Network Working Group                                         A. Li, Ed.
Request for Comments: 5109                                 December 2007
Obsoletes: 2733, 3009
Category: Standards Track


       RTP Payload Format for Generic Forward Error Correction

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document specifies a payload format for generic Forward Error
  Correction (FEC) for media data encapsulated in RTP.  It is based on
  the exclusive-or (parity) operation.  The payload format described in
  this document allows end systems to apply protection using various
  protection lengths and levels, in addition to using various
  protection group sizes to adapt to different media and channel
  characteristics.  It enables complete recovery of the protected
  packets or partial recovery of the critical parts of the payload
  depending on the packet loss situation.  This scheme is completely
  compatible with non-FEC-capable hosts, so the receivers in a
  multicast group that do not implement FEC can still work by simply
  ignoring the protection data.  This specification obsoletes RFC 2733
  and RFC 3009.  The FEC specified in this document is not backward
  compatible with RFC 2733 and RFC 3009.



















Li                          Standards Track                     [Page 1]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


Table of Contents

  1. Introduction ....................................................2
  2. Terminology .....................................................5
  3. Basic Operation .................................................6
  4. Parity Codes ....................................................7
  5. Uneven Level Protection (ULP) ...................................7
  6. RTP Media Packet Structure ......................................9
  7. FEC Packet Structure ............................................9
     7.1. Packet Structure ...........................................9
     7.2. RTP Header for FEC Packets ................................10
     7.3. FEC Header for FEC Packets ................................11
     7.4. FEC Level Header for FEC Packets ..........................12
  8. Protection Operation ...........................................15
     8.1. Generation of the FEC Header ..............................15
     8.2. Generation of the FEC Payload .............................16
  9. Recovery Procedures ............................................16
     9.1. Reconstruction of the RTP Header ..........................16
     9.2. Reconstruction of the RTP Payload .........................18
  10. Examples ......................................................19
     10.1. An Example Offers Similar Protection as RFC 2733 .........19
     10.2. An Example with Two Protection Levels ....................21
     10.3. An Example with FEC as Redundant Coding ..................26
  11. Security Considerations .......................................29
  12. Congestion Considerations .....................................30
  13. IANA Considerations ...........................................31
     13.1. Registration of audio/ulpfec .............................31
     13.2. Registration of video/ulpfec .............................32
     13.3. Registration of text/ulpfec ..............................34
     13.4. Registration of application/ulpfec .......................35
  14. Multiplexing of FEC ...........................................36
     14.1. FEC as a Separate Stream .................................36
     14.2. FEC as Redundant Encoding ................................38
     14.3. Offer / Answer Consideration .............................39
  15. Application Statement .........................................40
  16. Acknowledgments ...............................................42
  17. References ....................................................42
     17.1. Normative References .....................................42
     17.2. Informative References ...................................43

1.  Introduction

  The nature of real-time applications implies that they usually have
  more stringent delay requirements than normal data transmissions.  As
  a result, retransmission of the lost packets is generally not a valid
  option for such applications.  In these cases, a better method to
  attempt recovery of information from packet loss is through Forward
  Error Correction (FEC).  FEC is one of the main methods used to



Li                          Standards Track                     [Page 2]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  protect against packet loss over packet-switched networks
  [9, 10].  In particular, the use of traditional error correcting
  codes, such as parity, Reed-Solomon, and Hamming codes, has seen much
  application.  To apply these mechanisms, protocol support is
  required.  RFC 2733 [9] and RFC 3009 [11] defined one of such FEC
  protocols.  However, in these two RFCs a few fields (the P, X, and CC
  fields) in the RTP header are specified in ways that are not
  consistent as they are designed in RTP [1].  This prevents the
  payload-independent validity check of the RTP packets.

  This document extends the FEC defined in RFC 2733 and RFC 3009 to
  include unequal error protection on the payload data.  It specifies a
  general algorithm with the two previous RFCs as its special cases.
  This specification also fixes the above-mentioned inconsistency with
  RFC 2733 and RFC 3009, and will obsolete those two previous RFCs.
  Please note that the payload specified in this document is not
  backward compatible with RFC 2733 and RFC 3009.  Because the payload
  specified in this document is signaled by different MIMEs from those
  of RFC 3009, there is no concern of misidentification of different
  parity FEC versions in capacity exchange.  For parity FECs specified
  here and in RFC 2733 and RFC 3009, the payload data are unaltered and
  additional FEC data are sent along to protect the payload data.
  Hence, the communication of the payload data would flow without
  problem between hosts of different parity FEC versions and hosts that
  did not implement parity FEC.  The receiving hosts with incompatible
  FEC from the sending host would not be able to benefit from the
  additional FEC data, so it is recommended that existing host
  implementing RFC 2733 and RFC 3009 should be updated to follow this
  specification when possible.

  This document defines a payload format for RTP [1] that allows for
  generic forward error correction of real-time media.  In this
  context, generic means that the FEC protocol is (1) independent of
  the nature of the media being protected, be it audio, video, or
  otherwise; (2) flexible enough to support a wide variety of FEC
  configurations; (3) designed for adaptivity so that the FEC technique
  can be modified easily without out-of-band signaling; and (4)
  supportive of a number of different mechanisms for transporting the
  FEC packets.

  Furthermore, in many scenarios the bandwidth of the network
  connections is a very limited resource.  On the other hand, most of
  the traditional FEC schemes are not designed for optimal utilization
  of the limited bandwidth resource.  An often used improvement is
  unequal error protection that provides different levels of protection
  for different parts of the data stream, which vary in importance.
  The unequal error protection schemes can usually make more efficient
  use of bandwidth to provide better overall protection of the data



Li                          Standards Track                     [Page 3]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  stream against the loss.  Proper protocol support is essential for
  realizing these unequal error protection mechanisms.  The application
  of most of the unequal error protection schemes requires having the
  knowledge of the importance for different parts of the data stream.
  For that reason, most of such schemes are designed for particular
  types of media according to the structure of the media protected, and
  as a result, are not generic.

  The FEC algorithm and protocol are defined in this document for
  generic forward error correction with unequal error protection for
  real-time media.  The particular algorithm defined here is called the
  Uneven Level Protection (ULP).  The payload data are protected by one
  or more protection levels.  Lower protection levels can provide
  greater protection by using smaller group sizes (compared to higher
  protection levels) for generating the FEC packet.  As we will discuss
  below, audio/video applications would generally benefit from unequal
  error protection schemes that give more protection to the beginning
  part of each packet such as ULP.  The data that are closer to the
  beginning of the packet are in general more important and tend to
  carry more information than the data farther behind in the packet.

  It is well known that in many multimedia streams the more important
  parts of the data are always at the beginning of the data packet.
  This is the common practice in codec design since the beginning of
  the packet is closer to the re-synchronization marker at the header
  and thus is more likely to be correctly decoded.  In addition, almost
  all media formats have the frame headers at the beginning of the
  packet, which is the most vital part of the packet.

  For video streams, most modern formats have optional data
  partitioning modes to improve error resilience in which the video
  macroblock header data, motion vector data, and Discrete Cosine
  Transform (DCT) coefficient data are separated into their individual
  partitions.  For example, in ITU-T H.263 version 3, there is the
  optional data partitioned syntax of Annex V.  In MPEG-4 Visual Simple
  Profile, there is the optional data partitioning mode.  When these
  modes are enabled, the video macroblock (MB) header and motion vector
  partitions (which are much more important to the quality of the video
  reconstruction) are transmitted in the partition(s) at the beginning
  of the video packet while residue DCT coefficient partitions (which
  are less important) are transmitted in the partition close to the end
  of the packet.  Because the data is arranged in descending order of
  importance, it would be beneficial to provide more protection to the
  beginning part of the packet in transmission.

  For audio streams, the bitstreams generated by many of the new audio
  codecs also contain data with different classes of importance.  These
  different classes are then transmitted in order of descending



Li                          Standards Track                     [Page 4]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  importance.  Applying more protection to the beginning of the packet
  would also be beneficial in these cases.  Even for uniform-
  significance audio streams, various time shifting and stretching
  techniques can be applied to the partially recovered audio data
  packets.

  Audio/video applications would generally benefit from the FEC
  algorithms specified in this document.  With ULP, the efficiency of
  the protection of the media payload can potentially be further
  improved.  This document specifies the protocol and algorithm for
  applying the generic FEC to the RTP media payloads.

2.  Terminology

  The following terms are used throughout this document:

  Media Payload: The raw, unprotected user data that are transmitted
  from the sender.  The media payload is placed inside of an RTP
  packet.

  Media Header: The RTP header for the packet containing the media
  payload.

  Media Packet: The combination of a media payload and media header is
  called a media packet.

  FEC Packet: The FEC algorithms at the transmitter take the media
  packets as an input.  They output both the media packets that they
  are passed, and newly generated packets called FEC packets, which
  contain redundant media data used for error correction.  The FEC
  packets are formatted according to the rules specified in this
  document.

  FEC Header: The header information contained in an FEC packet.

  FEC Level Header: The header information contained in an FEC packet
  for each level.

  FEC Payload: The payload of an FEC packet.  It may be divided into
  multiple levels.

  Associated: A FEC packet is said to be "associated" with one or more
  media packets (or vice versa) when those media packets are used to
  generate the FEC packet (by use of the exclusive-or operation).  It
  refers to only those packets used to generate the level 0 FEC
  payload, if not explicitly stated otherwise.





Li                          Standards Track                     [Page 5]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [2].

3.  Basic Operation

  The payload format described here is used when the sender in an RTP
  session would like to protect the media stream it is sending with
  generic parity FEC.  The FEC supported by this format is based on
  simple exclusive-or (XOR) parities operation.  The sender takes the
  packets from the media stream requiring protection and determines the
  protection levels for these packets and the protection length for
  each level.  The data are grouped together as described below in
  Section 7.  The XOR operation is applied across the payload to
  generate the FEC information.  The results following the procedures
  defined here are RTP packets containing FEC information.  These
  packets can be used at the receiver to recover the packets or parts
  of the packets used to generate the FEC information.

  The payload format for FEC contains information that allows the
  sender to tell the receiver exactly which media packets are protected
  by the FEC packet, and the protection levels and lengths for each of
  the levels.  Specifically, each FEC packet contains an offset mask
  m(k) for each protection level k.  If the bit i in the mask m(k) is
  set to 1, then media packet number N + i is protected by this FEC
  packet at level k.  N is called the sequence number base, and is sent
  in the FEC packet as well.  The amount of data that is protected at
  level k is indicated by L(k), which is also sent in the FEC packet.
  The protection length, offset mask, payload type, and sequence number
  base fully identify the parity code applied to generate the FEC
  packet with little overhead.  A set of rules is described in Section
  7.4 that defines how the mask should be set for different protection
  levels, with examples in Section 10.

  This document also describes procedures on transmitting all the
  protection operation parameters in-band.  This allows the sender
  great flexibility; the sender can adapt the protection to current
  network conditions and be certain the receivers can still make use of
  the FEC for recovery.

  At the receiver, both the FEC and original media are received.  If no
  media packets are lost, the FEC packets can be ignored.  In the event
  of a loss, the FEC packets can be combined with other received media
  to recover all or part of the missing media packets.







Li                          Standards Track                     [Page 6]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


4.  Parity Codes

  For brevity, we define the function f(x,y,..) to be the XOR (parity)
  operator applied to the data blocks x,y,...  The output of this
  function is another block, called the parity block.  For simplicity,
  we assume here that the parity block is computed as the bitwise XOR
  of the input blocks.  The exact procedure is specified in Section 8.

  Protection of data blocks using parity codes is accomplished by
  generating one or more parity blocks over a group of data blocks.  To
  be most effective, the parity blocks must be generated by linearly
  independent combinations of data blocks.  The particular combination
  is called a parity code.  The payload format uses XOR parity codes.

  For example, consider a parity code that generates a single parity
  block over two data blocks.  If the original media packets are
  a,b,c,d, the packets generated by the sender are:

     a        b        c        d               <-- media stream
                f(a,b)            f(c,d)        <-- FEC stream

  where time increases to the right.  In this example, the error
  correction scheme (we use the terms scheme and code interchangeably)
  introduces a 50% overhead.  But if b is lost, a and f(a,b) can be
  used to recover b.

  It may be useful to point out that there are many other types of
  forward error correction codes that can also be used to protect the
  payload besides the XOR parity code.  One notable example is Reed-
  Solomon code, and there are many others [12].  However, XOR parity
  code is used here because of its effectiveness and simplicity in both
  protocol design and implementation.  This is particularly important
  for implementation in nodes with limited resources.

5.  Uneven Level Protection (ULP)

  As we can see from the simple example above, the protection on the
  data depends on the size of the group.  In the above example, the
  group size is 2.  So if any one of the three packets (two payload
  packets and one FEC packet) is lost, the original payload data can
  still be recovered.

  In general, the FEC protection operation is a trade-off between the
  bandwidth and the protection strength.  The more FEC packets that are
  generated as a fraction of the source media packets, the stronger the
  protection against loss but the greater the bandwidth consumed by the
  combined stream.




Li                          Standards Track                     [Page 7]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  As is the common case in most of the media payload, not all the parts
  of the packets are of the same importance.  Using this property, one
  can potentially achieve more efficient use of the channel bandwidth
  using unequal error protection, i.e., applying different protection
  for different parts of the packet.  More bandwidth is spent on
  protecting the more important parts, while less bandwidth on the less
  important parts.

  The packets are separated into sections of decreasing importance, and
  protection of different strength is applied to each portion - the
  sections are known as "levels".  The protection operation is applied
  independently at each level.  A single FEC packet can carry parity
  data for multiple levels.  This algorithm is called uneven level
  protection, or ULP.

  The protection of ULP is illustrated in Figure 1 below.  In this
  example, two ULP FEC packets are protecting four payload packets.

  ULP FEC packet #1 has only one level, which protects packets A and B.
  Instead of applying parity operation to the entire packets of A and
  B, it only protects a length of data of both packets.  The length,
  which can be chosen and changed dynamically during a session, is
  called the protection length.

  ULP FEC packet #2 has two protection levels.  The level 0 protection
  is the same as for ULP FEC packet #1 except that it is operating on
  packets C and D.  The level 1 protection is using parity operation
  applied on data from packets A, B, C, and D.  Note that level 1
  protection operates on a different set of packets from level 0 and
  has a different protection length from level 0, so are any other
  levels.  Information is all conveyed in-band through the protocols
  specified in this document.

        Packet A          #####################
                                 :        :
        Packet B          ############### :
                                 :        :
        ULP FEC Packet #1 @@@@@@@@        :
                                 :        :
        Packet C          ###########     :
                                 :        :
        Packet D          ###################################
                                 :        :
        ULP FEC Packet #2 @@@@@@@@@@@@@@@@@
                          :      :        :
                          :<-L0->:<--L1-->:

              Figure 1: Unequal Level Protection



Li                          Standards Track                     [Page 8]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  As we have discussed in the introduction, media streams usually have
  the more important parts at the beginning of the packet.  It is
  usually useful to have the stronger protection in the levels closer
  to the beginning of the packet, and weaker protection in the levels
  farther back.  ULP algorithm provides such FEC protection.

  ULP FEC not only provides more protection to the beginning of the
  packet (which is more important), it also avoids as much as possible
  the less efficient scenarios that an earlier section of a packet is
  unrecoverable while a later section can be recovered (and often has
  to be discarded).

6.  RTP Media Packet Structure

  The formatting of the media packets is unaffected by FEC.  If the FEC
  is sent as a separate stream, the media packets are sent as if there
  was no FEC.

  This approach has the advantage that media packets can be interpreted
  by receivers that do not support FEC.  This compatibility with
  non-FEC capable receivers is particularly useful in the multicast
  scenarios.  The overhead for using the FEC scheme is only present in
  FEC packets, and can be easily monitored and adjusted by tracking the
  amount of FEC in use.

7.  FEC Packet Structure

7.1.  Packet Structure

  A FEC packet is constructed by placing an FEC header and one or more
  levels of FEC header and payload into the RTP payload, as shown in
  Figure 2:



















Li                          Standards Track                     [Page 9]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                RTP Header (12 octets or more)                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    FEC Header (10 octets)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      FEC Level 0 Header                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     FEC Level 0 Payload                       |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      FEC Level 1 Header                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     FEC Level 1 Payload                       |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            Cont.                              |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 2: FEC Packet Structure

7.2.  RTP Header for FEC Packets

  The RTP header for FEC packets is only used when the FEC are sent in
  a separate stream from the protected payload stream (as defined in
  Section 14).  Hence, much of the discussion below applies only to
  that scenario.  All the fields in the RTP header of FEC packets are
  used according to RFC 3550 [1], with some of them further clarified
  below.

  Marker: This field is not used for this payload type, and SHALL be
  set to 0.

  Synchronization Source (SSRC): The SSRC value SHALL be the same as
  the SSRC value of the media stream it protects.

  Sequence Number (SN): The sequence number has the standard definition
  - it MUST be one higher than the sequence number in the previously
  transmitted FEC packet.

  Timestamp (TS): The timestamp MUST be set to the value of the media
  RTP clock at the instant the FEC packet is transmitted.  Thus, the TS
  value in FEC packets is always monotonically increasing.

  Payload type: The payload type for the FEC packets is determined
  through dynamic, out-of-band means.  According to RFC 3550 [1], RTP
  participants that cannot recognize a payload type must discard it.
  This provides backward compatibility.  The FEC mechanisms can then be



Li                          Standards Track                    [Page 10]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  used in a multicast group with mixed FEC-capable and FEC-incapable
  receivers, particularly when the FEC protection is sent as redundant
  encoding (see Section 14).  In such cases, the FEC protection will
  have a payload type that is not recognized by the FEC-incapable
  receivers, and will thus be disregarded.

7.3.  FEC Header for FEC Packets

  The FEC header is 10 octets.  The format of the header is shown in
  Figure 3 and consists of extension flag (E bit), long-mask flag (L
  bit), P recovery field, X recovery field, CC recovery field, M
  recovery field, PT recovery field, SN base field, TS recovery field,
  and length recovery field.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |E|L|P|X|  CC   |M| PT recovery |            SN base            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          TS recovery                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        length recovery        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 3: FEC Header Format

  The E bit is the extension flag reserved to indicate any future
  extension to this specification.  It SHALL be set to 0, and SHOULD be
  ignored by the receiver.

  The L bit indicates whether the long mask is used.  When the L bit is
  not set, the mask is 16 bits long.  When the L bit is set, the mask
  is then 48 bits long.

  The P recovery field, the X recovery field, the CC recovery field,
  the M recovery field, and the PT recovery field are obtained via the
  protection operation applied to the corresponding P, X, CC, M, and PT
  values from the RTP header of the media packets associated with the
  FEC packet.

  The SN base field MUST be set to the lowest sequence number, taking
  wrap around into account, of those media packets protected by FEC (at
  all levels).  This allows for the FEC operation to extend over any
  string of at most 16 packets when the L field is set to 0, or 48
  packets when the L field is set to 1, and so on.






Li                          Standards Track                    [Page 11]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  The TS recovery field is computed via the protection operation
  applied to the timestamps of the media packets associated with this
  FEC packet.  This allows the timestamp to be completely recovered.

  The length recovery field is used to determine the length of any
  recovered packets.  It is computed via the protection operation
  applied to the unsigned network-ordered 16-bit representation of the
  sums of the lengths (in bytes) of the media payload, CSRC list,
  extension and padding of each of the media packets associated with
  this FEC packet (in other words, the CSRC list, RTP extension, and
  padding of the media payload packets, if present, are "counted" as
  part of the payload).  This allows the FEC procedure to be applied
  even when the lengths of the protected media packets are not
  identical.  For example, assume that an FEC packet is being generated
  by xor'ing two media packets together.  The length of the payload of
  two media packets is 3 (0b011) and 5 (0b101) bytes, respectively.
  The length recovery field is then encoded as 0b011 xor 0b101 = 0b110.

7.4.  FEC Level Header for FEC Packets

  The FEC level header is 4 or 8 octets (depending on the L bit in the
  FEC header).  The formats of the headers are shown in Figure 4.

  The FEC level headers consist of a protection length field and a mask
  field.  The protection length field is 16 bits long.  The mask field
  is 16 bits long (when the L bit is not set) or 48 bits long (when the
  L bit is set).

  The mask field in the FEC level header indicates which packets are
  associated with the FEC packet at the current level.  It is either 16
  or 48 bits depending on the value of the L bit.  If bit i in the mask
  is set to 1, then the media packet with sequence number N + i is
  associated with this FEC packet, where N is the SN Base field in the
  FEC packet header.  The most significant bit of the mask corresponds
  to i=0, and the least significant to i=15 when the L bit is set to 0,
  or i=47 when the L bit is set to 1.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Protection Length       |             mask              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              mask cont. (present only when L = 1)             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 4: ULP Level Header Format

  The setting of the mask field shall follow the following rules:



Li                          Standards Track                    [Page 12]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  a. A media packet SHALL be protected only once at each protection
     level higher than level 0.  A media packet MAY be protected more
     than once at level 0 by different packets, providing the
     protection lengths of level 0 of these packets are equal.

  b. For a media packet to be protected at level p, it MUST also be
     protected at level p-1 in any FEC packets.  Please note that the
     protection level p for a media packet can be in an FEC packet that
     is different from the one that contains protection level p-1 for
     the same media packet.

  c. If a ULP FEC packet contains protection at level p, it MUST also
     contain protection at level p-1.  Note that the combination of
     payload packets that are protected in level p may be different
     from those of level p-1.

  The rationale for rule (a) is that multiple protection increases the
  complexity of the recovery implementation.  At higher levels, the
  multiple protection offers diminishing benefit, so its application is
  restricted to level 0 for simpler implementation.  The rationale for
  rule (b) is that the protection offset (for each associated packet)
  is not explicitly signaled in the protocol.  With this restriction,
  the offset can be easily deducted from protection lengths of the
  levels.  The rationale of rule (c) is that the level of protection is
  not explicitly indicated.  This rule is set to implicitly specify the
  levels.

  One example of the protection combinations is illustrated in Figure 5
  below.  It is the same example as shown in Figure 1.  This same
  example is also shown in more detail in Section 10.2 to illustrate
  how the fields in the headers are set.




















Li                          Standards Track                    [Page 13]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


        Packet A          #####################
                                 :        :
        Packet B          ############### :
                                 :        :
        ULP FEC Packet #1 @@@@@@@@        :
                                 :        :
        Packet C          ###########     :
                                 :        :
        Packet D          ###################################
                                 :        :
        ULP FEC Packet #2 @@@@@@@@@@@@@@@@@
                          :      :        :
                          :<-L0->:<--L1-->:

        Payload packet #  |  ULP FEC packet that protects at level
                          |          L0             L1
     ---------------------+---------------------------------------
               A          |          #1             #2
               B          |          #1             #2
               C          |          #2             #2
               D          |          #2             #2

          Figure 5: An Example of Protection Combination

  In this example, ULP FEC packet #1 only has protection level 0.  ULP
  FEC packet #2 has protection levels 0 and 1.  Read across the table,
  it is shown that payload packet A is protected by ULP FEC packet #1
  at level 0, by ULP FEC packet #2 at level 1, and so on.  Also, it can
  be easily seen from the table that ULP FEC packet #2 protects at
  level 0 payload packets C and D, at level 1 payload packets A-D, and
  so on.  For additional examples with more details, please refer to
  Section 10, "Examples".

  The payload of the ULP FEC packets of each level is the protection
  operation (XOR) applied to the media payload and padding of the media
  packets associated with the ULP FEC packet at that level.  Details
  are described in Section 8 on the protection operation.

  The size of the ULP FEC packets is determined by the protection
  lengths chosen for the protection operation.  In the above example,
  ULP FEC packet #1 has length L0 (plus the header overhead).  ULP FEC
  packet #2 with two levels has length L0+L1 (plus the header
  overhead).  It is longer than some of the packets it protects
  (packets B and C in this example), and is shorter than some of the
  packets it protects (packets A and D in this example).






Li                          Standards Track                    [Page 14]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  Note that it's possible for the FEC packet (non-ULP and ULP) to be
  larger than the longest media packets it protects because of the
  overhead from the headers and/or if a large protection length is
  chosen for ULP.  This could cause difficulties if this results in the
  FEC packet exceeding the Maximum Transmission Unit size for the path
  along which it is sent.

8.  Protection Operation

  FEC packets are formed from an "FEC bit string" that is generated
  from the data of the protected media RTP packets.  More specifically,
  the FEC bit string is the bitwise exclusive OR of the "protected bit
  strings" of the protected media RTP packets.

  The following procedure MAY be followed for the protection operation.
  Other procedures MAY be used, but the end result MUST be identical to
  the one described here.

8.1.  Generation of the FEC Header

  In the case of the FEC header, the protected bit strings (80 bits in
  length) are generated for each media packet to be protected at FEC
  level 0.  It is formed by concatenating the following fields together
  in the order specified:

     o The first 64 bits of the RTP header (64 bits)

     o Unsigned network-ordered 16-bit representation of the media
       packet length in bytes minus 12 (for the fixed RTP header),
       i.e., the sum of the lengths of all the following if present:
       the CSRC list, extension header, RTP payload, and RTP padding
       (16 bits)

  After the FEC bit string is formed by applying parity operation on
  the protected bit strings, the FEC header is generated from the FEC
  bit string as follows:

  The first (most significant) 2 bits in the FEC bit string are
  skipped.  The next bit in the FEC bit string is written into the P
  recovery bit of the FEC header in the FEC packet.  The next bit in
  the FEC bit string is written into the E recovery bit of the FEC
  header.  The next 4 bits of the FEC bit string are written into the
  CC recovery field of the FEC header.  The next bit is written into
  the M recovery bit of the FEC header.  The next 7 bits of the FEC bit
  string are written into the PT recovery field in the FEC header.  The
  next 16 bits are skipped.  The next 32 bits of the FEC bit string are
  written into the TS recovery field in the FEC header.  The next 16
  bits are written into the length recovery field in the packet header.



Li                          Standards Track                    [Page 15]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


8.2.  Generation of the FEC Payload

  For generation of the FEC payload, the protected bit strings are
  simply the protected RTP packets.  The FEC bit string is thus the
  bitwise exclusive OR of these protected media RTP packets.  Such FEC
  bit strings need to be generated for each level, as the group of
  protected payload packets may be different for each level.  If the
  lengths of the protected RTP packets are not equal, each shorter
  packet MUST be padded to the length of the longest packet by adding
  octet 0 at the end.

  For protection level n (n = 0, 1, ...), only Ln octets of data are
  set as the FEC level n payload data after the level n ULP header.
  The data is the Ln octets of data starting with the (Sn + 13)th octet
  in the FEC bit string, where:

  Sn = sum(Li : 0 <= i < n).

  Li is the protection length of level i, and S0 is defined to be 0.
  The reason for omitting the first 12 octets is that that information
  is protected by the FEC header already.

9.  Recovery Procedures

  The FEC packets allow end systems to recover from the loss of media
  packets.  This section describes the procedure for performing this
  recovery.

  Recovery requires two distinct operations.  The first determines
  which packets (media and FEC) must be combined in order to recover a
  missing packet.  Once this is done, the second step is to actually
  reconstruct the data.  The second step MUST be performed as described
  below.  The first step MAY be based on any algorithm chosen by the
  implementer.  Different algorithms result in a trade-off between
  complexity and the ability to recover missing packets, if possible.

  The lost payload packets may be recovered in full or in parts
  depending on the data-loss situation due to the nature of unequal
  error protection (when it is used).  The partial recovery of the
  packet can be detected by checking the recovery length of the packet
  retrieved from the FEC header against the actual length of the
  recovered payload data.

9.1.  Reconstruction of the RTP Header

  Let T be the list of packets (FEC and media) that can be combined to
  recover some media packet xi at level 0.  The procedure is as
  follows:



Li                          Standards Track                    [Page 16]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


     1.  For the media packets in T, compute the first 80 bits of the
         protected bit string following the procedure as described for
         generating the FEC header in the previous section.

     2.  For the FEC packet in T, the FEC bit string is the 80-bit FEC
         header.

     3.  Calculate the recovery bit string as the bitwise exclusive OR
         of the protected bit string generated from all the media
         packets in T and the FEC bit string generated from all the FEC
         packets in T.

     4.  Create a new packet with the standard 12-byte RTP header and
         no payload.

     5.  Set the version of the new packet to 2.  Skip the first 2 bits
         in the recovery bit string.

     6.  Set the Padding bit in the new packet to the next bit in the
         recovery bit string.

     7.  Set the Extension bit in the new packet to the next bit in the
         recovery bit string.

     8.  Set the CC field to the next 4 bits in the recovery bit
         string.

     9.  Set the marker bit in the new packet to the next bit in the
         recovery bit string.

     10. Set the payload type in the new packet to the next 7 bits in
         the recovery bit string.

     11. Set the SN field in the new packet to xi.  Skip the next 16
         bits in the recovery bit string.

     12. Set the TS field in the new packet to the next 32 bits in the
         recovery bit string.

     13. Take the next 16 bits of the recovery bit string.  Whatever
         unsigned integer this represents (assuming network-order),
         take that many bytes from the recovery bit string and append
         them to the new packet.  This represents the CSRC list,
         extension, payload, and the padding of the RTP payload.

     14. Set the SSRC of the new packet to the SSRC of the media stream
         it's protecting, i.e., the SSRC of the media stream to which
         the FEC stream is associated.



Li                          Standards Track                    [Page 17]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  This procedure will recover the header of an RTP packet up to the
  SSRC field.

9.2.  Reconstruction of the RTP Payload

  Let T be the list of packets (FEC and media) that can be combined to
  recover some media packet xi at a certain protection level.  The
  procedure is as follows:

     1.  Assume that we are reconstructing the data for level n, the
         first step is to get the protection length of level n (Ln)
         from the ULP header of level n.

     2.  For the FEC packets in T, the FEC bit string of level n is FEC
         level n payload, i.e., the Ln octets of data following the ULP
         header of level n.

     3.  For the media packets in T, the protected bit string of level
         n is Ln octets of data starting with the (Sn + 13)th octet of
         the packet.  Sn is the same as defined in Section 8.2.  Note
         that the protection of level 0 starts from the 13th octet of
         the media packet after the SSRC field.  The information of the
         first 12 octets are protected by the FEC header.

     4.  If any of the protected bit strings of level n generated from
         the media packets are shorter than the protection length of
         the current level, pad them to that length.  The padding of
         octet 0 MUST be added at the end of the bit string.

     5.  Calculate the recovery bit string as the bitwise exclusive OR
         of the protected bit string of level n generated from all the
         media packets in T and the FEC bit string of level n generated
         from all the FEC packets in T.

     6.  The recovery bit string of the current protection level as
         generated above is combined through concatenation with the
         recovery bit string of all the other levels to form the (fully
         or partially) recovered media packet.  Note that the recovery
         bit string of each protection level MUST be placed at the
         correct location in the recovered media packet for that level
         based on protection length settings.

     7.  The total length of the recovered media packet is recovered
         from the recovery operation at protection level 0 of the
         recovered media packet.  This information can be used to check
         if the complete recovery operation (of all levels) has
         recovered the packet to its full length.




Li                          Standards Track                    [Page 18]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  The data protected at the lower protection level is recoverable in a
  majority of the cases if the higher-level protected data is
  recoverable.  This procedure (together with the procedure for the
  lower protection levels) will usually recover both the header and
  payload of an RTP packet up to the protection length of the current
  level.

10.  Examples

  In the first two examples considered below (Sections 10.1 and 10.2),
  we assume that the FEC streams are sent through a separate RTP
  session as described in Section 14.1.  For these examples, we assume
  that four media packets are to be sent, A, B, C, and D, from SSRC 2.
  Their sequence numbers are 8, 9, 10, and 11, respectively, and have
  timestamps of 3, 5, 7, and 9, respectively.  Packets A and C use
  payload type 11, and packets B and D use payload type 18.  Packet A
  has 200 bytes of payload, packet B 140, packet C 100, and packet D
  340.  Packets A and C have their marker bit set.

  The third example (Section 10.3) is to illustrate when the FEC data
  is sent as redundant data with the payload packets.

10.1.  An Example Offers Similar Protection as RFC 2733

  We can protect the four payload packets to their full length in one
  single level with one FEC packet.  This offers similar protection as
  RFC 2733.  The scheme is as shown in Figure 6.

                   +-------------------+             :
        Packet A   |                   |             :
                   +-------------+-----+             :
        Packet B   |             |                   :
                   +---------+---+                   :
        Packet C   |         |                       :
                   +---------+-----------------------+
        Packet D   |                                 |
                   +---------------------------------+
                                                     :
                   +---------------------------------+
        Packet FEC |                                 |
                   +---------------------------------+
                   :                                 :
                   :<------------- L0 -------------->:

        Figure 6: FEC Scheme with Single-Level Protection






Li                          Standards Track                    [Page 19]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  An FEC packet is generated from these four packets.  We assume that
  payload type 127 is used to indicate an FEC packet.  The resulting
  RTP header is shown in Figure 7.

  The FEC header in the FEC packet is shown in Figure 8.

  The FEC level header for level 0 is shown in Figure 9.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1 0|0|0|0 0 0 0|0|1 1 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Version:   2
     Padding:   0
     Extension: 0
     Marker:    0
     PT:        127
     SN:        1
     TS:        9
     SSRC:      2

                 Figure 7: RTP Header of FEC Packet























Li                          Standards Track                    [Page 20]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|0|0|0 0 0 0|0|0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     E:         0     [this specification]
     L:         0     [short 16-bit mask]
     P rec.:    0     [0 XOR 0 XOR 0 XOR 0]
     X rec.:    0     [0 XOR 0 XOR 0 XOR 0]
     CC rec.:   0     [0 XOR 0 XOR 0 XOR 0]
     M rec.:    0     [1 XOR 0 XOR 1 XOR 0]
     PT rec.:   0     [11 XOR 18 XOR 11 XOR 18]
     SN base:   8     [min(8,9,10,11)]
     TS rec.:   8     [3 XOR 5 XOR 7 XOR 9]
     len. rec.: 372   [200 XOR 140 XOR 100 XOR 340]

              Figure 8: FEC Header of FEC Packet

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0|1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     L0:        340   [the longest of 200, 140, 100, and 340]
     mask:      61440 [with Bits 1, 2, 3, and 4 marked accordingly for
                       Packets 8, 9, 10, and 11]

     The payload length for level 0 is 340 bytes.

              Figure 9: FEC Level Header (Level 0)

10.2.  An Example with Two Protection Levels

  A more complex example is to use FEC at two levels.  The level 0 FEC
  will provide greater protection to the beginning part of the payload
  packets.  The level 1 FEC will apply additional protection to the
  rest of the packets.  This is illustrated in Figure 10.  In this
  example, L0 = 70 and L1 = 90.







Li                          Standards Track                    [Page 21]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


             +------:--------:---+
  Packet A   |      :        :   |
             +------:------+-:---+
  Packet B   |      :      | :
             +------:--+---+ :
                    :        :
             +------+        :
  ULP #1     |      |        :
             +------+        :
                    :        :
             +------:--+     :
  Packet C   |      :  |     :
             +------:--+-----:-----------------+
  Packet D   |      :        :                 |
             +------:--------:-----------------+
                    :        :
             +------:--------+
  ULP #2     |      :        |
             +------:--------+
             :      :        :
             :<-L0->:<--L1-->:

  Figure 10: ULP FEC Scheme with Protection Level 0 and Level 1

  This will result in two FEC packets - #1 and #2.

  The resulting ULP FEC packet #1 will have the RTP header as shown in
  Figure 11.  The FEC header for ULP FEC packet #1 will be as shown in
  Figure 12.  The level 0 ULP header for #1 will be as shown in Figure
  13.





















Li                          Standards Track                    [Page 22]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1 0|0|0|0 0 0 0|1|1 1 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Version:   2
     Padding:   0
     Extension: 0
     Marker:    1
     PT:        127
     SN:        1
     TS:        5
     SSRC:      2

              Figure 11: RTP Header of FEC Packet #1

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|0|0|0 0 0 0|0|0 0 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     E:         0     [this specification]
     L:         0     [short 16-bit mask]
     P rec.:    0     [0 XOR 0 XOR 0 XOR 0]
     X rec.:    0     [0 XOR 0 XOR 0 XOR 0]
     CC rec.:   0     [0 XOR 0 XOR 0 XOR 0]
     M rec.:    0     [1 XOR 0 XOR 1 XOR 0]
     PT rec.:   25    [11 XOR 18]
     SN base:   8     [min(8,9)]
     TS rec.:   6     [3 XOR 5]
     len. rec.: 68    [200 XOR 140]

              Figure 12: FEC Header of ULP FEC Packet #1








Li                          Standards Track                    [Page 23]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0|1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     L0:        70
     mask:      49152 [with Bits 1 and 2 marked accordingly for
                       Packets 8 and 9]

     The payload length for level 0 is 70 bytes.

      Figure 13: FEC Level Header (Level 0) for FEC Packet #1

  The resulting FEC packet #2 will have the RTP header as shown in
  Figure 14.  The FEC header for FEC packet #2 will be as shown in
  Figure 15.  The level 0 ULP header for #2 will be as shown in Figure
  16.  The level 1 ULP header for #2 will be as shown in Figure 17.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1 0|0|0|0 0 0 0|1|1 1 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Version:   2
     Padding:   0
     Extension: 0
     Marker:    1
     PT:        127
     SN:        2
     TS:        9
     SSRC:      2

               Figure 14: RTP Header of FEC Packet #2












Li                          Standards Track                    [Page 24]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|0|0|0 0 0 0|0|0 0 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     E:         0     [this specification]
     L:         0     [short 16-bit mask]
     P rec.:    0     [0 XOR 0 XOR 0 XOR 0]
     X rec.:    0     [0 XOR 0 XOR 0 XOR 0]
     CC rec.:   0     [0 XOR 0 XOR 0 XOR 0]
     M rec.:    0     [1 XOR 0 XOR 1 XOR 0]
     PT rec.:   25    [11 XOR 18]
     SN base:   8     [min(8,9,10,11)]
     TS rec.:   14    [7 XOR 9]
     len. rec.: 304   [100 XOR 340]

              Figure 15: FEC Header of FEC Packet #2

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0|0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     L0:        70
     mask:      12288 [with Bits 3 and 4 marked accordingly for
                       Packets 10 and 11]

     The payload length for level 0 is 70 bytes.

     Figure 16: FEC Level Header (Level 0) for FEC Packet #2















Li                          Standards Track                    [Page 25]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0|1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     L1:        90
     mask:      61440 [with Bits 1, 2, 3, and 4 marked accordingly for
                       Packets 8, 9, 10, and 11]

     The payload length for level 1 is 90 bytes.

      Figure 17: FEC Level Header (Level 1) for FEC Packet #2

10.3.  An Example with FEC as Redundant Coding

  This example illustrates FEC sent as redundant coding in the same
  stream as the payload.  We assume that five media packets are to be
  sent, A, B, C, D, and E, from SSRC 2.  Their sequence numbers are 8,
  9, 10, 11, and 12, respectively, and have timestamps of 3, 5, 7, 9,
  and 11, respectively.  All the media data is coded with primary
  coding (and FEC as redundant coding only protects the primary coding)
  and uses payload type 11.  Packet A has 200 bytes of payload, packet
  B 140, packet C 100, packet D 340, and packet E 160.  Packets A and C
  have their marker bit set.

  The FEC scheme we use will be with one level as illustrated by Figure
  6 in Section 10.1.  The protection length L0 = 340 octets.

  A redundant coding packetization is used with payload type 100.  The
  payload type of the FEC is assumed to be 127.  The first four RED
  packets, RED #1 through RED #4, each contains an individual media
  packet, A, B, C, or D, respectively.  The FEC data protecting the
  media data in the first four media packets is generated.  The fifth
  packet, RED #5, contains this FEC data as redundant coding along with
  media packet E.

  RED Packet #1:    Media Packet A
  RED Packet #2:    Media Packet B
  RED Packet #3:    Media Packet C
  RED Packet #4:    Media Packet D
  RED Packet #5:    FEC Packet, Media Packet E

  RED packets #1 through #4 will have the structure as shown in Figure
  18.  The RTP header of the RED packet #1 is as shown in Figure 19,
  with all the other RED packets in similar format with corresponding
  sequence numbers and timestamps.  The primary encoding block header
  of the RED packets is as shown in Figure 20.



Li                          Standards Track                    [Page 26]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 RTP Header (RED) - 6 octets                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Primary Encoding Block Header (RED) - 1 octet          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Media Packet Data                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 18: RED Packet Structure - Media Data Only

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1 0|0|0|0 0 0 0|0|1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Version:   2
     Padding:   0
     Extension: 0
     Marker:    0     [Even though media packet A has marker set]
     PT:        100   [Payload type for RED]
     SN:        1
     TS:        5
     SSRC:      2

              Figure 19: RTP Header of RED Packet #1

   0 1 2 3 4 5 6 7
  +-+-+-+-+-+-+-+-+
  |0|0 0 0 1 0 1 1|
  +-+-+-+-+-+-+-+-+

     F bit:     0     [This is the primary coding data]
     Block PT:  11    [The payload type of media]

       Figure 20: Primary Encoding Block Header

  The FEC data is generated not directly from the RED packets, but from
  the virtual RTP packets containing the media packet data.  Those
  virtual RTP packets can be very easily generated from the RED packets
  both with and without redundant coding included.  The conversion from
  RED packets to virtual RTP packets is simply done by (1) removing any
  RED block headers and redundant coding data, and (2) replacing the PT
  in the RTP header with the PT of the primary coding.



Li                          Standards Track                    [Page 27]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


     Note: In the payload format for redundant coding as specified by
     RFC 2198, the marker bit is lost as soon as the primary coding is
     carried in the RED packets.  So the marker bit cannot be recovered
     regardless of whether or not the FEC is used.

  As mentioned above, RED packet #5 will contain the FEC data (that
  protects media packets A, B, C, and D) as well as the data of media
  packet E.  The structure of RED packet #5 is as illustrated in Figure
  21.

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 RTP Header (RED) - 6 octets                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Redundant Encoding Block Header (RED) - 4 octets        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        FEC Packet Data                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Primary Encoding Block Header (RED) - 1 octet          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Media Packet Data                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 21: RED Packet Structure - With FEC Data

  The RTP header of the RED packets with FEC included is the same as
  shown in Figure 19, with their corresponding sequence numbers and
  timestamps.

  In RED packet #5, the redundant encoding block header for the FEC
  packet data block is as shown below in Figure 22.  It will be
  followed by the FEC packet data, which, in this case, includes an FEC
  header (10 octets as shown in Figure 8), ULP level 0 header (4 octets
  as shown in Figure 9), and the ULP level 0 data (340 octets as set
  for level 0).  These are followed by the primary encoding block that
  contains the data of media packet E.
















Li                          Standards Track                    [Page 28]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1|1 1 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 1 0 1 1 0 0 0 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     F bit:     1     [This is the redundant coding data]
     Block PT:  127   [The dynamic payload type for FEC]
     TS Offset: 0     [The instance at which the FEC data is
                       transmitted]
     Block Len: 354   [FEC header (10 octets) plus ULP level 0 header
                       (4 octets) and ULP level 0 data (340 octets)]

         Figure 22: Redundant Encoding Block Header

11.  Security Considerations

  There are two ways to use FEC with encryption in secure
  communications: one way is to apply the FEC on already encrypted
  payloads, and the other way is to apply the FEC before the
  encryption.  The first case is encountered when FEC is needed by a
  not trusted node during transmission after the media data is
  encrypted.  The second case is encountered when media data is
  protected by FEC before it is transmitted through a secured
  transport.

  Since the protected payload of this FEC is RTP packets, applying FEC
  on encrypted payloads is primarily applicable in the case of secure
  RTP (SRTP) [13].  Because the FEC applies XOR across the payload, the
  FEC packets should be cryptographically as secure as the original
  payload.  In such cases, additional encryption of the FEC packets is
  not necessary.

  In the following discussion, it is assumed that the FEC is applied to
  the payload before the encryption.  The use of FEC has implications
  on the usage and changing of keys for encryption.  As the FEC packets
  do consist of a separate stream, there are a number of combinations
  on the usage of encryption.  These include:

     o The FEC stream may be encrypted, while the media stream is not.

     o The media stream may be encrypted, while the FEC stream is not.

     o The media stream and FEC stream are both encrypted, but using
       the same key.

     o The media stream and FEC stream are both encrypted, but using
       different keys.



Li                          Standards Track                    [Page 29]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  The first three of these would require all application-level
  signaling protocols used to be aware of the usage of FEC, and to thus
  exchange keys and negotiate encryption usage on the media and FEC
  streams separately.  In the final case, no such additional mechanisms
  are needed.  The first two cases present a layering violation, as ULP
  FEC packets should be treated no differently than other RTP packets.
  Encrypting just one stream may also make certain known-plaintext
  attacks possible.  For these reasons, applications utilizing
  encryption SHOULD encrypt both streams, i.e., the last two options.

  Furthermore, because the encryption may potentially be weakened by
  the known relationship between the media payload and FEC data for
  certain ciphers, different encryption keys MUST be used for each
  stream when the media payload and the FEC data are sent in separate
  streams.  Note that when SRTP [13] is used for security of the RTP
  sessions, different keys for each RTP session are required by the
  SRTP specification.

  The changing of encryption keys is another crucial issue that needs
  to be addressed.  Consider the case where two packets a and b are
  sent along with the FEC packet that protects them.  The keys used to
  encrypt a and b are different, so which key should be used to decode
  the FEC packet?  In general, old keys need to be cached, so that when
  the keys change for the media stream, the old key can be used until
  it is determined that the key has changed for the ULP FEC packets as
  well.  Furthermore, the new key SHOULD be used to encrypt the FEC
  packets that are generated from a combination of payload packets
  encrypted by the old and new keys.  The sender and the receiver need
  to define how the encryption is performed and how the keys are used.

  Altering the FEC data and packets can have a big impact on the
  reconstruction operation.  An attack by changing some bits in the FEC
  data can have a significant effect on the calculation and the
  recovery of the payload packets.  For example, changing the length
  recovery field can result in the recovery of a packet that is too
  long.  Also, the computational complexity of the recovery can easily
  be affected for up to at least one order of magnitude.  Depending on
  the application scenario, it may be helpful to perform a sanity check
  on the received payload and FEC data before performing the recovery
  operation and to determine the validity of the recovered data from
  the recovery operation before using them.

12.  Congestion Considerations

  Another issue with the use of FEC is its impact on network
  congestion.  In many situations, the packet loss in the network is
  induced by congestions.  In such scenarios, adding FEC when
  encountering increasing network losses should be avoided.  If it is



Li                          Standards Track                    [Page 30]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  used on a widespread basis, this can result in increased congestion
  and eventual congestion collapse.  The applications may include
  stronger protections while at the same time reduce the bandwidth for
  the payload packets.  In any event, implementations MUST NOT
  substantially increase the total amount of bandwidth in use
  (including the payload and the FEC) as network losses increase.

  The general congestion control considerations for transporting RTP
  data apply; see RTP [1] and any applicable RTP profile (e.g., RTP/AVP
  [14]).  An additional requirement if best-effort service is being
  used is that users of this payload format MUST monitor packet loss to
  ensure that the packet loss rate is within acceptable parameters.
  Packet loss is considered acceptable if a TCP flow across the same
  network path, and experiencing the same network conditions, would
  achieve an average throughput, measured on a reasonable timescale,
  that is not less than the RTP flow is achieving.  This condition can
  be satisfied by implementing congestion control mechanisms to adapt
  the transmission rate (or the number of layers subscribed for a
  layered multicast session), or by arranging for a receiver to leave
  the session if the loss rate is unacceptably high.

13.  IANA Considerations

  Four new media subtypes have been registered with IANA, as described
  in this section.  This registration is done using the registration
  template [3] and following RFC 3555 [4].

13.1.  Registration of audio/ulpfec

  Type name: audio

  Subtype name: ulpfec

  Required parameters:

  rate: The RTP timestamp rate that is used to mark the time of
     transmission of the FEC packet in a separate stream.  In cases in
     which it is sent as redundant data to another stream, the rate
     SHALL be the same as the primary encoding it is used to protect.
     When used in a separate stream, the rate SHALL be larger than 1000
     Hz, to provide sufficient resolution to RTCP operations.  The
     selected rate MAY be any value above 1000 Hz but is RECOMMENDED to
     match the rate of the media this stream protects.








Li                          Standards Track                    [Page 31]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  Optional parameters:

  onelevelonly: This specifies whether only one level of FEC protection
     is used.  The permissible values are 0 and 1.  If 1 is signaled,
     only one level of FEC protection SHALL be used in the stream.  If
     0 is signaled, more than one level of FEC protection MAY be used.
     If omitted, it has the default value of 0.

  Encoding considerations: This format is framed (see Section 4.8 in
  the template document [3]) and contains binary data.

  Security considerations: The same security considerations apply to
  these media type registrations as to the payloads for them, as
  detailed in RFC 5109.

  Interoperability considerations: none

  Published specification: RFC 5109

  Applications that use this media type: Multimedia applications that
  seek to improve resiliency to loss by sending additional data with
  the media stream.

  Additional information: none

  Person & email address to contact for further information:
     Adam Li [email protected]
     IETF Audio/Video Transport Working Group

  Intended usage: COMMON

  Restrictions on usage: This media, type depends on RTP framing, and
  hence is only defined for transfer via RTP [1].  Transport within
  other framing protocols SHALL NOT be defined as this is a robustness
  mechanism for RTP.

  Author:
     Adam Li [email protected]

  Change controller:
     IETF Audio/Video Transport Working Group delegated from the IESG.

13.2.  Registration of video/ulpfec

  Type name: video

  Subtype name: ulpfec




Li                          Standards Track                    [Page 32]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  Required parameters:

  rate: The RTP timestamp rate that is used to mark the time of
     transmission of the FEC packet in a separate stream.  In cases in
     which it is sent as redundant data to another stream, the rate
     SHALL be the same as the primary encoding it is used to protect.
     When used in a separate stream, the rate SHALL be larger than 1000
     Hz to provide sufficient resolution to RTCP operations.  The
     selected rate MAY be any value above 1000 Hz, but is RECOMMENDED
     to match the rate of the media this stream protects.

  Optional parameters:

  onelevelonly: This specifies whether only one level of FEC protection
     is used.  The permissible values are 0 and 1.  If 1 is signaled,
     only one level of FEC protection SHALL be used in the stream.  If
     0 is signaled, more than one level of FEC protection MAY be used.
     If omitted, it has the default value of 0.

  Encoding considerations: This format is framed (see Section 4.8 in
  the template document [3]) and contains binary data.

  Security considerations: The same security considerations apply to
  these media type registrations as to the payloads for them, as
  detailed in RFC 5109.

  Interoperability considerations: none

  Published specification: RFC 5109

  Applications that use this media type: Multimedia applications that
  seek to improve resiliency to loss by sending additional data with
  the media stream.

  Additional information: none

  Person & email address to contact for further information:
     Adam Li [email protected]
     IETF Audio/Video Transport Working Group

  Intended usage: COMMON

  Restrictions on usage: This media type depends on RTP framing, and
  hence is only defined for transfer via RTP [1].  Transport within
  other framing protocols SHALL NOT be defined as this is a robustness
  mechanism for RTP.





Li                          Standards Track                    [Page 33]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  Author:
     Adam Li [email protected]

  Change controller:  IETF Audio/Video Transport Working Group
     delegated from the IESG.

13.3.  Registration of text/ulpfec

  Type name: text

  Subtype name: ulpfec

  Required parameters:

  rate: The RTP timestamp rate that is used to mark the time of
     transmission of the FEC packet in a separate stream.  In cases in
     which it is sent as redundant data to another stream, the rate
     SHALL be the same as the primary encoding it is used to protect.
     When used in a separate stream, the rate SHALL be larger than 1000
     Hz to provide sufficient resolution to RTCP operations.  The
     selected rate MAY be any value above 1000 Hz, but is RECOMMENDED
     to match the rate of the media this stream protects.

  Optional parameters:

  onelevelonly: This specifies whether only one level of FEC protection
     is used.  The permissible values are 0 and 1.  If 1 is signaled,
     only one level of FEC protection SHALL be used in the stream.  If
     0 is signaled, more than one level of FEC protection MAY be used.
     If omitted, it has the default value of 0.

  Encoding considerations: This format is framed (see Section 4.8 in
  the template document [3]) and contains binary data.

  Security considerations: The same security considerations apply to
  these media type registrations as to the payloads for them, as
  detailed in RFC 5109.

  Interoperability considerations: none

  Published specification: RFC 5109

  Applications that use this media type: Multimedia applications that
  seek to improve resiliency to loss by sending additional data with
  the media stream.

  Additional information: none




Li                          Standards Track                    [Page 34]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  Person & email address to contact for further information:
     Adam Li [email protected]
     IETF Audio/Video Transport Working Group

  Intended usage: COMMON

  Restrictions on usage: This media type depends on RTP framing, and
  hence is only defined for transfer via RTP [1].  Transport within
  other framing protocols SHALL NOT be defined as this is a robustness
  mechanism for RTP.

  Author:
     Adam Li [email protected]

  Change controller:
     IETF Audio/Video Transport Working Group delegated from the IESG.

13.4.  Registration of application/ulpfec

  Type name: application

  Subtype name: ulpfec

  Required parameters:

  rate: The RTP timestamp rate that is used to mark the time of
     transmission of the FEC packet in a separate stream.  In cases in
     which it is sent as redundant data to another stream, the rate
     SHALL be the same as the primary encoding it is used to protect.
     When used in a separate stream, the rate SHALL be larger than 1000
     Hz to provide sufficient resolution to RTCP operations.  The
     selected rate MAY be any value above 1000 Hz, but is RECOMMENDED
     to match the rate of the media this stream protects.

  Optional parameters:

  onelevelonly: This specifies whether only one level of FEC protection
     is used.  The permissible values are 0 and 1.  If 1 is signaled,
     only one level of FEC protection SHALL be used in the stream.  If
     0 is signaled, more than one level of FEC protection MAY be used.
     If omitted, it has the default value of 0.

  Encoding considerations: This format is framed (see Section 4.8 in
  the template document [3]) and contains binary data.

  Security considerations: The same security considerations apply to
  these media type registrations as to the payloads for them, as
  detailed in RFC 5109.



Li                          Standards Track                    [Page 35]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  Interoperability considerations: none

  Published specification: RFC 5109

  Applications that use this media type: Multimedia applications that
  seek to improve resiliency to loss by sending additional data with
  the media stream.

  Additional information: none

  Person & email address to contact for further information:
     Adam Li [email protected]
     IETF Audio/Video Transport Working Group

  Intended usage: COMMON

  Restrictions on usage: This media type depends on RTP framing, and
  hence is only defined for transfer via RTP [1].  Transport within
  other framing protocols SHALL NOT be defined as this is a robustness
  mechanism for RTP.

  Author:
     Adam Li [email protected]

  Change controller:
     IETF Audio/Video Transport Working Group delegated from the IESG.

14.  Multiplexing of FEC

  The FEC packets can be sent to the receiver along with the protected
  payload primarily in one of two ways: as a separate stream, or in the
  same stream as redundant encoding.  The configuration options MUST be
  indicated out of band.  This section also describes how this can be
  accomplished using the Session Description Protocol (SDP), specified
  in RFC 2327 [8].

14.1.  FEC as a Separate Stream

  When the FEC packets are sent in a separate stream, several pieces of
  information must be conveyed:

  o The address and port to which the FEC is being sent

  o The payload type number for the FEC

  o Which media stream the FEC is protecting





Li                          Standards Track                    [Page 36]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  There is no static payload type assignment for FEC, so dynamic
  payload type numbers MUST be used.  The SSRC of the FEC stream MUST
  be set to that of the protected payload stream.  The association of
  the FEC stream with its corresponding stream is done by line grouping
  in SDP [5] with the FEC semantics [6] or other external means.

  Following the principles as discussed in Section 5.2 of RFC 3550 [1],
  multiplexing of the FEC stream and its associated payload stream is
  usually provided by the destination transport address (network
  address and port number), which is different for each RTP session.
  Sending FEC together with the payload in one single RTP session and
  multiplex only by SSRC or payload type precludes: (1) the use of
  different network paths or network resource allocations for the
  payload and the FEC protection data; (2) reception of a subset of the
  media if desired, particularly for the hosts that do not understand
  FEC; and (3) receiver implementations that use separate processes for
  the different media.  In addition, multiplexing FEC with payload data
  streams will affect the timing and sequence number space of the
  original payload stream, which is usually undesirable.  So the FEC
  stream and the payload stream SHOULD be sent through two separate RTP
  session, and multiplexing them by payload type into one single RTP
  session SHOULD be avoided.  In addition, the FEC and the payload MUST
  NOT be multiplexed by SSRC into one single RTP session since they
  always have the same SSRC.

  Just like any media stream, the port number and the payload type
  number for the FEC stream are conveyed in their m line in the SDP.
  There is no static payload type assignment for FEC, so dynamic
  payload type numbers MUST be used.  The binding to the number is
  indicated by an rtpmap attribute.  The name used in this binding is
  "ulpfec".  The address that the FEC stream is on is conveyed in its
  corresponding c line.

  The association relationship between the FEC stream and the payload
  stream it protects is conveyed through media line grouping in SDP
  (RFC 3388) [5] using FEC semantics (RFC 4756) [6].  The FEC stream
  and the protected payload stream form an FEC group.














Li                          Standards Track                    [Page 37]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  The following is an example SDP for FEC application in a multicast
  session:

      v=0
      o=adam 289083124 289083124 IN IP4 host.example.com
      s=ULP FEC Seminar
      t=0 0
      c=IN IP4 224.2.17.12/127
      a=group:FEC 1 2
      a=group:FEC 3 4
      m=audio 30000 RTP/AVP 0
      a=mid:1
      m=application 30002 RTP/AVP 100
      a=rtpmap:100 ulpfec/8000
      a=mid:2
      m=video 30004 RTP/AVP 31
      a=mid:3
      m=application 30004 RTP/AVP 101
      c=IN IP4 224.2.17.13/127
      a=rtpmap:101 ulpfec/8000
      a=mid:4

  The presence of two a=group lines in this SDP indicates that there
  are two FEC groups.  The first FEC group, as indicated by the
  "a=group:FEC 1 2" line, consists of stream 1 (an audio stream using
  PCM [14]) and stream 2 (the protecting FEC stream).  The FEC stream
  is sent to the same multicast group and has the same Time to Live
  (TTL) as the audio, but on a port number two higher.  The second FEC
  group, as indicated by the "a=group:FEC 3 4" line, consists of stream
  3 (a video stream) and stream 4 (the protecting FEC stream).  The FEC
  stream is sent to a different multicast address, but has the same
  port number (30004) as the payload video stream.

14.2.  FEC as Redundant Encoding

  When the FEC stream is being sent as a secondary codec in the
  redundant encoding format, this must be signaled through SDP.  To do
  this, the procedures defined in RFC 2198 [7] are used to signal the
  use of redundant encoding.  The FEC payload type is indicated in the
  same fashion as any other secondary codec.  The FEC MUST protect only
  the main codec, with the payload of FEC engine coming from virtual
  RTP packets created from the main codec data.  The virtual RTP
  packets can be very easily converted from the RFC 2198 packets by
  simply (1) removing all the additional headers and the redundant
  coding data, and (2) replacing the payload type in the RTP header
  with that of the primary codec.





Li                          Standards Track                    [Page 38]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


     Note: In the payload format for redundant coding as specified by
     RFC 2198, the marker bit is lost as soon as the primary coding is
     carried in the RED packets.  So the marker bit cannot be recovered
     regardless of whether or not the FEC is used.

  Because the FEC data (including the ULP header) is sent in the same
  packets as the protected payload, the FEC data is associated with the
  protected payload by being bundled in the same stream.

  When the FEC stream is sent as a secondary codec in the redundant
  encoding format, this can be signaled through SDP.  To do this, the
  procedures defined in RFC 2198 [7] are used to signal the use of
  redundant encoding.  The FEC payload type is indicated in the same
  fashion as any other secondary codec.  An rtpmap attribute MUST be
  used to indicate a dynamic payload type number for the FEC packets.
  The FEC MUST protect only the main codec.

  For example:

     m=audio 12345 RTP/AVP 121 0 5 100
     a=rtpmap:121 red/8000/1
     a=rtpmap:100 ulpfec/8000
     a=fmtp:121 0/5/100

  This SDP indicates that there is a single audio stream, which can
  consist of PCM (media format 0), DVI (media format 5), the redundant
  encodings (indicated by media format 121, which is bound to red
  through the rtpmap attribute), or FEC (media format 100, which is
  bound to ulpfec through the rtpmap attribute).  Although the FEC
  format is specified as a possible coding for this stream, the FEC
  MUST NOT be sent by itself for this stream.  Its presence in the m
  line is required only because non-primary codecs must be listed here
  according to RFC 2198.  The fmtp attribute indicates that the
  redundant encodings format can be used, with DVI as a secondary
  coding and FEC as a tertiary encoding.

14.3.  Offer / Answer Consideration

  Some considerations are needed when SDP is used for offer / answer
  [15] exchange.

  The "onelevelonly" parameter is declarative.  For streams declared as
  sendonly, the value indicates whether only one level of FEC will be
  sent.  For streams declared as recvonly or sendrecv, the value
  indicates what the receiver accepts to receive.






Li                          Standards Track                    [Page 39]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  When the FEC is sent as a separate stream and signaled through media
  line grouping in SDP (RFC 3388) [5] using FEC semantics (RFC 4756)
  [6], the offering side MUST implement both RFC 3388 and RFC 4756.
  The rules for offer / answer in RFC 3388 and RFC 4756 SHALL be
  followed with the below additional consideration.  For all offers
  with FEC, the answerer MAY refuse the separate FEC session by setting
  the port to 0, and remove the "a=group" attribute that groups that
  FEC session with the RTP session being protected.  If the answerer
  accepts the usage of FEC, the answerer simply accepts the FEC RTP
  session and the grouping in the offer by including the same grouping
  in the answer.  Note that the rejection of the FEC RTP session does
  not prevent the media sessions from being accepted and used without
  FEC.

  When the FEC stream is sent as a secondary codec in the redundant
  encoding format (RFC 2198) [7], the offering side can indicate the
  FEC stream as specified in Section 14.2.  The answerer MAY reject the
  FEC stream by removing the payload type for the FEC stream.  To
  accept the usage of FEC, the answerer must in the answer include the
  FEC payload type.  Note that in cases in which the redundancy payload
  format [7] is used with FEC as the only secondary codec, when the FEC
  stream is rejected the redundant encoding payload type SHOULD also be
  removed.

15.  Application Statement

  This document describes a generic protocol for Forward Error
  Correction supporting a wide range of short block parity FEC
  algorithms, such as simple and interleaved parity codes.  The scheme
  is limited to interleaving parity codes over a distance of 48
  packets.  This FEC algorithm is fully compatible with hosts that are
  not FEC-capable.  Since the media payload is not altered and the
  protection is sent as additional information, the receivers that are
  unaware of the generic FEC as specified in this document can simply
  ignore the additional FEC information and process the main media
  payload.  This interoperability is particularly important for
  compatibility with existing hosts, and also in the scenario where
  many different hosts need to communicate with each other at the same
  time, such as during multicast.

  The generic FEC algorithm specified in this document is also a
  generic protection algorithm with the following features: (1) it is
  independent of the nature of the media being protected, whether that
  media is audio, video, or otherwise; (2) it is flexible enough to
  support a wide variety of FEC mechanisms and settings; (3) it is






Li                          Standards Track                    [Page 40]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  designed for adaptivity, so that the FEC parameters can be modified
  easily without resorting to out-of-band signaling; and (4) it
  supports a number of different mechanisms for transporting the FEC
  packets.

  The FEC specified here also provides the user with Unequal Error
  Protection capabilities.  Some other algorithms may also provide the
  Unequal Error Protection capabilities through other means.  For
  example, an Unequal Erasure Protection (UXP) scheme has been proposed
  in the AVT Working Group in "An RTP Payload Format for
  Erasure-Resilient Transmission of Progressive Multimedia Streams".
  The UXP scheme applies unequal error protection to the media payloads
  by interleaving the payload stream to be protected with the
  additional redundancy information obtained using Reed-Solomon
  operations.

  By altering the structure of the protected media payload, the UXP
  scheme sacrifices the backward compatibility with terminals that do
  not support UXP.  This makes it more difficult to apply UXP when
  backward compatibility is desired.  In the case of ULP, however, the
  media payload remains unaltered and can always be used by the
  terminals.  The extra protection can simply be ignored if the
  receiving terminals do not support ULP.

  At the same time, also because the structure of the media payload is
  altered in UXP, UXP offers the unique ability to change packet size
  independent of the original media payload structure and protection
  applied, and is only subject to the protocol overhead constraint.
  This property is useful in scenarios when altering the packet size of
  the media at transport level is desired.

  Because of the interleaving used in UXP, delays will be introduced at
  both the encoding and decoding sides.  For UXP, all data within a
  transmission block need to arrive before encoding can begin, and a
  reasonable number of packets must be received before a transmission
  block can be decoded.  The ULP scheme introduces little delay at the
  encoding side.  On the decoding side, correctly received packets can
  be delivered immediately.  Delay is only introduced in ULP when
  packet losses occur.

  Because UXP is an interleaved scheme, the unrecoverable errors
  occurring in data protected by UXP usually result in a number of
  corrupted holes in the payload stream.  In ULP, on the other hand,
  the unrecoverable errors due to packet loss in the bitstream usually
  appear as contiguous missing pieces at the end of the packets.
  Depending on the encoding of the media payload stream, many
  applications may find it easier to parse and extract data from a




Li                          Standards Track                    [Page 41]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  packet with only a contiguous piece missing at the end than a packet
  with multiple corrupted holes, especially when the holes are not
  coincident with the independently decodable fragment boundaries.

  The exclusive-or (XOR) parity check operation used by ULP is simpler
  and faster than the more complex operations required by Reed-Solomon
  codes.  This makes ULP more suitable for applications where
  computational cost is a constraint.

  As discussed above, both the ULP and the UXP schemes apply unequal
  error protection to the RTP media stream, but each uses a different
  technique.  Both schemes have their own unique characteristics, and
  each can be applied to scenarios with different requirements.

16.  Acknowledgments

  The following authors have made significant contributions to this
  document: Adam H. Li, Fang Liu, John D. Villasenor, Dong-Seek Park,
  Jeong-Hoon Park, Yung-Lyul Lee, Jonathan D. Rosenberg, and Henning
  Schulzrinne.  The authors would also like to acknowledge the
  suggestions from many people, particularly Stephen Casner, Jay
  Fahlen, Cullen Jennings, Colin Perkins, Tao Tian, Matthieu Tisserand,
  Jeffery Tseng, Mark Watson, Stephen Wenger, and Magnus Westerlund.

17.  References

17.1.  Normative References

  [1]  Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
       "RTP: A Transport Protocol for Real-Time Applications", STD 64,
       RFC 3550, July 2003.

  [2]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [3]  Freed, N. and J. Klensin, "Media Type Specifications and
       Registration Procedures", BCP 13, RFC 4288, December 2005.

  [4]  Casner, S., "Media Type Registration of RTP Payload Formats",
       RFC 4855, February 2007.

  [5]  Camarillo, G., Eriksson, G., Holler, J., and H. Schulzrinne,
       "Grouping of Media Lines in the Session Description Protocol
       (SDP)", RFC 3388, December 2002.

  [6]  Li, A., "Forward Error Correction Grouping Semantics in Session
       Description Protocol", RFC 4756, November 2006.




Li                          Standards Track                    [Page 42]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


  [7]  Perkins, C., Kouvelas, I., Hodson, O., Hardman, V., Handley, M.,
       Bolot, J., Vega-Garcia, A., and S. Fosse-Parisis, "RTP Payload
       for Redundant Audio Data", RFC 2198, September 1997.

  [8]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
       Description Protocol", RFC 4566, July 2006.

17.2.  Informative References

  [9]  Rosenberg, J. and H. Schulzrinne, "An RTP Payload Format for
       Generic Forward Error Correction", RFC 2733, December 1999.

  [10] Perkins, C. and O. Hodson, "Options for Repair of Streaming
       Media", RFC 2354, June 1998.

  [11] Rosenberg, J. and H. Schulzrinne, "Registration of parityfec
       MIME types", RFC 3009, November 2000.

  [12] Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley, M., and
       J. Crowcroft, "Forward Error Correction (FEC) Building Block",
       RFC 3452, December 2002.

  [13] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
       Norrman, "The Secure Real-time Transport Protocol (SRTP)", RFC
       3711, March 2004.

  [14] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video
       Conferences with Minimal Control", STD 65, RFC 3551, July 2003.

  [15] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
       Session Description Protocol (SDP)", RFC 3264, June 2002.

Editor's Address

  Adam H. Li
  10194 Wateridge Circle #152
  San Diego, CA 92121
  USA
  Phone: +1 858 622 9038
  EMail: [email protected]











Li                          Standards Track                    [Page 43]

RFC 5109           RTP Payload Format for Generic FEC      December 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Li                          Standards Track                    [Page 44]