Network Working Group                                            M. Luby
Request for Comments: 5053                              Digital Fountain
Category: Standards Track                                 A. Shokrollahi
                                                                   EPFL
                                                              M. Watson
                                                       Digital Fountain
                                                         T. Stockhammer
                                                         Nomor Research
                                                           October 2007


      Raptor Forward Error Correction Scheme for Object Delivery

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document describes a Fully-Specified Forward Error Correction
  (FEC) scheme, corresponding to FEC Encoding ID 1, for the Raptor
  forward error correction code and its application to reliable
  delivery of data objects.

  Raptor is a fountain code, i.e., as many encoding symbols as needed
  can be generated by the encoder on-the-fly from the source symbols of
  a source block of data.  The decoder is able to recover the source
  block from any set of encoding symbols only slightly more in number
  than the number of source symbols.

  The Raptor code described here is a systematic code, meaning that all
  the source symbols are among the encoding symbols that can be
  generated.














Luby, et al.                Standards Track                     [Page 1]

RFC 5053                   Raptor FEC Scheme                October 2007


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  Requirements Notation  . . . . . . . . . . . . . . . . . . . .  3
  3.  Formats and Codes  . . . . . . . . . . . . . . . . . . . . . .  3
    3.1.  FEC Payload IDs  . . . . . . . . . . . . . . . . . . . . .  3
    3.2.  FEC Object Transmission Information (OTI)  . . . . . . . .  4
      3.2.1.  Mandatory  . . . . . . . . . . . . . . . . . . . . . .  4
      3.2.2.  Common . . . . . . . . . . . . . . . . . . . . . . . .  4
      3.2.3.  Scheme-Specific  . . . . . . . . . . . . . . . . . . .  5
  4.  Procedures . . . . . . . . . . . . . . . . . . . . . . . . . .  5
    4.1.  Content Delivery Protocol Requirements . . . . . . . . . .  5
    4.2.  Example Parameter Derivation Algorithm . . . . . . . . . .  6
  5.  Raptor FEC Code Specification  . . . . . . . . . . . . . . . .  8
    5.1.  Definitions, Symbols, and Abbreviations  . . . . . . . . .  8
      5.1.1.  Definitions  . . . . . . . . . . . . . . . . . . . . .  8
      5.1.2.  Symbols  . . . . . . . . . . . . . . . . . . . . . . .  9
      5.1.3.  Abbreviations  . . . . . . . . . . . . . . . . . . . . 11
    5.2.  Overview . . . . . . . . . . . . . . . . . . . . . . . . . 11
    5.3.  Object Delivery  . . . . . . . . . . . . . . . . . . . . . 12
      5.3.1.  Source Block Construction  . . . . . . . . . . . . . . 12
      5.3.2.  Encoding Packet Construction . . . . . . . . . . . . . 14
    5.4.  Systematic Raptor Encoder  . . . . . . . . . . . . . . . . 15
      5.4.1.  Encoding Overview  . . . . . . . . . . . . . . . . . . 15
      5.4.2.  First Encoding Step: Intermediate Symbol Generation  . 16
      5.4.3.  Second Encoding Step: LT Encoding  . . . . . . . . . . 20
      5.4.4.  Generators . . . . . . . . . . . . . . . . . . . . . . 21
    5.5.  Example FEC Decoder  . . . . . . . . . . . . . . . . . . . 23
      5.5.1.  General  . . . . . . . . . . . . . . . . . . . . . . . 23
      5.5.2.  Decoding a Source Block  . . . . . . . . . . . . . . . 23
    5.6.  Random Numbers . . . . . . . . . . . . . . . . . . . . . . 28
      5.6.1.  The Table V0 . . . . . . . . . . . . . . . . . . . . . 28
      5.6.2.  The Table V1 . . . . . . . . . . . . . . . . . . . . . 29
    5.7.  Systematic Indices J(K)  . . . . . . . . . . . . . . . . . 30
  6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 43
  7.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 43
  8.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 44
  9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 44
    9.1.  Normative References . . . . . . . . . . . . . . . . . . . 44
    9.2.  Informative References . . . . . . . . . . . . . . . . . . 44











Luby, et al.                Standards Track                     [Page 2]

RFC 5053                   Raptor FEC Scheme                October 2007


1.  Introduction

  This document specifies an FEC Scheme for the Raptor forward error
  correction code for object delivery applications.  The concept of an
  FEC Scheme is defined in [RFC5052] and this document follows the
  format prescribed there and uses the terminology of that document.
  Raptor Codes were introduced in [Raptor].  For an overview, see, for
  example, [CCNC].

  The Raptor FEC Scheme is a Fully-Specified FEC Scheme corresponding
  to FEC Encoding ID 1.

  Raptor is a fountain code, i.e., as many encoding symbols as needed
  can be generated by the encoder on-the-fly from the source symbols of
  a block.  The decoder is able to recover the source block from any
  set of encoding symbols only slightly more in number than the number
  of source symbols.

  The code described in this document is a systematic code, that is,
  the original source symbols can be sent unmodified from sender to
  receiver, as well as a number of repair symbols.  For more background
  on the use of Forward Error Correction codes in reliable multicast,
  see [RFC3453].

  The code described here is identical to that described in [MBMS].

2.  Requirements Notation

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Formats and Codes

3.1.  FEC Payload IDs

  The FEC Payload ID MUST be a 4 octet field defined as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Source Block Number       |      Encoding Symbol ID       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 1: FEC Payload ID format






Luby, et al.                Standards Track                     [Page 3]

RFC 5053                   Raptor FEC Scheme                October 2007


     Source Block Number (SBN), (16 bits): An integer identifier for
     the source block that the encoding symbols within the packet
     relate to.

     Encoding Symbol ID (ESI), (16 bits): An integer identifier for the
     encoding symbols within the packet.

  The interpretation of the Source Block Number and Encoding Symbol
  Identifier is defined in Section 5.

3.2.  FEC Object Transmission Information (OTI)

3.2.1.  Mandatory

  The value of the FEC Encoding ID MUST be 1 (one), as assigned by IANA
  (see Section 7).

3.2.2.  Common

  The Common FEC Object Transmission Information elements used by this
  FEC Scheme are:

     - Transfer Length (F)

     - Encoding Symbol Length (T)

  The Transfer Length is a non-negative integer less than 2^^45.  The
  Encoding Symbol Length is a non-negative integer less than 2^^16.

  The encoded Common FEC Object Transmission Information format is
  shown in Figure 2.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Transfer Length                          |
     +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |           Reserved            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Encoding Symbol Length     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 2: Encoded Common FEC OTI for Raptor FEC Scheme

     NOTE 1: The limit of 2^^45 on the transfer length is a consequence
     of the limitation on the symbol size to 2^^16-1, the limitation on
     the number of symbols in a source block to 2^^13, and the




Luby, et al.                Standards Track                     [Page 4]

RFC 5053                   Raptor FEC Scheme                October 2007


     limitation on the number of source blocks to 2^^16.  However, the
     Transfer Length is encoded as a 48-bit field for simplicity.

3.2.3.  Scheme-Specific

  The following parameters are carried in the Scheme-Specific FEC
  Object Transmission Information element for this FEC Scheme:

     - The number of source blocks (Z)

     - The number of sub-blocks (N)

     - A symbol alignment parameter (Al)

  These parameters are all non-negative integers.  The encoded Scheme-
  specific Object Transmission Information is a 4-octet field
  consisting of the parameters Z (2 octets), N (1 octet), and Al (1
  octet) as shown in Figure 3.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Z                 |      N        |       Al      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 3: Encoded Scheme-Specific FEC Object Transmission Information

  The encoded FEC Object Transmission Information is a 14-octet field
  consisting of the concatenation of the encoded Common FEC Object
  Transmission Information and the encoded Scheme-Specific FEC Object
  Transmission Information.

  These three parameters define the source block partitioning as
  described in Section 5.3.1.2.

4.  Procedures

4.1.  Content Delivery Protocol Requirements

  This section describes the information exchange between the Raptor
  FEC Scheme and any Content Delivery Protocol (CDP) that makes use of
  the Raptor FEC Scheme for object delivery.

  The Raptor encoder and decoder for object delivery require the
  following information from the CDP:

     - The transfer length of the object, F, in bytes




Luby, et al.                Standards Track                     [Page 5]

RFC 5053                   Raptor FEC Scheme                October 2007


     - A symbol alignment parameter, Al

     - The symbol size, T, in bytes, which MUST be a multiple of Al

     - The number of source blocks, Z

     - The number of sub-blocks in each source block, N

  The Raptor encoder for object delivery additionally requires:

     - the object to be encoded, F bytes

  The Raptor encoder supplies the CDP with the following information
  for each packet to be sent:

     - Source Block Number (SBN)

     - Encoding Symbol ID (ESI)

     - Encoding symbol(s)

  The CDP MUST communicate this information to the receiver.

4.2.  Example Parameter Derivation Algorithm

  This section provides recommendations for the derivation of the three
  transport parameters, T, Z, and N.  This recommendation is based on
  the following input parameters:

  - F  the transfer length of the object, in bytes

  - W  a target on the sub-block size, in bytes

  - P  the maximum packet payload size, in bytes, which is assumed to
       be a multiple of Al

  - Al the symbol alignment parameter, in bytes

  - Kmax  the maximum number of source symbols per source block.

            Note: Section 5.1.2 defines Kmax to be 8192.

  - Kmin  a minimum target on the number of symbols per source block

  - Gmax  a maximum target number of symbols per packet






Luby, et al.                Standards Track                     [Page 6]

RFC 5053                   Raptor FEC Scheme                October 2007


  Based on the above inputs, the transport parameters T, Z, and N are
  calculated as follows:

  Let

     G = min{ceil(P*Kmin/F), P/Al, Gmax}

     T = floor(P/(Al*G))*Al

     Kt = ceil(F/T)

     Z = ceil(Kt/Kmax)

     N = min{ceil(ceil(Kt/Z)*T/W), T/Al}

  The value G represents the maximum number of symbols to be
  transported in a single packet.  The value Kt is the total number of
  symbols required to represent the source data of the object.  The
  values of G and N derived above should be considered as lower bounds.
  It may be advantageous to increase these values, for example, to the
  nearest power of two.  In particular, the above algorithm does not
  guarantee that the symbol size, T, divides the maximum packet size,
  P, and so it may not be possible to use the packets of size exactly
  P.  If, instead, G is chosen to be a value that divides P/Al, then
  the symbol size, T, will be a divisor of P and packets of size P can
  be used.

  The algorithm above and that defined in Section 5.3.1.2 ensure that
  the sub-symbol sizes are a multiple of the symbol alignment
  parameter, Al.  This is useful because the XOR operations used for
  encoding and decoding are generally performed several bytes at a
  time, for example, at least 4 bytes at a time on a 32-bit processor.
  Thus, the encoding and decoding can be performed faster if the sub-
  symbol sizes are a multiple of this number of bytes.

  Recommended settings for the input parameters, Al, Kmin, and Gmax are
  as follows: Al = 4, Kmin = 1024, Gmax = 10.

  The parameter W can be used to generate encoded data that can be
  decoded efficiently with limited working memory at the decoder.  Note
  that the actual maximum decoder memory requirement for a given value
  of W depends on the implementation, but it is possible to implement
  decoding using working memory only slightly larger than W.








Luby, et al.                Standards Track                     [Page 7]

RFC 5053                   Raptor FEC Scheme                October 2007


5.  Raptor FEC Code Specification

5.1.  Definitions, Symbols, and Abbreviations

5.1.1.  Definitions

  For the purposes of this specification, the following terms and
  definitions apply.

     Source block: a block of K source symbols that are considered
     together for Raptor encoding purposes.

     Source symbol: the smallest unit of data used during the encoding
     process.  All source symbols within a source block have the same
     size.

     Encoding symbol: a symbol that is included in a data packet.  The
     encoding symbols consist of the source symbols and the repair
     symbols.  Repair symbols generated from a source block have the
     same size as the source symbols of that source block.

     Systematic code: a code in which all the source symbols may be
     included as part of the encoding symbols sent for a source block.

     Repair symbol: the encoding symbols sent for a source block that
     are not the source symbols.  The repair symbols are generated
     based on the source symbols.

     Intermediate symbols: symbols generated from the source symbols
     using an inverse encoding process .  The repair symbols are then
     generated directly from the intermediate symbols.  The encoding
     symbols do not include the intermediate symbols, i.e.,
     intermediate symbols are not included in data packets.

     Symbol: a unit of data.  The size, in bytes, of a symbol is known
     as the symbol size.

     Encoding symbol group: a group of encoding symbols that are sent
     together, i.e., within the same packet whose relationship to the
     source symbols can be derived from a single Encoding Symbol ID.

     Encoding Symbol ID: information that defines the relationship
     between the symbols of an encoding symbol group and the source
     symbols.

     Encoding packet: data packets that contain encoding symbols





Luby, et al.                Standards Track                     [Page 8]

RFC 5053                   Raptor FEC Scheme                October 2007


     Sub-block: a source block is sometimes broken into sub-blocks,
     each of which is sufficiently small to be decoded in working
     memory.  For a source block consisting of K source symbols, each
     sub-block consists of K sub-symbols, each symbol of the source
     block being composed of one sub-symbol from each sub-block.

     Sub-symbol: part of a symbol.  Each source symbol is composed of
     as many sub-symbols as there are sub-blocks in the source block.

     Source packet: data packets that contain source symbols.

     Repair packet: data packets that contain repair symbols.

5.1.2.  Symbols

  i, j, x, h, a, b, d, v, m  represent positive integers.

  ceil(x)  denotes the smallest positive integer that is greater than
           or equal to x.

  choose(i,j)  denotes the number of ways j objects can be chosen from
               among i objects without repetition.

  floor(x)  denotes the largest positive integer that is less than or
            equal to x.

  i % j  denotes i modulo j.

  X ^ Y  denotes, for equal-length bit strings X and Y, the bitwise
         exclusive-or of X and Y.

  Al   denotes a symbol alignment parameter.  Symbol and sub-symbol
       sizes are restricted to be multiples of Al.

  A    denotes a matrix over GF(2).

  Transpose[A]  denotes the transposed matrix of matrix A.

  A^^-1  denotes the inverse matrix of matrix A.

  K    denotes the number of symbols in a single source block.

  Kmax denotes the maximum number of source symbols that can be in a
       single source block.  Set to 8192.

  L    denotes the number of pre-coding symbols for a single source
       block.




Luby, et al.                Standards Track                     [Page 9]

RFC 5053                   Raptor FEC Scheme                October 2007


  S    denotes the number of LDPC symbols for a single source block.

  H    denotes the number of Half symbols for a single source block.

  C    denotes an array of intermediate symbols, C[0], C[1], C[2],...,
       C[L-1].

  C'   denotes an array of source symbols, C'[0], C'[1], C'[2],...,
       C'[K-1].

  X    a non-negative integer value

  V0, V1  two arrays of 4-byte integers, V0[0], V0[1],..., V0[255] and
          V1[0], V1[1],..., V1[255]

  Rand[X, i, m]  a pseudo-random number generator

  Deg[v]  a degree generator

  LTEnc[K, C ,(d, a, b)]  a LT encoding symbol generator

  Trip[K, X]  a triple generator function

  G    the number of symbols within an encoding symbol group

  GF(n)  the Galois field with n elements.

  N    the number of sub-blocks within a source block

  T    the symbol size in bytes.  If the source block is partitioned
       into sub-blocks, then T = T'*N.

  T'   the sub-symbol size, in bytes.  If the source block is not
       partitioned into sub-blocks, then T' is not relevant.

  F    the transfer length of an object, in bytes

  I    the sub-block size in bytes

  P    for object delivery, the payload size of each packet, in bytes,
       that is used in the recommended derivation of the object
       delivery transport parameters.

  Q    Q = 65521, i.e., Q is the largest prime smaller than 2^^16

  Z    the number of source blocks, for object delivery

  J(K) the systematic index associated with K



Luby, et al.                Standards Track                    [Page 10]

RFC 5053                   Raptor FEC Scheme                October 2007


  I_S  denotes the SxS identity matrix.

  0_SxH  denotes the SxH zero matrix.

  a ^^ b  a raised to the power b

5.1.3.  Abbreviations

  For the purposes of the present document, the following abbreviations
  apply:

  ESI       Encoding Symbol ID

  LDPC      Low Density Parity Check

  LT        Luby Transform

  SBN       Source Block Number

  SBL       Source Block Length (in units of symbols)

5.2.  Overview

  The principal component of the systematic Raptor code is the basic
  encoder described in Section 5.4.  First, it is described how to
  derive values for a set of intermediate symbols from the original
  source symbols such that knowledge of the intermediate symbols is
  sufficient to reconstruct the source symbols.  Secondly, the encoder
  produces repair symbols, which are each the exclusive OR of a number
  of the intermediate symbols.  The encoding symbols are the
  combination of the source and repair symbols.  The repair symbols are
  produced in such a way that the intermediate symbols, and therefore
  also the source symbols, can be recovered from any sufficiently large
  set of encoding symbols.

  This document specifies the systematic Raptor code encoder.  A number
  of possible decoding algorithms are possible.  An efficient decoding
  algorithm is provided in Section 5.5.

  The construction of the intermediate and repair symbols is based in
  part on a pseudo-random number generator described in
  Section 5.4.4.1.  This generator is based on a fixed set of 512
  random numbers that MUST be available to both sender and receiver.
  These are provided in Section 5.6.







Luby, et al.                Standards Track                    [Page 11]

RFC 5053                   Raptor FEC Scheme                October 2007


  Finally, the construction of the intermediate symbols from the source
  symbols is governed by a 'systematic index', values of which are
  provided in Section 5.7 for source block sizes from 4 source symbols
  to Kmax = 8192 source symbols.

5.3.  Object Delivery

5.3.1.  Source Block Construction

5.3.1.1.  General

  In order to apply the Raptor encoder to a source object, the object
  may be broken into Z >= 1 blocks, known as source blocks.  The Raptor
  encoder is applied independently to each source block.  Each source
  block is identified by a unique integer Source Block Number (SBN),
  where the first source block has SBN zero, the second has SBN one,
  etc.  Each source block is divided into a number, K, of source
  symbols of size T bytes each.  Each source symbol is identified by a
  unique integer Encoding Symbol Identifier (ESI), where the first
  source symbol of a source block has ESI zero, the second has ESI one,
  etc.

  Each source block with K source symbols is divided into N >= 1 sub-
  blocks, which are small enough to be decoded in the working memory.
  Each sub-block is divided into K sub-symbols of size T'.

  Note that the value of K is not necessarily the same for each source
  block of an object and the value of T' may not necessarily be the
  same for each sub-block of a source block.  However, the symbol size
  T is the same for all source blocks of an object and the number of
  symbols, K, is the same for every sub-block of a source block.  Exact
  partitioning of the object into source blocks and sub-blocks is
  described in Section 5.3.1.2 below.

5.3.1.2.  Source Block and Sub-Block Partitioning

  The construction of source blocks and sub-blocks is determined based
  on five input parameters, F, Al, T, Z, and N, and a function
  Partition[].  The five input parameters are defined as follows:

  - F  the transfer length of the object, in bytes

  - Al a symbol alignment parameter, in bytes

  - T  the symbol size, in bytes, which MUST be a multiple of Al

  - Z  the number of source blocks




Luby, et al.                Standards Track                    [Page 12]

RFC 5053                   Raptor FEC Scheme                October 2007


  - N  the number of sub-blocks in each source block

  These parameters MUST be set so that ceil(ceil(F/T)/Z) <= Kmax.
  Recommendations for derivation of these parameters are provided in
  Section 4.2.

  The function Partition[] takes a pair of integers (I, J) as input and
  derives four integers (IL, IS, JL, JS) as output.  Specifically, the
  value of Partition[I, J] is a sequence of four integers (IL, IS, JL,
  JS), where IL = ceil(I/J), IS = floor(I/J), JL = I - IS * J, and JS =
  J - JL.  Partition[] derives parameters for partitioning a block of
  size I into J approximately equal-sized blocks.  Specifically, JL
  blocks of length IL and JS blocks of length IS.

  The source object MUST be partitioned into source blocks and sub-
  blocks as follows:

  Let

     Kt = ceil(F/T)

     (KL, KS, ZL, ZS) = Partition[Kt, Z]

     (TL, TS, NL, NS) = Partition[T/Al, N]

  Then, the object MUST be partitioned into Z = ZL + ZS contiguous
  source blocks, the first ZL source blocks each having length KL*T
  bytes, and the remaining ZS source blocks each having KS*T bytes.

  If Kt*T > F, then for encoding purposes, the last symbol MUST be
  padded at the end with Kt*T - F zero bytes.

  Next, each source block MUST be divided into N = NL + NS contiguous
  sub-blocks, the first NL sub-blocks each consisting of K contiguous
  sub-symbols of size of TL*Al and the remaining NS sub-blocks each
  consisting of K contiguous sub-symbols of size of TS*Al.  The symbol
  alignment parameter Al ensures that sub-symbols are always a multiple
  of Al bytes.

  Finally, the m-th symbol of a source block consists of the
  concatenation of the m-th sub-symbol from each of the N sub-blocks.
  Note that this implies that when N > 1, then a symbol is NOT a
  contiguous portion of the object.








Luby, et al.                Standards Track                    [Page 13]

RFC 5053                   Raptor FEC Scheme                October 2007


5.3.2.  Encoding Packet Construction

  Each encoding packet contains the following information:

     - Source Block Number (SBN)

     - Encoding Symbol ID (ESI)

     - encoding symbol(s)

  Each source block is encoded independently of the others.  Source
  blocks are numbered consecutively from zero.

  Encoding Symbol ID values from 0 to K-1 identify the source symbols
  of a source block in sequential order, where K is the number of
  symbols in the source block.  Encoding Symbol IDs from K onwards
  identify repair symbols.

  Each encoding packet either consists entirely of source symbols
  (source packet) or entirely of repair symbols (repair packet).  A
  packet may contain any number of symbols from the same source block.
  In the case that the last source symbol in a source packet includes
  padding bytes added for FEC encoding purposes, then these bytes need
  not be included in the packet.  Otherwise, only whole symbols MUST be
  included.

  The Encoding Symbol ID, X, carried in each source packet is the
  Encoding Symbol ID of the first source symbol carried in that packet.
  The subsequent source symbols in the packet have Encoding Symbol IDs,
  X+1 to X+G-1, in sequential order, where G is the number of symbols
  in the packet.

  Similarly, the Encoding Symbol ID, X, placed into a repair packet is
  the Encoding Symbol ID of the first repair symbol in the repair
  packet and the subsequent repair symbols in the packet have Encoding
  Symbol IDs X+1 to X+G-1 in sequential order, where G is the number of
  symbols in the packet.

  Note that it is not necessary for the receiver to know the total
  number of repair packets.

  Associated with each symbol is a triple of integers (d, a, b).

  The G repair symbol triples (d[0], a[0], b[0]),..., (d[G-1], a[G-1],
  b[G-1]) for the repair symbols placed into a repair packet with ESI X
  are computed using the Triple generator defined in Section 5.4.4.4 as
  follows:




Luby, et al.                Standards Track                    [Page 14]

RFC 5053                   Raptor FEC Scheme                October 2007


     For each i = 0, ..., G-1, (d[i], a[i], b[i]) = Trip[K,X+i]

  The G repair symbols to be placed in repair packet with ESI X are
  calculated based on the repair symbol triples, as described in
  Section 5.4, using the intermediate symbols C and the LT encoder
  LTEnc[K, C, (d[i], a[i], b[i])].

5.4.  Systematic Raptor Encoder

5.4.1.  Encoding Overview

  The systematic Raptor encoder is used to generate repair symbols from
  a source block that consists of K source symbols.

  Symbols are the fundamental data units of the encoding and decoding
  process.  For each source block (sub-block), all symbols (sub-
  symbols) are the same size.  The atomic operation performed on
  symbols (sub-symbols) for both encoding and decoding is the
  exclusive-or operation.

  Let C'[0],..., C'[K-1] denote the K source symbols.

  Let C[0],..., C[L-1] denote L intermediate symbols.

  The first step of encoding is to generate a number, L > K, of
  intermediate symbols from the K source symbols.  In this step, K
  source symbol triples (d[0], a[0], b[0]), ..., (d[K-1], a[K-1],
  b[K-1]) are generated using the Trip[] generator as described in
  Section 5.4.2.2.  The K source symbol triples are associated with the
  K source symbols and are then used to determine the L intermediate
  symbols C[0],..., C[L-1] from the source symbols using an inverse
  encoding process.  This process can be realized by a Raptor decoding
  process.

  Certain "pre-coding relationships" MUST hold within the L
  intermediate symbols.  Section 5.4.2.3 describes these relationships
  and how the intermediate symbols are generated from the source
  symbols.

  Once the intermediate symbols have been generated, repair symbols are
  produced and one or more repair symbols are placed as a group into a
  single data packet.  Each repair symbol group is associated with an
  Encoding Symbol ID (ESI) and a number, G, of repair symbols.  The ESI
  is used to generate a triple of three integers, (d, a, b) for each
  repair symbol, again using the Trip[] generator as described in
  Section 5.4.4.4.  Then, each (d,a,b)-triple is used to generate the





Luby, et al.                Standards Track                    [Page 15]

RFC 5053                   Raptor FEC Scheme                October 2007


  corresponding repair symbol from the intermediate symbols using the
  LTEnc[K, C[0],..., C[L-1], (d,a,b)] generator described in
  Section 5.4.4.3.

5.4.2.  First Encoding Step: Intermediate Symbol Generation

5.4.2.1.  General

  The first encoding step is a pre-coding step to generate the L
  intermediate symbols C[0], ..., C[L-1] from the source symbols C'[0],
  ..., C'[K-1].  The intermediate symbols are uniquely defined by two
  sets of constraints:

     1.  The intermediate symbols are related to the source symbols by
     a set of source symbol triples.  The generation of the source
     symbol triples is defined in Section 5.4.2.2 using the Trip[]
     generator described in Section 5.4.4.4.

     2.  A set of pre-coding relationships hold within the intermediate
     symbols themselves.  These are defined in Section 5.4.2.3.

  The generation of the L intermediate symbols is then defined in
  Section 5.4.2.4

5.4.2.2.  Source Symbol Triples

  Each of the K source symbols is associated with a triple (d[i], a[i],
  b[i]) for 0 <= i < K.  The source symbol triples are determined using
  the Triple generator defined in Section 5.4.4.4 as:

     For each i, 0 <= i < K

        (d[i], a[i], b[i]) = Trip[K, i]

5.4.2.3.  Pre-Coding Relationships

  The pre-coding relationships amongst the L intermediate symbols are
  defined by expressing the last L-K intermediate symbols in terms of
  the first K intermediate symbols.

  The last L-K intermediate symbols C[K],...,C[L-1] consist of S LDPC
  symbols and H Half symbols The values of S and H are determined from
  K as described below.  Then L = K+S+H.








Luby, et al.                Standards Track                    [Page 16]

RFC 5053                   Raptor FEC Scheme                October 2007


  Let

     X be the smallest positive integer such that X*(X-1) >= 2*K.

     S be the smallest prime integer such that S >= ceil(0.01*K) + X

     H be the smallest integer such that choose(H,ceil(H/2)) >= K + S

     H' = ceil(H/2)

     L = K+S+H

     C[0],...,C[K-1] denote the first K intermediate symbols

     C[K],...,C[K+S-1] denote the S LDPC symbols, initialised to zero

     C[K+S],...,C[L-1] denote the H Half symbols, initialised to zero

  The S LDPC symbols are defined to be the values of C[K],...,C[K+S-1]
  at the end of the following process:

     For i = 0,...,K-1 do

        a = 1 + (floor(i/S) % (S-1))

        b = i % S

        C[K + b] = C[K + b] ^ C[i]

        b = (b + a) % S

        C[K + b] = C[K + b] ^ C[i]

        b = (b + a) % S

        C[K + b] = C[K + b] ^ C[i]

  The H Half symbols are defined as follows:

  Let

     g[i] = i ^ (floor(i/2)) for all positive integers i

        Note: g[i] is the Gray sequence, in which each element differs
        from the previous one in a single bit position

     m[k] denote the subsequence of g[.] whose elements have exactly k
     non-zero bits in their binary representation.



Luby, et al.                Standards Track                    [Page 17]

RFC 5053                   Raptor FEC Scheme                October 2007


     m[j,k] denote the jth element of the sequence m[k], where j=0, 1,
     2, ...

  Then, the Half symbols are defined as the values of C[K+S],...,C[L-1]
  after the following process:

     For h = 0,...,H-1 do

        For j = 0,...,K+S-1 do

           If bit h of m[j,H'] is equal to 1 then C[h+K+S] = C[h+K+S] ^
           C[j].

5.4.2.4.  Intermediate Symbols

5.4.2.4.1.  Definition

  Given the K source symbols C'[0], C'[1],..., C'[K-1] the L
  intermediate symbols C[0], C[1],..., C[L-1] are the uniquely defined
  symbol values that satisfy the following conditions:

     1.  The K source symbols C'[0], C'[1],..., C'[K-1] satisfy the K
     constraints

        C'[i] = LTEnc[K, (C[0],..., C[L-1]), (d[i], a[i], b[i])], for
        all i, 0 <= i < K.

     2.  The L intermediate symbols C[0], C[1],..., C[L-1] satisfy the
     pre-coding relationships defined in Section 5.4.2.3.

5.4.2.4.2.  Example Method for Calculation of Intermediate Symbols

  This subsection describes a possible method for calculation of the L
  intermediate symbols C[0], C[1],..., C[L-1] satisfying the
  constraints in Section 5.4.2.4.1.

  The 'generator matrix' for a code that generates N output symbols
  from K input symbols is an NxK matrix over GF(2), where each row
  corresponds to one of the output symbols and each column to one of
  the input symbols and where the ith output symbol is equal to the sum
  of those input symbols whose column contains a non-zero entry in row
  i.









Luby, et al.                Standards Track                    [Page 18]

RFC 5053                   Raptor FEC Scheme                October 2007


  Then, the L intermediate symbols can be calculated as follows:

  Let

     C denote the column vector of the L intermediate symbols, C[0],
     C[1],..., C[L-1].

     D denote the column vector consisting of S+H zero symbols followed
     by the K source symbols C'[0], C'[1], ..., C'[K-1]

  Then the above constraints define an LxL matrix over GF(2), A, such
  that:

     A*C = D

  The matrix A can be constructed as follows:

  Let:

     G_LDPC be the S x K generator matrix of the LDPC symbols.  So,

        G_LDPC * Transpose[(C[0],...., C[K-1])] = Transpose[(C[K], ...,
        C[K+S-1])]

     G_Half be the H x (K+S) generator matrix of the Half symbols, So,

        G_Half * Transpose[(C[0], ..., C[S+K-1])] = Transpose[(C[K+S],
        ..., C[K+S+H-1])]

     I_S be the S x S identity matrix

     I_H be the H x H identity matrix

     0_SxH be the S x H zero matrix

     G_LT be the KxL generator matrix of the encoding symbols generated
     by the LT Encoder.  So,

        G_LT * Transpose[(C[0], ..., C[L-1])] =
        Transpose[(C'[0],C'[1],...,C'[K-1])]

        i.e., G_LT(i,j) = 1 if and only if C[j] is included in the
        symbols that are XORed to produce LTEnc[K, (C[0], ..., C[L-1]),
        (d[i], a[i], b[i])].

  Then:

     The first S rows of A are equal to G_LDPC | I_S | 0_SxH.



Luby, et al.                Standards Track                    [Page 19]

RFC 5053                   Raptor FEC Scheme                October 2007


     The next H rows of A are equal to G_Half | I_H.

     The remaining K rows of A are equal to G_LT.

  The matrix A is depicted in Figure 4 below:

                K               S       H
    +-----------------------+-------+-------+
    |                       |       |       |
  S |        G_LDPC         |  I_S  | 0_SxH |
    |                       |       |       |
    +-----------------------+-------+-------+
    |                               |       |
  H |        G_Half                 |  I_H  |
    |                               |       |
    +-------------------------------+-------+
    |                                       |
    |                                       |
  K |                 G_LT                  |
    |                                       |
    |                                       |
    +---------------------------------------+

                         Figure 4: The matrix A

  The intermediate symbols can then be calculated as:

     C = (A^^-1)*D

  The source symbol triples are generated such that for any K matrix, A
  has full rank and is therefore invertible.  This calculation can be
  realized by applying a Raptor decoding process to the K source
  symbols C'[0], C'[1],..., C'[K-1] to produce the L intermediate
  symbols C[0], C[1],..., C[L-1].

  To efficiently generate the intermediate symbols from the source
  symbols, it is recommended that an efficient decoder implementation
  such as that described in Section 5.5 be used.  The source symbol
  triples are designed to facilitate efficient decoding of the source
  symbols using that algorithm.

5.4.3.  Second Encoding Step: LT Encoding

  In the second encoding step, the repair symbol with ESI X is
  generated by applying the generator LTEnc[K, (C[0], C[1],...,
  C[L-1]), (d, a, b)] defined in Section 5.4.4.3 to the L intermediate
  symbols C[0], C[1],..., C[L-1] using the triple (d, a, b)=Trip[K,X]
  generated according to Section 5.3.2



Luby, et al.                Standards Track                    [Page 20]

RFC 5053                   Raptor FEC Scheme                October 2007


5.4.4.  Generators

5.4.4.1.  Random Generator

  The random number generator Rand[X, i, m] is defined as follows,
  where X is a non-negative integer, i is a non-negative integer, and m
  is a positive integer and the value produced is an integer between 0
  and m-1.  Let V0 and V1 be arrays of 256 entries each, where each
  entry is a 4-byte unsigned integer.  These arrays are provided in
  Section 5.6.

  Then,

     Rand[X, i, m] = (V0[(X + i) % 256] ^ V1[(floor(X/256)+ i) % 256])
     % m

5.4.4.2.  Degree Generator

  The degree generator Deg[v] is defined as follows, where v is an
  integer that is at least 0 and less than 2^^20 = 1048576.

     In Table 1, find the index j such that f[j-1] <= v < f[j]

     Then, Deg[v] = d[j]

                      +---------+---------+------+
                      | Index j | f[j]    | d[j] |
                      +---------+---------+------+
                      | 0       | 0       | --   |
                      | 1       | 10241   | 1    |
                      | 2       | 491582  | 2    |
                      | 3       | 712794  | 3    |
                      | 4       | 831695  | 4    |
                      | 5       | 948446  | 10   |
                      | 6       | 1032189 | 11   |
                      | 7       | 1048576 | 40   |
                      +---------+---------+------+

      Table 1: Defines the degree distribution for encoding symbols

5.4.4.3.  LT Encoding Symbol Generator

  The encoding symbol generator LTEnc[K, (C[0], C[1],..., C[L-1]), (d,
  a, b)] takes the following inputs:







Luby, et al.                Standards Track                    [Page 21]

RFC 5053                   Raptor FEC Scheme                October 2007


     K is the number of source symbols (or sub-symbols) for the source
     block (sub-block).  Let L be derived from K as described in
     Section 5.4.2.3, and let L' be the smallest prime integer greater
     than or equal to L.

     (C[0], C[1],..., C[L-1]) is the array of L intermediate symbols
     (sub-symbols) generated as described in Section 5.4.2.4.

     (d, a, b) is a source triple determined using the Triple generator
     defined in Section 5.4.4.4, whereby

        d is an integer denoting an encoding symbol degree

        a is an integer between 1 and L'-1 inclusive

        b is an integer between 0 and L'-1 inclusive

  The encoding symbol generator produces a single encoding symbol as
  output, according to the following algorithm:

     While (b >= L) do b = (b + a) % L'

     Let result = C[b].

     For j = 1,...,min(d-1,L-1) do

        b = (b + a) % L'

        While (b >= L) do b = (b + a) % L'

        result = result ^ C[b]

     Return result

5.4.4.4.  Triple Generator

  The triple generator Trip[K,X] takes the following inputs:

     K - The number of source symbols

     X - An encoding symbol ID

  Let

     L be determined from K as described in Section 5.4.2.3

     L' be the smallest prime that is greater than or equal to L




Luby, et al.                Standards Track                    [Page 22]

RFC 5053                   Raptor FEC Scheme                October 2007


     Q = 65521, the largest prime smaller than 2^^16.

     J(K) be the systematic index associated with K, as defined in
     Section 5.7.

  The output of the triple generator is a triple, (d, a, b) determined
  as follows:

     A = (53591 + J(K)*997) % Q

     B = 10267*(J(K)+1) % Q

     Y = (B + X*A) % Q

     v = Rand[Y, 0, 2^^20]

     d = Deg[v]

     a = 1 + Rand[Y, 1, L'-1]

     b = Rand[Y, 2, L']

5.5.  Example FEC Decoder

5.5.1.  General

  This section describes an efficient decoding algorithm for the Raptor
  codes described in this specification.  Note that each received
  encoding symbol can be considered as the value of an equation amongst
  the intermediate symbols.  From these simultaneous equations, and the
  known pre-coding relationships amongst the intermediate symbols, any
  algorithm for solving simultaneous equations can successfully decode
  the intermediate symbols and hence the source symbols.  However, the
  algorithm chosen has a major effect on the computational efficiency
  of the decoding.

5.5.2.  Decoding a Source Block

5.5.2.1.  General

  It is assumed that the decoder knows the structure of the source
  block it is to decode, including the symbol size, T, and the number K
  of symbols in the source block.

  From the algorithms described in Section 5.4, the Raptor decoder can
  calculate the total number L = K+S+H of pre-coding symbols and
  determine how they were generated from the source block to be
  decoded.  In this description, it is assumed that the received



Luby, et al.                Standards Track                    [Page 23]

RFC 5053                   Raptor FEC Scheme                October 2007


  encoding symbols for the source block to be decoded are passed to the
  decoder.  Note that, as described in Section 5.3.2, the last source
  symbol of a source packet may have included padding bytes added for
  FEC encoding purposes.  These padding bytes may not be actually
  included in the packet sent and so must be reinserted at the received
  before passing the symbol to the decoder.

  For each such encoding symbol, it is assumed that the number and set
  of intermediate symbols whose exclusive-or is equal to the encoding
  symbol is also passed to the decoder.  In the case of source symbols,
  the source symbol triples described in Section 5.4.2.2 indicate the
  number and set of intermediate symbols that sum to give each source
  symbol.

  Let N >= K be the number of received encoding symbols for a source
  block and let M = S+H+N.  The following M by L bit matrix A can be
  derived from the information passed to the decoder for the source
  block to be decoded.  Let C be the column vector of the L
  intermediate symbols, and let D be the column vector of M symbols
  with values known to the receiver, where the first S+H of the M
  symbols are zero-valued symbols that correspond to LDPC and Half
  symbols (these are check symbols for the LDPC and Half symbols, and
  not the LDPC and Half symbols themselves), and the remaining N of the
  M symbols are the received encoding symbols for the source block.
  Then, A is the bit matrix that satisfies A*C = D, where here *
  denotes matrix multiplication over GF[2].  In particular, A[i,j] = 1
  if the intermediate symbol corresponding to index j is exclusive-ORed
  into the LDPC, Half, or encoding symbol corresponding to index i in
  the encoding, or if index i corresponds to a LDPC or Half symbol and
  index j corresponds to the same LDPC or Half symbol.  For all other i
  and j, A[i,j] = 0.

  Decoding a source block is equivalent to decoding C from known A and
  D.  It is clear that C can be decoded if and only if the rank of A
  over GF[2] is L.  Once C has been decoded, missing source symbols can
  be obtained by using the source symbol triples to determine the
  number and set of intermediate symbols that MUST be exclusive-ORed to
  obtain each missing source symbol.

  The first step in decoding C is to form a decoding schedule.  In this
  step A is converted, using Gaussian elimination (using row operations
  and row and column reorderings) and after discarding M - L rows, into
  the L by L identity matrix.  The decoding schedule consists of the
  sequence of row operations and row and column reorderings during the
  Gaussian elimination process, and only depends on A and not on D.
   The decoding of C from D can take place concurrently with the
  forming of the decoding schedule, or the decoding can take place
  afterwards based on the decoding schedule.



Luby, et al.                Standards Track                    [Page 24]

RFC 5053                   Raptor FEC Scheme                October 2007


  The correspondence between the decoding schedule and the decoding of
  C is as follows.  Let c[0] = 0, c[1] = 1,...,c[L-1] = L-1 and d[0] =
  0, d[1] = 1,...,d[M-1] = M-1 initially.

  -  Each time row i of A is exclusive-ORed into row i' in the decoding
     schedule, then in the decoding process, symbol D[d[i]] is
     exclusive-ORed into symbol D[d[i']].

  -  Each time row i is exchanged with row i' in the decoding schedule,
     then in the decoding process, the value of d[i] is exchanged with
     the value of d[i'].

  -  Each time column j is exchanged with column j' in the decoding
     schedule, then in the decoding process, the value of c[j] is
     exchanged with the value of c[j'].

  From this correspondence, it is clear that the total number of
  exclusive-ORs of symbols in the decoding of the source block is the
  number of row operations (not exchanges) in the Gaussian elimination.
  Since A is the L by L identity matrix after the Gaussian elimination
  and after discarding the last M - L rows, it is clear at the end of
  successful decoding that the L symbols D[d[0]], D[d[1]],...,
  D[d[L-1]] are the values of the L symbols C[c[0]], C[c[1]],...,
  C[c[L-1]].

  The order in which Gaussian elimination is performed to form the
  decoding schedule has no bearing on whether or not the decoding is
  successful.  However, the speed of the decoding depends heavily on
  the order in which Gaussian elimination is performed.  (Furthermore,
  maintaining a sparse representation of A is crucial, although this is
  not described here).  The remainder of this section describes an
  order in which Gaussian elimination could be performed that is
  relatively efficient.

5.5.2.2.  First Phase

  The first phase of the Gaussian elimination, the matrix A, is
  conceptually partitioned into submatrices.  The submatrix sizes are
  parameterized by non-negative integers i and u, which are initialized
  to 0.  The submatrices of A are:

     (1) The submatrix I defined by the intersection of the first i
         rows and first i columns.  This is the identity matrix at the
         end of each step in the phase.

     (2) The submatrix defined by the intersection of the first i rows
         and all but the first i columns and last u columns.  All
         entries of this submatrix are zero.



Luby, et al.                Standards Track                    [Page 25]

RFC 5053                   Raptor FEC Scheme                October 2007


     (3) The submatrix defined by the intersection of the first i
         columns and all but the first i rows.  All entries of this
         submatrix are zero.

     (4) The submatrix U defined by the intersection of all the rows
         and the last u columns.

     (5) The submatrix V formed by the intersection of all but the
         first i columns and the last u columns and all but the first i
         rows.

  Figure 5 illustrates the submatrices of A.  At the beginning of the
  first phase, V = A.  In each step, a row of A is chosen.

  +-----------+-----------------+---------+
  |           |                 |         |
  |     I     |    All Zeros    |         |
  |           |                 |         |
  +-----------+-----------------+    U    |
  |           |                 |         |
  |           |                 |         |
  | All Zeros |       V         |         |
  |           |                 |         |
  |           |                 |         |
  +-----------+-----------------+---------+

              Figure 5: Submatrices of A in the first phase

  The following graph defined by the structure of V is used in
  determining which row of A is chosen.  The columns that intersect V
  are the nodes in the graph, and the rows that have exactly 2 ones in
  V are the edges of the graph that connect the two columns (nodes) in
  the positions of the two ones.  A component in this graph is a
  maximal set of nodes (columns) and edges (rows) such that there is a
  path between each pair of nodes/edges in the graph.  The size of a
  component is the number of nodes (columns) in the component.

  There are at most L steps in the first phase.  The phase ends
  successfully when i + u = L, i.e., when V and the all-zeroes
  submatrix above V have disappeared and A consists of I, the all
  zeroes submatrix below I, and U.  The phase ends unsuccessfully in
  decoding failure if, at some step before V disappears, there is no
  non-zero row in V to choose in that step.  Whenever there are non-
  zero rows in V, then the next step starts by choosing a row of A as
  follows:






Luby, et al.                Standards Track                    [Page 26]

RFC 5053                   Raptor FEC Scheme                October 2007


  o  Let r be the minimum integer such that at least one row of A has
     exactly r ones in V.

     *  If r != 2, then choose a row with exactly r ones in V with
        minimum original degree among all such rows.

     *  If r = 2, then choose any row with exactly 2 ones in V that is
        part of a maximum size component in the graph defined by V.

  After the row is chosen in this step the first row of A that
  intersects V is exchanged with the chosen row so that the chosen row
  is the first row that intersects V.  The columns of A among those
  that intersect V are reordered so that one of the r ones in the
  chosen row appears in the first column of V and so that the remaining
  r-1 ones appear in the last columns of V.  Then, the chosen row is
  exclusive-ORed into all the other rows of A below the chosen row that
  have a one in the first column of V.  Finally, i is incremented by 1
  and u is incremented by r-1, which completes the step.

5.5.2.3.  Second Phase

  The submatrix U is further partitioned into the first i rows,
  U_upper, and the remaining M - i rows, U_lower.  Gaussian elimination
  is performed in the second phase on U_lower to either determine that
  its rank is less than u (decoding failure) or to convert it into a
  matrix where the first u rows is the identity matrix (success of the
  second phase).  Call this u by u identity matrix I_u.  The M - L rows
  of A that intersect U_lower - I_u are discarded.  After this phase, A
  has L rows and L columns.

5.5.2.4.  Third Phase

  After the second phase, the only portion of A that needs to be zeroed
  out to finish converting A into the L by L identity matrix is
  U_upper.  The number of rows i of the submatrix U_upper is generally
  much larger than the number of columns u of U_upper.  To zero out
  U_upper efficiently, the following precomputation matrix U' is
  computed based on I_u in the third phase and then U' is used in the
  fourth phase to zero out U_upper.  The u rows of Iu are partitioned
  into ceil(u/8) groups of 8 rows each.  Then, for each group of 8
  rows, all non-zero combinations of the 8 rows are computed, resulting
  in 2^^8 - 1 = 255 rows (this can be done with 2^^8-8-1 = 247
  exclusive-ors of rows per group, since the combinations of Hamming
  weight one that appear in I_u do not need to be recomputed).  Thus,
  the resulting precomputation matrix U' has ceil(u/8)*255 rows and u
  columns.  Note that U' is not formally a part of matrix A, but will
  be used in the fourth phase to zero out U_upper.




Luby, et al.                Standards Track                    [Page 27]

RFC 5053                   Raptor FEC Scheme                October 2007


5.5.2.5.  Fourth Phase

  For each of the first i rows of A, for each group of 8 columns in the
  U_upper submatrix of this row, if the set of 8 column entries in
  U_upper are not all zero, then the row of the precomputation matrix
  U' that matches the pattern in the 8 columns is exclusive-ORed into
  the row, thus zeroing out those 8 columns in the row at the cost of
  exclusive-ORing one row of U' into the row.

  After this phase, A is the L by L identity matrix and a complete
  decoding schedule has been successfully formed.  Then, as explained
  in Section 5.5.2.1, the corresponding decoding consisting of
  exclusive-ORing known encoding symbols can be executed to recover the
  intermediate symbols based on the decoding schedule.  The triples
  associated with all source symbols are computed according to
  Section 5.4.2.2.  The triples for received source symbols are used in
  the decoding.  The triples for missing source symbols are used to
  determine which intermediate symbols need to be exclusive-ORed to
  recover the missing source symbols.

5.6.  Random Numbers

  The two tables V0 and V1 described in Section 5.4.4.1 are given
  below.  Each entry is a 32-bit integer in decimal representation.

5.6.1.  The Table V0

  251291136, 3952231631, 3370958628, 4070167936, 123631495, 3351110283,
  3218676425, 2011642291, 774603218, 2402805061, 1004366930,
  1843948209, 428891132, 3746331984, 1591258008, 3067016507,
  1433388735, 504005498, 2032657933, 3419319784, 2805686246,
  3102436986, 3808671154, 2501582075, 3978944421, 246043949,
  4016898363, 649743608, 1974987508, 2651273766, 2357956801, 689605112,
  715807172, 2722736134, 191939188, 3535520147, 3277019569, 1470435941,
  3763101702, 3232409631, 122701163, 3920852693, 782246947, 372121310,
  2995604341, 2045698575, 2332962102, 4005368743, 218596347,
  3415381967, 4207612806, 861117671, 3676575285, 2581671944,
  3312220480, 681232419, 307306866, 4112503940, 1158111502, 709227802,
  2724140433, 4201101115, 4215970289, 4048876515, 3031661061,
  1909085522, 510985033, 1361682810, 129243379, 3142379587, 2569842483,
  3033268270, 1658118006, 932109358, 1982290045, 2983082771,
  3007670818, 3448104768, 683749698, 778296777, 1399125101, 1939403708,
  1692176003, 3868299200, 1422476658, 593093658, 1878973865,
  2526292949, 1591602827, 3986158854, 3964389521, 2695031039,
  1942050155, 424618399, 1347204291, 2669179716, 2434425874,
  2540801947, 1384069776, 4123580443, 1523670218, 2708475297,
  1046771089, 2229796016, 1255426612, 4213663089, 1521339547,
  3041843489, 420130494, 10677091, 515623176, 3457502702, 2115821274,



Luby, et al.                Standards Track                    [Page 28]

RFC 5053                   Raptor FEC Scheme                October 2007


  2720124766, 3242576090, 854310108, 425973987, 325832382, 1796851292,
  2462744411, 1976681690, 1408671665, 1228817808, 3917210003,
  263976645, 2593736473, 2471651269, 4291353919, 650792940, 1191583883,
  3046561335, 2466530435, 2545983082, 969168436, 2019348792,
  2268075521, 1169345068, 3250240009, 3963499681, 2560755113,
  911182396, 760842409, 3569308693, 2687243553, 381854665, 2613828404,
  2761078866, 1456668111, 883760091, 3294951678, 1604598575,
  1985308198, 1014570543, 2724959607, 3062518035, 3115293053,
  138853680, 4160398285, 3322241130, 2068983570, 2247491078,
  3669524410, 1575146607, 828029864, 3732001371, 3422026452,
  3370954177, 4006626915, 543812220, 1243116171, 3928372514,
  2791443445, 4081325272, 2280435605, 885616073, 616452097, 3188863436,
  2780382310, 2340014831, 1208439576, 258356309, 3837963200,
  2075009450, 3214181212, 3303882142, 880813252, 1355575717, 207231484,
  2420803184, 358923368, 1617557768, 3272161958, 1771154147,
  2842106362, 1751209208, 1421030790, 658316681, 194065839, 3241510581,
  38625260, 301875395, 4176141739, 297312930, 2137802113, 1502984205,
  3669376622, 3728477036, 234652930, 2213589897, 2734638932,
  1129721478, 3187422815, 2859178611, 3284308411, 3819792700,
  3557526733, 451874476, 1740576081, 3592838701, 1709429513,
  3702918379, 3533351328, 1641660745, 179350258, 2380520112,
  3936163904, 3685256204, 3156252216, 1854258901, 2861641019,
  3176611298, 834787554, 331353807, 517858103, 3010168884, 4012642001,
  2217188075, 3756943137, 3077882590, 2054995199, 3081443129,
  3895398812, 1141097543, 2376261053, 2626898255, 2554703076,
  401233789, 1460049922, 678083952, 1064990737, 940909784, 1673396780,
  528881783, 1712547446, 3629685652, 1358307511

5.6.2.  The Table V1

  807385413, 2043073223, 3336749796, 1302105833, 2278607931, 541015020,
  1684564270, 372709334, 3508252125, 1768346005, 1270451292,
  2603029534, 2049387273, 3891424859, 2152948345, 4114760273,
  915180310, 3754787998, 700503826, 2131559305, 1308908630, 224437350,
  4065424007, 3638665944, 1679385496, 3431345226, 1779595665,
  3068494238, 1424062773, 1033448464, 4050396853, 3302235057,
  420600373, 2868446243, 311689386, 259047959, 4057180909, 1575367248,
  4151214153, 110249784, 3006865921, 4293710613, 3501256572, 998007483,
  499288295, 1205710710, 2997199489, 640417429, 3044194711, 486690751,
  2686640734, 2394526209, 2521660077, 49993987, 3843885867, 4201106668,
  415906198, 19296841, 2402488407, 2137119134, 1744097284, 579965637,
  2037662632, 852173610, 2681403713, 1047144830, 2982173936, 910285038,
  4187576520, 2589870048, 989448887, 3292758024, 506322719, 176010738,
  1865471968, 2619324712, 564829442, 1996870325, 339697593, 4071072948,
  3618966336, 2111320126, 1093955153, 957978696, 892010560, 1854601078,
  1873407527, 2498544695, 2694156259, 1927339682, 1650555729,
  183933047, 3061444337, 2067387204, 228962564, 3904109414, 1595995433,
  1780701372, 2463145963, 307281463, 3237929991, 3852995239,



Luby, et al.                Standards Track                    [Page 29]

RFC 5053                   Raptor FEC Scheme                October 2007


  2398693510, 3754138664, 522074127, 146352474, 4104915256, 3029415884,
  3545667983, 332038910, 976628269, 3123492423, 3041418372, 2258059298,
  2139377204, 3243642973, 3226247917, 3674004636, 2698992189,
  3453843574, 1963216666, 3509855005, 2358481858, 747331248,
  1957348676, 1097574450, 2435697214, 3870972145, 1888833893,
  2914085525, 4161315584, 1273113343, 3269644828, 3681293816,
  412536684, 1156034077, 3823026442, 1066971017, 3598330293,
  1979273937, 2079029895, 1195045909, 1071986421, 2712821515,
  3377754595, 2184151095, 750918864, 2585729879, 4249895712,
  1832579367, 1192240192, 946734366, 31230688, 3174399083, 3549375728,
  1642430184, 1904857554, 861877404, 3277825584, 4267074718,
  3122860549, 666423581, 644189126, 226475395, 307789415, 1196105631,
  3191691839, 782852669, 1608507813, 1847685900, 4069766876,
  3931548641, 2526471011, 766865139, 2115084288, 4259411376,
  3323683436, 568512177, 3736601419, 1800276898, 4012458395, 1823982,
  27980198, 2023839966, 869505096, 431161506, 1024804023, 1853869307,
  3393537983, 1500703614, 3019471560, 1351086955, 3096933631,
  3034634988, 2544598006, 1230942551, 3362230798, 159984793, 491590373,
  3993872886, 3681855622, 903593547, 3535062472, 1799803217, 772984149,
  895863112, 1899036275, 4187322100, 101856048, 234650315, 3183125617,
  3190039692, 525584357, 1286834489, 455810374, 1869181575, 922673938,
  3877430102, 3422391938, 1414347295, 1971054608, 3061798054,
  830555096, 2822905141, 167033190, 1079139428, 4210126723, 3593797804,
  429192890, 372093950, 1779187770, 3312189287, 204349348, 452421568,
  2800540462, 3733109044, 1235082423, 1765319556, 3174729780,
  3762994475, 3171962488, 442160826, 198349622, 45942637, 1324086311,
  2901868599, 678860040, 3812229107, 19936821, 1119590141, 3640121682,
  3545931032, 2102949142, 2828208598, 3603378023, 4135048896

5.7.  Systematic Indices J(K)

  For each value of K, the systematic index J(K) is designed to have
  the property that the set of source symbol triples (d[0], a[0],
  b[0]), ..., (d[L-1], a[L-1], b[L-1]) are such that the L intermediate
  symbols are uniquely defined, i.e., the matrix A in Section 5.4.2.4.2
  has full rank and is therefore invertible.

  The following is the list of the systematic indices for values of K
  between 4 and 8192 inclusive.

  18, 14, 61, 46, 14, 22, 20, 40, 48, 1, 29, 40, 43, 46, 18, 8, 20, 2,
  61, 26, 13, 29, 36, 19, 58, 5, 58, 0, 54, 56, 24, 14, 5, 67, 39, 31,
  25, 29, 24, 19, 14, 56, 49, 49, 63, 30, 4, 39, 2, 1, 20, 19, 61, 4,
  54, 70, 25, 52, 9, 26, 55, 69, 27, 68, 75, 19, 64, 57, 45, 3, 37, 31,
  100, 41, 25, 41, 53, 23, 9, 31, 26, 30, 30, 46, 90, 50, 13, 90, 77,
  61, 31, 54, 54, 3, 21, 66, 21, 11, 23, 11, 29, 21, 7, 1, 27, 4, 34,
  17, 85, 69, 17, 75, 93, 57, 0, 53, 71, 88, 119, 88, 90, 22, 0, 58,
  41, 22, 96, 26, 79, 118, 19, 3, 81, 72, 50, 0, 32, 79, 28, 25, 12,



Luby, et al.                Standards Track                    [Page 30]

RFC 5053                   Raptor FEC Scheme                October 2007


  25, 29, 3, 37, 30, 30, 41, 84, 32, 31, 61, 32, 61, 7, 56, 54, 39, 33,
  66, 29, 3, 14, 75, 75, 78, 84, 75, 84, 25, 54, 25, 25, 107, 78, 27,
  73, 0, 49, 96, 53, 50, 21, 10, 73, 58, 65, 27, 3, 27, 18, 54, 45, 69,
  29, 3, 65, 31, 71, 76, 56, 54, 76, 54, 13, 5, 18, 142, 17, 3, 37,
  114, 41, 25, 56, 0, 23, 3, 41, 22, 22, 31, 18, 48, 31, 58, 37, 75,
  88, 3, 56, 1, 95, 19, 73, 52, 52, 4, 75, 26, 1, 25, 10, 1, 70, 31,
  31, 12, 10, 54, 46, 11, 74, 84, 74, 8, 58, 23, 74, 8, 36, 11, 16, 94,
  76, 14, 57, 65, 8, 22, 10, 36, 36, 96, 62, 103, 6, 75, 103, 58, 10,
  15, 41, 75, 125, 58, 15, 10, 34, 29, 34, 4, 16, 29, 18, 18, 28, 71,
  28, 43, 77, 18, 41, 41, 41, 62, 29, 96, 15, 106, 43, 15, 3, 43, 61,
  3, 18, 103, 77, 29, 103, 19, 58, 84, 58, 1, 146, 32, 3, 70, 52, 54,
  29, 70, 69, 124, 62, 1, 26, 38, 26, 3, 16, 26, 5, 51, 120, 41, 16, 1,
  43, 34, 34, 29, 37, 56, 29, 96, 86, 54, 25, 84, 50, 34, 34, 93, 84,
  96, 29, 29, 50, 50, 6, 1, 105, 78, 15, 37, 19, 50, 71, 36, 6, 54, 8,
  28, 54, 75, 75, 16, 75, 131, 5, 25, 16, 69, 17, 69, 6, 96, 53, 96,
  41, 119, 6, 6, 88, 50, 88, 52, 37, 0, 124, 73, 73, 7, 14, 36, 69, 79,
  6, 114, 40, 79, 17, 77, 24, 44, 37, 69, 27, 37, 29, 33, 37, 50, 31,
  69, 29, 101, 7, 61, 45, 17, 73, 37, 34, 18, 94, 22, 22, 63, 3, 25,
  25, 17, 3, 90, 34, 34, 41, 34, 41, 54, 41, 54, 41, 41, 41, 163, 143,
  96, 18, 32, 39, 86, 104, 11, 17, 17, 11, 86, 104, 78, 70, 52, 78, 17,
  73, 91, 62, 7, 128, 50, 124, 18, 101, 46, 10, 75, 104, 73, 58, 132,
  34, 13, 4, 95, 88, 33, 76, 74, 54, 62, 113, 114, 103, 32, 103, 69,
  54, 53, 3, 11, 72, 31, 53, 102, 37, 53, 11, 81, 41, 10, 164, 10, 41,
  31, 36, 113, 82, 3, 125, 62, 16, 4, 41, 41, 4, 128, 49, 138, 128, 74,
  103, 0, 6, 101, 41, 142, 171, 39, 105, 121, 81, 62, 41, 81, 37, 3,
  81, 69, 62, 3, 69, 70, 21, 29, 4, 91, 87, 37, 79, 36, 21, 71, 37, 41,
  75, 128, 128, 15, 25, 3, 108, 73, 91, 62, 114, 62, 62, 36, 36, 15,
  58, 114, 61, 114, 58, 105, 114, 41, 61, 176, 145, 46, 37, 30, 220,
  77, 138, 15, 1, 128, 53, 50, 50, 58, 8, 91, 114, 105, 63, 91, 37, 37,
  13, 169, 51, 102, 6, 102, 23, 105, 23, 58, 6, 29, 29, 19, 82, 29, 13,
  36, 27, 29, 61, 12, 18, 127, 127, 12, 44, 102, 18, 4, 15, 206, 53,
  127, 53, 17, 69, 69, 69, 29, 29, 109, 25, 102, 25, 53, 62, 99, 62,
  62, 29, 62, 62, 45, 91, 125, 29, 29, 29, 4, 117, 72, 4, 30, 71, 71,
  95, 79, 179, 71, 30, 53, 32, 32, 49, 25, 91, 25, 26, 26, 103, 123,
  26, 41, 162, 78, 52, 103, 25, 6, 142, 94, 45, 45, 94, 127, 94, 94,
  94, 47, 209, 138, 39, 39, 19, 154, 73, 67, 91, 27, 91, 84, 4, 84, 91,
  12, 14, 165, 142, 54, 69, 192, 157, 185, 8, 95, 25, 62, 103, 103, 95,
  71, 97, 62, 128, 0, 29, 51, 16, 94, 16, 16, 51, 0, 29, 85, 10, 105,
  16, 29, 29, 13, 29, 4, 4, 132, 23, 95, 25, 54, 41, 29, 50, 70, 58,
  142, 72, 70, 15, 72, 54, 29, 22, 145, 29, 127, 29, 85, 58, 101, 34,
  165, 91, 46, 46, 25, 185, 25, 77, 128, 46, 128, 46, 188, 114, 46, 25,
  45, 45, 114, 145, 114, 15, 102, 142, 8, 73, 31, 139, 157, 13, 79, 13,
  114, 150, 8, 90, 91, 123, 69, 82, 132, 8, 18, 10, 102, 103, 114, 103,
  8, 103, 13, 115, 55, 62, 3, 8, 154, 114, 99, 19, 8, 31, 73, 19, 99,
  10, 6, 121, 32, 13, 32, 119, 32, 29, 145, 30, 13, 13, 114, 145, 32,
  1, 123, 39, 29, 31, 69, 31, 140, 72, 72, 25, 25, 123, 25, 123, 8, 4,
  85, 8, 25, 39, 25, 39, 85, 138, 25, 138, 25, 33, 102, 70, 25, 25, 31,
  25, 25, 192, 69, 69, 114, 145, 120, 120, 8, 33, 98, 15, 212, 155, 8,



Luby, et al.                Standards Track                    [Page 31]

RFC 5053                   Raptor FEC Scheme                October 2007


  101, 8, 8, 98, 68, 155, 102, 132, 120, 30, 25, 123, 123, 101, 25,
  123, 32, 24, 94, 145, 32, 24, 94, 118, 145, 101, 53, 53, 25, 128,
  173, 142, 81, 81, 69, 33, 33, 125, 4, 1, 17, 27, 4, 17, 102, 27, 13,
  25, 128, 71, 13, 39, 53, 13, 53, 47, 39, 23, 128, 53, 39, 47, 39,
  135, 158, 136, 36, 36, 27, 157, 47, 76, 213, 47, 156, 25, 25, 53, 25,
  53, 25, 86, 27, 159, 25, 62, 79, 39, 79, 25, 145, 49, 25, 143, 13,
  114, 150, 130, 94, 102, 39, 4, 39, 61, 77, 228, 22, 25, 47, 119, 205,
  122, 119, 205, 119, 22, 119, 258, 143, 22, 81, 179, 22, 22, 143, 25,
  65, 53, 168, 36, 79, 175, 37, 79, 70, 79, 103, 70, 25, 175, 4, 96,
  96, 49, 128, 138, 96, 22, 62, 47, 95, 105, 95, 62, 95, 62, 142, 103,
  69, 103, 30, 103, 34, 173, 127, 70, 127, 132, 18, 85, 22, 71, 18,
  206, 206, 18, 128, 145, 70, 193, 188, 8, 125, 114, 70, 128, 114, 145,
  102, 25, 12, 108, 102, 94, 10, 102, 1, 102, 124, 22, 22, 118, 132,
  22, 116, 75, 41, 63, 41, 189, 208, 55, 85, 69, 8, 71, 53, 71, 69,
  102, 165, 41, 99, 69, 33, 33, 29, 156, 102, 13, 251, 102, 25, 13,
  109, 102, 164, 102, 164, 102, 25, 29, 228, 29, 259, 179, 222, 95, 94,
  30, 30, 30, 142, 55, 142, 72, 55, 102, 128, 17, 69, 164, 165, 3, 164,
  36, 165, 27, 27, 45, 21, 21, 237, 113, 83, 231, 106, 13, 154, 13,
  154, 128, 154, 148, 258, 25, 154, 128, 3, 27, 10, 145, 145, 21, 146,
  25, 1, 185, 121, 0, 1, 95, 55, 95, 95, 30, 0, 27, 95, 0, 95, 8, 222,
  27, 121, 30, 95, 121, 0, 98, 94, 131, 55, 95, 95, 30, 98, 30, 0, 91,
  145, 66, 179, 66, 58, 175, 29, 0, 31, 173, 146, 160, 39, 53, 28, 123,
  199, 123, 175, 146, 156, 54, 54, 149, 25, 70, 178, 128, 25, 70, 70,
  94, 224, 54, 4, 54, 54, 25, 228, 160, 206, 165, 143, 206, 108, 220,
  234, 160, 13, 169, 103, 103, 103, 91, 213, 222, 91, 103, 91, 103, 31,
  30, 123, 13, 62, 103, 50, 106, 42, 13, 145, 114, 220, 65, 8, 8, 175,
  11, 104, 94, 118, 132, 27, 118, 193, 27, 128, 127, 127, 183, 33, 30,
  29, 103, 128, 61, 234, 165, 41, 29, 193, 33, 207, 41, 165, 165, 55,
  81, 157, 157, 8, 81, 11, 27, 8, 8, 98, 96, 142, 145, 41, 179, 112,
  62, 180, 206, 206, 165, 39, 241, 45, 151, 26, 197, 102, 192, 125,
  128, 67, 128, 69, 128, 197, 33, 125, 102, 13, 103, 25, 30, 12, 30,
  12, 30, 25, 77, 12, 25, 180, 27, 10, 69, 235, 228, 343, 118, 69, 41,
  8, 69, 175, 25, 69, 25, 125, 41, 25, 41, 8, 155, 146, 155, 146, 155,
  206, 168, 128, 157, 27, 273, 211, 211, 168, 11, 173, 154, 77, 173,
  77, 102, 102, 102, 8, 85, 95, 102, 157, 28, 122, 234, 122, 157, 235,
  222, 241, 10, 91, 179, 25, 13, 25, 41, 25, 206, 41, 6, 41, 158, 206,
  206, 33, 296, 296, 33, 228, 69, 8, 114, 148, 33, 29, 66, 27, 27, 30,
  233, 54, 173, 108, 106, 108, 108, 53, 103, 33, 33, 33, 176, 27, 27,
  205, 164, 105, 237, 41, 27, 72, 165, 29, 29, 259, 132, 132, 132, 364,
  71, 71, 27, 94, 160, 127, 51, 234, 55, 27, 95, 94, 165, 55, 55, 41,
  0, 41, 128, 4, 123, 173, 6, 164, 157, 121, 121, 154, 86, 164, 164,
  25, 93, 164, 25, 164, 210, 284, 62, 93, 30, 25, 25, 30, 30, 260, 130,
  25, 125, 57, 53, 166, 166, 166, 185, 166, 158, 94, 113, 215, 159, 62,
  99, 21, 172, 99, 184, 62, 259, 4, 21, 21, 77, 62, 173, 41, 146, 6,
  41, 128, 121, 41, 11, 121, 103, 159, 164, 175, 206, 91, 103, 164, 72,
  25, 129, 72, 206, 129, 33, 103, 102, 102, 29, 13, 11, 251, 234, 135,
  31, 8, 123, 65, 91, 121, 129, 65, 243, 10, 91, 8, 65, 70, 228, 220,
  243, 91, 10, 10, 30, 178, 91, 178, 33, 21, 25, 235, 165, 11, 161,



Luby, et al.                Standards Track                    [Page 32]

RFC 5053                   Raptor FEC Scheme                October 2007


  158, 27, 27, 30, 128, 75, 36, 30, 36, 36, 173, 25, 33, 178, 112, 162,
  112, 112, 112, 162, 33, 33, 178, 123, 123, 39, 106, 91, 106, 106,
  158, 106, 106, 284, 39, 230, 21, 228, 11, 21, 228, 159, 241, 62, 10,
  62, 10, 68, 234, 39, 39, 138, 62, 22, 27, 183, 22, 215, 10, 175, 175,
  353, 228, 42, 193, 175, 175, 27, 98, 27, 193, 150, 27, 173, 17, 233,
  233, 25, 102, 123, 152, 242, 108, 4, 94, 176, 13, 41, 219, 17, 151,
  22, 103, 103, 53, 128, 233, 284, 25, 265, 128, 39, 39, 138, 42, 39,
  21, 86, 95, 127, 29, 91, 46, 103, 103, 215, 25, 123, 123, 230, 25,
  193, 180, 30, 60, 30, 242, 136, 180, 193, 30, 206, 180, 60, 165, 206,
  193, 165, 123, 164, 103, 68, 25, 70, 91, 25, 82, 53, 82, 186, 53, 82,
  53, 25, 30, 282, 91, 13, 234, 160, 160, 126, 149, 36, 36, 160, 149,
  178, 160, 39, 294, 149, 149, 160, 39, 95, 221, 186, 106, 178, 316,
  267, 53, 53, 164, 159, 164, 165, 94, 228, 53, 52, 178, 183, 53, 294,
  128, 55, 140, 294, 25, 95, 366, 15, 304, 13, 183, 77, 230, 6, 136,
  235, 121, 311, 273, 36, 158, 235, 230, 98, 201, 165, 165, 165, 91,
  175, 248, 39, 185, 128, 39, 39, 128, 313, 91, 36, 219, 130, 25, 130,
  234, 234, 130, 234, 121, 205, 304, 94, 77, 64, 259, 60, 60, 60, 77,
  242, 60, 145, 95, 270, 18, 91, 199, 159, 91, 235, 58, 249, 26, 123,
  114, 29, 15, 191, 15, 30, 55, 55, 347, 4, 29, 15, 4, 341, 93, 7, 30,
  23, 7, 121, 266, 178, 261, 70, 169, 25, 25, 158, 169, 25, 169, 270,
  270, 13, 128, 327, 103, 55, 128, 103, 136, 159, 103, 327, 41, 32,
  111, 111, 114, 173, 215, 173, 25, 173, 180, 114, 173, 173, 98, 93,
  25, 160, 157, 159, 160, 159, 159, 160, 320, 35, 193, 221, 33, 36,
  136, 248, 91, 215, 125, 215, 156, 68, 125, 125, 1, 287, 123, 94, 30,
  184, 13, 30, 94, 123, 206, 12, 206, 289, 128, 122, 184, 128, 289,
  178, 29, 26, 206, 178, 65, 206, 128, 192, 102, 197, 36, 94, 94, 155,
  10, 36, 121, 280, 121, 368, 192, 121, 121, 179, 121, 36, 54, 192,
  121, 192, 197, 118, 123, 224, 118, 10, 192, 10, 91, 269, 91, 49, 206,
  184, 185, 62, 8, 49, 289, 30, 5, 55, 30, 42, 39, 220, 298, 42, 347,
  42, 234, 42, 70, 42, 55, 321, 129, 172, 173, 172, 13, 98, 129, 325,
  235, 284, 362, 129, 233, 345, 175, 261, 175, 60, 261, 58, 289, 99,
  99, 99, 206, 99, 36, 175, 29, 25, 432, 125, 264, 168, 173, 69, 158,
  273, 179, 164, 69, 158, 69, 8, 95, 192, 30, 164, 101, 44, 53, 273,
  335, 273, 53, 45, 128, 45, 234, 123, 105, 103, 103, 224, 36, 90, 211,
  282, 264, 91, 228, 91, 166, 264, 228, 398, 50, 101, 91, 264, 73, 36,
  25, 73, 50, 50, 242, 36, 36, 58, 165, 204, 353, 165, 125, 320, 128,
  298, 298, 180, 128, 60, 102, 30, 30, 53, 179, 234, 325, 234, 175, 21,
  250, 215, 103, 21, 21, 250, 91, 211, 91, 313, 301, 323, 215, 228,
  160, 29, 29, 81, 53, 180, 146, 248, 66, 159, 39, 98, 323, 98, 36, 95,
  218, 234, 39, 82, 82, 230, 62, 13, 62, 230, 13, 30, 98, 0, 8, 98, 8,
  98, 91, 267, 121, 197, 30, 78, 27, 78, 102, 27, 298, 160, 103, 264,
  264, 264, 175, 17, 273, 273, 165, 31, 160, 17, 99, 17, 99, 234, 31,
  17, 99, 36, 26, 128, 29, 214, 353, 264, 102, 36, 102, 264, 264, 273,
  273, 4, 16, 138, 138, 264, 128, 313, 25, 420, 60, 10, 280, 264, 60,
  60, 103, 178, 125, 178, 29, 327, 29, 36, 30, 36, 4, 52, 183, 183,
  173, 52, 31, 173, 31, 158, 31, 158, 31, 9, 31, 31, 353, 31, 353, 173,
  415, 9, 17, 222, 31, 103, 31, 165, 27, 31, 31, 165, 27, 27, 206, 31,
  31, 4, 4, 30, 4, 4, 264, 185, 159, 310, 273, 310, 173, 40, 4, 173, 4,



Luby, et al.                Standards Track                    [Page 33]

RFC 5053                   Raptor FEC Scheme                October 2007


  173, 4, 250, 250, 62, 188, 119, 250, 233, 62, 121, 105, 105, 54, 103,
  111, 291, 236, 236, 103, 297, 36, 26, 316, 69, 183, 158, 206, 129,
  160, 129, 184, 55, 179, 279, 11, 179, 347, 160, 184, 129, 179, 351,
  179, 353, 179, 129, 129, 351, 11, 111, 93, 93, 235, 103, 173, 53, 93,
  50, 111, 86, 123, 94, 36, 183, 60, 55, 55, 178, 219, 253, 321, 178,
  235, 235, 183, 183, 204, 321, 219, 160, 193, 335, 121, 70, 69, 295,
  159, 297, 231, 121, 231, 136, 353, 136, 121, 279, 215, 366, 215, 353,
  159, 353, 353, 103, 31, 31, 298, 298, 30, 30, 165, 273, 25, 219, 35,
  165, 259, 54, 36, 54, 54, 165, 71, 250, 327, 13, 289, 165, 196, 165,
  165, 94, 233, 165, 94, 60, 165, 96, 220, 166, 271, 158, 397, 122, 53,
  53, 137, 280, 272, 62, 30, 30, 30, 105, 102, 67, 140, 8, 67, 21, 270,
  298, 69, 173, 298, 91, 179, 327, 86, 179, 88, 179, 179, 55, 123, 220,
  233, 94, 94, 175, 13, 53, 13, 154, 191, 74, 83, 83, 325, 207, 83, 74,
  83, 325, 74, 316, 388, 55, 55, 364, 55, 183, 434, 273, 273, 273, 164,
  213, 11, 213, 327, 321, 21, 352, 185, 103, 13, 13, 55, 30, 323, 123,
  178, 435, 178, 30, 175, 175, 30, 481, 527, 175, 125, 232, 306, 232,
  206, 306, 364, 206, 270, 206, 232, 10, 30, 130, 160, 130, 347, 240,
  30, 136, 130, 347, 136, 279, 298, 206, 30, 103, 273, 241, 70, 206,
  306, 434, 206, 94, 94, 156, 161, 321, 321, 64, 161, 13, 183, 183, 83,
  161, 13, 169, 13, 159, 36, 173, 159, 36, 36, 230, 235, 235, 159, 159,
  335, 312, 42, 342, 264, 39, 39, 39, 34, 298, 36, 36, 252, 164, 29,
  493, 29, 387, 387, 435, 493, 132, 273, 105, 132, 74, 73, 206, 234,
  273, 206, 95, 15, 280, 280, 280, 280, 397, 273, 273, 242, 397, 280,
  397, 397, 397, 273, 397, 280, 230, 137, 353, 67, 81, 137, 137, 353,
  259, 312, 114, 164, 164, 25, 77, 21, 77, 165, 30, 30, 231, 234, 121,
  234, 312, 121, 364, 136, 123, 123, 136, 123, 136, 150, 264, 285, 30,
  166, 93, 30, 39, 224, 136, 39, 355, 355, 397, 67, 67, 25, 67, 25,
  298, 11, 67, 264, 374, 99, 150, 321, 67, 70, 67, 295, 150, 29, 321,
  150, 70, 29, 142, 355, 311, 173, 13, 253, 103, 114, 114, 70, 192, 22,
  128, 128, 183, 184, 70, 77, 215, 102, 292, 30, 123, 279, 292, 142,
  33, 215, 102, 468, 123, 468, 473, 30, 292, 215, 30, 213, 443, 473,
  215, 234, 279, 279, 279, 279, 265, 443, 206, 66, 313, 34, 30, 206,
  30, 51, 15, 206, 41, 434, 41, 398, 67, 30, 301, 67, 36, 3, 285, 437,
  136, 136, 22, 136, 145, 365, 323, 323, 145, 136, 22, 453, 99, 323,
  353, 9, 258, 323, 231, 128, 231, 382, 150, 420, 39, 94, 29, 29, 353,
  22, 22, 347, 353, 39, 29, 22, 183, 8, 284, 355, 388, 284, 60, 64, 99,
  60, 64, 150, 95, 150, 364, 150, 95, 150, 6, 236, 383, 544, 81, 206,
  388, 206, 58, 159, 99, 231, 228, 363, 363, 121, 99, 121, 121, 99,
  422, 544, 273, 173, 121, 427, 102, 121, 235, 284, 179, 25, 197, 25,
  179, 511, 70, 368, 70, 25, 388, 123, 368, 159, 213, 410, 159, 236,
  127, 159, 21, 373, 184, 424, 327, 250, 176, 176, 175, 284, 316, 176,
  284, 327, 111, 250, 284, 175, 175, 264, 111, 176, 219, 111, 427, 427,
  176, 284, 427, 353, 428, 55, 184, 493, 158, 136, 99, 287, 264, 334,
  264, 213, 213, 292, 481, 93, 264, 292, 295, 295, 6, 367, 279, 173,
  308, 285, 158, 308, 335, 299, 137, 137, 572, 41, 137, 137, 41, 94,
  335, 220, 36, 224, 420, 36, 265, 265, 91, 91, 71, 123, 264, 91, 91,
  123, 107, 30, 22, 292, 35, 241, 356, 298, 14, 298, 441, 35, 121, 71,
  63, 130, 63, 488, 363, 71, 63, 307, 194, 71, 71, 220, 121, 125, 71,



Luby, et al.                Standards Track                    [Page 34]

RFC 5053                   Raptor FEC Scheme                October 2007


  220, 71, 71, 71, 71, 235, 265, 353, 128, 155, 128, 420, 400, 130,
  173, 183, 183, 184, 130, 173, 183, 13, 183, 130, 130, 183, 183, 353,
  353, 183, 242, 183, 183, 306, 324, 324, 321, 306, 321, 6, 6, 128,
  306, 242, 242, 306, 183, 183, 6, 183, 321, 486, 183, 164, 30, 78,
  138, 158, 138, 34, 206, 362, 55, 70, 67, 21, 375, 136, 298, 81, 298,
  298, 298, 230, 121, 30, 230, 311, 240, 311, 311, 158, 204, 136, 136,
  184, 136, 264, 311, 311, 312, 312, 72, 311, 175, 264, 91, 175, 264,
  121, 461, 312, 312, 238, 475, 350, 512, 350, 312, 313, 350, 312, 366,
  294, 30, 253, 253, 253, 388, 158, 388, 22, 388, 22, 388, 103, 321,
  321, 253, 7, 437, 103, 114, 242, 114, 114, 242, 114, 114, 242, 242,
  242, 306, 242, 114, 7, 353, 335, 27, 241, 299, 312, 364, 506, 409,
  94, 462, 230, 462, 243, 230, 175, 175, 462, 461, 230, 428, 426, 175,
  175, 165, 175, 175, 372, 183, 572, 102, 85, 102, 538, 206, 376, 85,
  85, 284, 85, 85, 284, 398, 83, 160, 265, 308, 398, 310, 583, 289,
  279, 273, 285, 490, 490, 211, 292, 292, 158, 398, 30, 220, 169, 368,
  368, 368, 169, 159, 368, 93, 368, 368, 93, 169, 368, 368, 443, 368,
  298, 443, 368, 298, 538, 345, 345, 311, 178, 54, 311, 215, 178, 175,
  222, 264, 475, 264, 264, 475, 478, 289, 63, 236, 63, 299, 231, 296,
  397, 299, 158, 36, 164, 164, 21, 492, 21, 164, 21, 164, 403, 26, 26,
  588, 179, 234, 169, 465, 295, 67, 41, 353, 295, 538, 161, 185, 306,
  323, 68, 420, 323, 82, 241, 241, 36, 53, 493, 301, 292, 241, 250, 63,
  63, 103, 442, 353, 185, 353, 321, 353, 185, 353, 353, 185, 409, 353,
  589, 34, 271, 271, 34, 86, 34, 34, 353, 353, 39, 414, 4, 95, 95, 4,
  225, 95, 4, 121, 30, 552, 136, 159, 159, 514, 159, 159, 54, 514, 206,
  136, 206, 159, 74, 235, 235, 312, 54, 312, 42, 156, 422, 629, 54,
  465, 265, 165, 250, 35, 165, 175, 659, 175, 175, 8, 8, 8, 8, 206,
  206, 206, 50, 435, 206, 432, 230, 230, 234, 230, 94, 299, 299, 285,
  184, 41, 93, 299, 299, 285, 41, 285, 158, 285, 206, 299, 41, 36, 396,
  364, 364, 120, 396, 514, 91, 382, 538, 807, 717, 22, 93, 412, 54,
  215, 54, 298, 308, 148, 298, 148, 298, 308, 102, 656, 6, 148, 745,
  128, 298, 64, 407, 273, 41, 172, 64, 234, 250, 398, 181, 445, 95,
  236, 441, 477, 504, 102, 196, 137, 364, 60, 453, 137, 364, 367, 334,
  364, 299, 196, 397, 630, 589, 589, 196, 646, 337, 235, 128, 128, 343,
  289, 235, 324, 427, 324, 58, 215, 215, 461, 425, 461, 387, 440, 285,
  440, 440, 285, 387, 632, 325, 325, 440, 461, 425, 425, 387, 627, 191,
  285, 440, 308, 55, 219, 280, 308, 265, 538, 183, 121, 30, 236, 206,
  30, 455, 236, 30, 30, 705, 83, 228, 280, 468, 132, 8, 132, 132, 128,
  409, 173, 353, 132, 409, 35, 128, 450, 137, 398, 67, 432, 423, 235,
  235, 388, 306, 93, 93, 452, 300, 190, 13, 452, 388, 30, 452, 13, 30,
  13, 30, 306, 362, 234, 721, 635, 809, 784, 67, 498, 498, 67, 353,
  635, 67, 183, 159, 445, 285, 183, 53, 183, 445, 265, 432, 57, 420,
  432, 420, 477, 327, 55, 60, 105, 183, 218, 104, 104, 475, 239, 582,
  151, 239, 104, 732, 41, 26, 784, 86, 300, 215, 36, 64, 86, 86, 675,
  294, 64, 86, 528, 550, 493, 565, 298, 230, 312, 295, 538, 298, 295,
  230, 54, 374, 516, 441, 54, 54, 323, 401, 401, 382, 159, 837, 159,
  54, 401, 592, 159, 401, 417, 610, 264, 150, 323, 452, 185, 323, 323,
  185, 403, 185, 423, 165, 425, 219, 407, 270, 231, 99, 93, 231, 631,
  756, 71, 364, 434, 213, 86, 102, 434, 102, 86, 23, 71, 335, 164, 323,



Luby, et al.                Standards Track                    [Page 35]

RFC 5053                   Raptor FEC Scheme                October 2007


  409, 381, 4, 124, 41, 424, 206, 41, 124, 41, 41, 703, 635, 124, 493,
  41, 41, 487, 492, 124, 175, 124, 261, 600, 488, 261, 488, 261, 206,
  677, 261, 308, 723, 908, 704, 691, 723, 488, 488, 441, 136, 476, 312,
  136, 550, 572, 728, 550, 22, 312, 312, 22, 55, 413, 183, 280, 593,
  191, 36, 36, 427, 36, 695, 592, 19, 544, 13, 468, 13, 544, 72, 437,
  321, 266, 461, 266, 441, 230, 409, 93, 521, 521, 345, 235, 22, 142,
  150, 102, 569, 235, 264, 91, 521, 264, 7, 102, 7, 498, 521, 235, 537,
  235, 6, 241, 420, 420, 631, 41, 527, 103, 67, 337, 62, 264, 527, 131,
  67, 174, 263, 264, 36, 36, 263, 581, 253, 465, 160, 286, 91, 160, 55,
  4, 4, 631, 631, 608, 365, 465, 294, 427, 427, 335, 669, 669, 129, 93,
  93, 93, 93, 74, 66, 758, 504, 347, 130, 505, 504, 143, 505, 550, 222,
  13, 352, 529, 291, 538, 50, 68, 269, 130, 295, 130, 511, 295, 295,
  130, 486, 132, 61, 206, 185, 368, 669, 22, 175, 492, 207, 373, 452,
  432, 327, 89, 550, 496, 611, 527, 89, 527, 496, 550, 516, 516, 91,
  136, 538, 264, 264, 124, 264, 264, 264, 264, 264, 535, 264, 150, 285,
  398, 285, 582, 398, 475, 81, 694, 694, 64, 81, 694, 234, 607, 723,
  513, 234, 64, 581, 64, 124, 64, 607, 234, 723, 717, 367, 64, 513,
  607, 488, 183, 488, 450, 183, 550, 286, 183, 363, 286, 414, 67, 449,
  449, 366, 215, 235, 95, 295, 295, 41, 335, 21, 445, 225, 21, 295,
  372, 749, 461, 53, 481, 397, 427, 427, 427, 714, 481, 714, 427, 717,
  165, 245, 486, 415, 245, 415, 486, 274, 415, 441, 456, 300, 548, 300,
  422, 422, 757, 11, 74, 430, 430, 136, 409, 430, 749, 191, 819, 592,
  136, 364, 465, 231, 231, 918, 160, 589, 160, 160, 465, 465, 231, 157,
  538, 538, 259, 538, 326, 22, 22, 22, 179, 22, 22, 550, 179, 287, 287,
  417, 327, 498, 498, 287, 488, 327, 538, 488, 583, 488, 287, 335, 287,
  335, 287, 41, 287, 335, 287, 327, 441, 335, 287, 488, 538, 327, 498,
  8, 8, 374, 8, 64, 427, 8, 374, 417, 760, 409, 373, 160, 423, 206,
  160, 106, 499, 160, 271, 235, 160, 590, 353, 695, 478, 619, 590, 353,
  13, 63, 189, 420, 605, 427, 643, 121, 280, 415, 121, 415, 595, 417,
  121, 398, 55, 330, 463, 463, 123, 353, 330, 582, 309, 582, 582, 405,
  330, 550, 405, 582, 353, 309, 308, 60, 353, 7, 60, 71, 353, 189, 183,
  183, 183, 582, 755, 189, 437, 287, 189, 183, 668, 481, 384, 384, 481,
  481, 481, 477, 582, 582, 499, 650, 481, 121, 461, 231, 36, 235, 36,
  413, 235, 209, 36, 689, 114, 353, 353, 235, 592, 36, 353, 413, 209,
  70, 308, 70, 699, 308, 70, 213, 292, 86, 689, 465, 55, 508, 128, 452,
  29, 41, 681, 573, 352, 21, 21, 648, 648, 69, 509, 409, 21, 264, 21,
  509, 514, 514, 409, 21, 264, 443, 443, 427, 160, 433, 663, 433, 231,
  646, 185, 482, 646, 433, 13, 398, 172, 234, 42, 491, 172, 234, 234,
  832, 775, 172, 196, 335, 822, 461, 298, 461, 364, 1120, 537, 169,
  169, 364, 694, 219, 612, 231, 740, 42, 235, 321, 279, 960, 279, 353,
  492, 159, 572, 321, 159, 287, 353, 287, 287, 206, 206, 321, 287, 159,
  321, 492, 159, 55, 572, 600, 270, 492, 784, 173, 91, 91, 443, 443,
  582, 261, 497, 572, 91, 555, 352, 206, 261, 555, 285, 91, 555, 497,
  83, 91, 619, 353, 488, 112, 4, 592, 295, 295, 488, 235, 231, 769,
  568, 581, 671, 451, 451, 483, 299, 1011, 432, 422, 207, 106, 701,
  508, 555, 508, 555, 125, 870, 555, 589, 508, 125, 749, 482, 125, 125,
  130, 544, 643, 643, 544, 488, 22, 643, 130, 335, 544, 22, 130, 544,
  544, 488, 426, 426, 4, 180, 4, 695, 35, 54, 433, 500, 592, 433, 262,



Luby, et al.                Standards Track                    [Page 36]

RFC 5053                   Raptor FEC Scheme                October 2007


  94, 401, 401, 106, 216, 216, 106, 521, 102, 462, 518, 271, 475, 365,
  193, 648, 206, 424, 206, 193, 206, 206, 424, 299, 590, 590, 364, 621,
  67, 538, 488, 567, 51, 51, 513, 194, 81, 488, 486, 289, 567, 563,
  749, 563, 338, 338, 502, 563, 822, 338, 563, 338, 502, 201, 230, 201,
  533, 445, 175, 201, 175, 13, 85, 960, 103, 85, 175, 30, 445, 445,
  175, 573, 196, 877, 287, 356, 678, 235, 489, 312, 572, 264, 717, 138,
  295, 6, 295, 523, 55, 165, 165, 295, 138, 663, 6, 295, 6, 353, 138,
  6, 138, 169, 129, 784, 12, 129, 194, 605, 784, 445, 234, 627, 563,
  689, 627, 647, 570, 627, 570, 647, 206, 234, 215, 234, 816, 627, 816,
  234, 627, 215, 234, 627, 264, 427, 427, 30, 424, 161, 161, 916, 740,
  180, 616, 481, 514, 383, 265, 481, 164, 650, 121, 582, 689, 420, 669,
  589, 420, 788, 549, 165, 734, 280, 224, 146, 681, 788, 184, 398, 784,
  4, 398, 417, 417, 398, 636, 784, 417, 81, 398, 417, 81, 185, 827,
  420, 241, 420, 41, 185, 185, 718, 241, 101, 185, 185, 241, 241, 241,
  241, 241, 185, 324, 420, 420, 1011, 420, 827, 241, 184, 563, 241,
  183, 285, 529, 285, 808, 822, 891, 822, 488, 285, 486, 619, 55, 869,
  39, 567, 39, 289, 203, 158, 289, 710, 818, 158, 818, 355, 29, 409,
  203, 308, 648, 792, 308, 308, 91, 308, 6, 592, 792, 106, 106, 308,
  41, 178, 91, 751, 91, 259, 734, 166, 36, 327, 166, 230, 205, 205,
  172, 128, 230, 432, 623, 838, 623, 432, 278, 432, 42, 916, 432, 694,
  623, 352, 452, 93, 314, 93, 93, 641, 88, 970, 914, 230, 61, 159, 270,
  159, 493, 159, 755, 159, 409, 30, 30, 836, 128, 241, 99, 102, 984,
  538, 102, 102, 273, 639, 838, 102, 102, 136, 637, 508, 627, 285, 465,
  327, 327, 21, 749, 327, 749, 21, 845, 21, 21, 409, 749, 1367, 806,
  616, 714, 253, 616, 714, 714, 112, 375, 21, 112, 375, 375, 51, 51,
  51, 51, 393, 206, 870, 713, 193, 802, 21, 1061, 42, 382, 42, 543,
  876, 42, 876, 382, 696, 543, 635, 490, 353, 353, 417, 64, 1257, 271,
  64, 377, 127, 127, 537, 417, 905, 353, 538, 465, 605, 876, 427, 324,
  514, 852, 427, 53, 427, 557, 173, 173, 7, 1274, 563, 31, 31, 31, 745,
  392, 289, 230, 230, 230, 91, 218, 327, 420, 420, 128, 901, 552, 420,
  230, 608, 552, 476, 347, 476, 231, 159, 137, 716, 648, 716, 627, 740,
  718, 679, 679, 6, 718, 740, 6, 189, 679, 125, 159, 757, 1191, 409,
  175, 250, 409, 67, 324, 681, 605, 550, 398, 550, 931, 478, 174, 21,
  316, 91, 316, 654, 409, 425, 425, 699, 61, 699, 321, 698, 321, 698,
  61, 425, 699, 321, 409, 699, 299, 335, 321, 335, 61, 698, 699, 654,
  698, 299, 425, 231, 14, 121, 515, 121, 14, 165, 81, 409, 189, 81,
  373, 465, 463, 1055, 507, 81, 81, 189, 1246, 321, 409, 886, 104, 842,
  689, 300, 740, 380, 656, 656, 832, 656, 380, 300, 300, 206, 187, 175,
  142, 465, 206, 271, 468, 215, 560, 83, 215, 83, 215, 215, 83, 175,
  215, 83, 83, 111, 206, 756, 559, 756, 1367, 206, 559, 1015, 559, 559,
  946, 1015, 548, 559, 756, 1043, 756, 698, 159, 414, 308, 458, 997,
  663, 663, 347, 39, 755, 838, 323, 755, 323, 159, 159, 717, 159, 21,
  41, 128, 516, 159, 717, 71, 870, 755, 159, 740, 717, 374, 516, 740,
  51, 148, 335, 148, 335, 791, 120, 364, 335, 335, 51, 120, 251, 538,
  251, 971, 1395, 538, 78, 178, 538, 538, 918, 129, 918, 129, 538, 538,
  656, 129, 538, 538, 129, 538, 1051, 538, 128, 838, 931, 998, 823,
  1095, 334, 870, 334, 367, 550, 1061, 498, 745, 832, 498, 745, 716,
  498, 498, 128, 997, 832, 716, 832, 130, 642, 616, 497, 432, 432, 432,



Luby, et al.                Standards Track                    [Page 37]

RFC 5053                   Raptor FEC Scheme                October 2007


  432, 642, 159, 432, 46, 230, 788, 160, 230, 478, 46, 693, 103, 920,
  230, 589, 643, 160, 616, 432, 165, 165, 583, 592, 838, 784, 583, 710,
  6, 583, 583, 6, 35, 230, 838, 592, 710, 6, 589, 230, 838, 30, 592,
  583, 6, 583, 6, 6, 583, 30, 30, 6, 375, 375, 99, 36, 1158, 425, 662,
  417, 681, 364, 375, 1025, 538, 822, 669, 893, 538, 538, 450, 409,
  632, 527, 632, 563, 632, 527, 550, 71, 698, 550, 39, 550, 514, 537,
  514, 537, 111, 41, 173, 592, 173, 648, 173, 173, 173, 1011, 514, 173,
  173, 514, 166, 648, 355, 161, 166, 648, 497, 327, 327, 550, 650, 21,
  425, 605, 555, 103, 425, 605, 842, 836, 1011, 636, 138, 756, 836,
  756, 756, 353, 1011, 636, 636, 1158, 741, 741, 842, 756, 741, 1011,
  677, 1011, 770, 366, 306, 488, 920, 920, 665, 775, 502, 500, 775,
  775, 648, 364, 833, 207, 13, 93, 500, 364, 500, 665, 500, 93, 295,
  183, 1293, 313, 272, 313, 279, 303, 93, 516, 93, 1013, 381, 6, 93,
  93, 303, 259, 643, 168, 673, 230, 1261, 230, 230, 673, 1060, 1079,
  1079, 550, 741, 741, 590, 527, 741, 741, 442, 741, 442, 848, 741,
  590, 925, 219, 527, 925, 335, 442, 590, 239, 590, 590, 590, 239, 527,
  239, 1033, 230, 734, 241, 741, 230, 549, 548, 1015, 1015, 32, 36,
  433, 465, 724, 465, 73, 73, 73, 465, 808, 73, 592, 1430, 250, 154,
  154, 250, 538, 353, 353, 353, 353, 353, 175, 194, 206, 538, 632,
  1163, 960, 175, 175, 538, 452, 632, 1163, 175, 538, 960, 194, 175,
  194, 632, 960, 632, 94, 632, 461, 960, 1163, 1163, 461, 632, 960,
  755, 707, 105, 382, 625, 382, 382, 784, 707, 871, 559, 387, 387, 871,
  784, 559, 784, 88, 36, 570, 314, 1028, 975, 335, 335, 398, 573, 573,
  573, 21, 215, 562, 738, 612, 424, 21, 103, 788, 870, 912, 23, 186,
  757, 73, 818, 23, 73, 563, 952, 262, 563, 137, 262, 1022, 952, 137,
  1273, 442, 952, 604, 137, 308, 384, 913, 235, 325, 695, 398, 95, 668,
  776, 713, 309, 691, 22, 10, 364, 682, 682, 578, 481, 1252, 1072,
  1252, 825, 578, 825, 1072, 1149, 592, 273, 387, 273, 427, 155, 1204,
  50, 452, 50, 1142, 50, 367, 452, 1142, 611, 367, 50, 50, 367, 50,
  1675, 99, 367, 50, 1501, 1099, 830, 681, 689, 917, 1089, 453, 425,
  235, 918, 538, 550, 335, 161, 387, 859, 324, 21, 838, 859, 1123, 21,
  723, 21, 335, 335, 206, 21, 364, 1426, 21, 838, 838, 335, 364, 21,
  21, 859, 920, 838, 838, 397, 81, 639, 397, 397, 588, 933, 933, 784,
  222, 830, 36, 36, 222, 1251, 266, 36, 146, 266, 366, 581, 605, 366,
  22, 966, 681, 681, 433, 730, 1013, 550, 21, 21, 938, 488, 516, 21,
  21, 656, 420, 323, 323, 323, 327, 323, 918, 581, 581, 830, 361, 830,
  364, 259, 364, 496, 496, 364, 691, 705, 691, 475, 427, 1145, 600,
  179, 427, 527, 749, 869, 689, 335, 347, 220, 298, 689, 1426, 183,
  554, 55, 832, 550, 550, 165, 770, 957, 67, 1386, 219, 683, 683, 355,
  683, 355, 355, 738, 355, 842, 931, 266, 325, 349, 256, 1113, 256,
  423, 960, 554, 554, 325, 554, 508, 22, 142, 22, 508, 916, 767, 55,
  1529, 767, 55, 1286, 93, 972, 550, 931, 1286, 1286, 972, 93, 1286,
  1392, 890, 93, 1286, 93, 1286, 972, 374, 931, 890, 808, 779, 975,
  975, 175, 173, 4, 681, 383, 1367, 173, 383, 1367, 383, 173, 175, 69,
  238, 146, 238, 36, 148, 888, 238, 173, 238, 148, 238, 888, 185, 925,
  925, 797, 925, 815, 925, 469, 784, 289, 784, 925, 797, 925, 925,
  1093, 925, 925, 925, 1163, 797, 797, 815, 925, 1093, 784, 636, 663,
  925, 187, 922, 316, 1380, 709, 916, 916, 187, 355, 948, 916, 187,



Luby, et al.                Standards Track                    [Page 38]

RFC 5053                   Raptor FEC Scheme                October 2007


  916, 916, 948, 948, 916, 355, 316, 316, 334, 300, 1461, 36, 583,
  1179, 699, 235, 858, 583, 699, 858, 699, 1189, 1256, 1189, 699, 797,
  699, 699, 699, 699, 427, 488, 427, 488, 175, 815, 656, 656, 150, 322,
  465, 322, 870, 465, 1099, 582, 665, 767, 749, 635, 749, 600, 1448,
  36, 502, 235, 502, 355, 502, 355, 355, 355, 172, 355, 355, 95, 866,
  425, 393, 1165, 42, 42, 42, 393, 939, 909, 909, 836, 552, 424, 1333,
  852, 897, 1426, 1333, 1446, 1426, 997, 1011, 852, 1198, 55, 32, 239,
  588, 681, 681, 239, 1401, 32, 588, 239, 462, 286, 1260, 984, 1160,
  960, 960, 486, 828, 462, 960, 1199, 581, 850, 663, 581, 751, 581,
  581, 1571, 252, 252, 1283, 264, 430, 264, 430, 430, 842, 252, 745,
  21, 307, 681, 1592, 488, 857, 857, 1161, 857, 857, 857, 138, 374,
  374, 1196, 374, 1903, 1782, 1626, 414, 112, 1477, 1040, 356, 775,
  414, 414, 112, 356, 775, 435, 338, 1066, 689, 689, 1501, 689, 1249,
  205, 689, 765, 220, 308, 917, 308, 308, 220, 327, 387, 838, 917, 917,
  917, 220, 662, 308, 220, 387, 387, 220, 220, 308, 308, 308, 387,
  1009, 1745, 822, 279, 554, 1129, 543, 383, 870, 1425, 241, 870, 241,
  383, 716, 592, 21, 21, 592, 425, 550, 550, 550, 427, 230, 57, 483,
  784, 860, 57, 308, 57, 486, 870, 447, 486, 433, 433, 870, 433, 997,
  486, 443, 433, 433, 997, 486, 1292, 47, 708, 81, 895, 394, 81, 935,
  81, 81, 81, 374, 986, 916, 1103, 1095, 465, 495, 916, 667, 1745, 518,
  220, 1338, 220, 734, 1294, 741, 166, 828, 741, 741, 1165, 1371, 1371,
  471, 1371, 647, 1142, 1878, 1878, 1371, 1371, 822, 66, 327, 158, 427,
  427, 465, 465, 676, 676, 30, 30, 676, 676, 893, 1592, 93, 455, 308,
  582, 695, 582, 629, 582, 85, 1179, 85, 85, 1592, 1179, 280, 1027,
  681, 398, 1027, 398, 295, 784, 740, 509, 425, 968, 509, 46, 833, 842,
  401, 184, 401, 464, 6, 1501, 1501, 550, 538, 883, 538, 883, 883, 883,
  1129, 550, 550, 333, 689, 948, 21, 21, 241, 2557, 2094, 273, 308, 58,
  863, 893, 1086, 409, 136, 1086, 592, 592, 830, 830, 883, 830, 277,
  68, 689, 902, 277, 453, 507, 129, 689, 630, 664, 550, 128, 1626,
  1626, 128, 902, 312, 589, 755, 755, 589, 755, 407, 1782, 589, 784,
  1516, 1118, 407, 407, 1447, 589, 235, 755, 1191, 235, 235, 407, 128,
  589, 1118, 21, 383, 1331, 691, 481, 383, 1129, 1129, 1261, 1104,
  1378, 1129, 784, 1129, 1261, 1129, 947, 1129, 784, 784, 1129, 1129,
  35, 1104, 35, 866, 1129, 1129, 64, 481, 730, 1260, 481, 970, 481,
  481, 481, 481, 863, 481, 681, 699, 863, 486, 681, 481, 481, 55, 55,
  235, 1364, 944, 632, 822, 401, 822, 952, 822, 822, 99, 550, 2240,
  550, 70, 891, 860, 860, 550, 550, 916, 1176, 1530, 425, 1530, 916,
  628, 1583, 916, 628, 916, 916, 628, 628, 425, 916, 1062, 1265, 916,
  916, 916, 280, 461, 916, 916, 1583, 628, 1062, 916, 916, 677, 1297,
  924, 1260, 83, 1260, 482, 433, 234, 462, 323, 1656, 997, 323, 323,
  931, 838, 931, 1933, 1391, 367, 323, 931, 1391, 1391, 103, 1116,
  1116, 1116, 769, 1195, 1218, 312, 791, 312, 741, 791, 997, 312, 334,
  334, 312, 287, 287, 633, 1397, 1426, 605, 1431, 327, 592, 705, 1194,
  592, 1097, 1118, 1503, 1267, 1267, 1267, 618, 1229, 734, 1089, 785,
  1089, 1129, 1148, 1148, 1089, 915, 1148, 1129, 1148, 1011, 1011,
  1229, 871, 1560, 1560, 1560, 563, 1537, 1009, 1560, 632, 985, 592,
  1308, 592, 882, 145, 145, 397, 837, 383, 592, 592, 832, 36, 2714,
  2107, 1588, 1347, 36, 36, 1443, 1453, 334, 2230, 1588, 1169, 650,



Luby, et al.                Standards Track                    [Page 39]

RFC 5053                   Raptor FEC Scheme                October 2007


  1169, 2107, 425, 425, 891, 891, 425, 2532, 679, 274, 274, 274, 325,
  274, 1297, 194, 1297, 627, 314, 917, 314, 314, 1501, 414, 1490, 1036,
  592, 1036, 1025, 901, 1218, 1025, 901, 280, 592, 592, 901, 1461, 159,
  159, 159, 2076, 1066, 1176, 1176, 516, 327, 516, 1179, 1176, 899,
  1176, 1176, 323, 1187, 1229, 663, 1229, 504, 1229, 916, 1229, 916,
  1661, 41, 36, 278, 1027, 648, 648, 648, 1626, 648, 646, 1179, 1580,
  1061, 1514, 1008, 1741, 2076, 1514, 1008, 952, 1089, 427, 952, 427,
  1083, 425, 427, 1089, 1083, 425, 427, 425, 230, 920, 1678, 920, 1678,
  189, 189, 953, 189, 133, 189, 1075, 189, 189, 133, 1264, 725, 189,
  1629, 189, 808, 230, 230, 2179, 770, 230, 770, 230, 21, 21, 784,
  1118, 230, 230, 230, 770, 1118, 986, 808, 916, 30, 327, 918, 679,
  414, 916, 1165, 1355, 916, 755, 733, 433, 1490, 433, 433, 433, 605,
  433, 433, 433, 1446, 679, 206, 433, 21, 2452, 206, 206, 433, 1894,
  206, 822, 206, 2073, 206, 206, 21, 822, 21, 206, 206, 21, 383, 1513,
  375, 1347, 432, 1589, 172, 954, 242, 1256, 1256, 1248, 1256, 1256,
  1248, 1248, 1256, 842, 13, 592, 13, 842, 1291, 592, 21, 175, 13, 592,
  13, 13, 1426, 13, 1541, 445, 808, 808, 863, 647, 219, 1592, 1029,
  1225, 917, 1963, 1129, 555, 1313, 550, 660, 550, 220, 660, 552, 663,
  220, 533, 220, 383, 550, 1278, 1495, 636, 842, 1036, 425, 842, 425,
  1537, 1278, 842, 554, 1508, 636, 554, 301, 842, 792, 1392, 1021, 284,
  1172, 997, 1021, 103, 1316, 308, 1210, 848, 848, 1089, 1089, 848,
  848, 67, 1029, 827, 1029, 2078, 827, 1312, 1029, 827, 590, 872, 1312,
  427, 67, 67, 67, 67, 872, 827, 872, 2126, 1436, 26, 2126, 67, 1072,
  2126, 1610, 872, 1620, 883, 883, 1397, 1189, 555, 555, 563, 1189,
  555, 640, 555, 640, 1089, 1089, 610, 610, 1585, 610, 1355, 610, 1015,
  616, 925, 1015, 482, 230, 707, 231, 888, 1355, 589, 1379, 151, 931,
  1486, 1486, 393, 235, 960, 590, 235, 960, 422, 142, 285, 285, 327,
  327, 442, 2009, 822, 445, 822, 567, 888, 2611, 1537, 323, 55, 1537,
  323, 888, 2611, 323, 1537, 323, 58, 445, 593, 2045, 593, 58, 47, 770,
  842, 47, 47, 842, 842, 648, 2557, 173, 689, 2291, 1446, 2085, 2557,
  2557, 2291, 1780, 1535, 2291, 2391, 808, 691, 1295, 1165, 983, 948,
  2000, 948, 983, 983, 2225, 2000, 983, 983, 705, 948, 2000, 1795,
  1592, 478, 592, 1795, 1795, 663, 478, 1790, 478, 592, 1592, 173, 901,
  312, 4, 1606, 173, 838, 754, 754, 128, 550, 1166, 551, 1480, 550,
  550, 1875, 1957, 1166, 902, 1875, 550, 550, 551, 2632, 551, 1875,
  1875, 551, 2891, 2159, 2632, 3231, 551, 815, 150, 1654, 1059, 1059,
  734, 770, 555, 1592, 555, 2059, 770, 770, 1803, 627, 627, 627, 2059,
  931, 1272, 427, 1606, 1272, 1606, 1187, 1204, 397, 822, 21, 1645,
  263, 263, 822, 263, 1645, 280, 263, 605, 1645, 2014, 21, 21, 1029,
  263, 1916, 2291, 397, 397, 496, 270, 270, 1319, 264, 1638, 264, 986,
  1278, 1397, 1278, 1191, 409, 1191, 740, 1191, 754, 754, 387, 63, 948,
  666, 666, 1198, 548, 63, 1248, 285, 1248, 169, 1248, 1248, 285, 918,
  224, 285, 1426, 1671, 514, 514, 717, 514, 51, 1521, 1745, 51, 605,
  1191, 51, 128, 1191, 51, 51, 1521, 267, 513, 952, 966, 1671, 897, 51,
  71, 592, 986, 986, 1121, 592, 280, 2000, 2000, 1165, 1165, 1165,
  1818, 222, 1818, 1165, 1252, 506, 327, 443, 432, 1291, 1291, 2755,
  1413, 520, 1318, 227, 1047, 828, 520, 347, 1364, 136, 136, 452, 457,
  457, 132, 457, 488, 1087, 1013, 2225, 32, 1571, 2009, 483, 67, 483,



Luby, et al.                Standards Track                    [Page 40]

RFC 5053                   Raptor FEC Scheme                October 2007


  740, 740, 1013, 2854, 866, 32, 2861, 866, 887, 32, 2444, 740, 32, 32,
  866, 2225, 866, 32, 1571, 2627, 32, 850, 1675, 569, 1158, 32, 1158,
  1797, 2641, 1565, 1158, 569, 1797, 1158, 1797, 55, 1703, 42, 55,
  2562, 675, 1703, 42, 55, 749, 488, 488, 347, 1206, 1286, 1286, 488,
  488, 1206, 1286, 1206, 1286, 550, 550, 1790, 860, 550, 2452, 550,
  550, 2765, 1089, 1633, 797, 2244, 1313, 194, 2129, 194, 194, 194,
  818, 32, 194, 450, 1313, 2387, 194, 1227, 2387, 308, 2232, 526, 476,
  278, 830, 830, 194, 830, 194, 278, 194, 714, 476, 830, 714, 830, 278,
  830, 2532, 1218, 1759, 1446, 960, 1747, 187, 1446, 1759, 960, 105,
  1446, 1446, 1271, 1446, 960, 960, 1218, 1446, 1446, 105, 1446, 960,
  488, 1446, 427, 534, 842, 1969, 2460, 1969, 842, 842, 1969, 427, 941,
  2160, 427, 230, 938, 2075, 1675, 1675, 895, 1675, 34, 129, 1811, 239,
  749, 1957, 2271, 749, 1908, 129, 239, 239, 129, 129, 2271, 2426,
  1355, 1756, 194, 1583, 194, 194, 1583, 194, 1355, 194, 1628, 2221,
  1269, 2425, 1756, 1355, 1355, 1583, 1033, 427, 582, 30, 582, 582,
  935, 1444, 1962, 915, 733, 915, 938, 1962, 767, 353, 1630, 1962,
  1962, 563, 733, 563, 733, 353, 822, 1630, 740, 2076, 2076, 2076, 589,
  589, 2636, 866, 589, 947, 1528, 125, 273, 1058, 1058, 1161, 1635,
  1355, 1161, 1161, 1355, 1355, 650, 1206, 1206, 784, 784, 784, 784,
  784, 412, 461, 412, 2240, 412, 679, 891, 461, 679, 679, 189, 189,
  1933, 1651, 2515, 189, 1386, 538, 1386, 1386, 1187, 1386, 2423, 2601,
  2285, 175, 175, 2331, 194, 3079, 384, 538, 2365, 2294, 538, 2166,
  1841, 3326, 1256, 3923, 976, 85, 550, 550, 1295, 863, 863, 550, 1249,
  550, 1759, 146, 1069, 920, 2633, 885, 885, 1514, 1489, 166, 1514,
  2041, 885, 2456, 885, 2041, 1081, 1948, 362, 550, 94, 324, 2308, 94,
  2386, 94, 550, 874, 1329, 1759, 2280, 1487, 493, 493, 2099, 2599,
  1431, 1086, 1514, 1086, 2099, 1858, 368, 1330, 2599, 1858, 2846,
  2846, 2907, 2846, 713, 713, 1854, 1123, 713, 713, 3010, 1123, 3010,
  538, 713, 1123, 447, 822, 555, 2011, 493, 508, 2292, 555, 1736, 2135,
  2704, 555, 2814, 555, 2000, 555, 555, 822, 914, 327, 679, 327, 648,
  537, 2263, 931, 1496, 537, 1296, 1745, 1592, 1658, 1795, 650, 1592,
  1745, 1745, 1658, 1592, 1745, 1592, 1745, 1658, 1338, 2124, 1592,
  1745, 1745, 1745, 837, 1726, 2897, 1118, 1118, 230, 1118, 1118, 1118,
  1388, 1748, 514, 128, 1165, 931, 514, 2974, 2041, 2387, 2041, 979,
  185, 36, 1269, 550, 173, 812, 36, 1165, 2676, 2562, 1473, 2885, 1982,
  1578, 1578, 383, 383, 2360, 383, 1578, 2360, 1584, 1982, 1578, 1578,
  1578, 2019, 1036, 355, 724, 2023, 205, 303, 355, 1036, 1966, 355,
  1036, 401, 401, 401, 830, 401, 849, 578, 401, 849, 849, 578, 1776,
  1123, 552, 2632, 808, 1446, 1120, 373, 1529, 1483, 1057, 893, 1284,
  1430, 1529, 1529, 2632, 1352, 2063, 1606, 1352, 1606, 2291, 3079,
  2291, 1529, 506, 838, 1606, 1606, 1352, 1529, 1529, 1483, 1529, 1606,
  1529, 259, 902, 259, 902, 612, 612, 284, 398, 2991, 1534, 1118, 1118,
  1118, 1118, 1118, 734, 284, 2224, 398, 734, 284, 734, 398, 3031, 398,
  734, 1707, 2643, 1344, 1477, 475, 1818, 194, 1894, 691, 1528, 1184,
  1207, 1501, 6, 2069, 871, 2069, 3548, 1443, 2069, 2685, 3265, 1350,
  3265, 2069, 2069, 128, 1313, 128, 663, 414, 1313, 414, 2000, 128,
  2000, 663, 1313, 699, 1797, 550, 327, 550, 1526, 699, 327, 1797,
  1526, 550, 550, 327, 550, 1426, 1426, 1426, 2285, 1123, 890, 728,



Luby, et al.                Standards Track                    [Page 41]

RFC 5053                   Raptor FEC Scheme                October 2007


  1707, 728, 728, 327, 253, 1187, 1281, 1364, 1571, 2170, 755, 3232,
  925, 1496, 2170, 2170, 1125, 443, 902, 902, 925, 755, 2078, 2457,
  902, 2059, 2170, 1643, 1129, 902, 902, 1643, 1129, 606, 36, 103, 338,
  338, 1089, 338, 338, 338, 1089, 338, 36, 340, 1206, 1176, 2041, 833,
  1854, 1916, 1916, 1501, 2132, 1736, 3065, 367, 1934, 833, 833, 833,
  2041, 3017, 2147, 818, 1397, 828, 2147, 398, 828, 818, 1158, 818,
  689, 327, 36, 1745, 2132, 582, 1475, 189, 582, 2132, 1191, 582, 2132,
  1176, 1176, 516, 2610, 2230, 2230, 64, 1501, 537, 1501, 173, 2230,
  2988, 1501, 2694, 2694, 537, 537, 173, 173, 1501, 537, 64, 173, 173,
  64, 2230, 537, 2230, 537, 2230, 2230, 2069, 3142, 1645, 689, 1165,
  1165, 1963, 514, 488, 1963, 1145, 235, 1145, 1078, 1145, 231, 2405,
  552, 21, 57, 57, 57, 1297, 1455, 1988, 2310, 1885, 2854, 2014, 734,
  1705, 734, 2854, 734, 677, 1988, 1660, 734, 677, 734, 677, 677, 734,
  2854, 1355, 677, 1397, 2947, 2386, 1698, 128, 1698, 3028, 2386, 2437,
  2947, 2386, 2643, 2386, 2804, 1188, 335, 746, 1187, 1187, 861, 2519,
  1917, 2842, 1917, 675, 1308, 234, 1917, 314, 314, 2339, 2339, 2592,
  2576, 902, 916, 2339, 916, 2339, 916, 2339, 916, 1089, 1089, 2644,
  1221, 1221, 2446, 308, 308, 2225, 2225, 3192, 2225, 555, 1592, 1592,
  555, 893, 555, 550, 770, 3622, 2291, 2291, 3419, 465, 250, 2842,
  2291, 2291, 2291, 935, 160, 1271, 308, 325, 935, 1799, 1799, 1891,
  2227, 1799, 1598, 112, 1415, 1840, 2014, 1822, 2014, 677, 1822, 1415,
  1415, 1822, 2014, 2386, 2159, 1822, 1415, 1822, 179, 1976, 1033, 179,
  1840, 2014, 1415, 1970, 1970, 1501, 563, 563, 563, 462, 563, 1970,
  1158, 563, 563, 1541, 1238, 383, 235, 1158, 383, 1278, 383, 1898,
  2938, 21, 2938, 1313, 2201, 2059, 423, 2059, 1313, 872, 1313, 2044,
  89, 173, 3327, 1660, 2044, 1623, 173, 1114, 1114, 1592, 1868, 1651,
  1811, 383, 3469, 1811, 1651, 869, 383, 383, 1651, 1651, 3223, 2166,
  3469, 767, 383, 1811, 767, 2323, 3355, 1457, 3341, 2640, 2976, 2323,
  3341, 2323, 2640, 103, 103, 1161, 1080, 2429, 370, 2018, 2854, 2429,
  2166, 2429, 2094, 2207, 871, 1963, 1963, 2023, 2023, 2336, 663, 2893,
  1580, 691, 663, 705, 2046, 2599, 409, 2295, 1118, 2494, 1118, 1950,
  549, 2494, 2453, 2046, 2494, 2453, 2046, 2453, 2046, 409, 1118, 4952,
  2291, 2225, 1894, 1423, 2498, 567, 4129, 1475, 1501, 795, 463, 2084,
  828, 828, 232, 828, 232, 232, 1818, 1818, 666, 463, 232, 220, 220,
  2162, 2162, 833, 4336, 913, 35, 913, 21, 2927, 886, 3037, 383, 886,
  876, 1747, 383, 916, 916, 916, 2927, 916, 1747, 837, 1894, 717, 423,
  481, 1894, 1059, 2262, 3206, 4700, 1059, 3304, 2262, 871, 1831, 871,
  3304, 1059, 1158, 1934, 1158, 756, 1511, 41, 978, 1934, 2603, 720,
  41, 756, 41, 325, 2611, 1158, 173, 1123, 1934, 1934, 1511, 2045,
  2045, 2045, 1423, 3206, 3691, 2512, 3206, 2512, 2000, 1811, 2504,
  2504, 2611, 2437, 2437, 2437, 1455, 893, 150, 2665, 1966, 605, 398,
  2331, 1177, 516, 1962, 4241, 94, 1252, 760, 1292, 1962, 1373, 2000,
  1990, 3684, 42, 1868, 3779, 1811, 1811, 2041, 3010, 5436, 1780, 2041,
  1868, 1811, 1780, 1811, 1868, 1811, 2041, 1868, 1811, 5627, 4274,
  1811, 1868, 4602, 1811, 1811, 1474, 2665, 235, 1474, 2665






Luby, et al.                Standards Track                    [Page 42]

RFC 5053                   Raptor FEC Scheme                October 2007


6.  Security Considerations

  Data delivery can be subject to denial-of-service attacks by
  attackers that send corrupted packets that are accepted as legitimate
  by receivers.  This is particularly a concern for multicast delivery
  because a corrupted packet may be injected into the session close to
  the root of the multicast tree, in which case, the corrupted packet
  will arrive at many receivers.  This is particularly a concern when
  the code described in this document is used because the use of even
  one corrupted packet containing encoding data may result in the
  decoding of an object that is completely corrupted and unusable.  It
  is thus RECOMMENDED that source authentication and integrity checking
  are applied to decoded objects before delivering objects to an
  application.  For example, a SHA-1 hash [SHA1] of an object may be
  appended before transmission, and the SHA-1 hash is computed and
  checked after the object is decoded but before it is delivered to an
  application.  Source authentication SHOULD be provided, for example,
  by including a digital signature verifiable by the receiver computed
  on top of the hash value.  It is also RECOMMENDED that a packet
  authentication protocol, such as TESLA [RFC4082], be used to detect
  and discard corrupted packets upon arrival.  This method may also be
  used to provide source authentication.  Furthermore, it is
  RECOMMENDED that Reverse Path Forwarding checks be enabled in all
  network routers and switches along the path from the sender to
  receivers to limit the possibility of a bad agent successfully
  injecting a corrupted packet into the multicast tree data path.

  Another security concern is that some FEC information may be obtained
  by receivers out-of-band in a session description, and if the session
  description is forged or corrupted, then the receivers will not use
  the correct protocol for decoding content from received packets.  To
  avoid these problems, it is RECOMMENDED that measures be taken to
  prevent receivers from accepting incorrect session descriptions,
  e.g., by using source authentication to ensure that receivers only
  accept legitimate session descriptions from authorized senders.

7.  IANA Considerations

  Values of FEC Encoding IDs and FEC Instance IDs are subject to IANA
  registration.  For general guidelines on IANA considerations as they
  apply to this document, see [RFC5052].  This document assigns the
  Fully-Specified FEC Encoding ID 1 under the ietf:rmt:fec:encoding
  name-space to "Raptor Code".








Luby, et al.                Standards Track                    [Page 43]

RFC 5053                   Raptor FEC Scheme                October 2007


8.  Acknowledgements

  Numerous editorial improvements and clarifications were made to this
  specification during the review process within 3GPP.  Thanks are due
  to the members of 3GPP Technical Specification Group SA, Working
  Group 4, for these.

9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC4082]  Perrig, A., Song, D., Canetti, R., Tygar, J., and B.
             Briscoe, "Timed Efficient Stream Loss-Tolerant
             Authentication (TESLA): Multicast Source Authentication
             Transform Introduction", RFC 4082, June 2005.

  [RFC5052]  Watson, M., Luby, M., and L. Vicisano, "Forward Error
             Correction (FEC) Building Block", RFC 5052, August 2007.

9.2.  Informative References

  [CCNC]     Luby, M., Watson, M., Gasiba, T., Stockhammer, T., and W.
             Xu, "Raptor Codes for Reliable Download Delivery in
             Wireless Broadcast Systems", CCNC 2006, Las Vegas, NV ,
             Jan 2006.

  [MBMS]     3GPP, "Multimedia Broadcast/Multicast Service (MBMS);
             Protocols and codecs", 3GPP TS 26.346 6.1.0, June 2005.

  [RFC3453]  Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley,
             M., and J. Crowcroft, "The Use of Forward Error Correction
             (FEC) in Reliable Multicast", RFC 3453, December 2002.

  [Raptor]   Shokrollahi, A., "Raptor Codes", IEEE Transactions on
             Information Theory no. 6, June 2006.

  [SHA1]     "Secure Hash Standard", Federal Information Processing
             Standards Publication (FIPS PUB) 180-1, April 2005.










Luby, et al.                Standards Track                    [Page 44]

RFC 5053                   Raptor FEC Scheme                October 2007


Authors' Addresses

  Michael Luby
  Digital Fountain
  39141 Civic Center Drive
  Suite 300
  Fremont, CA  94538
  U.S.A.

  EMail: [email protected]


  Amin Shokrollahi
  EPFL
  Laboratory of Algorithmic Mathematics
  IC-IIF-ALGO
  PSE-A
  Lausanne  1015
  Switzerland

  EMail: [email protected]


  Mark Watson
  Digital Fountain
  39141 Civic Center Drive
  Suite 300
  Fremont, CA  94538
  U.S.A.

  EMail: [email protected]


  Thomas Stockhammer
  Nomor Research
  Brecherspitzstrasse 8
  Munich  81541
  Germany

  EMail: [email protected]











Luby, et al.                Standards Track                    [Page 45]

RFC 5053                   Raptor FEC Scheme                October 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Luby, et al.                Standards Track                    [Page 46]