Network Working Group                                   JL. Le Roux, Ed.
Request for Comments: 5088                                France Telecom
Category: Standards Track                               JP. Vasseur, Ed.
                                                      Cisco System Inc.
                                                             Y. Ikejiri
                                                     NTT Communications
                                                               R. Zhang
                                                                     BT
                                                           January 2008


OSPF Protocol Extensions for Path Computation Element (PCE) Discovery

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  There are various circumstances where it is highly desirable for a
  Path Computation Client (PCC) to be able to dynamically and
  automatically discover a set of Path Computation Elements (PCEs),
  along with information that can be used by the PCC for PCE selection.
  When the PCE is a Label Switching Router (LSR) participating in the
  Interior Gateway Protocol (IGP), or even a server participating
  passively in the IGP, a simple and efficient way to announce PCEs
  consists of using IGP flooding.  For that purpose, this document
  defines extensions to the Open Shortest Path First (OSPF) routing
  protocol for the advertisement of PCE Discovery information within an
  OSPF area or within the entire OSPF routing domain.
















Le Roux, et al.             Standards Track                     [Page 1]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


Table of Contents

  1. Introduction ....................................................2
  2. Terminology .....................................................4
  3. Overview ........................................................5
     3.1. PCE Discovery Information ..................................5
     3.2. Flooding Scope .............................................5
  4. The OSPF PCED TLV ...............................................6
     4.1. PCE-ADDRESS Sub-TLV ........................................7
     4.2. PATH-SCOPE Sub-TLV .........................................8
     4.3. PCE-DOMAIN Sub-TLV ........................................10
     4.4. NEIG-PCE-DOMAIN Sub-TLV ...................................11
     4.5. PCE-CAP-FLAGS Sub-TLV .....................................12
  5. Elements of Procedure ..........................................13
  6. Backward Compatibility .........................................14
  7. IANA Considerations ............................................14
     7.1. OSPF TLV ..................................................14
     7.2. PCE Capability Flags Registry .............................14
  8. Security Considerations ........................................15
  9. Manageability Considerations ...................................16
     9.1. Control of Policy and Functions ...........................16
     9.2. Information and Data Model ................................16
     9.3. Liveness Detection and Monitoring .........................16
     9.4. Verify Correct Operations .................................16
     9.5. Requirements on Other Protocols and Functional
          Components ................................................16
     9.6. Impact on Network Operations ..............................17
  10. Acknowledgments ...............................................17
  11. References ....................................................17
     11.1. Normative References .....................................17
     11.2. Informative References ...................................18

1.  Introduction

  [RFC4655] describes the motivations and architecture for a Path
  Computation Element (PCE)-based path computation model for
  Multi-Protocol Label Switching (MPLS) and Generalized MPLS (GMPLS)
  Traffic Engineered Label Switched Paths (TE LSPs).  The model allows
  for the separation of the PCE from a Path Computation Client (PCC)
  (also referred to as a non co-located PCE) and allows for cooperation
  between PCEs (where one PCE acts as a PCC to make requests of the
  other PCE).  This relies on a communication protocol between a PCC
  and PCE, and also between PCEs.  The requirements for such a
  communication protocol can be found in [RFC4657], and the
  communication protocol is defined in [PCEP].






Le Roux, et al.             Standards Track                     [Page 2]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


  The PCE architecture requires that a PCC be aware of the location of
  one or more PCEs in its domain, and, potentially, of PCEs in other
  domains, e.g., in the case of inter-domain TE LSP computation.

  A network may contain a large number of PCEs, each with potentially
  distinct capabilities.  In such a context, it is highly desirable to
  have a mechanism for automatic and dynamic PCE discovery that allows
  PCCs to automatically discover a set of PCEs, along with additional
  information about each PCE that may be used by a PCC to perform PCE
  selection.  Additionally, it is valuable for a PCC to dynamically
  detect new PCEs, failed PCEs, or any modification to the PCE
  information.  Detailed requirements for such a PCE discovery
  mechanism are provided in [RFC4674].

  Note that the PCE selection algorithm applied by a PCC is out of the
  scope of this document.

  When PCCs are LSRs participating in the IGP (OSPF or IS-IS), and PCEs
  are either LSRs or servers also participating in the IGP, an
  effective mechanism for PCE discovery within an IGP routing domain
  consists of utilizing IGP advertisements.

  This document defines extensions to OSPFv2 [RFC2328] and OSPFv3
  [RFC2740] to allow a PCE in an OSPF routing domain to advertise its
  location, along with some information useful to a PCC for PCE
  selection, so as to satisfy dynamic PCE discovery requirements set
  forth in [RFC4674].

  Generic capability advertisement mechanisms for OSPF are defined in
  [RFC4970].  These allow a router to advertise its capabilities within
  an OSPF area or an entire OSPF routing domain.  This document
  leverages this generic capability advertisement mechanism to fully
  satisfy the dynamic PCE discovery requirements.

  This document defines a new TLV (named the PCE Discovery TLV (PCED
  TLV)) to be carried within the OSPF Router Information LSA
  ([RFC4970]).

  The PCE information advertised is detailed in Section 3.  Protocol
  extensions and procedures are defined in Sections 4 and 5.

  The OSPF extensions defined in this document allow for PCE discovery
  within an OSPF routing domain.  Solutions for PCE discovery across
  Autonomous System boundaries are beyond the scope of this document,
  and are for further study.






Le Roux, et al.             Standards Track                     [Page 3]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


2.  Terminology

  ABR: OSPF Area Border Router.

  AS: Autonomous System.

  IGP: Interior Gateway Protocol.  Either of the two routing protocols,
  Open Shortest Path First (OSPF) or Intermediate System to
  Intermediate System (IS-IS).

  Intra-area TE LSP: A TE LSP whose path does not cross an IGP area
  boundary.

  Intra-AS TE LSP: A TE LSP whose path does not cross an AS boundary.

  Inter-area TE LSP: A TE LSP whose path transits two or more IGP
  areas.  That is, a TE LSP that crosses at least one IGP area
  boundary.

  Inter-AS TE LSP: A TE LSP whose path transits two or more ASes or
  sub-ASes (BGP confederations).  That is, a TE LSP that crosses at
  least one AS boundary.

  LSA: Link State Advertisement.

  LSR: Label Switching Router.

  PCC: Path Computation Client.  Any client application requesting a
  path computation to be performed by a Path Computation Element.

  PCE: Path Computation Element.  An entity (component, application, or
  network node) that is capable of computing a network path or route
  based on a network graph and applying computational constraints.

  PCED: PCE Discovery.

  PCE-Domain: In a PCE context, this refers to any collection of
  network elements within a common sphere of address management or path
  computational responsibility (referred to as a "domain" in
  [RFC4655]).  Examples of PCE-Domains include IGP areas and ASes.
  This should be distinguished from an OSPF routing domain.

  PCEP: Path Computation Element communication Protocol.

  TE LSP: Traffic Engineered Label Switched Path.

  TLV: Type-Length-Variable data encoding.




Le Roux, et al.             Standards Track                     [Page 4]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  IS-IS extensions for PCE discovery are defined in [RFC5089].

3.  Overview

3.1.  PCE Discovery Information

  The PCE discovery information is composed of:

  -  The PCE location: an IPv4 and/or IPv6 address that is used to
     reach the PCE.  It is RECOMMENDED to use an address that is always
     reachable if there is any connectivity to the PCE;

  -  The PCE path computation scope (i.e., intra-area, inter-area,
     inter-AS, or inter-layer);

  -  The set of one or more PCE-Domain(s) into which the PCE has
     visibility and for which the PCE can compute paths;

  -  The set of zero, one, or more neighbor PCE-Domain(s) toward which
     the PCE can compute paths;

  -  A set of communication capabilities (e.g., support for request
     prioritization) and path computation-specific capabilities (e.g.,
     supported constraints).

  PCE discovery information is, by nature, fairly static and does not
  change with PCE activity.  Changes in PCE discovery information may
  occur as a result of PCE configuration updates, PCE
  deployment/activation, PCE deactivation/suppression, or PCE failure.
  Hence, this information is not expected to change frequently.

3.2.  Flooding Scope

  The flooding scope for PCE information advertised through OSPF can be
  limited to one or more OSPF areas the PCE belongs to, or can be
  extended across the entire OSPF routing domain.

  Note that some PCEs may belong to multiple areas, in which case the
  flooding scope may comprise these areas.  This could be the case for
  an ABR, for instance, advertising its PCE information within the
  backbone area and/or a subset of its attached IGP area(s).






Le Roux, et al.             Standards Track                     [Page 5]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


4.  The OSPF PCED TLV

  The OSPF PCE Discovery TLV (PCED TLV) contains a non-ordered set of
  sub-TLVs.

  The format of the OSPF PCED TLV and its sub-TLVs is identical to the
  TLV format used by the Traffic Engineering Extensions to OSPF
  [RFC3630].  That is, the TLV is composed of 2 octets for the type, 2
  octets specifying the TLV length, and a value field.  The Length
  field defines the length of the value portion in octets.

  The TLV is padded to 4-octet alignment; padding is not included in
  the Length field (so a 3-octet value would have a length of 3, but
  the total size of the TLV would be 8 octets).  Nested TLVs are also
  4-octet aligned.  Unrecognized types are ignored.

  The OSPF PCED TLV has the following format:

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  //                            sub-TLVs                          //
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type:     6
     Length:   Variable
     Value:    This comprises one or more sub-TLVs

  Five sub-TLVs are defined:
        Sub-TLV type  Length               Name
              1      variable     PCE-ADDRESS sub-TLV
              2         4         PATH-SCOPE sub-TLV
              3         4         PCE-DOMAIN sub-TLV
              4         4         NEIG-PCE-DOMAIN sub-TLV
              5      variable     PCE-CAP-FLAGS sub-TLV

  The PCE-ADDRESS and PATH-SCOPE sub-TLVs MUST always be present within
  the PCED TLV.

  The PCE-DOMAIN and NEIG-PCE-DOMAIN sub-TLVs are optional.  They MAY
  be present in the PCED TLV to facilitate selection of inter-domain
  PCEs.





Le Roux, et al.             Standards Track                     [Page 6]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


  The PCE-CAP-FLAGS sub-TLV is optional and MAY be present in the PCED
  TLV to facilitate the PCE selection process.

  Malformed PCED TLVs or sub-TLVs not explicitly described in this
  document MUST cause the LSA to be treated as malformed according to
  the normal procedures of OSPF.

  Any unrecognized sub-TLV MUST be silently ignored.

  The PCED TLV is carried within an OSPF Router Information LSA defined
  in [RFC4970].

  No additional sub-TLVs will be added to the PCED TLV in the future.
  If a future application requires the advertisement of additional PCE
  information in OSPF, this will not be carried in the Router
  Information LSA.

  The following sub-sections describe the sub-TLVs that may be carried
  within the PCED TLV.

4.1.  PCE-ADDRESS Sub-TLV

  The PCE-ADDRESS sub-TLV specifies an IP address that can be used to
  reach the PCE.  It is RECOMMENDED to make use of an address that is
  always reachable, provided that the PCE is alive and reachable.

  The PCE-ADDRESS sub-TLV is mandatory; it MUST be present within the
  PCED TLV.  It MAY appear twice, when the PCE has both an IPv4 and
  IPv6 address.  It MUST NOT appear more than once for the same address
  type.  If it appears more than once for the same address type, only
  the first occurrence is processed and any others MUST be ignored.

  The format of the PCE-ADDRESS sub-TLV is as follows:

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type = 1         |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     address-type              |          Reserved             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  //                       PCE IP Address                        //
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       PCE-ADDRESS sub-TLV format




Le Roux, et al.             Standards Track                     [Page 7]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


     Type:     1
     Length:   8 (IPv4) or 20 (IPv6)

     Address-type:
                   1   IPv4
                   2   IPv6

  Reserved: SHOULD be set to zero on transmission and MUST be ignored
  on receipt.

  PCE IP Address: The IP address to be used to reach the PCE.

4.2.  PATH-SCOPE Sub-TLV

  The PATH-SCOPE sub-TLV indicates the PCE path computation scope,
  which refers to the PCE's ability to compute or take part in the
  computation of paths for intra-area, inter-area, inter-AS, or inter-
  layer TE LSPs.

  The PATH-SCOPE sub-TLV is mandatory; it MUST be present within the
  PCED TLV.  There MUST be exactly one instance of the PATH-SCOPE
  sub-TLV within each PCED TLV.  If it appears more than once, only the
  first occurrence is processed and any others MUST be ignored.

  The PATH-SCOPE sub-TLV contains a set of bit-flags indicating the
  supported path scopes, and four fields indicating PCE preferences.

  The PATH-SCOPE sub-TLV has the following format:

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type = 2         |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|1|2|3|4|5|   Reserved        |PrefL|PrefR|PrefS|PrefY| Res   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type:     2
     Length:   4
     Value:    This comprises a 2-octet flags field where each bit
               represents a supported path scope, as well as four
               preference fields used to specify PCE preferences.









Le Roux, et al.             Standards Track                     [Page 8]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


  The following bits are defined:

     Bit      Path Scope

      0      L bit:  Can compute intra-area paths.
      1      R bit:  Can act as PCE for inter-area TE LSP
                     computation.
      2      Rd bit: Can act as a default PCE for inter-area TE LSP
                     computation.
      3      S bit:  Can act as PCE for inter-AS TE LSP computation.
      4      Sd bit: Can act as a default PCE for inter-AS TE LSP
                     computation.
      5      Y bit:  Can act as PCE for inter-layer TE LSP
                     computation.

     PrefL field: PCE's preference for intra-area TE LSP computation.

     PrefR field: PCE's preference for inter-area TE LSP computation.

     PrefS field: PCE's preference for inter-AS TE LSP computation.

     PrefY field: PCE's preference for inter-layer TE LSP computation.

     Res: Reserved for future use.

  The L, R, S, and Y bits are set when the PCE can act as a PCE for
  intra-area, inter-area, inter-AS, or inter-layer TE LSP computation,
  respectively.  These bits are non-exclusive.

  When set, the Rd bit indicates that the PCE can act as a default PCE
  for inter-area TE LSP computation (that is, the PCE can compute a
  path toward any neighbor area).  Similarly, when set, the Sd bit
  indicates that the PCE can act as a default PCE for inter-AS TE LSP
  computation (the PCE can compute a path toward any neighbor AS).

  When the Rd and Sd bit are set, the PCED TLV MUST NOT contain a
  NEIG-PCE-DOMAIN sub-TLV (see Section 4.4).

  When the R bit is clear, the Rd bit SHOULD be clear on transmission
  and MUST be ignored on receipt.  When the S bit is clear, the Sd bit
  SHOULD be clear on transmission and MUST be ignored on receipt.

  The PrefL, PrefR, PrefS, and PrefY fields are each three bits long
  and allow the PCE to specify a preference for each computation scope,
  where 7 reflects the highest preference.  Such preferences can be
  used for weighted load balancing of path computation requests.  An
  operator may decide to configure a preference for each computation
  scope at each PCE so as to balance the path computation load among



Le Roux, et al.             Standards Track                     [Page 9]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


  them.  The algorithms used by a PCC to load balance its path
  computation requests according to such PCE preferences is out of the
  scope of this document and is a matter for local or network-wide
  policy.  The same or different preferences may be used for each
  scope.  For instance, an operator that wants a PCE capable of both
  inter-area and inter-AS computation to be preferred for use for
  inter-AS computations may configure PrefS higher than PrefR.

  When the L, R, S, or Y bits are cleared, the PrefL, PrefR, PrefS, and
  PrefY fields SHOULD respectively be set to 0 on transmission and MUST
  be ignored on receipt.

  Both reserved fields SHOULD be set to zero on transmission and MUST
  be ignored on receipt.

4.3.  PCE-DOMAIN Sub-TLV

  The PCE-DOMAIN sub-TLV specifies a PCE-Domain (area or AS) where the
  PCE has topology visibility and through which the PCE can compute
  paths.

  The PCE-DOMAIN sub-TLV SHOULD be present when PCE-Domains for which
  the PCE can operate cannot be inferred by other IGP information: for
  instance, when the PCE is inter-domain capable (i.e., when the R bit
  or S bit is set) and the flooding scope is the entire routing domain
  (see Section 5 for a discussion of how the flooding scope is set and
  interpreted).

  A PCED TLV may include multiple PCE-DOMAIN sub-TLVs when the PCE has
  visibility into multiple PCE-Domains.

  The PCE-DOMAIN sub-TLV has the following format:

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type = 3         |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Domain-type               |          Reserved             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Domain ID                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       PCE-DOMAIN sub-TLV format

     Type:     3
     Length:   8




Le Roux, et al.             Standards Track                    [Page 10]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


     Two domain-type values are defined:
                   1   OSPF Area ID
                   2   AS Number

     Domain ID: With the domain-type set to 1, this indicates the
     32-bit Area ID of an area where the PCE has visibility and can
     compute paths.  With domain-type set to 2, this indicates an AS
     number of an AS where the PCE has visibility and can compute
     paths.  When the AS number is coded in two octets, the AS Number
     field MUST have its first two octets set to 0.

4.4.  NEIG-PCE-DOMAIN Sub-TLV

  The NEIG-PCE-DOMAIN sub-TLV specifies a neighbor PCE-Domain (area or
  AS) toward which a PCE can compute paths.  It means that the PCE can
  take part in the computation of inter-domain TE LSPs with paths that
  transit this neighbor PCE-Domain.

  A PCED sub-TLV may include several NEIG-PCE-DOMAIN sub-TLVs when the
  PCE can compute paths towards several neighbor PCE-Domains.

  The NEIG-PCE-DOMAIN sub-TLV has the same format as the PCE-DOMAIN
  sub-TLV:

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type = 4         |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Domain-type               |          Reserved             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Domain ID                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       NEIG-PCE-DOMAIN sub-TLV format

     Type:     4
     Length:   8

     Two domain-type values are defined:
                   1   OSPF Area ID
                   2   AS Number

     Domain ID: With the domain-type set to 1, this indicates the
     32-bit Area ID of a neighbor area toward which the PCE can compute
     paths.  With domain-type set to 2, this indicates the AS number of





Le Roux, et al.             Standards Track                    [Page 11]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


     a neighbor AS toward which the PCE can compute paths.  When the AS
     number is coded in two octets, the AS Number field MUST have its
     first two octets set to 0.

  The NEIG-PCE-DOMAIN sub-TLV MUST be present at least once with
  domain-type set to 1 if the R bit is set and the Rd bit is cleared,
  and MUST be present at least once with domain-type set to 2 if the S
  bit is set and the Sd bit is cleared.

4.5.  PCE-CAP-FLAGS Sub-TLV

  The PCE-CAP-FLAGS sub-TLV is an optional sub-TLV used to indicate PCE
  capabilities.  It MAY be present within the PCED TLV.  It MUST NOT be
  present more than once.  If it appears more than once, only the first
  occurrence is processed and any others MUST be ignored.

  The value field of the PCE-CAP-FLAGS sub-TLV is made up of an array
  of units of 32-bit flags numbered from the most significant bit as
  bit zero, where each bit represents one PCE capability.

  The format of the PCE-CAP-FLAGS sub-TLV is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type = 5         |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
  //                 PCE Capability Flags                          //
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type:     5
     Length:   Multiple of 4 octets
     Value:    This contains an array of units of 32-bit flags
               numbered from the most significant as bit zero, where
               each bit represents one PCE capability.














Le Roux, et al.             Standards Track                    [Page 12]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


  IANA will manage the space of the PCE Capability Flags.

  The following bits have been assigned by IANA:

     Bit       Capabilities

      0        Path computation with GMPLS link constraints
      1        Bidirectional path computation
      2        Diverse path computation
      3        Load-balanced path computation
      4        Synchronized path computation
      5        Support for multiple objective functions
      6        Support for additive path constraints
               (max hop count, etc.)
      7        Support for request prioritization
      8        Support for multiple requests per message

     9-31      Reserved for future assignments by IANA.

  These capabilities are defined in [RFC4657].

  Reserved bits SHOULD be set to zero on transmission and MUST be
  ignored on receipt.

5.  Elements of Procedure

  The PCED TLV is advertised within OSPFv2 Router Information LSAs
  (Opaque type of 4 and Opaque ID of 0) or OSPFv3 Router Information
  LSAs (function code of 12), which are defined in [RFC4970].  As such,
  elements of procedure are inherited from those defined in [RFC4970].

  In OSPFv2, the flooding scope is controlled by the opaque LSA type
  (as defined in [RFC2370]) and in OSPFv3, by the S1/S2 bits (as
  defined in [RFC2740]).  If the flooding scope is area local, then the
  PCED TLV MUST be carried within an OSPFv2 type 10 router information
  LSA or an OSPFV3 Router Information LSA with the S1 bit set and the
  S2 bit clear.  If the flooding scope is the entire IGP domain, then
  the PCED TLV MUST be carried within an OSPFv2 type 11 Router
  Information LSA or OSPFv3 Router Information LSA with the S1 bit
  clear and the S2 bit set.  When only the L bit of the PATH-SCOPE
  sub-TLV is set, the flooding scope MUST be area local.

  When the PCE function is deactivated, the OSPF speaker advertising
  this PCE MUST originate a new Router Information LSA that no longer
  includes the corresponding PCED TLV, provided there are other TLVs in
  the LSA.  If there are no other TLVs in the LSA, it MUST either send
  an empty Router Information LSA or purge it by prematurely aging it.




Le Roux, et al.             Standards Track                    [Page 13]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


  The PCE address (i.e., the address indicated within the PCE-ADDRESS
  sub-TLV) SHOULD be reachable via some prefixes advertised by OSPF.

  The PCED TLV information regarding a specific PCE is only considered
  current and useable when the router advertising this information is
  itself reachable via OSPF calculated paths in the same area of the
  LSA in which the PCED TLV appears.

  A change in the state of a PCE (activate, deactivate, parameter
  change) MUST result in a corresponding change in the PCED TLV
  information advertised by an OSPF router (inserted, removed, updated)
  in its LSA.  The way PCEs determine the information they advertise,
  and how that information is made available to OSPF, is out of the
  scope of this document.  Some information may be configured (e.g.,
  address, preferences, scope) and other information may be
  automatically determined by the PCE (e.g., areas of visibility).

  A change in information in the PCED TLV MUST NOT trigger any SPF
  computation at a receiving router.

6.  Backward Compatibility

  The PCED TLV defined in this document does not introduce any
  interoperability issues.

  A router not supporting the PCED TLV will just silently ignore the
  TLV as specified in [RFC4970].

7.  IANA Considerations

7.1.  OSPF TLV

  IANA has defined a registry for TLVs carried in the Router
  Information LSA defined in [RFC4970].  IANA has assigned a new TLV
  codepoint for the PCED TLV carried within the Router Information LSA.

  Value      TLV Name                      Reference
  -----     --------                       ----------
    6         PCED                       (this document)

7.2.  PCE Capability Flags Registry

  This document provides new capability bit flags, which are present in
  the PCE-CAP-FLAGS TLV referenced in Section 4.1.5.







Le Roux, et al.             Standards Track                    [Page 14]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


  The IANA has created a new top-level OSPF registry, the "PCE
  Capability Flags" registry, and will manage the space of PCE
  capability bit flags numbering them in the usual IETF notation
  starting at zero and continuing at least through 31, with the most
  significant bit as bit zero.

  New bit numbers may be allocated only by an IETF Consensus action.

  Each bit should be tracked with the following qualities:

  - Bit number
  - Capability Description
  - Defining RFC

  Several bits are defined in this document.  The following values have
  been assigned:

     Bit       Capability Description

      0        Path computation with GMPLS link constraints
      1        Bidirectional path computation
      2        Diverse path computation
      3        Load-balanced path computation
      4        Synchronized paths computation
      5        Support for multiple objective functions
      6        Support for additive path constraints
               (max hop count, etc.)
      7        Support for request prioritization
      8        Support for multiple requests per message

8.  Security Considerations

  This document defines OSPF extensions for PCE discovery within an
  administrative domain.  Hence the security of the PCE discovery
  relies on the security of OSPF.

  Mechanisms defined to ensure authenticity and integrity of OSPF LSAs
  [RFC2154], and their TLVs, can be used to secure the PCE Discovery
  information as well.

  OSPF provides no encryption mechanism for protecting the privacy of
  LSAs and, in particular, the privacy of the PCE discovery
  information.








Le Roux, et al.             Standards Track                    [Page 15]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


9.  Manageability Considerations

  Manageability considerations for PCE Discovery are addressed in
  Section 4.10 of [RFC4674].

9.1.  Control of Policy and Functions

  Requirements for the configuration of PCE discovery parameters on
  PCCs and PCEs are discussed in Section 4.10.1 of [RFC4674].

  In particular, a PCE implementation SHOULD allow the following
  parameters to be configured on the PCE:

        - The PCE IPv4/IPv6 address(es) (see Section 4.1).

        - The PCE Scope, including the inter-domain functions
          (inter-area, inter-AS, inter-layer), the preferences,
          and whether the PCE can act as default PCE (see Section 4.2).

        - The PCE-Domains (see Section 4.3).

        - The neighbor PCE-Domains (see Section 4.4).

        - The PCE capabilities (see Section 4.5).

9.2.  Information and Data Model

  A MIB module for PCE Discovery is defined in [PCED-MIB].

9.3.  Liveness Detection and Monitoring

  This document specifies the use of OSPF as a PCE Discovery Protocol.
  The requirements specified in [RFC4674] include the ability to
  determine liveness of the PCE Discovery protocol.  Normal operation
  of the OSPF protocol meets these requirements.

9.4.  Verify Correct Operations

  The correlation of information advertised against information
  received can be achieved by comparing the information in the PCED TLV
  received by the PCC with that stored at the PCE using the PCED MIB
  [PCED-MIB].  The number of dropped, corrupt, and rejected information
  elements are available through the PCED MIB.

9.5.  Requirements on Other Protocols and Functional Components

  The OSPF extensions defined in this document do not imply any
  requirement on other protocols.



Le Roux, et al.             Standards Track                    [Page 16]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


9.6.  Impact on Network Operations

  Frequent changes in PCE information advertised in the PCED TLV, may
  have a significant impact on OSPF and might destabilize the operation
  of the network by causing the PCCs to swap between PCEs.

  As discussed in Section 4.10.4 of [RFC4674], it MUST be possible to
  apply at least the following controls:

     - Configurable limit on the rate of announcement of changed
       parameters at a PCE.

     - Control of the impact on PCCs, such as through rate-limiting
       the processing of PCED TLVs.

     - Configurable control of triggers that cause a PCC to swap to
       another PCE.

10.  Acknowledgments

  We would like to thank Lucy Wong, Adrian Farrel, Les Ginsberg, Mike
  Shand, and Lou Berger for their useful comments and suggestions.

  We would also like to thank Dave Ward, Lars Eggert, Sam Hartman, Tim
  Polk, and Lisa Dusseault for their comments during the final stages
  of publication.

11.  References

11.1.  Normative References

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2154]   Murphy, S., Badger, M., and B. Wellington, "OSPF with
              Digital Signatures", RFC 2154, June 1997.

  [RFC2328]   Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

  [RFC2370]   Coltun, R., "The OSPF Opaque LSA Option", RFC 2370, July
              1998.

  [RFC2740]   Coltun, R., Ferguson, D., and J. Moy, "OSPF for IPv6",
              RFC 2740, December 1999.

  [RFC3630]   Katz, D., Kompella, K., and D. Yeung, "Traffic
              Engineering (TE) Extensions to OSPF Version 2", RFC 3630,
              September 2003.



Le Roux, et al.             Standards Track                    [Page 17]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


  [RFC4970]   Lindem, A., Ed., Shen, N., Vasseur, JP., Aggarwal, R.,
              and S. Shaffer, "Extensions to OSPF for Advertising
              Optional Router Capabilities", RFC 4970, July 2007.

11.2.  Informative References

  [PCED-MIB]  Stephan, E., "Definitions of Managed Objects for Path
              Computation Element Discovery", Work in Progress, March
              2007.

  [PCEP]      Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path
              Computation Element (PCE) communication Protocol (PCEP)
              ", Work in Progress, November 2007.

  [RFC4655]   Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
              Computation Element (PCE)-Based Architecture", RFC 4655,
              August 2006.

  [RFC4657]   Ash, J., Ed., and J. Le Roux, Ed., "Path Computation
              Element (PCE) Communication Protocol Generic
              Requirements", RFC 4657, September 2006.

  [RFC4674]   Le Roux, J., Ed., "Requirements for Path Computation
              Element (PCE) Discovery", RFC 4674, October 2006.

  [RFC5089]   Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R.
              Zhang, "IS-IS Protocol Extensions for Path Computation
              Element (PCE) Discovery", RFC 5089, January 2008.























Le Roux, et al.             Standards Track                    [Page 18]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


Authors' Addresses

  Jean-Louis Le Roux (Editor)
  France Telecom
  2, avenue Pierre-Marzin
  22307 Lannion Cedex
  FRANCE
  EMail: [email protected]


  Jean-Philippe Vasseur (Editor)
  Cisco Systems, Inc.
  1414 Massachusetts Avenue
  Boxborough, MA 01719
  USA
  EMail: [email protected]


  Yuichi Ikejiri
  NTT Communications Corporation
  1-1-6, Uchisaiwai-cho, Chiyoda-ku
  Tokyo 100-8019
  JAPAN
  EMail: [email protected]


  Raymond Zhang
  BT
  2160 E. Grand Ave.
  El Segundo, CA 90025
  USA
  EMail: [email protected]



















Le Roux, et al.             Standards Track                    [Page 19]

RFC 5088       OSPF Protocol Extensions for PCE Discovery   January 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Le Roux, et al.             Standards Track                    [Page 20]