic signature is useful, with a brief
  description of the vulnerabilities and threats and the manner by
  which they are countered.

C.1.  The Signature Policy

  The signature policy is a set of rules for the creation and
  validation of an electronic signature, under which the signature can
  be determined to be valid.  A given legal/contractual context may
  recognize a particular signature policy as meeting its requirements.
  A signature policy may be issued, for example, by a party relying on
  the electronic signatures and selected by the signer for use with
  that relying party.  Alternatively, a signature policy may be
  established through an electronic trading association for use amongst
  its members.  Both the signer and verifier use the same signature
  policy.

  The signature policy may be explicitly identified or may be implied
  by the semantics of the data being signed and other external data,
  like a contract being referenced, which itself refers to a signature
  policy.  An explicit signature policy has a globally unique
  reference, which is bound to an electronic signature by the signer as
  part of the signature calculation.

  The signature policy needs to be available in human readable form so
  that it can be assessed to meet the requirements of the legal and
  contractual context in which it is being applied.  To facilitate the
  automatic processing of an electronic signature, the parts of the
  signature policy, which specify the electronic rules for the creation
  and validation of the electronic signature, also need to be
  comprehensively defined and in a computer-processable form.

  The signature policy thus includes the following:

     - rules that apply to technical validation of a particular
       signature;





Pinkas, et al.               Informational                    [Page 103]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - rules that may be implied through adoption of Certificate
       Policies that apply to the electronic signature (e.g., rules for
       ensuring the secrecy of the private signing key);

     - rules that relate to the environment used by the signer, e.g.,
       the use of an agreed CAD (Card Accepting Device) used in
       conjunction with a smart card.

  For example, the major rules required for technical validation can
  include:

     - recognized root keys or "top-level certification authorities";

     - acceptable certificate policies (if any);

     - necessary certificate extensions and values (if any);

     - the need for the revocation status for each component of the
       certification tree;

     - acceptable TSAs (if time-stamp tokens are being used);

     - acceptable organizations for keeping the audit trails with
       time-marks (if time-marking is being used);

     - acceptable AAs (if any are being used),and;

     - rules defining the components of the electronic signature that
       shall be provided by the signer with data required by the
       verifier when required to provide long-term proof.

C.2.  Signed Information

  The information being signed may be defined as a MIME-encapsulated
  message that can be used to signal the format of the content in order
  to select the right display or application.  It can be composed of
  formatted data, free text, or fields from an electronic form
  (e-form).  For example, the Adobe(tm) format "pdf" or the eXtensible
  Mark up Language (XML) may be used.  Annex D defines how the content
  may be structured to indicate the type of signed data using MIME.

C.3.  Components of an Electronic Signature

C.3.1.  Reference to the Signature Policy

  When two independent parties want to evaluate an electronic
  signature, it is fundamental that they get the same result.  This
  requirement can be met using comprehensive signature policies that



Pinkas, et al.               Informational                    [Page 104]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  ensure consistency of signature validation.  Signature policies can
  be identified implicitly by the data being signed, or they can be
  explicitly identified using the CAdES-EPES form of electronic
  signature; the CAdES-EPES mandates a consistent signature policy must
  be used by both the signer and verifier.

  By signing over the Signature Policy Identifier in the CAdES-EPES,
  the signer explicitly indicates that he or she has applied the
  signature policy in creating the signature.

  In order to unambiguously identify the details of an explicit
  signature policy that is to be used to verify a CAdES-EPES, the
  signature, an identifier, and hash of the "Signature policy" shall be
  part of the signed data.  Additional information about the explicit
  policy (e.g., web reference to the document) may be carried as
  "qualifiers" to the Signature Policy Identifier.

  In order to unambiguously identify the authority responsible for
  defining an explicit signature policy, the "Signature policy" can be
  signed.

C.3.2.  Commitment Type Indication

  The commitment type can be indicated in the electronic signature
  either:

     - explicitly using a "commitment type indication" in the
       electronic signature;

     - implicitly or explicitly from the semantics of the signed data.

  If the indicated commitment type is explicit using a "commitment type
  indication" in the electronic signature, acceptance of a verified
  signature implies acceptance of the semantics of that commitment
  type.  The semantics of explicit commitment type indications may be
  subject to signer and verifier agreement, specified as part of the
  signature policy or registered for generic use across multiple
  policies.

  If a CAdES-EPES electronic signature format is used and the
  electronic signature includes a commitment type indication other than
  one of those recognized under the signature policy, the signature
  shall be treated as invalid.

  How commitment is indicated using the semantics of the data being
  signed is outside the scope of the present document.





Pinkas, et al.               Informational                    [Page 105]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     NOTE: Examples of commitment indicated through the semantics of
     the data being signed are:

     - an explicit commitment made by the signer indicated by the type
       of data being signed over.  Thus, the data structure being
       signed can have an explicit commitment within the context of the
       application (e.g., EDIFACT purchase order);

     - an implicit commitment that is a commitment made by the signer
       because the data being signed over has specific semantics
       (meaning), which is only interpretable by humans, (i.e., free
       text).

C.3.3.  Certificate Identifier from the Signer

  In many real-life environments, users will be able to get from
  different CAs or even from the same CA, different certificates
  containing the same public key for different names.  The prime
  advantage is that a user can use the same private key for different
  purposes.  Multiple use of the private key is an advantage when a
  smart card is used to protect the private key, since the storage of a
  smart card is always limited.  When several CAs are involved, each
  different certificate may contain a different identity, e.g., as a
  citizen of a nation or as an employee from a company.  Thus, when a
  private key is used for various purposes, the certificate is needed
  to clarify the context in which the private key was used when
  generating the signature.  Where there is the possibility that
  multiple private keys are used, it is necessary for the signer to
  indicate to the verifier the precise certificate to be used.

  Many current schemes simply add the certificate after the signed data
  and thus are vulnerable to substitution attacks.  If the certificate
  from the signer was simply appended to the signature and thus not
  protected by the signature, anyone could substitute one certificate
  for another, and the message would appear to be signed by someone
  else.  In order to counter this kind of attack, the identifier of the
  signer has to be protected by the digital signature from the signer.

  In order to unambiguously identify the certificate to be used for the
  verification of the signature, an identifier of the certificate from
  the signer shall be part of the signed data.

C.3.4.  Role Attributes

  While the name of the signer is important, the position of the signer
  within a company or an organization is of paramount importance as
  well.  Some information (i.e., a contract) may only be valid if
  signed by a user in a particular role, e.g., a Sales Director.  In



Pinkas, et al.               Informational                    [Page 106]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  many cases, who the sales Director really is, is not that important,
  but being sure that the signer is empowered by his company to be the
  Sales Director is fundamental.

  The present document defines two different ways for providing this
  feature:

     - by placing a claimed role name in the CMS signed attributes
       field;

     - by placing an attribute certificate containing a certified role
       name in the CMS signed attributes field.

     NOTE: Another possible approach would have been to use additional
     attributes containing the roles name(s) in the signer's identity
     certificate.  However, it was decided not to follow this approach
     as it significantly complicates the management of certificates.
     For example, by using separate certificates for the signer's
     identity and roles means new identity keys need not be issued if a
     user's role changes.

C.3.4.1.  Claimed Role

  The signer may be trusted to state his own role without any
  certificate to corroborate this claim; in which case, the claimed
  role can be added to the signature as a signed attribute.

C.3.4.2.  Certified Role

  Unlike public key certificates that bind an identifier to a public
  key, Attribute Certificates bind the identifier of a certificate to
  some attributes, like a role.  An Attribute Certificate is NOT issued
  by a CA but by an Attribute Authority (AA).  The Attribute Authority,
  in most cases, might be under the control of an organization or a
  company that is best placed to know which attributes are relevant for
  which individual.  The Attribute Authority may use or point to public
  key certificates issued by any CA, provided that the appropriate
  trust may be placed in that CA.  Attribute Certificates may have
  various periods of validity.  That period may be quite short, e.g.,
  one day.  While this requires that a new Attribute Certificate be
  obtained every day, valid for that day, this can be advantageous
  since revocation of such certificates may not be needed.  When
  signing, the signer will have to specify which Attribute Certificate
  it selects.  In order to do so, the Attribute Certificate will have
  to be included in the signed data in order to be protected by the
  digital signature from the signer.





Pinkas, et al.               Informational                    [Page 107]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  In order to unambiguously identify the attribute certificate(s) to be
  used for the verification of the signature, an identifier of the
  attribute certificate(s) from the signer shall be part of the signed
  data.

C.3.5.  Signer Location

  In some transactions, the purported location of the signer at the
  time he or she applies his signature may need to be indicated.  For
  this reason, an optional location indicator shall be able to be
  included.

  In order to provide indication of the location of the signer at the
  time he or she applied his signature, a location attribute may be
  included in the signature.

C.3.6.  Signing Time

  The present document provides the capability to include a claimed
  signing time as an attribute of an electronic signature.

  Using this attribute, a signer may sign over a time that is the
  claimed signing time.  When an ES with Time is created (CAdES-T),
  then either a trusted time-stamp is obtained and added to the ES or a
  trusted time-mark exists in an audit trail.  When a verifier accepts
  a signature, the two times shall be within acceptable limits.

  A further optional attribute is defined in the present document to
  time-stamp the content and to provide proof of the existence of the
  content, at the time indicated by the time-stamp token.

  Using this optional attribute, a trusted secure time may be obtained
  before the document is signed and included under the digital
  signature.  This solution requires an online connection to a trusted
  time-stamping service before generating the signature and may not
  represent the precise signing time, since it can be obtained in
  advance.  However, this optional attribute may be used by the signer
  to prove that the signed object existed before the date included in
  the time-stamp (see Section 5.11.4).

C.3.7.  Content Format

  When presenting signed data to a human user, it may be important that
  there is no ambiguity as to the presentation of the signed
  information to the relying party.  In order for the appropriate
  representation (text, sound, or video) to be selected by the relying
  party when data (as opposed to data that has been further signed or
  encrypted) is encapsulated in the SignedData (indicated by the



Pinkas, et al.               Informational                    [Page 108]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  eContentType within EncapsulatedContentInfo being set to id-data),
  further typing information should be used to identify the type of
  document being signed.  This is generally achieved using the MIME
  content typing and encoding mechanism defined in RFC 2045 [6]).
  Further information on the use of MIME is given in Annex F.

C.3.8.  content-hints

  The contents-hints attribute provides information on the innermost
  signed content of a multi-layer message where one content is
  encapsulated in another.  This may be useful if the signed data is
  itself encrypted.

C.3.9.  Content Cross-Referencing

  When presenting a signed data is in relation to another signed data,
  it may be important to identify the signed data to which it relates.
  The content-reference and content-identifier attributes, as defined
  in ESS (RFC 2634 [5]), provide the ability to link a request and
  reply messages in an exchange between two parties.

C.4.  Components of Validation Data

C.4.1.  Revocation Status Information

  A verifier will have to ascertain that the certificate of the signer
  was valid at the time of the signature.  This can be done by either:

     - using Certificate Revocation Lists (CRLs);

     - using responses from an online certificate status server (for
       example, obtained through the OCSP protocol).

     NOTE 1: The time of the signature may not be known, so
     time-stamping or time-marking may be used to provide the time
     indication of when it was known that the signature existed.

     NOTE 2: When validating an electronic signature and checking
     revocation status information, if a "grace period" is required, it
     needs to be suitably long enough to allow the involved authority
     to process a "last-minute" revocation request and for the request
     to propagate through the revocation system.  This grace period is
     to be added to the time included with the time-stamp token or the
     time-mark, and thus the revocation status information should be
     captured after the end of the grace period.






Pinkas, et al.               Informational                    [Page 109]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


C.4.1.1.  CRL Information

  When using CRLs to get revocation information, a verifier will have
  to make sure that he or she gets, at the time of the first
  verification, the appropriate certificate revocation information from
  the signer's CA.  This should be done as soon as possible to minimize
  the time delay between the generation and verification of the
  signature.  However, a "grace period" is required to allow CAs time
  to process revocation requests.

  For example, a revocation request may arrive at a CA just before
  issuing the next CRL, and there may not enough time to include the
  revised revocation status information.  This involves checking that
  the signer certificate serial number is not included in the CRL.
  Either the signer, the initial verifier, or a subsequent verifier may
  obtain this CRL.  If obtained by the signer, then it shall be
  conveyed to the verifier.  It may be convenient to archive the CRL
  for ease of subsequent verification or arbitration.  Alternatively,
  provided the CRL is archived elsewhere, which is accessible for the
  purpose of arbitration, then the serial number of the CRL used may be
  archived together with the verified electronic signature as a CAdES-C
  form.

  Even if the certificate serial number appears in the CRL with the
  status "suspended" (i.e., on hold), the signature is not to be deemed
  as valid since a suspended certificate is not supposed to be used
  even by its rightful owner.

C.4.1.2.  OCSP Information

  When using OCSP to get revocation information, a verifier will have
  to make sure that he or she gets, at the time of the first
  verification, an OCSP response that contains the status "valid".
  This should be done as soon as possible after the generation of the
  signature, still providing a "grace period" suitable enough to allow
  the involved authority to process a "last-minute" revocation request.
  The signer, the verifier, or any other third party may fetch this
  OCSP response.  Since OCSP responses are transient and thus are not
  archived by any TSP, including CA, it is the responsibility of every
  verifier to make sure that it is stored in a safe place.  The
  simplest way is to store them associated with the electronic
  signature.  An alternative would be to store them so that they can
  then be easily retrieved and incorporate references to them in the
  electronic signature itself as a CAdES-C form.







Pinkas, et al.               Informational                    [Page 110]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  In the same way as for the case of the CRL, it may happen that the
  certificate is declared as invalid but with the secondary status
  "suspended".  In such a case, the same comment as for the CRL
  applies.

C.4.2.  Certification Path

  A verifier may have to ascertain that the certification path was
  valid, at the time of the signature, up to a trust point, according
  to the:

     - naming constraints;
     - certificate policy constraints;
     - signature policy, when applicable.

  Since the time of the signature cannot be known with certainty, an
  upper limit of it should be used as indicated by either the
  time-stamp or time-mark.

  In this case, it will be necessary to capture all the certificates
  from the certification path, starting with those from the signer and
  ending up with those of the self-signed certificate from one trusted
  root; when applicable, this may be specified as part of the Signature
  Policy.  In addition, it will be necessary to capture the Certificate
  Authority Revocation Lists (CARLs) to prove that none of the CAs from
  the chain were revoked at the time of the signature.  Again, all this
  material may be incorporated in the electronic signature (ES X
  forms).  An alternative would be to store this information so that it
  can be easily retrieved and incorporate references to it in the
  electronic signature itself as a CAdES-C form.

C.4.3.  Time-Stamping for Long Life of Signatures

  An important property for long-standing signatures is that a
  signature, having been found once to be valid, shall continue to be
  so months or years later.

  A signer, verifier, or both may be required to provide, on request,
  proof that a digital signature was created or verified during the
  validity period of all the certificates that make up the certificate
  path.  In this case, the signer, verifier, or both will also be
  required to provide proof that the signer's certificate and all the
  CA certificates used to form a valid certification path were not
  revoked when the signature was created or verified.







Pinkas, et al.               Informational                    [Page 111]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  It would be quite unacceptable to consider a signature as invalid
  even if the keys or certificates were later compromised.  Thus, there
  is a need to be able to demonstrate that the signature keys were
  valid at the time that the signature was created to provide long-term
  evidence of the validity of a signature.

  It could be the case that a certificate was valid at the time of the
  signature but revoked some time later.  In this event, evidence shall
  be provided that the document was signed before the signing key was
  revoked.  Time-stamping by a Time-Stamping Authority (TSA) can
  provide such evidence.  A time-stamp is obtained by sending the hash
  value of the given data to the TSA.  The returned "time-stamp" is a
  signed document that contains the hash value, the identity of the
  TSA, and the time of stamping.  This proves that the given data
  existed before the time of stamping.  Time-stamping a digital
  signature (by sending a hash of the signature to the TSA) before the
  revocation of the signer's private key provides evidence that the
  signature had been created before the certificate was revoked.

  If a recipient wants to hold a valid electronic signature, he will
  have to ensure that he has obtained a valid time-stamp for it before
  that key (and any key involved in the validation) is revoked.  The
  sooner the time-stamp is obtained after the signing time, the better.
  Any time-stamp or time-mark that is taken after the expiration date
  of any certificate in the certification path has no value in proving
  the validity of a signature.

  It is important to note that signatures may be generated "off-line"
  and time-stamped at a later time by anyone, for example, by the
  signer or any recipient interested in the value of the signature.
  The time-stamp can thus be provided by the signer, together with the
  signed document, or obtained by the recipient following receipt of
  the signed document.

  The time-stamp is NOT a component of the Basic Electronic Signature,
  but it is the essential component of the ES with Time.

  It is required, in the present document, that if a signer's digital
  signature value is to be time-stamped, the time-stamp token is issued
  by a trusted source, known as a Time-Stamping Authority.

  The present document requires that the signer's digital signature
  value be time-stamped by a trusted source before the electronic
  signature can become an ES with Complete validation data.  Acceptable
  TSAs may be specified in a Signature Validation Policy.

  This technique is referred to as CAdES-C in the present document.




Pinkas, et al.               Informational                    [Page 112]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Should both the signer and verifier be required to time-stamp the
  signature value to meet the requirements of the signature policy, the
  signature policy may specify a permitted time delay between the two
  time-stamps.

C.4.4.  Time-Stamping for Long Life of Signature before CA Key
       Compromises

  Time-stamped, extended electronic signatures are needed when there is
  a requirement to safeguard against the possibility of a CA key in the
  certificate chain ever being compromised.  A verifier may be required
  to provide, on request, proof that the certification path and the
  revocation information used at the time of the signature were valid,
  even in the case where one of the issuing keys or OCSP responder keys
  is later compromised.

  The present document defines two ways of using time-stamps to protect
  against this compromise:

     - time-stamp the ES with Complete validation data, when an OCSP
       response is used to get the status of the certificate from the
       signer (CAdES-X Type 1).  This format is suitable to be used
       with an OCSP response, and it offers the additional advantage of
       providing an integrity protection over the whole data;

     - time-stamp only the certification path and revocation
       information references when a CRL is used to get the status of
       the certificate from the signer (CAdES-X Type2).  This format is
       suitable to be used with CRLs, since the time-stamped
       information may be used for more than one signature (when
       signers have their certificates issued by the same CA and when
       signatures can be checked using the same CRLs).

     NOTE: The signer, verifier, or both may obtain the time-stamp.

C.4.4.1.  Time-Stamping the ES with Complete Validation Data (CAdES-X
         Type 1)

  When an OCSP response is used, it is necessary to time-stamp in
  particular that response in the case the key from the responder would
  be compromised.  Since the information contained in the OCSP response
  is user specific and time specific, an individual time-stamp is
  needed for every signature received.  Instead of placing the
  time-stamp only over the certification path references and revocation
  information references, which include the OCSP response, the
  time-stamp is placed on the CAdES-C.  Since the certification path
  and revocation information references are included in the ES with
  Complete validation data, they are also protected.  For the same



Pinkas, et al.               Informational                    [Page 113]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  cryptographic price, this provides an integrity mechanism over the ES
  with Complete validation data.  Any modification can be immediately
  detected.  It should be noticed that other means of
  protecting/detecting the integrity of the ES with Complete validation
  data exist and could be used.  Although the technique requires a
  time-stamp for every signature, it is well suited for individual
  users wishing to have an integrity-protected copy of all the
  validated signatures they have received.

  By time-stamping the complete electronic signature, including the
  digital signature as well as the references to the certificates and
  revocation status information used to support validation of that
  signature, the time-stamp ensures that there is no ambiguity in the
  means of validating that signature.

  This technique is referred to as CAdES-X Type 1 in the present
  document.

     NOTE: Trust is achieved in the references by including a hash of
     the data being referenced.

  If it is desired for any reason to keep a copy of the additional data
  being referenced, the additional data may be attached to the
  electronic signature, in which case the electronic signature becomes
  a CAdES-X Long Type 1, as defined by the present document.

  A CAdES-X Long Type 1 is simply the concatenation of a CAdES-X Type
  1, with a copy of the additional data being referenced.

C.4.4.2.  Time-Stamping Certificates and Revocation Information
         References (CAdES-X Type 2)

  Time-stamping each ES with Complete validation data, as defined
  above, may not be efficient, particularly when the same set of CA
  certificates and CRL information is used to validate many signatures.

  Time-stamping CA certificates will stop any attacker from issuing
  bogus CA certificates that could be claimed to exist before the CA
  key was compromised.  Any bogus time-stamped CA certificates will
  show that the certificate was created after the legitimate CA key was
  compromised.  In the same way, time-stamping CA CRLs will stop any
  attacker from issuing bogus CA CRLs that could be claimed to exist
  before the CA key was compromised.

  Time-stamping of commonly used certificates and CRLs can be done
  centrally, e.g., inside a company or by a service provider.  This
  method reduces the amount of data the verifier has to time-stamp; for
  example, it could be reduced to just one time-stamp per day (i.e., in



Pinkas, et al.               Informational                    [Page 114]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  the case where all the signers use the same CA, and the CRL applies
  for the whole day).  The information that needs to be time-stamped is
  not the actual certificates and CRLs, but the unambiguous references
  to those certificates and CRLs.

  This technique is referred to as CAdES-X Type 2 in the present
  document and requires the following:

     - all the CA certificates references and revocation information
       references (i.e., CRLs) used in validating the CAdES-C are
       covered by one or more time-stamps.

  Thus, a CAdES-C with a time-stamp signature value at time T1 can be
  proved valid if all the CA and CRL references are time-stamped at
  time T1+.

C.4.5.  Time-Stamping for Archive of Signature

  Advances in computing increase the probability of being able to break
  algorithms and compromise keys.  There is therefore a requirement to
  be able to protect electronic signatures against this possibility.

  Over a period of time, weaknesses may occur in the cryptographic
  algorithms used to create an electronic signature (e.g., due to the
  time available for cryptoanalysis, or improvements in
  cryptoanalytical techniques).  Before such weaknesses become likely,
  a verifier should take extra measures to maintain the validity of the
  electronic signature.  Several techniques could be used to achieve
  this goal, depending on the nature of the weakened cryptography.  In
  order to simplify matters, a single technique called Archive
  validation data, covering all the cases, is being used in the present
  document.

  Archive validation data consists of the validation data and the
  complete certificate and revocation data, time-stamped together with
  the electronic signature.  The Archive validation data is necessary
  if the hash function and the crypto algorithms that were used to
  create the signature are no longer secure.  Also, if it cannot be
  assumed that the hash function used by the Time-Stamping Authority is
  secure, then nested time-stamps of the Archived Electronic Signature
  are required.

  The potential for a Trusted Service Provider (TSP) key compromise
  should be significantly lower than user keys because TSP(s) are
  expected to use stronger cryptography and better key protection.  It
  can be expected that new algorithms (or old ones with greater key
  lengths) will be used.  In such a case, a sequence of time-stamps
  will protect against forgery.  Each time-stamp needs to be affixed



Pinkas, et al.               Informational                    [Page 115]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  before either the compromise of the signing key or the cracking of
  the algorithms used by the TSA.  TSAs (Time-Stamping Authorities)
  should have long keys (e.g., which at the time of drafting the
  present document was at least 2048 bits for the signing RSA
  algorithm) and/or a "good" or different algorithm.

  Nested time-stamps will also protect the verifier against key
  compromise or cracking the algorithm on the old electronic
  signatures.

  The process will need to be performed and iterated before the
  cryptographic algorithms used for generating the previous time-stamp
  are no longer secure.  Archive validation data may thus bear multiple
  embedded time-stamps.

  This technique is referred to as CAdES-A in the present document.

C.4.6.  Reference to Additional Data

  Using CAdES-X Type 1 or CAdES-X Type 2 extended validation data,
  verifiers still need to keep track of all the components that were
  used to validate the signature, in order to be able to retrieve them
  again later on.  These components may be archived by an external
  source, like a Trusted Service Provider; in which case, referenced
  information that is provided as part of the ES with Complete
  validation data (CAdES-C) is adequate.  The actual certificates and
  CRL information reference in the CAdES-C can be gathered when needed
  for arbitration.

  If references to additional data are not adequate, then the actual
  values of all the certificates and revocation information required
  may be part of the electronic signature.  This technique is referred
  to as CAdES-X Long Type 1 or CAdES-X Long Type 2 in the present
  document.

C.4.7.  Time-Stamping for Mutual Recognition

  In some business scenarios, both the signer and the verifier need to
  time-stamp their own copy of the signature value.  Ideally, the two
  time-stamps should be as close as possible to each other.

     EXAMPLE:  A contract is signed by two parties, A and B,
     representing their respective organizations; to time-stamp the
     signer and verifier data, two approaches are possible:

        - under the terms of the contract, a predefined common
          "trusted" TSA may be used;




Pinkas, et al.               Informational                    [Page 116]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


        - if both organizations run their own time-stamping services, A
          and B can have the transaction time-stamped by these two
          time-stamping services.

  In the latter case, the electronic signature will only be considered
  valid if both time-stamps were obtained in due time (i.e., there
  should not be a long delay between obtaining the two time-stamps).
  Thus, neither A nor B can repudiate the signing time indicated by
  their own time-stamping service.  Therefore, A and B do not need to
  agree on a common "trusted" TSA to get a valid transaction.

  It is important to note that signatures may be generated "off-line"
  and time-stamped at a later time by anyone, e.g., by the signer or
  any recipient interested in validating the signature.  The time-stamp
  over the signature from the signer can thus be provided by the
  signer, together with the signed document, and/or be obtained by the
  verifier following receipt of the signed document.

  The business scenarios may thus dictate that one or more of the
  long-term signature time-stamping methods described above be used.
  This may be part of a mutually agreed Signature Validation Policy
  that is part of an agreed signature policy under which digital
  signatures may be used to support the business relationship between
  the two parties.

C.4.8.  TSA Key Compromise

  TSA servers should be built in such a way that once the private
  signature key is installed, there is minimal likelihood of compromise
  over as long as a possible period.  Thus, the validity period for the
  TSA's keys should be as long as possible.

  Both the CAdES-T and the CAdES-C contain at least one time-stamp over
  the signer's signature.  In order to protect against the compromise
  of the private signature key used to produce that time-stamp, the
  Archive validation data can be used when a different Time-Stamping
  Authority key is involved to produce the additional time-stamp.  If
  it is believed that the TSA key used in providing an earlier
  time-stamp may ever be compromised (e.g., outside its validity
  period), then the CAdES-A should be used.  For extremely long
  periods, this may be applied repeatedly using new TSA keys.

  This technique is referred to as a nested CAdES-A in the present
  document.







Pinkas, et al.               Informational                    [Page 117]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


C.5.  Multiple Signatures

  Some electronic signatures may only be valid if they bear more than
  one signature.  This is generally the case when a contract is signed
  between two parties.  The ordering of the signatures may or may not
  be important, i.e., one may or may not need to be applied before the
  other.

  Several forms of multiple and counter signatures need to be
  supported, which fall into two basic categories:

     - independent signatures;
     - embedded signatures.

  Independent signatures are parallel signatures where the ordering of
  the signatures is not important.  The capability to have more than
  one independent signature over the same data shall be provided.

  Embedded signatures are applied one after the other and are used
  where the order in which the signatures are applied is important.
  The capability to sign over signed data shall be provided.

  These forms are described in Section 5.13.  All other multiple
  signature schemes, e.g., a signed document with a countersignature,
  double countersignatures, or multiple signatures can be reduced to
  one or more occurrences of the above two cases.

Annex D (Informative): Data Protocols to Interoperate with TSPs

D.1.  Operational Protocols

  The following protocols can be used by signers and verifiers to
  interoperate with Trusted Service Providers during the electronic
  signature creation and validation.

D.1.1.  Certificate Retrieval

  User certificates, CA certificates, and cross-certificates can be
  retrieved from a repository using the Lightweight Directory Access
  Protocol as defined in RFC 3494 [RFC3494], with the schema defined in
  RFC 4523 [RFC4523].

D.1.2.  CRL Retrieval

  Certificate revocation lists, including authority revocation lists
  and partial CRL variants, can be retrieved from a repository using
  the Lightweight Directory Access Protocol, as defined in RFC 3494
  [RFC3494], with the schema defined in RFC 4523 [RFC4523].



Pinkas, et al.               Informational                    [Page 118]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


D.1.3.  Online Certificate Status

  As an alternative to the use of certificate revocation lists, the
  status of a certificate can be checked using the Online Certificate
  Status Protocol (OCSP), as defined in RFC 2560 [3].

D.1.4.  Time-Stamping

  The time-stamping service can be accessed using the Time-Stamping
  Protocol defined in RFC 3161 [7].

D.2.  Management Protocols

  Signers and verifiers can use the following management protocols to
  manage the use of certificates.

D.2.1.  Request for Certificate Revocation

  Request for a certificate to be revoked can be made using the
  revocation request and response messages defined in RFC 4210
  [RFC4210].

Annex E (Informative): Security Considerations

E.1.  Protection of Private Key

  The security of the electronic signature mechanism defined in the
  present document depends on the privacy of the signer's private key.

  Implementations should take steps to ensure that private keys cannot
  be compromised.

E.2.  Choice of Algorithms

  Implementers should be aware that cryptographic algorithms become
  weaker with time.  As new cryptoanalysis techniques are developed and
  computing performance improves, the work factor to break a particular
  cryptographic algorithm will reduce.  Therefore, cryptographic
  algorithm implementations should be modular, allowing new algorithms
  to be readily inserted.  That is, implementers should be prepared for
  the set of mandatory-to-implement algorithms to change over time.










Pinkas, et al.               Informational                    [Page 119]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


Annex F (Informative): Example Structured Contents and MIME

F.1.  Use of MIME to Encode Data

  The signed content may be structured using MIME (Multipurpose
  Internet Mail Extensions -- RFC 2045 [6]).  Whilst the MIME structure
  was initially developed for Internet email, it has a number of
  features that make it useful to provide a common structure for
  encoding a range of electronic documents and other multi-media data
  (e.g., photographs, video).  These features include:

     - providing a means of signalling the type of "object" being
       carried (e.g., text, image, ZIP file, application data);

     - providing a means of associating a file name with an object;

     - associating several independent objects (e.g., a document and
       image) to form a multi-part object;

     - handling  data encoded in text or binary and, if necessary,
       re-encoding the binary as text.

  When encoding a single object, MIME consists of:

     - header information, followed by;

     - encoded content.

  This structure can be extended to support multi-part content.

F.1.1.  Header Information

  A MIME header includes:

  MIME Version information: e.g., MIME-Version: 1.0

  Content type information, which includes information describing the
  content sufficient for it to be presented to a user or application
  process, as required.  This includes information on the "media type"
  (e.g., text, image, audio) or whether the data is for passing to a
  particular type of application.  In the case of text, the content
  type includes information on the character set used, e.g.,
  Content-Type: text/plain; charset="us-ascii".

  Content-encoding information, which defines how the content is
  encoded (see below about encoding supported by MIME).





Pinkas, et al.               Informational                    [Page 120]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Other information about the content, such as a description or an
  associated file name.

  An example MIME header for text object is:

  Mime-Version: 1.0
  Content-Type: text/plain; charset=ISO-8859-1
  Content-Transfer-Encoding: quoted-printable

  An example MIME header for a binary file containing a pdf document
  is:

  Content-Type: application/pdf
  Content-Transfer-Encoding: base64
  Content-Description: JCFV201.pdf
  Content-Disposition: filename="JCFV201.pdf"

F.1.2.  Content Encoding

  MIME supports a range of mechanisms for encoding both text and binary
  data.

  Text data can be carried transparently as lines of text data encoded
  in 7- or 8-bit ASCII characters.  MIME also includes a
  "quoted-printable" encoding that converts characters other than the
  basic ASCII into an ASCII sequence.

  Binary can either be carried:

     - transparently as 8-bit octets; or

     - converted to a basic set of characters using a system called
       Base64.

     NOTE: As there are some mail relays that can only handle 7-bit
     ASCII, Base64 encoding is usually used on the Internet.

F.1.3.  Multi-Part Content

  Several objects (e.g., text and a file attachment) can be associated
  together using a special "multi-part" content type.  This is
  indicated by the content type "multipart" with an indication of the
  string to be used indicating a separation between each part.

  In addition to a header for the overall multipart content, each part
  includes its own header information indicating the inner content type
  and encoding.




Pinkas, et al.               Informational                    [Page 121]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  An example of a multipart content is:

Mime-Version: 1.0
Content-Type: multipart/mixed; boundary="----
=_NextPart_000_01BC4599.98004A80"
Content-Transfer-Encoding: 7bit

------=_NextPart_000_01BC4599.98004A80
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 7bit

Per your request, I've attached our proposal for the Java Card Version
2.0 API and the Java Card FAQ.

------=_NextPart_000_01BC4599.98004A80
Content-Type: application/pdf; name="JCFV201.pdf"
Content-Transfer-Encoding: base64
Content-Description: JCFV201.pdf
Content-Disposition: attachment; filename="JCFV201.pdf"

0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAACAAAAAgAAAAA
AAAAAEAAAtAAAAAEAAAD+////AAAAAAMAAAAGAAAA//////////////////////////////
//////////AANhAAQAYg==

------=_NextPart_000_01BC4599.98004A80--

  Multipart content can be nested.  So a set of associated objects
  (e.g., HTML text and images) can be handled as a single attachment to
  another object (e.g., text).

  The Content-Type from each part of the S/MIME message indicates the
  type of content.

F.2.  S/MIME

  The specific use of MIME to carry CMS (extended as defined in the
  present document) secured data is called S/MIME (see [RFC3851]).

  S/MIME carries electronic signatures as either:

     - an "application/pkcs7-mime" object with the CMS carried as a
       binary attachment (PKCS7 is the name of the early version of
       CMS).

       The signed data may be included in the SignedData, which itself
       may be included in a single S/MIME object.  See [RFC3851],
       Section 3.4.2: "Signing Using application/pkcs7-mime with
       SignedData" and Figure F.1 hereafter.



Pinkas, et al.               Informational                    [Page 122]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  or

     - a "multipart/signed" object with the signed data and the
       signature encoded as separate MIME objects.

       The signed data is not included in the SignedData, and the CMS
       structure only includes the signature.  See [RFC3851], Section
       3.4.3: "Signing Using the multipart/signed Format" and Figure
       F.2 hereafter.

       +-------------++----------++-------------++------------+
       |             ||          ||             ||            |
       |   S/MIME    ||  CAdES   ||    MIME     ||  pdf file  |
       |             ||          ||             ||            |
       |Content-Type=||SignedData||Content-Type=||Dear MrSmith|
       |application/ || eContent ||application/ ||Received    |
       |pkcs7-mime   ||          ||pdf          ||  100 tins  |
       |             ||          ||             ||            |
       |smime-type=  ||     /|   ||       /|    ||  Mr.Jones  |
       |signed-data  ||    / -----+      / ------+            |
       |             ||    \ -----+      \ ------+            |
       |             ||     \|   ||       \|    |+------------+
       |             ||          |+-------------+
       |             |+----------+
       +-------------+

           Figure F.1: Signing Using application/pkcs7-mime

F.2.1.  Using application/pkcs7-mime

  This approach is similar to handling signed data as any other binary
  file attachment.

  An example of signed data encoded using this approach is:

  Content-Type: application/pkcs7-mime; smime-type=signed-data;
  Content-Transfer-Encoding: base64
  Content-Disposition: attachment; filename=smime.p7m

    567GhIGfHfYT6ghyHhHUujpfyF4f8HHGTrfvhJhjH776tbB9HG4VQbnj7
    77n8HHGT9HG4VQpfyF467GhIGfHfYT6rfvbnj756tbBghyHhHUujhJhjH
    HUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H7n8HHGghyHh
    6YT64V0GhIGfHfQbnj75








Pinkas, et al.               Informational                    [Page 123]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


F.2.2.  Using application/pkcs7-signature

  CMS also supports an alternative structure where the signature and
  data being protected are separate MIME objects carried within a
  single message.  In this case, the signed data is not included in the
  SignedData, and the CMS structure only includes the signature.  See
  [RFC3851], Section 3.4.3: "Signing Using the multipart/signed Format"
  and Figure F.2 hereafter.

  An example of signed data encoded using this approach is:

  Content-Type: multipart/signed;
            protocol="application/pkcs7-signature";
            micalg=sha1; boundary=boundary42

         --boundary42
         Content-Type: text/plain

         This is a clear-signed message.

         --boundary42

  Content-Type: application/pkcs7-signature; name=smime.p7s
         Content-Transfer-Encoding: base64
         Content-Disposition: attachment; filename=smime.p7s

         ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6
         4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj
         n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4
         7GhIGfHfYT64VQbnj756

         --boundary42--

  With this second approach, the signed data passes through the CMS
  process and is carried as part of a multiple-parts signed MIME
  structure, as illustrated in Figure F.2.  The CMS structure just
  holds the electronic signature.














Pinkas, et al.               Informational                    [Page 124]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  +---------------++----------++-------------++------------+
  |               ||          ||             ||            |
  |     MIME      ||  CAdES   ||    MIME     ||  pdf file  |
  |               ||          ||             ||            |
  |Content-Type=  ||SignedData||Content-Type=||Dear MrSmith|
  |multipart/     ||          ||application/ ||Received    |
  |signed         ||          ||pdf          ||  100 tins  |
  |        /|     ||          ||             ||            |
  |       / -------------------+        /|   ||  Mr.Jones  |
  |       \ -------------------+       / -----+            |
  |        \|     ||          ||       \ -----+            |
  |Content-Type=  ||          ||        \|   |+------------+
  |application/   ||          |+-------------+
  |pdf            ||          |
  |               ||          |
  |Content-Type=  ||          |
  |application/   ||          |
  |pkcs7-signature||          |
  |               ||          |
  |        /|     ||          |
  |       / -------+          |
  |       \ -------+          |
  |        \|     ||----------+
  |               |
  +---------------+

      Figure F.2: Signing Using application/pkcs7-signature

  This second approach (multipart/signed) has the advantage that the
  signed data can be decoded by any MIME-compatible system even if it
  does not recognize CMS-encoded electronic signatures.

Annex G (Informative): Relationship to the European Directive and EESSI

G.1.  Introduction

  This annex provides an indication of the relationship between
  electronic signatures created under the present document and
  requirements under the European Parliament and Council Directive on a
  Community framework for electronic signatures.

     NOTE: Legal advice should be sought on the specific national
     legislation regarding use of electronic signatures.

  The present document is one of a set of standards that has been
  defined under the "European Electronic Signature Standardization
  Initiative" (EESSI) for electronic signature products and solutions
  compliant with the European Directive for Electronic Signatures.



Pinkas, et al.               Informational                    [Page 125]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


G.2.  Electronic Signatures and the Directive

  This directive defines electronic signatures as:

     - "data in electronic form which are attached to or logically
       associated with other electronic data and which serve as a
       method of authentication".

  The directive states that an electronic signature should not be
  denied "legal effectiveness and admissibility as evidence in legal
  proceedings" solely on the grounds that it is in electronic form.

  The directive identifies an electronic signature as having
  equivalence to a hand-written signature if it meets specific
  criteria:

     - it is an "advanced electronic signature" with the following
       properties:

        a) it is uniquely linked to the signatory;

        b) it is capable of identifying the signatory;

        c) it is created using means that the signatory can maintain
           under his sole control; and

        d) it is linked to the data to which it relates in such a
           manner that any subsequent change of the data is detectable.

     - it is based on a certificate that meets detailed criteria given
       in Annex I of the directive and is issued by a
       "certification-service-provider" that meets requirements given
       in Annex II of the directive.  Such a certificate is referred to
       as a "qualified certificate";

     - it is created by a "device", for which detailed criteria are
       given in Annex III of the directive.  Such a device is referred
       to a "secure-signature-creation device".

  This form of electronic signature is referred to as a "qualified
  electronic signature" in EESSI (see below).










Pinkas, et al.               Informational                    [Page 126]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


G.3.  ETSI Electronic Signature Formats and the Directive

  An electronic signature created in accordance with the present
  document is:

     a) considered to be an "electronic signature" under the terms of
        the Directive;

     b) considered to be an "advanced electronic signature" under the
        terms of the Directive;

     c) considered to be a "Qualified Electronic Signature", provided
        the additional requirements in Annex I, II, and III of the
        Directive are met.  The requirements in Annex I, II, and III of
        the Directive are outside the scope of the present document,
        and are subject to standardization elsewhere.

G.4.  EESSI Standards and Classes of Electronic Signature

G.4.1.  Structure of EESSI Standardization

  EESSI looks at standards in several areas.  See the ETSI and CEN web
  sites for the latest list of standards and their versions:

     - use of X.509 public key certificates as qualified certificates;

     - security Management and Certificate Policy for CSPs Issuing
       Qualified Certificates;

     - security requirements for trustworthy systems used by CSPs
       Issuing Qualified Certificates;

     - security requirements for Secure Signature Creation Devices;

     - security requirements for Signature Creation Systems;

     - procedures for Electronic Signature Verification;

     - electronic signature syntax and encoding formats;

     - protocol to interoperate with a Time-Stamping Authority;

     - Policy requirements for Time-Stamping Authorities; and

     - XML electronic signature formats.






Pinkas, et al.               Informational                    [Page 127]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Each of these standards addresses a range of requirements, including
  the requirements of Qualified Electronic Signatures, as specified in
  Article 5.1 of the Directive.  However, some of them also address
  general requirements of electronic signatures for business and
  electronic commerce, which all fall into the category of Article 5.2
  of the Directive.  Such variation in the requirements may be
  identified either as different levels or different options.

G.4.2.  Classes of Electronic Signatures

  Since some of these standards address a range of requirements, it may
  be useful to identify a set of standards to address a specific
  business need.  Such a set of standards and their uses define a class
  of electronic signature.  The first class already identified is the
  qualified electronic signature, fulfilling the requirements of
  Article 5.1 of the Directive.

  A limited number of "classes of electronic signatures" and
  corresponding profiles could be defined in close cooperation with
  actors on the market (business, users, suppliers). The need for such
  standards is envisaged, in addition to those for qualified electronic
  signatures, in areas such as:

     - different classes of electronic signatures with long-term
       validity;

     - electronic signatures for business transactions with limited
       value.

G.4.3.  Electronic Signature Classes and the ETSI Electronic Signature
       Format

  The electronic signature format defined in the present document is
  applicable to the EESSI area "electronic signature and encoding
  formats".

  An electronic signature produced by a signer (see Section 5 and
  conformance Section 10.1) is applicable to the proposed class of
  electronic signature: "qualified electronic signatures fulfilling
  article 5.1".

  With the addition of attributes by the verifier (see Section 6 and
  conformance Section 10.2) the qualified electronic signature supports
  long-term validity.







Pinkas, et al.               Informational                    [Page 128]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


Annex H (Informative): APIs for the Generation and Verification of
                      Electronic Signatures Tokens

  While the present document describes the data format of an electronic
  signature, the question is whether there exist APIs (Application
  Programming Interfaces) able to manipulate these structures.  At
  least two such APIs have been defined; one set by the IETF and
  another set by the OMG (Object Management Group).

H.1.  Data Framing

  In order to be able to use either of these APIs, it will be necessary
  to frame the previously defined electronic signature data structures
  using a mechanism-independent token format.  Section 3.1 of RFC 2743
  [RFC2743] specifies a mechanism-independent level of encapsulating
  representation for the initial token of a GSS-API context
  establishment sequence, incorporating an identifier of the mechanism
  type to be used on that context and enabling tokens to be interpreted
  unabmiguously.

  In order to be processable by these APIs, all electronic signature
  data formats that are defined in the present document shall be framed
  following that description.

  The encoding format for the token tag is derived from ASN.1 and DER,
  but its concrete representation is defined directly in terms of
  octets rather than at the ASN.1 level, in order to facilitate
  interoperable implementation without use of general ASN.1 processing
  code.  The token tag consists of the following elements, in order:

     1) 0x60 -- Tag for RFC 2743 SEQUENCE; indicates that constructed
        form, definite length encoding follows.

     2) Token-length octets, specifying length of subsequent data
        (i.e., the summed lengths of elements 3 to 5 in this list, and
        of the mechanism-defined token object following the tag).  This
        element comprises a variable number of octets:

        a) If the indicated value is less than 128, it shall be
           represented in a single octet with bit 8 (high order) set to
           "0" and the remaining bits representing the value.










Pinkas, et al.               Informational                    [Page 129]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


        b) If the indicated value is 128 or more, it shall be
           represented in two or more octets, with bit 8 of the first
           octet set to "1" and the remaining bits of the first octet
           specifying the number of additional octets.  The subsequent
           octets carry the value, 8 bits per octet, with the most
           significant digit first.  The minimum number of octets shall
           be used to encode the length (i.e., no octets representing
           leading zeros shall be included within the length encoding).

     3) 0x06 -- Tag for OBJECT IDENTIFIER.

     4) Object identifier length -- length (number of octets) of the
        encoded object identifier contained in element 5, encoded per
        rules as described in 2a) and 2b) above.

     5) object identifier octets -- variable number of octets, encoded
        per ASN.1 BER rules:

        - The first octet contains the sum of two values:

           (1) the top-level object identifier component, multiplied by
               40 (decimal); and

           (2) the second-level object identifier component.

               This special case is the only point within an object
               identifier encoding where a single octet represents
               contents of more than one component.

           - Subsequent octets, if required, encode successively lower
             components in the represented object identifier.  A
             component's encoding may span multiple octets, encoding 7
             bits per octet (most significant bits first) and with bit
             8 set to "1" on all but the final octet in the component's
             encoding.  The minimum number of octets shall be used to
             encode each component (i.e., no octets representing
             leading zeros shall be included within a component's
             encoding).

     NOTE: In many implementations, elements 3 to 5 may be stored and
     referenced as a contiguous string constant.

  The token tag is immediately followed by a mechanism-defined token
  object.  Note that no independent size specifier intervenes following
  the object identifier value to indicate the size of the
  mechanism-defined token object.





Pinkas, et al.               Informational                    [Page 130]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Tokens conforming to the present document shall have the following
  OID in order to be processable by IDUP-APIs:

  id-etsi-es-IDUP-Mechanism-v1 OBJECT IDENTIFIER ::=
   { itu-t(0) identified-organization(4) etsi(0)
    electronic-signature-standard (1733) part1 (1) IDUPMechanism (4)
    etsiESv1(1) }

H.2.  IDUP-GSS-APIs Defined by the IETF

  The IETF CAT WG produced, in December 1998, an RFC (RFC 2479
  [RFC2479]) under the name of IDUP-GSS-API (Independent Data Unit
  Protection) able to handle the electronic signature data format
  defined in the present document.

  The IDUP-GSS-API includes support for non-repudiation services.

  It supports evidence generation, where "evidence" is information that
  either by itself, or when used in conjunction with other information,
  is used to establish proof about an event or action, as well as
  evidence verification.

  IDUP supports various types of evidences.  All the types defined in
  IDUP are supported in the present document through the
  commitment-type parameter.

  Section 2.3.3 of IDUP describes the specific calls needed to handle
  evidence ("EV" calls).  The "EV" group of calls provides a simple,
  high-level interface to underlying IDUP mechanisms when application
  developers need to deal with only evidence: not with encryption or
  integrity services.

  All generations and verification are performed according to the
  content of a NR policy that is referenced in the context.

  Get_token_details is used to return the attributes that correspond to
  a given input token to an application.  Since IDUP-GSS-API tokens are
  meant to be opaque to the calling application, this function allows
  the application to determine information about the token without
  having to violate the opaqueness intention of IDUP.  Of primary
  importance is the mechanism type, which the application can then use
  as input to the IDUP_Establish_Env() call in order to establish the
  correct environment in which to have the token processed.

  Generate_token generates a non-repudiation token using the current
  environment.





Pinkas, et al.               Informational                    [Page 131]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  Verify_evidence verifies the evidence token using the current
  environment.  This operation returns a major_status code that can be
  used to determine whether the evidence contained in a token is
  complete (i.e., can be successfully verified (perhaps years) later).
  If a token's evidence is not complete, the token can be passed to
  another API, form_complete_pidu, to complete it.  This happens when a
  status "conditionally valid" is returned.  That status corresponds to
  the status "validation incomplete" of the present document.

  Form_complete_PIDU is used primarily when the evidence token itself
  does not contain all the data required for its verification, and it
  is anticipated that some of the data not stored in the token may
  become unavailable during the interval between generation of the
  evidence token and verification unless it is stored in the token.
  The Form_Complete_PIDU operation gathers the missing information and
  includes it in the token so that verification can be guaranteed to be
  possible at any future time.

H.3.  CORBA Security Interfaces Defined by the OMG

  Non-repudiation interfaces have been defined in "CORBA Security", a
  document produced by the OMG (Object Management Group).  These
  interfaces are described in IDL (Interface Definition Language) and
  are optional.

  The handling of "tokens" supporting non-repudiation is done through
  the following interfaces:

     - set_NR_features specifies the features to apply to future
       evidence generation and verification operations;

     - get_NR_features returns the features that will be applied to
       future evidence generation and verification operations;

     - generate_token generates a non-repudiation token using the
       current non-repudiation features;

     - verify_evidence verifies the evidence token using the current
       non-repudiation features;

     - get_tokens_details returns information about an input
       non-repudiation token.  The information returned depends upon
       the type of token;

     - form_complete_evidence is used when the evidence token itself
       does not contain all the data required for its verification, and
       it is anticipated that some of the data not stored in the token
       may become unavailable during the interval between generation of



Pinkas, et al.               Informational                    [Page 132]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


       the evidence token and verification unless it is stored in the
       token.  The form_complete_evidence operation gathers the missing
       information and includes it in the token so that verification
       can be guaranteed to be possible at any future time.

     NOTE: The similarity between the two sets of APIs is noticeable.

Annex I (Informative): Cryptographic Algorithms

  RFC 3370 [10] describes the conventions for using several
  cryptographic algorithms with the Crytographic Message Syntax (CMS).
  Only the hashing and signing algorithms are appropriate for use with
  the present document.

  Since the publication of RFC 3370 [10], MD5 has been broken.  This
  algorithm is no longer considered appropriate and has been deleted
  from the list of algorithms.

I.1.  Digest Algorithms

I.1.1.  SHA-1

  The SHA-1 digest algorithm is defined in FIPS Pub 180-1.  The
  algorithm identifier for SHA-1 is:

sha-1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) oiw(14)
secsig(3) algorithm(2) 26 }

  The AlgorithmIdentifier parameters field is optional.  If present,
  the parameters field shall contain an ASN.1 NULL.  Implementations
  should accept SHA-1 AlgorithmIdentifiers with absent parameters as
  well as NULL parameters.  Implementations should generate SHA-1
  AlgorithmIdentifiers with NULL parameters.

I.1.2.  General

  The following is a selection of work that has been done in the area
  of digest algorithms or, as they are often called, hash functions:

     - ISO/IEC 10118-1 (1994) [ISO10118-1]: "Information technology -
       Security techniques - Hash-functions - Part 1: General". ISO/IEC
       10118-1 contains definitions and describes basic concepts.

     - ISO/IEC 10118-2 (1994) [ISO10118-2]: "Information technology -
       Security techniques - Hash-functions - Part 2: Hash-functions
       using an n-bit block cipher algorithm".  ISO/IEC 10118-2
       specifies two ways to construct a hash-function from a block
       cipher.



Pinkas, et al.               Informational                    [Page 133]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - ISO/IEC 10118-3 (1997) [ISO10118-3]: "Information technology -
       Security techniques - Hash-functions - Part 3: Dedicated
       hash-functions".  ISO/IEC 10118-3 specifies the following
       dedicated hash-functions:

        - SHA-1 (FIPS 180-1);
        - RIPEMD-128;
        - RIPEMD-160.

     - ISO/IEC 10118-4 (1998) [ISO10118-4]: "Information technology -
       Security techniques - Hash-functions - Part 4: Hash-functions
       using modular arithmetic".

     - RFC 1320 (PS 1992): "The MD4 Message-Digest Algorithm".  RFC
       1320 specifies the hash-function MD4.  Today, MD4 is considered
       outdated.

     - RFC 1321 (I 1992): "The MD5 Message-Digest Algorithm".  RFC 1321
       (informational) specifies the hash-function MD5.  Today, MD5 is
       not recommended for new implementations.

     - FIPS Publication 180-1 (1995): "Secure Hash Standard".  FIPS
       180-1 specifies the Secure Hash Algorithm (SHA), dedicated hash-
       function developed for use with the DSA.  The original SHA,
       published in 1993, was slightly revised in 1995 and renamed
       SHA-1.

     - ANSI X9.30-2 (1997) [X9.30-2]: "Public Key Cryptography for the
       Financial Services Industry - Part 2: The Secure Hash Algorithm
       (SHA-1)".  X9.30-2 specifies the ANSI-Version of SHA-1.

     - ANSI X9.31-2 (1996) [X9.31-2]: "Public Key Cryptography Using
       Reversible Algorithms for the Financial Services Industry - Part
       2: Hash Algorithms".  X9.31-2 specifies hash algorithms.

I.2.  Digital Signature Algorithms

I.2.1.  DSA

  The DSA signature algorithm is defined in FIPS Pub 186.  DSA is
  always used with the SHA-1 message digest algorithm.  The algorithm
  identifier for DSA is:

id-dsa-with-sha1 OBJECT IDENTIFIER ::=  { iso(1) member-body(2) us(840)
x9-57 (10040) x9cm(4) 3 }

  The AlgorithmIdentifier parameters field shall not be present.




Pinkas, et al.               Informational                    [Page 134]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


I.2.2.  RSA

  The RSA signature algorithm is defined in RFC 3447 [RFC3447].  RFC
  3370 [10] specifies the use of the RSA signature algorithm with the
  SHA-1 algorithm.  The algorithm identifier for RSA with SHA-1 is:

  Sha1WithRSAEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
  us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }

     NOTE: RFC 3370 [10] recommends that MD5 not be used for new
     implementations.

I.2.3.  General

     The following is a selection of work that has been done in the
     area of digital signature mechanisms:

     - FIPS Publication 186 (1994): "Digital Signature Standard".
       NIST's Digital Signature Algorithm (DSA) is a variant of
       ElGamal's Discrete Logarithm-based digital signature mechanism.
       The DSA requires a 160-bit hash-function and mandates SHA-1.

     - IEEE P1363 (2000) [P1363]: "Standard Specifications for Public-
       Key Cryptography".  IEEE P1363 contains mechanisms for digital
       signatures, key establishment, and encipherment based on three
       families of public key schemes:

     - "Conventional" Discrete Logarithm (DL)-based techniques, i.e.,
       Diffie-Hellman (DH) key agreement, Menezes-Qu-Vanstone (MQV) key
       agreement, the Digital Signature Algorithm (DSA), and
       Nyberg-Rueppel (NR) digital signatures;

     - Elliptic Curve (EC)-based variants of the DL-mechanisms
       specified above, i.e., EC-DH, EC-MQV, EC-DSA, and EC-NR.  For
       elliptic curves, implementation options include mod p and
       characteristic 2 with polynomial or normal basis representation;

     - Integer Factoring (IF)-based techniques, including RSA
       encryption, RSA digital signatures, and RSA-based key transport.

     - ISO/IEC 9796-2 (1997) [ISO9796-2]: "Information technology -
       Security techniques - Digital signature schemes giving message
       recovery - Part 2: Mechanisms using a hash-function".  ISO/IEC
       9796-2 specifies digital signature mechanisms with partial
       message recovery that are also based on the RSA technique but
       make use of a hash-function.





Pinkas, et al.               Informational                    [Page 135]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - ISO/IEC 9796-4 (1998) [ISO9796-4]: "Digital signature schemes
       giving message recovery - Part 4: Discrete logarithm based
       mechanisms".  ISO/IEC 9796-4 specifies digital signature
       mechanisms with partial message recovery that are based on
       Discrete Logarithm techniques.  The document includes the
       Nyberg-Rueppel scheme.

     - ISO/IEC 14888-1 [ISO14888-1]: "Digital signatures with appendix
       - Part 1: General".  ISO/IEC 14888-1 contains definitions and
       describes the basic concepts of digital signatures with
       appendix.

     - ISO/IEC 14888-2 [ISO14888-2]: "Digital signatures with appendix
       - Part 2: Identity-based mechanisms".  ISO/IEC 14888-2 specifies
       digital signature schemes with appendix that make use of
       identity-based keying material.  The document includes the
       zero-knowledge techniques of Fiat-Shamir and Guillou-Quisquater.

     - ISO/IEC 14888-3 [ISO14888-3]: "Digital signatures with appendix
       - Part 3: Certificate-based mechanisms".  ISO/IEC 14888-3
       specifies digital signature schemes with appendix that make use
       of certificate-based keying material.  The document includes
       five schemes:

        - DSA;
        - EC-DSA, an elliptic curve-based analog of NIST's Digital
          Signature Algorithm;
        - Pointcheval-Vaudeney signatures;
        - RSA signatures;
        - ESIGN.

     - ISO/IEC 15946-2 (2002) [ISO15946-2]: "Cryptographic techniques
       based on elliptic curves - Part 2: Digital signatures",
       specifies digital signature schemes with appendix using elliptic
       curves.

     - The document includes two schemes:

       - EC-DSA, an elliptic curve-based analog of NIST's Digital
         Signature Algorithm;

       - EC-AMV, an elliptic curve-based analog of the Agnew-Muller-
         Vanstone signature algorithm.








Pinkas, et al.               Informational                    [Page 136]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     - ANSI X9.31-1 (1997) [X9.31-1]: "Public Key Cryptography Using
       Reversible Algorithms for the Financial Services Industry - Part
       1: The RSA Signature Algorithm".  ANSI X9.31-1 specifies a
       digital signature mechanism with appendix using the RSA public
       key technique.

     - ANSI X9.30-1 (1997) [X9.30-1]: "Public Key Cryptography Using
       Irreversible Algorithms for the Financial Services Industry -
       Part 1: The Digital Signature Algorithm (DSA)".  ANSI X9.30-1
       specifies the DSA, NIST's Digital Signature Algorithm.

     - ANSI X9.62 (1998) [X9.62]: "Public Key Cryptography for the
       Financial Services Industry - The Elliptic Curve Digital
       Signature Algorithm (ECDSA)".  ANSI X9.62 specifies the Elliptic
       Curve Digital Signature Algorithm, an analog of NIST's Digital
       Signature Algorithm (DSA) using elliptic curves.  The appendices
       provide tutorial information on the underlying mathematics for
       elliptic curve cryptography and give many examples.

Annex J (Informative): Guidance on Naming

J.1.  Allocation of Names

  The subject name shall be allocated through a registration scheme
  administered through a Registration Authority (RA) to ensure
  uniqueness.  This RA may be an independent body or a function carried
  out by the Certification Authority.

  In addition to ensuring uniqueness, the RA shall verify that the name
  allocated properly identifies the applicant and that authentication
  checks are carried out to protect against masquerade.

  The name allocated by an RA is based on registration information
  provided by, or relating to, the applicant (e.g., his personal name,
  date of birth, residence address) and information allocated by the
  RA. Three variations commonly exist:

     - the name is based entirely on registration information, which
       uniquely identifies the applicant (e.g., "Pierre Durand (born
       on) July 6, 1956");

     - the name is based on registration information, with the addition
       of qualifiers added by the registration authority to ensure
       uniqueness (e.g., "Pierre Durand 12");

     - the registration information is kept private by the registration
       authority and the registration authority allocates a
       "pseudonym".



Pinkas, et al.               Informational                    [Page 137]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


J.2.  Providing Access to Registration Information

  Under certain circumstances, it may be necessary for information used
  during registration, but not published in the certificate, to be made
  available to third parties (e.g., to an arbitrator to resolve a
  dispute or for law enforcement).  This registration information is
  likely to include personal and sensitive information.

  Thus, the RA needs to establish a policy for:

        - whether the registration information should be disclosed;
        - to whom such information should be disclosed;
        - under what circumstances such information should be
          disclosed.

  This policy may be different whether the RA is being used only within
  a company or for public use.  The policy will have to take into
  account national legislation and in particular any data protection
  and privacy legislation.

  Currently, the provision of access to registration is a local matter
  for the RA.  However, if open access is required, standard protocols,
  such as HTTP -- RFC 2068 (Internet Web Access Protocol), may be
  employed with the addition of security mechanisms necessary to meet
  the data protection requirements (e.g., Transport Layer Security --
  RFC 4346 [RFC4346]) with client authentication.

J.3.  Naming Schemes

J.3.1.  Naming Schemes for Individual Citizens

  In some cases, the subject name that is contained in a public key
  certificate may not be meaningful enough.  This may happen because of
  the existence of homonyms or because of the use of pseudonyms.  A
  distinction could be made if more attributes were present.  However,
  adding more attributes to a public key certificate placed in a public
  repository would be going against the privacy protection
  requirements.

  In any case, the Registration Authority will get information at the
  time of registration, but not all that information will be placed in
  the certificate.  In order to achieve a balance between these two
  opposite requirements, the hash values of some additional attributes
  can be placed in a public key certificate.  When the certificate
  owner provides these additional attributes, then they can be
  verified.  Using biometrics attributes may unambiguously identify a
  person.  Examples of biometrics attributes that can be used include:
  a picture or a manual signature from the certificate owner.



Pinkas, et al.               Informational                    [Page 138]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


     NOTE: Using hash values protects privacy only if the possible
     inputs are large enough.  For example, using the hash of a
     person's social security number is generally not sufficient since
     it can easily be reversed.

  A picture can be used if the verifier once met the person and later
  on wants to verify that the certificate that he or she got relates to
  the person whom was met.  In such a case, at the first exchange, the
  picture is sent, and the hash contained in the certificate may be
  used by the verifier to verify that it is the right person.  At the
  next exchange, the picture does not need to be sent again.

  A manual signature may be used if a signed document has been received
  beforehand.  In such a case, at the first exchange, the drawing of
  the manual signature is sent, and the hash contained in the
  certificate may be used by the verifier to verify that it is the
  right manual signature.  At the next exchange, the manual signature
  does not need to be sent again.

J.3.2.  Naming Schemes for Employees of an Organization

  The name of an employee within an organization is likely to be some
  combination of the name of the organization and the identifier of the
  employee within that organization.

  An organization name is usually a registered name, i.e., business or
  trading name used in day-to-day business.  This name is registered by
  a Naming Authority, which guarantees that the organization's
  registered name is unambiguous and cannot be confused with another
  organization.

  In order to get more information about a given registered
  organization name, it is necessary to go back to a publicly available
  directory maintained by the Naming Authority.

  The identifier may be a name or a pseudonym (e.g., a nickname or an
  employee number).  When it is a name, it is supposed to be
  descriptive enough to unambiguously identify the person.  When it is
  a pseudonym, the certificate does not disclose the identity of the
  person.  However, it ensures that the person has been correctly
  authenticated at the time of registration and therefore may be
  eligible to some advantages implicitly or explicitly obtained through
  the possession of the certificate.  In either case, however, this can
  be insufficient because of the existence of homonyms.

  Placing more attributes in the certificate may be one solution, for
  example, by giving the organization unit of the person or the name of
  a city where the office is located.  However, the more information is



Pinkas, et al.               Informational                    [Page 139]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


  placed in the certificate, the more problems arise if there is a
  change in the organization structure or the place of work.  So this
  may not be the best solution.  An alternative is to provide more
  attributes (like the organization unit and the place of work) through
  access to a directory maintained by the company.  It is likely that,
  at the time of registration, the Registration Authority got more
  information than what was placed in the certificate, if such
  additional information is placed in a repository accessible only to
  the organization.

Acknowledgments

  Special thanks to Russ Housley for reviewing the document.

Authors' Addresses

  Denis Pinkas
  Bull SAS
  Rue Jean-Jaures
  78340 Les Clayes sous Bois CEDEX
  FRANCE
  EMail: [email protected]

  Nick Pope
  Thales eSecurity
  Meadow View House
  Long Crendon
  Aylesbury
  Buck
  HP18 9EQ
  United Kingdom
  EMail: [email protected]

  John Ross
  Security & Standards Consultancy Ltd
  The Waterhouse Business Centre
  2 Cromer Way
  Chelmsford
  Essex
  CM1 2QE
  United Kingdom
  EMail: [email protected]









Pinkas, et al.               Informational                    [Page 140]

RFC 5126           CMS Advanced Electronic Signatures      February 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Pinkas, et al.               Informational                    [Page 141]