Network Working Group                                  J.P. Vasseur, Ed.
Request for Comments: 5073                           Cisco Systems, Inc.
Category: Standards Track                              J.L. Le Roux, Ed.
                                                         France Telecom
                                                          December 2007


                 IGP Routing Protocol Extensions for
          Discovery of Traffic Engineering Node Capabilities

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  It is highly desired, in several cases, to take into account Traffic
  Engineering (TE) node capabilities during Multi Protocol Label
  Switching (MPLS) and Generalized MPLS (GMPLS) Traffic Engineered
  Label Switched Path (TE-LSP) selection, such as, for instance, the
  capability to act as a branch Label Switching Router (LSR) of a
  Point-To-MultiPoint (P2MP) LSP.  This requires advertising these
  capabilities within the Interior Gateway Protocol (IGP).  For that
  purpose, this document specifies Open Shortest Path First (OSPF) and
  Intermediate System-Intermediate System (IS-IS) traffic engineering
  extensions for the advertisement of control plane and data plane
  traffic engineering node capabilities.




















Vasseur & Le Roux           Standards Track                     [Page 1]

RFC 5073         IGP Ext for Discovery of TE Node Cap      December 2007


Table of Contents

  1. Introduction.....................................................2
  2. Terminology......................................................3
  3. TE Node Capability Descriptor ...................................3
     3.1. Description ................................................3
     3.2. Required Information .......................................3
  4. TE Node Capability Descriptor TLV Formats .......................4
     4.1. OSPF TE Node Capability Descriptor TLV Format ..............4
     4.2. IS-IS TE Node Capability Descriptor sub-TLV format .........5
  5. Elements of Procedure ...........................................6
     5.1. OSPF .......................................................6
     5.2. IS-IS ......................................................7
  6. Backward Compatibility ..........................................8
  7. Security Considerations .........................................8
  8. IANA Considerations .............................................8
     8.1. OSPF TLV ...................................................8
     8.2. ISIS sub-TLV ...............................................8
     8.3. Capability Registry ........................................9
  9. Acknowledgments .................................................9
  10. References ....................................................10
     10.1. Normative References .....................................10
     10.2. Informative References ...................................11

1.  Introduction

  Multi Protocol Label Switching-Traffic Engineering (MPLS-TE) routing
  ([RFC3784], [RFC3630], [OSPFv3-TE]) relies on extensions to link
  state Interior Gateway Protocols (IGP) ([IS-IS], [RFC1195],
  [RFC2328], [RFC2740]) in order to advertise Traffic Engineering (TE)
  link information used for constraint-based routing.  Further
  Generalized MPLS (GMPLS) related routing extensions are defined in
  [RFC4205] and [RFC4203].

  It is desired to complement these routing extensions in order to
  advertise TE node capabilities, in addition to TE link information.
  These TE node capabilities will be taken into account as constraints
  during path selection.

  Indeed, it is useful to advertise data plane TE node capabilities,
  such as the capability for a Label Switching Router (LSR) to be a
  branch LSR or a bud-LSR of a Point-To-MultiPoint (P2MP) Label
  Switched Path (LSP).  These capabilities can then be taken into
  account as constraints when computing the route of TE LSPs.

  It is also useful to advertise control plane TE node capabilities
  such as the capability to support GMPLS signaling for a packet LSR,
  or the capability to support P2MP (Point to Multipoint) TE LSP



Vasseur & Le Roux           Standards Track                     [Page 2]

RFC 5073         IGP Ext for Discovery of TE Node Cap      December 2007


  signaling.  This allows selecting a path that avoids nodes that do
  not support a given control plane feature, or triggering a mechanism
  to support such nodes on a path.  Hence, this facilitates backward
  compatibility.

  For that purpose, this document specifies IGP (OSPF and IS-IS)
  extensions in order to advertise data plane and control plane
  capabilities of a node.

  A new TLV is defined for OSPF, the TE Node Capability Descriptor TLV,
  to be carried within the Router Information LSA ([RFC4970]).  A new
  sub-TLV is defined for IS-IS, the TE Node Capability Descriptor
  sub-TLV, to be carried within the IS-IS Capability TLV ([RFC4971]).

2.  Terminology

  This document uses terminologies defined in [RFC3031], [RFC3209], and
  [RFC4461].

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

3.  TE Node Capability Descriptor

3.1.  Description

  LSRs in a network may have distinct control plane and data plane
  Traffic Engineering capabilities.  The TE Node Capability Descriptor
  information defined in this document describes data and control plane
  capabilities of an LSR.  Such information can be used during path
  computation so as to avoid nodes that do not support a given TE
  feature either in the control or data plane, or to trigger procedures
  to handle these nodes along the path (e.g., trigger LSP hierarchy to
  support a legacy transit LSR on a P2MP LSP (see [RFC4875])).

3.2.  Required Information

  The TE Node Capability Descriptor contains a variable-length set of
  bit flags, where each bit corresponds to a given TE node capability.











Vasseur & Le Roux           Standards Track                     [Page 3]

RFC 5073         IGP Ext for Discovery of TE Node Cap      December 2007


  Five TE Node Capabilities are defined in this document:

     - B bit: when set, this flag indicates that the LSR can act
              as a branch node on a P2MP LSP (see [RFC4461]);
     - E bit: when set, this flag indicates that the LSR can act
              as a bud LSR on a P2MP LSP, i.e., an LSR that is both
              transit and egress (see [RFC4461]);
     - M bit: when set, this flag indicates that the LSR supports
              MPLS-TE signaling ([RFC3209]);
     - G bit: when set this flag indicates that the LSR supports
              GMPLS signaling ([RFC3473]);
     - P bit: when set, this flag indicates that the LSR supports
              P2MP MPLS-TE signaling ([RFC4875]).

  Note that new capability bits may be added in the future if required.

4.  TE Node Capability Descriptor TLV Formats

4.1.  OSPF TE Node Capability Descriptor TLV Format

  The OSPF TE Node Capability Descriptor TLV is a variable length TLV
  that contains a series of bit flags, where each bit correspond to a
  TE node capability.  The bit-field MAY be extended with additional
  32-bit words if more bit flags need to be assigned.  Any unknown bit
  flags SHALL be treated as Reserved bits.

  The OSPF TE Node Capability Descriptor TLV is carried within an OSPF
  Router Information LSA, which is defined in [RFC4970].

  The format of the OSPF TE Node Capability Descriptor TLV is the same
  as the TLV format used by the Traffic Engineering Extensions to OSPF
  [RFC3630].  That is, the TLV is composed of 2 octets for the type, 2
  octets specifying the length of the value field, and a value field.

  The OSPF TE Node Capability Descriptor TLV has the following format:

     TYPE:     5 (see Section 8.1)
     LENGTH:   Variable (multiple of 4).
     VALUE:    Array of units of 32 flags numbered from the most
               significant bit as bit zero, where each bit represents
               a TE node capability.










Vasseur & Le Roux           Standards Track                     [Page 4]

RFC 5073         IGP Ext for Discovery of TE Node Cap      December 2007


  The following bits are defined:

  Bit       Capabilities

  0      B bit: P2MP Branch Node capability: When set, this indicates
         that the LSR can act as a branch node on a P2MP LSP
         [RFC4461].
  1      E bit: P2MP Bud-LSR capability: When set, this indicates
         that the LSR can act as a bud LSR on a P2MP LSP, i.e., an
         LSR that is both transit and egress [RFC4461].
  2      M bit: If set, this indicates that the LSR supports MPLS-TE
         signaling ([RFC3209]).
  3      G bit: If set, this indicates that the LSR supports GMPLS
         signaling ([RFC3473]).
  4      P bit: If set, this indicates that the LSR supports P2MP
         MPLS-TE signaling ([RFC4875]).

  5-31   Reserved for future assignments by IANA.

  Reserved bits MUST be set to zero on transmission, and MUST be
  ignored on reception.  If the length field is greater than 4,
  implying that there are more than 32 bits in the value field, then
  any additional bits (i.e., not yet assigned) are reserved.

4.2.  IS-IS TE Node Capability Descriptor sub-TLV format

  The IS-IS TE Node Capability Descriptor sub-TLV is a variable length
  sub-TLV that contains a series of bit flags, where each bit
  corresponds to a TE node capability.  The bit-field MAY be extended
  with additional bytes if more bit flags need to be assigned.  Any
  unknown bit flags SHALL be treated as Reserved bits.

  The IS-IS TE Node Capability Descriptor sub-TLV is carried within an
  IS-IS CAPABILITY TLV, which is defined in [RFC4971].

  The format of the IS-IS TE Node Capability sub-TLV is the same as the
  sub-TLV format used by the Traffic Engineering Extensions to IS-IS
  [RFC3784].  That is, the sub-TLV is composed of 1 octet for the type,
  1 octet specifying the length of the value field.

  The IS-IS TE Node Capability Descriptor sub-TLV has the following
  format:

     TYPE:   1 (see Section 8.2)
     LENGTH: Variable
     VALUE:  Array of units of 8 flags numbered from the most
             significant bit as bit zero, where each bit represents
             a TE node capability.



Vasseur & Le Roux           Standards Track                     [Page 5]

RFC 5073         IGP Ext for Discovery of TE Node Cap      December 2007


  The following bits are defined:

  Bit       Capabilities

   0      B bit: P2MP Branch Node capability: When set, this indicates
          that the LSR can act as a branch node on a P2MP LSP
          [RFC4461].
   1      E bit: P2MP Bud-LSR capability: When set, this indicates
          that the LSR can act as a bud LSR on a P2MP LSP, i.e., an
          LSR that is both transit and egress [RFC4461].
   2      M bit: If set, this indicates that the LSR supports MPLS-TE
          signaling ([RFC3209]).
   3      G bit: If set, this indicates that the LSR supports GMPLS
          signaling ([RFC3473]).
   4      P bit: If set, this indicates that the LSR supports P2MP
          MPLS-TE signaling ([RFC4875]).

   5-7    Reserved for future assignments by IANA.

  Reserved bits MUST be set to zero on transmission, and MUST be
  ignored on reception.  If the length field is great than 1, implying
  that there are more than 8 bits in the value field, then any
  additional bits (i.e., not yet assigned) are reserved.

5.  Elements of Procedure

5.1.  OSPF

  The TE Node Capability Descriptor TLV is advertised, within an OSPFv2
  Router Information LSA (Opaque type of 4 and Opaque ID of 0) or an
  OSPFv3 Router Information LSA (function code of 12), which are
  defined in [RFC4970].  As such, elements of procedure are inherited
  from those defined in [RFC2328], [RFC2740], and [RFC4970].

  The TE Node Capability Descriptor TLV advertises capabilities that
  may be taken into account as constraints during path selection.
  Hence, its flooding scope is area-local, and it MUST be carried
  within an OSPFv2 type 10 Router Information LSA (as defined in
  [RFC2370]) or an OSPFv3 Router Information LSA with the S1 bit set
  and the S2 bit cleared (as defined in [RFC2740]).

  A router MUST originate a new OSPF Router Information LSA whenever
  the content of the TE Node Capability Descriptor TLV changes or
  whenever required by the regular OSPF procedure (LSA refresh (every
  LSRefreshTime)).






Vasseur & Le Roux           Standards Track                     [Page 6]

RFC 5073         IGP Ext for Discovery of TE Node Cap      December 2007


  The TE Node Capability Descriptor TLV is OPTIONAL and MUST NOT appear
  more than once in an OSPF Router Information LSA.  If a TE Node
  Capability Descriptor TLV appears more than once in an OSPF Router
  Information LSA, only the first occurrence MUST be processed and
  others MUST be ignored.

  When an OSPF Router Information LSA does not contain any TE Node
  Capability Descriptor TLV, this means that the TE node capabilities
  of that LSR are unknown.

  Note that a change in any of these capabilities MAY trigger
  Constrained Shortest Path First (CSPF) computation, but MUST NOT
  trigger normal SPF computation.

  Note also that TE node capabilities are expected to be fairly static.
  They may change as the result of configuration change or software
  upgrade.  This is expected not to appear more than once a day.

5.2.  IS-IS

  The TE Node Capability sub-TLV is carried within an IS-IS CAPABILITY
  TLV defined in [RFC4971].  As such, elements of procedure are
  inherited from those defined in [RFC4971].

  The TE Node Capability Descriptor sub-TLV advertises capabilities
  that may be taken into account as constraints during path selection.
  Hence, its flooding is area-local, and it MUST be carried within an
  IS-IS CAPABILITY TLV having the S flag cleared.

  An IS-IS router MUST originate a new IS-IS LSP whenever the content
  of any of the TE Node Capability sub-TLV changes or whenever required
  by the regular IS-IS procedure (LSP refresh).

  The TE Node Capability Descriptor sub-TLV is OPTIONAL and MUST NOT
  appear more than once in an ISIS Router Capability TLV.

  When an IS-IS LSP does not contain any TE Node Capability Descriptor
  sub-TLV, this means that the TE node capabilities of that LSR are
  unknown.

  Note that a change in any of these capabilities MAY trigger CSPF
  computation, but MUST NOT trigger normal SPF computation.

  Note also that TE node capabilities are expected to be fairly static.
  They may change as the result of configuration change, or software
  upgrade.  This is expected not to appear more than once a day.





Vasseur & Le Roux           Standards Track                     [Page 7]

RFC 5073         IGP Ext for Discovery of TE Node Cap      December 2007


6.  Backward Compatibility

  The TE Node Capability Descriptor TLVs defined in this document do
  not introduce any interoperability issues.  For OSPF, a router not
  supporting the TE Node Capability Descriptor TLV will just silently
  ignore the TLV, as specified in [RFC4970].  For IS-IS, a router not
  supporting the TE Node Capability Descriptor sub-TLV will just
  silently ignore the sub-TLV, as specified in [RFC4971].

  When the TE Node Capability Descriptor TLV is absent, this means that
  the TE Capabilities of that LSR are unknown.

  The absence of a word of capability flags in OSPF or an octet of
  capability flags in IS-IS means that these capabilities are unknown.

7.  Security Considerations

  This document specifies the content of the TE Node Capability
  Descriptor TLV in IS-IS and OSPF to be used for (G)MPLS-TE path
  computation.  As this TLV is not used for SPF computation or normal
  routing, the extensions specified here have no direct effect on IP
  routing.  Tampering with this TLV may have an effect on Traffic
  Engineering computation.  Mechanisms defined to secure IS-IS Link
  State PDUs [RFC3567], OSPF LSAs [RFC2154], and their TLVs can be used
  to secure this TLV as well.

8.  IANA Considerations

8.1.  OSPF TLV

  [RFC4970] defines a new codepoint registry for TLVs carried in the
  Router Information LSA defined in [RFC4970].

  IANA has made a new codepoint assignment from that registry for the
  TE Node Capability Descriptor TLV defined in this document and
  carried within the Router Information LSA.  The value is 5.  See
  Section 4.1 of this document.

8.2.  ISIS sub-TLV

  IANA has defined a registry for sub-TLVs of the IS-IS CAPABILITY TLV
  defined in [RFC4971].

  IANA has made a new codepoint assignment from that registry for the
  TE Node Capability Descriptor sub-TLV defined in this document, and
  carried within the ISIS CAPABILITY TLV.  The value is 1.  See Section
  4.2 of this document.




Vasseur & Le Roux           Standards Track                     [Page 8]

RFC 5073         IGP Ext for Discovery of TE Node Cap      December 2007


8.3.  Capability Registry

  IANA has created a new registry to manage the space of capability bit
  flags carried within the OSPF and ISIS TE Node Capability Descriptor.

  A single registry must be defined for both protocols.  A new base
  registry has been created to cover IGP-TE registries that apply to
  both OSPF and IS-IS, and the new registry requested by this document
  is a sub-registry of this new base registry.

  Bits in the new registry should be numbered in the usual IETF
  notation, starting with the most significant bit as bit zero.

  New bit numbers may be allocated only by an IETF Consensus action.

     Each bit should be tracked with the following qualities:
        - Bit number
        - Defining RFC
        - Name of bit

  IANA has made assignments for the five TE node capabilities defined
  in this document (see Sections 8.1 and 8.2) using the following
  values:

  Bit No.  Name                                    Reference
  --------+---------------------------------------+---------------
  0        B bit: P2MP Branch LSR capability       [RFC5073]
  1        E bit: P2MP Bud LSR capability          [RFC5073]
  2        M bit: MPLS-TE support                  [RFC5073]
  3        G bit: GMPLS support                    [RFC5073]
  4        P bit: P2MP RSVP-TE support             [RFC5073]
  5-7      Unassigned                              [RFC5073]

9.  Acknowledgments

  We would like to thank Benoit Fondeviole, Adrian Farrel, Dimitri
  Papadimitriou, Acee Lindem, and David Ward for their useful comments
  and suggestions.

  We would also like to thank authors of [RFC4420] and [RFC4970] by
  which some text of this document has been inspired.

  Adrian Farrel prepared the final version of this document for
  submission to the IESG.







Vasseur & Le Roux           Standards Track                     [Page 9]

RFC 5073         IGP Ext for Discovery of TE Node Cap      December 2007


10.  References

10.1.  Normative References

  [RFC1195]    Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
               dual environments", RFC 1195, December 1990.

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2328]    Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

  [RFC2370]    Coltun, R., "The OSPF Opaque LSA Option", RFC 2370, July
               1998.

  [RFC2740]    Coltun, R., Ferguson, D., and J. Moy, "OSPF for IPv6",
               RFC 2740, December 1999.

  [RFC3031]    Rosen, E., Viswanathan, A., and R. Callon,
               "Multiprotocol Label Switching Architecture", RFC 3031,
               January 2001.

  [RFC3209]    Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan,
               V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
               Tunnels", RFC 3209, December 2001.

  [RFC3473]    Berger, L., Ed., "Generalized Multi-Protocol Label
               Switching (GMPLS) Signaling Resource ReserVation
               Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC
               3473, January 2003.

  [RFC3630]    Katz, D., Kompella, K., and D. Yeung, "Traffic
               Engineering (TE) Extensions to OSPF Version 2", RFC
               3630, September 2003.

  [RFC3784]    Smit, H. and T. Li, "Intermediate System to Intermediate
               System (IS-IS) Extensions for Traffic Engineering (TE)",
               RFC 3784, June 2004.

  [IS-IS]      "Intermediate System to Intermediate System Intra-Domain
               Routeing Exchange Protocol for use in Conjunction with
               the Protocol for Providing the Connectionless-mode
               Network Service (ISO 8473)", ISO 10589.

  [RFC4971]    Vasseur, JP., Ed., Shen, N., Ed., and R. Aggarwal, Ed.,
               "Intermediate System to Intermediate System (IS-IS)
               Extensions for Advertising Router Information", RFC
               4971, July 2007.



Vasseur & Le Roux           Standards Track                    [Page 10]

RFC 5073         IGP Ext for Discovery of TE Node Cap      December 2007


  [RFC4970]    Lindem, A., Ed., Shen, N., Vasseur, JP., Aggarwal, R.,
               and S. Shaffer, "Extensions to OSPF for Advertising
               Optional Router Capabilities", RFC 4970, July 2007.

  [RFC4875]    Aggarwal, R., Ed., Papadimitriou, D., Ed., and S.
               Yasukawa, Ed., "Extensions to Resource Reservation
               Protocol - Traffic Engineering (RSVP-TE) for Point-to-
               Multipoint TE Label Switched Paths (LSPs)", RFC 4875,
               May 2007.

10.2.  Informative References

  [RFC2154]    Murphy, S., Badger, M., and B. Wellington, "OSPF with
               Digital Signatures", RFC 2154, June 1997.

  [RFC3567]    Li, T. and R. Atkinson, "Intermediate System to
               Intermediate System (IS-IS) Cryptographic
               Authentication", RFC 3567, July 2003.

  [RFC4203]    Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions
               in Support of Generalized Multi-Protocol Label Switching
               (GMPLS)", RFC 4203, October 2005.

  [RFC4205]    Kompella, K., Ed., and Y. Rekhter, Ed., "Intermediate
               System to Intermediate System (IS-IS) Extensions in
               Support of Generalized Multi-Protocol Label Switching
               (GMPLS)", RFC 4205, October 2005.

  [RFC4420]    Farrel, A., Ed., Papadimitriou, D., Vasseur, J.-P., and
               A. Ayyangar, "Encoding of Attributes for Multiprotocol
               Label Switching (MPLS) Label Switched Path (LSP)
               Establishment Using Resource ReserVation Protocol-
               Traffic Engineering (RSVP-TE)", RFC 4420, February 2006.

  [RFC4461]    Yasukawa, S., Ed., "Signaling Requirements for Point-
               to-Multipoint Traffic-Engineered MPLS Label Switched
               Paths (LSPs)", RFC 4461, April 2006.

  [OSPFv3-TE]  Ishiguro K., Manral V., Davey A., and Lindem A.,
               "Traffic Engineering Extensions to OSPF version 3", Work
               in Progress.










Vasseur & Le Roux           Standards Track                    [Page 11]

RFC 5073         IGP Ext for Discovery of TE Node Cap      December 2007


Contributors' Addresses

  Seisho Yasukawa
  NTT
  3-9-11 Midori-cho,
  Musashino-shi, Tokyo 180-8585, Japan
  EMail: [email protected]

  Stefano Previdi
  Cisco Systems, Inc
  Via Del Serafico 200
  Roma, 00142
  Italy
  EMail: [email protected]

  Peter Psenak
  Cisco Systems, Inc
  Pegasus Park DE Kleetlaan 6A
  Diegmen, 1831
  BELGIUM
  EMail: [email protected]

  Paul Mabbey
  Comcast
  USA

Editors' Addresses

  Jean-Philippe Vasseur
  Cisco Systems, Inc.
  1414 Massachusetts Avenue
  Boxborough, MA, 01719
  USA
  EMail: [email protected]

  Jean-Louis Le Roux
  France Telecom
  2, avenue Pierre-Marzin
  22307 Lannion Cedex
  FRANCE
  EMail: [email protected]










Vasseur & Le Roux           Standards Track                    [Page 12]

RFC 5073         IGP Ext for Discovery of TE Node Cap      December 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Vasseur & Le Roux           Standards Track                    [Page 13]