Network Working Group                                       J. Rosenberg
Request for Comments: 5039                                   C. Jennings
Category: Informational                                            Cisco
                                                           January 2008


            The Session Initiation Protocol (SIP) and Spam

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Abstract

  Spam, defined as the transmission of bulk unsolicited messages, has
  plagued Internet email.  Unfortunately, spam is not limited to email.
  It can affect any system that enables user-to-user communications.
  The Session Initiation Protocol (SIP) defines a system for user-to-
  user multimedia communications.  Therefore, it is susceptible to
  spam, just as email is.  In this document, we analyze the problem of
  spam in SIP.  We first identify the ways in which the problem is the
  same and the ways in which it is different from email.  We then
  examine the various possible solutions that have been discussed for
  email and consider their applicability to SIP.

























Rosenberg & Jennings         Informational                      [Page 1]

RFC 5039                        SIP Spam                    January 2008


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  Problem Definition . . . . . . . . . . . . . . . . . . . . . .  3
    2.1.  Call Spam  . . . . . . . . . . . . . . . . . . . . . . . .  4
    2.2.  IM Spam  . . . . . . . . . . . . . . . . . . . . . . . . .  7
    2.3.  Presence Spam  . . . . . . . . . . . . . . . . . . . . . .  7
  3.  Solution Space . . . . . . . . . . . . . . . . . . . . . . . .  8
    3.1.  Content Filtering  . . . . . . . . . . . . . . . . . . . .  8
    3.2.  Black Lists  . . . . . . . . . . . . . . . . . . . . . . .  9
    3.3.  White Lists  . . . . . . . . . . . . . . . . . . . . . . .  9
    3.4.  Consent-Based Communications . . . . . . . . . . . . . . . 10
    3.5.  Reputation Systems . . . . . . . . . . . . . . . . . . . . 12
    3.6.  Address Obfuscation  . . . . . . . . . . . . . . . . . . . 14
    3.7.  Limited-Use Addresses  . . . . . . . . . . . . . . . . . . 14
    3.8.  Turing Tests . . . . . . . . . . . . . . . . . . . . . . . 15
    3.9.  Computational Puzzles  . . . . . . . . . . . . . . . . . . 17
    3.10. Payments at Risk . . . . . . . . . . . . . . . . . . . . . 17
    3.11. Legal Action . . . . . . . . . . . . . . . . . . . . . . . 18
    3.12. Circles of Trust . . . . . . . . . . . . . . . . . . . . . 19
    3.13. Centralized SIP Providers  . . . . . . . . . . . . . . . . 19
  4.  Authenticated Identity in Email  . . . . . . . . . . . . . . . 20
    4.1.  Sender Checks  . . . . . . . . . . . . . . . . . . . . . . 21
    4.2.  Signature-Based Techniques . . . . . . . . . . . . . . . . 21
  5.  Authenticated Identity in SIP  . . . . . . . . . . . . . . . . 22
  6.  Framework for Anti-Spam in SIP . . . . . . . . . . . . . . . . 23
  7.  Additional Work  . . . . . . . . . . . . . . . . . . . . . . . 24
  8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 24
  9.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 24
  10. Informative References . . . . . . . . . . . . . . . . . . . . 25





















Rosenberg & Jennings         Informational                      [Page 2]

RFC 5039                        SIP Spam                    January 2008


1.  Introduction

  Spam, defined as the transmission of bulk unsolicited email, has been
  a plague on the Internet email system.  Many solutions have been
  documented and deployed to counter the problem.  None of these
  solutions is ideal.  However, one thing is clear: the spam problem
  would be much less significant had solutions been deployed
  ubiquitously before the problem became widespread.

  The Session Initiation Protocol (SIP) [2] is used for multimedia
  communications between users, including voice, video, instant
  messaging, and presence.  Consequently, it can be just as much of a
  target for spam as email.  To deal with this, solutions need to be
  defined and recommendations put into place for dealing with spam as
  soon as possible.

  This document serves to meet those goals by defining the problem
  space more concretely, analyzing the applicability of solutions used
  in the email space, identifying protocol mechanisms that have been
  defined for SIP that can help the problem, and making recommendations
  for implementors.

2.  Problem Definition

  The spam problem in email is well understood, and we make no attempt
  to further elaborate on it here.  The question, however, is what is
  the meaning of spam when applied to SIP?  Since SIP covers a broad
  range of functionality, there appear to be three related but
  different manifestations:

  Call Spam:  This type of spam is defined as a bulk unsolicited set of
     session initiation attempts (i.e., INVITE requests), attempting to
     establish a voice, video, instant messaging [1], or other type of
     communications session.  If the user should answer, the spammer
     proceeds to relay their message over the real-time media.  This is
     the classic telemarketer spam, applied to SIP.  This is often
     called SPam over Ip Telephony, or SPIT.

  IM Spam:  This type of spam is similar to email.  It is defined as a
     bulk unsolicited set of instant messages, whose content contains
     the message that the spammer is seeking to convey.  IM spam is
     most naturally sent using the SIP MESSAGE [3] request.  However,
     any other request that causes content to automatically appear on
     the user's display will also suffice.  That might include INVITE
     requests with large Subject headers (since the Subject is
     sometimes rendered to the user), or INVITE requests with text or
     HTML bodies.  This is often called SPam over Instant Messaging, or
     SPIM.



Rosenberg & Jennings         Informational                      [Page 3]

RFC 5039                        SIP Spam                    January 2008


  Presence Spam:  This type of spam is similar to IM spam.  It is
     defined as a bulk unsolicited set of presence requests (i.e.,
     SUBSCRIBE requests [4] for the presence event package [6]), in an
     attempt to get on the "buddy list" or "white list" of a user in
     order to send them IM or initiate other forms of communications.
     This is occasionally called SPam over Presence Protocol, or SPPP.

  There are many other SIP messages that a spammer might send.
  However, most of the other ones do not result in content being
  delivered to a user, nor do they seek input from a user.  Rather,
  they are answered by automata.  OPTIONS is a good example of this.
  There is little value for a spammer in sending an OPTIONS request,
  since it is answered automatically by the User Agent Server (UAS).
  No content is delivered to the user, and they are not consulted.

  In the sections below, we consider the likelihood of these various
  forms of SIP spam.  This is done in some cases by a rough cost
  analysis.  It should be noted that all of these analyses are
  approximate, and serve only to give a rough sense of the order of
  magnitude of the problem.

2.1.  Call Spam

  Will call spam occur?  That is an important question to answer.
  Clearly, it does occur in the existing telephone network, in the form
  of telemarketer calls.  Although these calls are annoying, they do
  not arrive in the same kind of volume as email spam.  The difference
  is cost; it costs more for the spammer to make a phone call than it
  does to send email.  This cost manifests itself in terms of the cost
  for systems that can perform telemarketer call, and in cost per call.

  Both of these costs are substantially reduced by SIP.  A SIP call
  spam application is easy to write.  It is just a SIP User Agent that
  initiates, in parallel, a large number of calls.  If a call connects,
  the spam application generates an ACK and proceeds to play out a
  recorded announcement, and then it terminates the call.  This kind of
  application can be built entirely in software, using readily
  available (and indeed, free) off-the-shelf software components.  It
  can run on a low-end PC and requires no special expertise to execute.

  The cost per call is also substantially reduced.  A normal
  residential phone line allows only one call to be placed at a time.
  If additional lines are required, a user must purchase more expensive
  connectivity.  Typically, a T1 or T3 would be required for a large-
  volume telemarketing service.  That kind of access is very expensive
  and well beyond the reach of an average user.  A T1 line is
  approximately US $250 per month, and about 1.5 cents per minute for
  calls.  T1 lines used only for outbound calls (such as in this case)



Rosenberg & Jennings         Informational                      [Page 4]

RFC 5039                        SIP Spam                    January 2008


  are even more expensive than inbound trunks due to the reciprocal
  termination charges that a provider pays and receives.

  There are two aspects to the capacity: the call attempt rate, and the
  number of simultaneous successful calls that can be in progress.  A
  T1 would allow a spammer, at most, 24 simultaneous calls, and
  assuming about 10 seconds for each call attempt, about 2.4 call
  attempts per second.  At high-volume calling, the per-minute rates
  far exceed the flat monthly fee for the T1.  The result is a cost of
  250,000 microcents for each successful spam delivery, assuming 10
  seconds of content.

  With SIP, this cost is much reduced.  Consider a spammer using a
  typical broadband Internet connection that provides 500 Kbps of
  upstream bandwidth.  Initiating a call requires just a single INVITE
  message.  Assuming, for simplicity's sake, that this is 1 KB, a 500
  Kbps upstream DSL or cable modem connection will allow about 62 call
  attempts per second.  A successful call requires enough bandwidth to
  transmit a message to the receiver.  Assuming a low compression codec
  (say, G.723.1 at 5.3 Kbps), this requires approximately 16 Kbps after
  RTP, UDP, and IP overheads.  With 500 Kbps upstream bandwidth, this
  means as many as 31 simultaneous calls can be in progress.  With 10
  seconds of content per call, that allows for 3.1 successful call
  attempts per second.  If broadband access is around $50/month, the
  cost per successful voice spam is about 6.22 microcents each.  This
  assumes that calls can be made 24 hours a day, 30 days a month, which
  may or may not be the case.

  These figures indicate that SIP call spam is roughly four orders of
  magnitude cheaper to send than traditional circuit-based telemarketer
  calls.  This low cost is certainly going to be very attractive to
  spammers.  Indeed, many spammers utilize computational and bandwidth
  resources provided by others, by infecting their machines with
  viruses that turn them into "zombies" that can be used to generate
  spam.  This can reduce the cost of call spam to nearly zero.

  Even ignoring the zombie issue, this reduction in cost is even more
  amplified for international calls.  Currently, there are few
  telemarketing calls across international borders, largely due to the
  large cost of making international calls.  This is one of the reasons
  why the "do not call list", a United States national list of numbers
  that telemarketers cannot call -- has been effective.  The law only
  affects U.S. companies, but since most telemarketing calls are
  domestic, it has been effective.  Unfortunately (and fortunately),
  the IP network provides no boundaries of these sorts, and calls to
  any SIP URI are possible from anywhere in the world.  This will allow
  for international spam at a significantly reduced cost.




Rosenberg & Jennings         Informational                      [Page 5]

RFC 5039                        SIP Spam                    January 2008


  International spam is likely to be even more annoying than national
  spam, since it may arrive in languages that the recipient doesn't
  even speak.

  These figures assume that the primary limitation is the access
  bandwidth and not CPU, disk, or termination costs.  Termination costs
  merit further discussion.  Currently, most Voice over IP (VoIP) calls
  terminate on the Public Switched Telephone Network (PSTN), and this
  termination costs the originator of the call money.  These costs are
  similar to the per-minute rates of a T1.  It ranges anywhere from
  half a cent to three cents per minute, depending on volume and other
  factors.  However, equipment costs, training, and other factors are
  much lower for SIP-based termination than a T1, making the cost still
  lower than circuit connectivity.  Furthermore, the current trend in
  VoIP systems is to make termination free for calls that never touch
  the PSTN, that is, calls to actual SIP endpoints.  Thus, as more and
  more SIP endpoints come online, termination costs will probably drop.
  Until then, SIP spam can be used in concert with termination services
  for a lower-cost form of traditional telemarketer calls, made to
  normal PSTN endpoints.

  It is useful to compare these figures with email.  VoIP can deliver
  approximately 3.1 successful call attempts per second.  Email spam
  can, of course, deliver more.  Assuming 1 KB per email, and an
  upstream link of 500 Kbps, a spammer can generate 62.5 messages per
  second.  This number goes down with larger messages of course.
  Interestingly, spam filters delete large numbers of these mails, so
  the cost per viewed message is likely to be much higher.  In that
  sense, call spam is much more attractive, since its content is much
  more likely to be examined by a user if a call attempt is successful.

  Another part of the cost of spamming is collecting addresses.
  Spammers have, over time, built up immense lists of email addresses,
  each of the form user@domain, to which spam is directed.  SIP uses
  the same form of addressing, making it likely that email addresses
  can easily be turned into valid SIP addresses.  Telephone numbers
  also represent valid SIP addresses; in concert with a termination
  provider, a spammer can direct SIP calls at traditional PSTN devices.
  It is not clear whether email spammers have also been collecting
  phone numbers as they perform their Web sweeps, but it is probably
  not hard to do so.  Furthermore, unlike email addresses, phone
  numbers are a finite address space and one that is fairly densely
  packed.  As a result, going sequentially through phone numbers is
  likely to produce a fairly high hit rate.  Thus, it seems like the
  cost is relatively low for a spammer to obtain large numbers of SIP
  addresses to which spam can be directed.





Rosenberg & Jennings         Informational                      [Page 6]

RFC 5039                        SIP Spam                    January 2008


2.2.  IM Spam

  IM spam is very much like email, in terms of the costs for deploying
  and generating spam.  Assuming, for the sake of argument, a 1KB
  message to be sent and 500 Kbps of upstream bandwidth, that is 62.5
  messages per second.  At $50/month, the result is .31 microcents per
  message.  This is less than voice spam, but not substantially less.
  The cost is probably on par with email spam.  However, IM is much
  more intrusive than email.  In today's systems, IMs automatically pop
  up and present themselves to the user.  Email, of course, must be
  deliberately selected and displayed.  However, most popular IM
  systems employ white lists, which only allow IM to be delivered if
  the sender is on the white list.  Thus, whether or not IM spam will
  be useful seems to depend a lot on the nature of the systems as the
  network is opened up.  If they are ubiquitously deployed with white-
  list access, the value of IM spam is likely to be low.

  It is important to point out that there are two different types of IM
  systems: page mode and session mode.  Page mode IM systems work much
  like email, with each IM being sent as a separate message.  In
  session mode IM, there is signaling in advance of communication to
  establish a session, and then IMs are exchanged, perhaps point-to-
  point, as part of the session.  The modality impacts the types of
  spam techniques that can be applied.  Techniques for email can be
  applied identically to page mode IM, but session mode IM is more like
  telephony, and many techniques (such as content filtering) are harder
  to apply.

2.3.  Presence Spam

  As defined above, presence spam is the generation of bulk unsolicited
  SUBSCRIBE messages.  The cost of this is within a small constant
  factor of IM spam so the same cost estimates can be used here.  What
  would be the effect of such spam?  Most presence systems provide some
  kind of consent framework.  A watcher that has not been granted
  permission to see the user's presence will not gain access to their
  presence.  However, the presence request is usually noted and
  conveyed to the user, allowing them to approve or deny the request.
  In SIP, this is done using the watcherinfo event package [7].  This
  package allows a user to learn the identity of the watcher, in order
  to make an authorization decision.

  Interestingly, this provides a vehicle for conveying information to a
  user.  By generating SUBSCRIBE requests from identities such as
  sip:[email protected], brief messages can be
  conveyed to the user, even though the sender does not have, and never
  will receive, permission to access presence.  As such, presence spam
  can be viewed as a form of IM spam, where the amount of content to be



Rosenberg & Jennings         Informational                      [Page 7]

RFC 5039                        SIP Spam                    January 2008


  conveyed is limited.  The limit is equal to the amount of information
  generated by the watcher that gets conveyed to the user through the
  permission system.

  This type of spam also shows up in consent frameworks used to prevent
  call spam, as discussed in Section 3.4.

3.  Solution Space

  In this section, we consider the various solutions that might be
  possible to deal with SIP spam.  We primarily consider techniques
  that have been employed to deal with email spam.  It is important to
  note that the solutions documented below are not meant to be an
  exhaustive study of the spam solutions used for email but rather just
  a representative set.  We also consider some solutions that appear to
  be SIP-specific.

3.1.  Content Filtering

  The most common form of spam protection used in email is based on
  content filtering.  Spam filters analyze the content of the email,
  and look for clues that the email is spam.  Bayesian spam filters are
  in this category.

  Unfortunately, this type of spam filtering, while successful for
  email spam, is completely useless for call spam.  There are two
  reasons.  First, in the case where the user answers the call, the
  call is already established and the user is paying attention before
  the content is delivered.  The spam cannot be analyzed before the
  user sees it.  Second, if the content is stored before the user
  accesses it (e.g., with voicemail), the content will be in the form
  of recorded audio or video.  Speech and video recognition technology
  is not likely to be good enough to analyze the content and determine
  whether or not it is spam.  Indeed, if a system tried to perform
  speech recognition on a recording in order to perform such an
  analysis, it would be easy for the spammers to make calls with
  background noises, poor grammar, and varied accents, all of which
  will throw off recognition systems.  Video recognition is even harder
  to do and remains primarily an area of research.

  IM spam, due to its similarity to email, can be countered with
  content analysis tools.  Indeed, the same tools and techniques used
  for email will directly work for IM spam.








Rosenberg & Jennings         Informational                      [Page 8]

RFC 5039                        SIP Spam                    January 2008


3.2.  Black Lists

  Black listing is an approach whereby the spam filter maintains a list
  of addresses that identify spammers.  These addresses include both
  usernames ([email protected]) and entire domains (example.com).
  Pure blacklists are not very effective in email for two reasons.
  First, email addresses are easy to spoof, making it easy for the
  sender to pretend to be someone else.  If the sender varies the
  addresses they send from, the black list becomes almost completely
  useless.  The second problem is that, even if the sender doesn't
  forge the From address, email addresses are in almost limitless
  supply.  Each domain contains an infinite supply of email addresses,
  and new domains can be obtained for very low cost.  Furthermore,
  there will always be public providers that will allow users to obtain
  identities for almost no cost (for example, Yahoo or AOL mail
  accounts).  The entire domain cannot be blacklisted because it
  contains so many valid users.  Blacklisting needs to be for
  individual users.  Those identities are easily changed.

  As a result, as long as identities are easy to manufacture, or
  zombies are used, black lists will have limited effectiveness for
  email.

  Blacklists are also likely to be ineffective for SIP spam.
  Mechanisms for inter-domain authenticated identity for email and SIP
  are discussed in Section 4 and Section 5.  Assuming these mechanisms
  are used and enabled in inter-domain communications, it becomes
  difficult to forge sender addresses.  However, it still remains cheap
  to obtain a nearly infinite supply of addresses.

3.3.  White Lists

  White lists are the opposite of black lists.  It is a list of valid
  senders that a user is willing to accept email from.  Unlike black
  lists, a spammer cannot change identities to get around the white
  list.  White lists are susceptible to address spoofing, but a strong
  identity authentication mechanism can prevent that problem.  As a
  result, the combination of white lists and strong identity, as
  described in Section 4.2 and Section 5, are a good form of defense
  against spam.

  However, they are not a complete solution, since they would prohibit
  a user from ever being able to receive email from someone who was not
  explicitly put on the white list.  As a result, white lists require a
  solution to the "introduction problem" - how to meet someone for the
  first time, and decide whether they should be placed in the white
  list.  In addition to the introduction problem, white lists demand
  time from the user to manage.



Rosenberg & Jennings         Informational                      [Page 9]

RFC 5039                        SIP Spam                    January 2008


  In IM systems, white lists have proven exceptionally useful at
  preventing spam.  This is due, in no small part, to the fact that the
  white list exists naturally in the form of the buddy list.  Users
  don't have to manage this list just for the purposes of spam
  prevention; it provides general utility, and assists in spam
  prevention for free.  Many popular IM systems also have strong
  identity mechanisms since they do not allow communications with IM
  systems in other administrative domains.  The introduction problem in
  these systems is solved with a consent framework, described below.

  The success of white lists in IM systems has applicability to SIP as
  well.  This is because SIP also provides a buddy list concept and has
  an advanced presence system as part of its specifications.  The
  introduction problem remains.  In email, techniques like Turing tests
  have been employed to address the introduction problem.  Turing tests
  are considered further in the sections below.  As with email, a
  technique for solving the introduction problem would need to be
  applied in conjunction with a white list.

  If a user's computer is compromised and used a zombie, that computer
  can usually be used to send spam to anyone that has put the user on
  their white list.

3.4.  Consent-Based Communications

  A consent-based solution is used in conjunction with white or black
  lists.  That is, if user A is not on user B's white or black list,
  and user A attempts to communicate with user B, user A's attempt is
  initially rejected, and they are told that consent is being
  requested.  Next time user B connects, user B is informed that user A
  had attempted communications.  User B can then authorize or reject
  user A.

  These kinds of consent-based systems are used widely in presence and
  IM.  Since most of today's popular IM systems only allow
  communications within a single administrative domain, sender
  identities can be authenticated.  Email often uses similar consent-
  based systems for mailing lists.  They use a form of authentication
  based on sending cookies to an email address to verify that a user
  can receive mail at that address.

  This kind of consent-based communications has been standardized in
  SIP for presence, using the watcher information event package [7] and
  data format [8], which allow a user to find out that someone has
  subscribed.  Then, the XML Configuration Access Protocol (XCAP) [10]
  is used, along with the XML format for presence authorization [11] to
  provide permission for the user to communicate.




Rosenberg & Jennings         Informational                     [Page 10]

RFC 5039                        SIP Spam                    January 2008


  A consent framework has also been developed that is applicable to
  other forms of SIP communications [12].  However, this framework
  focuses on authorizing the addition of users to "mailing lists",
  known as exploders in SIP terminology.  Though spammers typically use
  such exploder functions, presumably one run by a spammer would not
  use this technique.  Consequently, this consent framework is not
  directly applicable to the spam problem.  It is, however, useful as a
  tool for managing a white list.  Through the PUBLISH mechanism, it
  allows a user to upload a permission document [13] that indicates
  that they will only accept incoming calls from a particular sender.

  Can a consent framework, like the ones used for presence, help solve
  call spam?  At first glance, it would seem to help a lot.  However,
  it might just change the nature of the spam.  Instead of being
  bothered with content, in the form of call spam or IM spam, users are
  bothered with consent requests.  A user's "communications inbox"
  might instead be filled with requests for communications from a
  multiplicity of users.  Those requests for communications don't
  convey much useful content to the user, but they can convey some.  At
  the very least, they will convey the identity of the requester.  The
  user part of the SIP URI allows for limited free form text, and thus
  could be used to convey brief messages.  One can imagine receiving
  consent requests with identities like
  "sip:[email protected]", for
  example.  Fortunately, it is possible to apply traditional content
  filtering systems to the header fields in the SIP messages, thus
  reducing these kinds of consent request attacks.

  In order for the spammer to convey more extensive content to the
  user, the user must explicitly accept the request, and only then can
  the spammer convey the full content.  This is unlike email spam,
  where, even though much spam is automatically deleted, some
  percentage of the content does get through, and is seen by users,
  without their explicit consent that they want to see it.  Thus, if
  consent is required first, the value in sending spam is reduced, and
  perhaps it will cease for those spam cases where consent is not given
  to spammers.

  As such, the real question is whether or not the consent system would
  make it possible for a user to give consent to non-spammers and
  reject spammers.  Authenticated identity can help.  A user in an
  enterprise would know to give consent to senders in other enterprises
  in the same industry, for example.  However, in the consumer space,
  if sip:[email protected] tries to communicate with a user, how does
  that user determine whether Bob is a spammer or a long-lost friend
  from high school?  There is no way based on the identity alone.  In
  such a case, a useful technique is to grant permission for Bob to
  communicate but to ensure that the permission is extremely limited.



Rosenberg & Jennings         Informational                     [Page 11]

RFC 5039                        SIP Spam                    January 2008


  In particular, Bob may be granted permission to send no more than 200
  words of text in a single IM, which he can use to identify himself,
  so that the user can determine whether or not more permissions are
  appropriate.  It may even be possible that an automated system could
  do some form of content analysis on this initial short message.
  However, this 200 words of text may be enough for a spammer to convey
  their message, in much the same way they might convey it in the user
  part of the SIP URI.

  Thus, it seems that a consent-based framework, along with white lists
  and black lists, cannot fully solve the problem for SIP, although it
  does appear to help.

3.5.  Reputation Systems

  A reputation system is also used in conjunction with white or black
  lists.  Assume that user A is not on user B's white list, and A
  attempts to contact user B.  If a consent-based system is used, B is
  prompted to consent to communications from A, and along with the
  consent, a reputation score might be displayed in order to help B
  decide whether or not they should accept communications from A.

  Traditionally, reputation systems are implemented in highly
  centralized messaging architectures; the most widespread reputation
  systems in messaging today have been deployed by monolithic instant
  messaging providers (though many Web sites with a high degree of
  interactivity employ very similar concepts of reputation).
  Reputation is calculated based on user feedback.  For example, a
  button on the user interface of the messaging client might empower
  users to inform the system that a particular user is abusive.  Of
  course, the input of any single user has to be insufficient to ruin
  one's reputation, but consistent negative feedback would give the
  abusive user a negative reputation score.

  Reputation systems have been successful in systems where
  centralization of resources (user identities, authentication, etc.)
  and monolithic control dominate.  Examples of these include the large
  instant messaging providers that run IM systems that do not exchange
  messages with other administrative domains.  That control, first of
  all, provides a relatively strong identity assertion for users (since
  all users trust a common provider, and the common provider is the
  arbiter of authentication and identity).  Secondly, it provides a
  single place where reputation can be managed.

  Reputation systems based on negative reputation scores suffer from
  many of the same problems as black lists, since effectively the
  consequence of having a negative reputation is that you are
  blacklisted.  If identities are very easy to acquire, a user with a



Rosenberg & Jennings         Informational                     [Page 12]

RFC 5039                        SIP Spam                    January 2008


  negative reputation will simply acquire a new identity.  Moreover,
  negative reputation is generated by tattling, which requires users to
  be annoyed enough to click the warning button -- a process that can
  be abused.  In some reputation systems, "reputation mafias"
  consisting of large numbers of users routinely bully or extort
  victims by threatening collectively to give victims a negative
  reputation.

  Reputation systems based on positive reputation, where users praise
  each other for being good, rather than tattling on each other for
  being bad, have some similar drawbacks.  Collectives of spammers, or
  just one spammer who acquires a large number identities, could praise
  one another in order to create an artificial positive reputation.
  Users similarly have to overcome the inertia required to press the
  "praise" button.  Unlike negative reputation systems, however,
  positive reputation is not circumvented when users acquire a new
  identity, since basing authorization decisions on positive reputation
  is essentially a form of white listing.

  So, while positive reputation systems are superior to negative
  reputation systems, they are far from perfect.  Intriguingly, though,
  combining presence-based systems with reputation systems leads to an
  interesting fusion.  The "buddy-list" concept of presence is, in
  effect, a white list - and one can infer that the users on one's
  buddy list are people whom you are "praising".  This eliminates the
  problem of user inertia in the use of the "praise" button, and
  automates the initial establishment of reputation.

  And of course, your buddies in turn have buddies.  Collectively, you
  and your buddies (and their buddies, and so on) constitute a social
  network of reputation.  If there were a way to leverage this social
  network, it would eliminate the need for centralization of the
  reputation system.  Your perception of a particular user's reputation
  might be dependent on your relationship to them in the social
  network: are they one buddy removed (strong reputation), four buddies
  removed (weaker reputation), three buddies removed but connected to
  you through several of your buddies, etc.  This web of trust
  furthermore would have the very desirable property that circles of
  spammers adding one another to their own buddy lists would not affect
  your perception of their reputation unless their circle linked to
  your own social network.

  If a users machine is compromised and turned into a zombie, this
  allows SPAM to be sent and may impact their reputation in a negative
  way.  Once their reputation decreases, it becomes extremely difficult
  to reestablish a positive reputation.





Rosenberg & Jennings         Informational                     [Page 13]

RFC 5039                        SIP Spam                    January 2008


3.6.  Address Obfuscation

  Spammers build up their spam lists by gathering email addresses from
  Web sites and other public sources of information.  One way to
  minimize spam is to make your address difficult or impossible to
  gather.  Spam bots typically look for text in pages of the form
  "user@domain", and assume that anything of that form is an email
  address.  To hide from such spam bots, many Web sites have recently
  begun placing email addresses in an obfuscated form, usable to humans
  but difficult for an automata to read as an email address.  Examples
  include forms such as, "user at example dot com" or "j d r o s e n a
  t e x a m p l e d o t c o m".

  These techniques are equally applicable to prevention of SIP spam,
  and are likely to be as equally effective or ineffective in its
  prevention.

  It is worth mentioning that the source of addresses need not be a Web
  site - any publicly accessible service containing addresses will
  suffice.  As a result, ENUM [9] has been cited as a potential gold
  mine for spammers.  It would allow a spammer to collect SIP and other
  URIs by traversing the tree in e164.arpa and mining it for data.
  This problem is mitigated in part if only number prefixes, as opposed
  to actual numbers, appear in the DNS.  Even in that case, however, it
  provides a technique for a spammer to learn which phone numbers are
  reachable through cheaper direct SIP connectivity.

3.7.  Limited-Use Addresses

  A related technique to address obfuscation is limited-use addresses.
  In this technique, a user has a large number of email addresses at
  their disposal, each of which has constraints on its applicability.
  A limited-use address can be time-bound, so that it expires after a
  fixed period.  Or, a different email address can be given to each
  correspondent.  When spam arrives from that correspondent, the
  limited-use address they were given is terminated.  In another
  variation, the same limited-use address is given to multiple users
  that share some property; for example, all work colleagues, all
  coworkers from different companies, all retailers, and so on.  Should
  spam begin arriving on one of the addresses, it is invalidated,
  preventing communications from anyone else that received the limited
  use address.

  This technique is equally applicable to SIP.  One of the drawbacks of
  the approach is that it can make it hard for people to reach you; if
  an email address you hand out to a friend becomes spammed, changing
  it requires you to inform your friend of the new address.  SIP can
  help solve this problem in part, by making use of presence [6].



Rosenberg & Jennings         Informational                     [Page 14]

RFC 5039                        SIP Spam                    January 2008


  Instead of handing out your email address to your friends, you would
  hand out your presence URI.  When a friend wants to send you an
  email, they subscribe to your presence (indeed, they are likely to be
  continuously subscribed from a buddy list application).  The presence
  data can include an email address where you can be reached.  This
  email address can be obfuscated and be of single use, different for
  each buddy who requests your presence.  They can also be constantly
  changed, as these changes are pushed directly to your buddies.  In a
  sense, the buddy list represents an automatically updated address
  book, and would therefore eliminate the problem.

  Another approach is to give a different address to each and every
  correspondent, so that it is never necessary to tell a "good" user
  that an address needs to be changed.  This is an extreme form of
  limited-use addresses, which can be called a single-use address.
  Mechanisms are available in SIP for the generation of [16] an
  infinite supply of single use addresses.  However, the hard part
  remains a useful mechanism for distribution and management of those
  addresses.

3.8.  Turing Tests

  In email, Turing tests are mechanisms whereby the sender of the
  message is given some kind of puzzle or challenge, which only a human
  can answer (since Turing tests rely on video or audio puzzles, they
  sometimes cannot be solved by individuals with handicaps).  These
  tests are also known as captchas (Completely Automated Public Turing
  test to tell Computers and Humans Apart).  If the puzzle is answered
  correctly, the sender is placed on the user's white list.  These
  puzzles frequently take the form of recognizing a word or sequence of
  numbers in an image with a lot of background noise.  The tests need
  to be designed such that automata cannot easily perform the image
  recognition needed to extract the word or number sequence, but a
  human user usually can.  Designing such tests is not easy, since
  ongoing advances in image processing and artificial intelligence
  continually raise the bar.  Consequently, the effectiveness of
  captchas are tied to whether spammers can come up with or obtain
  algorithms for automatically solving them.

  Like many of the other email techniques, Turing tests are dependent
  on sender identity, which cannot easily be authenticated in email.

  Turing tests can be used to prevent IM spam in much the same way they
  can be used to prevent email spam.

  Turing tests can be applied to call spam as well, although not
  directly, because call spam does not usually involve the transfer of
  images and other content that can be used to verify that a human is



Rosenberg & Jennings         Informational                     [Page 15]

RFC 5039                        SIP Spam                    January 2008


  on the other end.  If most of the calls are voice, the technique
  needs to be adapted to voice.  This is not that difficult to do.
  Here is how it could be done.  User A calls user B and is not on user
  B's white or black list.  User A is transferred to an Interactive
  Voice Response (IVR) system.  The IVR system tells the user that they
  are going to hear a series of numbers (say 5 of them), and that they
  have to enter those numbers on the keypad.  The IVR system reads out
  the numbers while background music is playing, making it difficult
  for an automated speech recognition system to be applied to the
  media.  The user then enters the numbers on their keypad.  If they
  are entered correctly, the user is added to the white list.

  This kind of voice-based Turing test is easily extended to a variety
  of media, such as video and text, and user interfaces by making use
  of the SIP application interaction framework [14].  This framework
  allows client devices to interact with applications in the network,
  where such interaction is done with stimulus signaling, including
  keypads (supported with the Keypad Markup Language [15]), but also
  including Web browsers, voice recognition, and so on.  The framework
  allows the application to determine the media capabilities of the
  device (or user, in cases where they are handicapped) and interact
  with them appropriately.

  In the case of voice, the Turing test would need to be made to run in
  the language of the caller.  This is possible in SIP, using the
  Accept-Language header field, though this is not widely used at the
  moment, and meant for languages of SIP message components, not the
  media streams.

  The primary problem with the voice Turing test is the same one that
  email tests have: instead of having an automata process the test, a
  spammer can pay cheap workers to take the tests.  Assuming cheap
  labor in a poor country can be obtained for about 60 cents per hour,
  and assuming a Turing test of a 30-second duration, this is about
  0.50 cents per test and thus 0.50 cents per message to send an IM
  spam.  Lower labor rates would reduce this further; the number quoted
  here is based on real online bids in September of 2006 made for
  actual work of this type.

  As an alternative to paying cheap workers to take the tests, the
  tests can be taken by human users that are tricked into completing
  the tests in order to gain access to what they believe is a
  legitimate resource.  This was done by a spambot that posted the
  tests on a pornography site, and required users to complete the tests
  in order to gain access to content.

  Due to these limitations, Turing tests may never completely solve the
  problem.



Rosenberg & Jennings         Informational                     [Page 16]

RFC 5039                        SIP Spam                    January 2008


3.9.  Computational Puzzles

  This technique is similar to Turing tests.  When user A tries to
  communicate with user B, user B asks user A to perform a computation
  and pass the result back.  This computation has to be something a
  human user cannot perform and something expensive enough to increase
  user A's cost to communicate.  This cost increase has to be high
  enough to make it prohibitively expensive for spammers but
  inconsequential for legitimate users.

  One of the problems with the technique is that there is wide
  variation in the computational power of the various clients that
  might legitimately communicate.  The CPU speed on a low-end cell
  phone is around 50 MHz, while a high-end PC approaches 5 GHz.  This
  represents almost two orders of magnitude difference.  Thus, if the
  test is designed to be reasonable for a cell phone to perform, it is
  two orders of magnitude cheaper to perform for a spammer on a high-
  end machine.  Recent research has focused on defining computational
  puzzles that challenge the CPU/memory bandwidth, as opposed to just
  the CPU [26].  It seems that there is less variety in the CPU/memory
  bandwidth across devices, roughly a single order of magnitude.

  Recent work [28] suggests that, due to the ability of spammers to use
  virus-infected machines (also known as zombies) to generate the spam,
  the amount of computational power available to the spammers is
  substantial, and it may be impossible to have them compute a puzzle
  that is sufficiently hard that will not also block normal emails.  If
  combined with white listing, computational puzzles would only be
  utilized for new communications partners.  Of course, if the partner
  on the white list is a zombie, spam will come from that source.  The
  frequency of communications with new partners is arguably higher for
  email than for multimedia, and thus the computational puzzle
  techniques may be more effective for SIP than for email in dealing
  with the introduction problem.

  These techniques are an active area of research right now, and any
  results for email are likely to be usable for SIP.

3.10.  Payments at Risk

  This approach has been proposed for email [27].  When user A sends
  email to user B, user A deposits a small amount of money (say, one
  dollar) into user B's account.  If user B decides that the message is
  not spam, user B refunds this money back to user A.  If the message
  is spam, user B keeps the money.  This technique requires two
  transactions to complete: a transfer from A to B, and a transfer from
  B back to A. The first transfer has to occur before the message can
  be received in order to avoid reuse of "pending payments" across



Rosenberg & Jennings         Informational                     [Page 17]

RFC 5039                        SIP Spam                    January 2008


  several messages, which would eliminate the utility of the solution.
  The second one then needs to occur when the message is found not to
  be spam.

  This technique appears just as applicable to call spam and IM spam as
  it is to email spam.  Like many of the other techniques, this
  exchange would only happen the first time you talk to people.  Its
  proper operation therefore requires a good authenticated identity
  infrastructure.

  This technique has the potential to make it arbitrarily expensive to
  send spam of any sort.  However, it relies on cheap micro-payment
  techniques on the Internet.  Traditional costs for Internet payments
  are around 25 cents per transaction, which would probably be
  prohibitive.  However, recent providers have been willing to charge
  15% of the transaction for small transactions, as small as one cent.
  This cost would have to be shouldered by users of the system.  The
  cost that would need to be shouldered per user is equal to the number
  of messages from unknown senders (that is, senders not on the white
  list) that are received.  For a busy user, assume about 10 new
  senders per day.  If the deposit is 5 cents, the transaction provider
  would take 0.75 cents and deliver 4.25 cents.  If the sender is
  allowed, the recipient returns 4.25 cents, the provider takes 0.64
  cents, and returns 3.6 cents.  This costs the sender 0.65 cents on
  each transaction, if it was legitimate.  If there are ten new
  recipients per day, that is US $1.95 per month, which is relatively
  inexpensive.

  Assuming a micro-payment infrastructure exists, another problem with
  payment-at-risk is that it loses effectiveness when there are strong
  inequities in the value of currency between sender and recipient.
  For example, a poor person in a Third World country might keep the
  money in each mail message, regardless of whether it is spam.
  Similarly, a poor person might not be willing to include money in an
  email, even if legitimate, for fear that the recipient might keep it.
  If the amount of money is lowered to help handle these problems, it
  might become sufficiently small that spammers can just afford to
  spend it.

3.11.  Legal Action

  In this solution, countries pass laws that prohibit spam.  These laws
  could apply to IM or call spam just as easily as they could apply to
  email spam.  There is a lot of debate about whether these laws would
  really be effective in preventing spam.

  As a recent example in the US, "do not call" lists seem to be
  effective.  However, due to the current cost of long-distance phone



Rosenberg & Jennings         Informational                     [Page 18]

RFC 5039                        SIP Spam                    January 2008


  calls, the telemarketing is coming from companies within the US.  As
  such, calls from such telemarketers can be traced.  If a telemarketer
  violates the "do not call" list, the trace allows legal action to be
  taken against them.  A similar "do not irritate" list for VoIP or for
  email would be less likely to work because the spam is likely to come
  from international sources.  This problem could be obviated if there
  was a strong way to identify the sender's legal entity, and then
  determine whether it was in a jurisdiction where it was practical to
  take legal action against them.  If the spammer is not in such a
  jurisdiction, the SIP spam could be rejected.

  There are also schemes that cause laws other than anti-spam laws to
  be broken if spam is sent.  This does not inherently reduce SPAM, but
  it allows more legal options to be brought to bear against the
  spammer.  For example, Habeas <http://www.habeas.com> inserts
  material in the header that, if it was inserted by a spammer without
  an appropriate license, would allegedly causes the spammer to violate
  US copyright and trademark laws, possibly reciprocal laws, and
  similar laws in many countries.

3.12.  Circles of Trust

  In this model, a group of domains (e.g., a set of enterprises) all
  get together.  They agree to exchange SIP calls amongst each other,
  and they also agree to introduce a fine should any one of them be
  caught spamming.  Each company would then enact measures to terminate
  employees who spam from their accounts.

  This technique relies on secure inter-domain authentication - that
  is, domain B can know that messages are received from domain A.  In
  SIP, this is readily provided by usage of the mutually authenticated
  Transport Level Security (TLS)[22] between providers or SIP Identity
  [17].

  This kind of technique works well for small domains or small sets of
  providers, where these policies can be easily enforced.  However, it
  is unclear how well it scales up.  Could a very large domain truly
  prevent its users from spamming?  At what point would the network be
  large enough that it would be worthwhile to send spam and just pay
  the fine?  How would the pricing be structured to allow both small
  and large domains alike to participate?

3.13.  Centralized SIP Providers

  This technique is a variation on the circles of trust described in
  Section 3.12.  A small number of providers get established as "inter-
  domain SIP providers".  These providers act as a SIP-equivalent to
  the interexchange carriers in the PSTN.  Every enterprise, consumer



Rosenberg & Jennings         Informational                     [Page 19]

RFC 5039                        SIP Spam                    January 2008


  SIP provider, or other SIP network (call these the local SIP
  providers) connects to one of these inter-domain providers.  The
  local SIP providers only accept SIP messages from their chosen inter-
  domain provider.  The inter-domain provider charges the local
  provider, per SIP message, for the delivery of SIP messages to other
  local providers.  The local provider can choose to pass on this cost
  to its own customers if it so chooses.

  The inter-domain SIP providers then form bi-lateral agreements with
  each other, exchanging SIP messages according to strict contracts.
  These contracts require that each of the inter-domain providers be
  responsible for charging a minimum per-message fee to their own
  customers.  Extensive auditing procedures can be put into place to
  verify this.  Besides such contracts, there may or may not be a flow
  of funds between the inter-domain providers.

  The result of such a system is that a fixed cost can be associated
  with sending a SIP message, and that this cost does not require
  micro-payments to be exchanged between local providers, as it does in
  Section 3.10.  Since all of the relationships are pre-established and
  negotiated, cheaper techniques for monetary transactions (such as
  monthly post-paid transactions) can be used.

  This technique can be made to work in SIP, whereas it cannot in
  email, because inter-domain SIP connectivity has not yet been broadly
  established.  In email, there already exists a no-cost form of inter-
  domain connectivity that cannot be eliminated without destroying the
  utility of email.  If, however, SIP inter-domain communications get
  established from the start using this structure, there is a path to
  deployment.

  This structure is more or less the same as the one in place for the
  PSTN today, and since there is relatively little spam on the PSTN
  (compared to email!), there is some proof that this kind of
  arrangement can work.  However, centralized architectures as these
  are deliberately eschewed because they put back into SIP much of the
  complexity and monopolistic structures that the protocol aims to
  eliminate.

4.  Authenticated Identity in Email

  Though not a form of anti-spam in and of itself, authenticated or
  verifiable identities are a key part of making other anti-spam
  mechanisms work.  Many of the techniques described above are most
  effective when combined with a white or black list, which itself
  requires a strong form of identity.





Rosenberg & Jennings         Informational                     [Page 20]

RFC 5039                        SIP Spam                    January 2008


  In email, two types of authenticated identity have been developed -
  sender checks and signature-based solutions.

4.1.  Sender Checks

  In email, DNS resource records have been defined that will allow a
  domain that receives a message to verify that the sender is a valid
  Message Transfer Agent (MTA) for the sending domain [18] [19] [20]
  [21].  They don't prevent spam by themselves, but may help in
  preventing spoofed emails.  As has been mentioned several times, a
  form of strong authenticated identity is key in making many other
  anti-spam techniques work.

  Are these techniques useful for SIP?  They can be used for SIP but
  are not necessary.  In SIP, TLS with mutual authentication can be
  used inter-domain.  A provider receiving a message can then reject
  any message coming from a domain that does not match the asserted
  identity of the sender of the message.  Such a policy only works in
  the "trapezoid" model of SIP, whereby there are only two domains in
  any call - the sending domain, which is where the originator resides,
  and the receiving domain.  These techniques are discussed in Section
  26.3.2.2 of RFC 3261 [2].  In forwarding situations, the assumption
  no longer holds and these techniques no longer work.  However, the
  authenticated identity mechanism for SIP, discussed in Section 5,
  does work in more complex network configurations and provides fairly
  strong assertion of identity.

4.2.  Signature-Based Techniques

  Domain Keys Identified Mail (DKIM) Signatures [23] (and several non-
  standard techniques that preceded it) provide strong identity
  assertions by allowing the sending domain to sign an email, and then
  providing mechanisms by which the receiving MTA or Mail User Agent
  (MUA) can validate the signature.

  Unfortunately, when used with blacklists, this kind of authenticated
  identity is only as useful as the fraction of the emails that utilize
  it.  This is partly true for white lists as well; if any
  unauthenticated email is accepted for an address on a white list, a
  spammer can spoof that address.  However, a white list can be
  effective with limited deployment of DKIM if all the people on the
  white list are those whose domains are utilizing the mechanism, and
  the users on that white list aren't zombies.

  This kind of identity mechanism is also applicable to SIP, and is in
  fact, exactly what is defined by SIP's authenticated identity
  mechanism [17].




Rosenberg & Jennings         Informational                     [Page 21]

RFC 5039                        SIP Spam                    January 2008


  Other signature-based approaches for email include S/MIME[24] and
  OpenPGP[25].

5.  Authenticated Identity in SIP

  One of the key parts of many of the solutions described above is the
  ability to securely identify the sender of a SIP message.  SIP
  provides a secure solution for this problem, called SIP Identity
  [17], and it is important to discuss it here.

  The solution starts by having each domain authenticate its own users.
  SIP provides HTTP digest authentication as part of the core SIP
  specification, and all clients and servers are required to support
  it.  Indeed, digest is widely deployed for SIP.  However, digest
  alone has many known vulnerabilities, most notably offline dictionary
  attacks.  These vulnerabilities are all resolved by having each
  client maintain a persistent TLS connection to the server.  The
  client verifies the server identity using TLS, and then authenticates
  itself to the server using a digest exchange over TLS.  This
  technique, which is also documented in RFC 3261, is very secure but
  not widely deployed yet.  In the long term, this approach will be
  necessary for the security properties needed to prevent SIP spam.

  Once a domain has authenticated the identity of a user, when it
  relays a message from that user to another domain, the sending domain
  can assert the identity of the sender, and include a signature to
  validate that assertion.  This is done using the SIP identity
  mechanism [17].

  A weaker form of identity assertion is possible using the P-Asserted-
  Identity header field [5], but this technique requires mutual trust
  among all domains.  Unfortunately, this becomes exponentially harder
  to provide as the number of interconnected domains grows.  As that
  happens, the value of the identity assertion becomes equal to the
  trustworthiness of the least trustworthy domain.  Since spam is a
  consequence of the receiving domain not being able to trust the
  sending domains to disallow the hosts in the sending to send spam,
  the P-Asserted-Identity technique becomes ineffective at exactly the
  same levels of interconnectedness that introduce spam.

  Consider the following example to help illustrate this fact.  A
  malicious domain -- let us call them spam.example.com, would like to
  send SIP INVITE requests with false P-Asserted-Identity, indicating
  users outside of its own domain. spam.example.com finds a regional
  SIP provider in a small country who, due to its small size and
  disinterest in spam, accepts any P-Asserted-Identity from its
  customers without verification.  This provider, in turn, connects to
  a larger, interconnect provider.  They do ask each of their customers



Rosenberg & Jennings         Informational                     [Page 22]

RFC 5039                        SIP Spam                    January 2008


  to verify P-Asserted-Identity but have no easy way of enforcing it.
  This provider, in turn, connects to everyone else.  As a consequence,
  the spam.example.com domain is able to inject calls with a spoofed
  caller ID.  This request can be directed to any recipient reachable
  through the network (presumably everyone due to the large size of the
  root provider).  There is no way for a recipient to know that this
  particular P-Asserted-Identity came from this bad spam.example.com
  domain.  As the example shows, even though the central provider's
  policy is good, the overall effectiveness of P-Asserted-Identity is
  still only as good as the policies of the weakest link in the chain.

  SIP also defines the usage of TLS between domains, using mutual
  authentication, as part of the base specification.  This technique
  provides a way for one domain to securely determine that it is
  talking to a server that is a valid representative of another domain.

6.  Framework for Anti-Spam in SIP

  Unfortunately, there is no magic bullet for preventing SIP spam, just
  as there is none for email spam.  However, the combination of several
  techniques can provide a framework for dealing with spam in SIP.
  This section provides recommendations for network designers in order
  to help mitigate the risk of spam.

  There are four core recommendations that can be made:

  Strong Identity:  Firstly, in almost all of the solutions discussed
     above, there is a dependency on the ability to authenticate the
     sender of a SIP message inter-domain.  Consent, reputation
     systems, computational puzzles, and payments at risk, amongst
     others, all work best when applied only to new requests, and
     successful completion of an introduction results in the placement
     of a user on a white list.  However, usage of white lists depends
     on strong identity assertions.  Consequently, any network that
     interconnects with others should make use of strong SIP identity
     as described in RFC 4474.  P-Asserted-Identity is not strong
     enough.

  White Lists:  Secondly, with a strong identity system in place,
     networks are recommended to make use of white lists.  These are
     ideally built off existing buddy lists, if present.  If not,
     separate white lists can be managed for spam.  Placement on these
     lists can be manual or based on the successful completion of one
     or more introduction mechanisms.

  Solve the Introduction Problem:  This in turn leads to the final
     recommendation to be made.  Network designers should make use of
     one or more mechanisms meant to solve the introduction problem.



Rosenberg & Jennings         Informational                     [Page 23]

RFC 5039                        SIP Spam                    January 2008


     Indeed, it is possible to use more than one and combine the
     results through some kind of weight.  A user that successfully
     completes the introduction mechanism can be automatically added to
     the white list.  Of course, that can only be done usefully if
     their identity is verified by SIP Identity.  The set of mechanisms
     for solving the introduction problem, as described in this
     document, are based on some (but not all) of the techniques known
     and used at the time of writing.  Providers of SIP services should
     keep tabs on solutions in email as they evolve, and utilize the
     best of what those techniques have to offer.

  Don't Wait Until It's Too Late:  But perhaps most importantly,
     providers should not ignore the spam problem until it happens!  As
     soon as a provider inter-connects with other providers, or allows
     SIP messages from the open Internet, that provider must consider
     how they will deal with spam.

7.  Additional Work

  Though the above framework serves as a good foundation on which to
  deal with spam in SIP, there are gaps, some of which can be addressed
  by additional work that has yet to be undertaken.

  One of the difficulties with the strong identity techniques is that a
  receiver of a SIP request without an authenticated identity cannot
  know whether the request lacked such an identity because the
  originating domain didn't support it, or because a man-in-the-middle
  removed it.  As a result, transition mechanisms should be put in
  place to allow these to be differentiated.  Without it, the value of
  the identity mechanism is much reduced.

8.  Security Considerations

  This document is entirely devoted to issues relating to spam in SIP
  and references a variety of security mechanisms in support of that
  goal.

9.  Acknowledgements

  The authors would like to thank Rohan Mahy for providing information
  on Habeas, Baruch Sterman for providing costs on VoIP termination
  services, and Gonzalo Camarillo and Vijay Gurbani for their reviews.
  Useful comments and feedback were provided by Nils Ohlmeir, Tony
  Finch, Randy Gellens, Lisa Dusseault, Sam Hartman, Chris Newman, Tim
  Polk, Donald Eastlake, and Yakov Shafranovich.  Jon Peterson wrote
  some of the text in this document and has contributed to the work as
  it has moved along.




Rosenberg & Jennings         Informational                     [Page 24]

RFC 5039                        SIP Spam                    January 2008


10.  Informative References

  [1]   Campbell, B., Mahy, R., and C. Jennings, "The Message Session
        Relay Protocol (MSRP)", RFC 4975, September 2007.

  [2]   Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
        Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
        Session Initiation Protocol", RFC 3261, June 2002.

  [3]   Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and
        D. Gurle, "Session Initiation Protocol (SIP) Extension for
        Instant Messaging", RFC 3428, December 2002.

  [4]   Roach, A., "Session Initiation Protocol (SIP)-Specific Event
        Notification", RFC 3265, June 2002.

  [5]   Jennings, C., Peterson, J., and M. Watson, "Private Extensions
        to the Session Initiation Protocol (SIP) for Asserted Identity
        within Trusted Networks", RFC 3325, November 2002.

  [6]   Rosenberg, J., "A Presence Event Package for the Session
        Initiation Protocol (SIP)", RFC 3856, August 2004.

  [7]   Rosenberg, J., "A Watcher Information Event Template-Package
        for the Session Initiation Protocol (SIP)", RFC 3857,
        August 2004.

  [8]   Rosenberg, J., "An Extensible Markup Language (XML) Based
        Format for Watcher Information", RFC 3858, August 2004.

  [9]   Faltstrom, P. and M. Mealling, "The E.164 to Uniform Resource
        Identifiers (URI) Dynamic Delegation Discovery System (DDDS)
        Application (ENUM)", RFC 3761, April 2004.

  [10]  Rosenberg, J., "The Extensible Markup Language (XML)
        Configuration Access Protocol (XCAP)", RFC 4825, May 2007.

  [11]  Rosenberg, J., "Presence Authorization Rules", RFC 5025,
        October 2007.

  [12]  Rosenberg, J., "A Framework for Consent-Based Communications in
        the Session Initiation  Protocol (SIP)", Work in Progress,
        October 2007.

  [13]  Camarillo, G., "A Document Format for Requesting Consent", Work
        in Progress, October 2007.





Rosenberg & Jennings         Informational                     [Page 25]

RFC 5039                        SIP Spam                    January 2008


  [14]  Rosenberg, J., "A Framework for Application Interaction in the
        Session Initiation Protocol  (SIP)", Work in Progress,
        October 2005.

  [15]  Burger, E. and M. Dolly, "A Session Initiation Protocol (SIP)
        Event Package for Key Press Stimulus (KPML)", RFC 4730,
        November 2006.

  [16]  Rosenberg, J., "Applying Loose Routing to Session Initiation
        Protocol (SIP) User Agents  (UA)", Work in Progress, June 2007.

  [17]  Peterson, J. and C. Jennings, "Enhancements for Authenticated
        Identity Management in the Session Initiation Protocol (SIP)",
        RFC 4474, August 2006.

  [18]  Allman, E. and H. Katz, "SMTP Service Extension for Indicating
        the Responsible Submitter of an E-Mail Message", RFC 4405,
        April 2006.

  [19]  Lyon, J. and M. Wong, "Sender ID: Authenticating E-Mail",
        RFC 4406, April 2006.

  [20]  Lyon, J., "Purported Responsible Address in E-Mail Messages",
        RFC 4407, April 2006.

  [21]  Wong, M. and W. Schlitt, "Sender Policy Framework (SPF) for
        Authorizing Use of Domains in E-Mail, Version 1", RFC 4408,
        April 2006.

  [22]  Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
        Protocol Version 1.1", RFC 4346, April 2006.

  [23]  Allman, E., Callas, J., Delany, M., Libbey, M., Fenton, J., and
        M. Thomas, "DomainKeys Identified Mail (DKIM) Signatures",
        RFC 4871, May 2007.

  [24]  Ramsdell, B., "Secure/Multipurpose Internet Mail Extensions
        (S/MIME) Version 3.1 Message Specification", RFC 3851,
        July 2004.

  [25]  Elkins, M., Del Torto, D., Levien, R., and T. Roessler, "MIME
        Security with OpenPGP", RFC 3156, August 2001.

  [26]  Abadi, M., Burrows, M., Manasse, M., and T. Wobber, "Moderately
        Hard, Memory Bound Functions, NDSS 2003", February 2003.






Rosenberg & Jennings         Informational                     [Page 26]

RFC 5039                        SIP Spam                    January 2008


  [27]  Abadi, M., Burrows, M., Birrell, A., Dabek, F., and T. Wobber,
        "Bankable Postage for Network Services, Proceedings of the 8th
        Asian Computing Science Conference, Mumbai, India",
        December 2003.

  [28]  Clayton, R. and B. Laurie, "Proof of Work Proves not to Work,
        Third Annual Workshop on Economics and Information Security",
        May 2004.

Authors' Addresses

  Jonathan Rosenberg
  Cisco
  Edison, NJ
  US

  EMail: [email protected]
  URI:   http://www.jdrosen.net


  Cullen Jennings
  Cisco
  170 West Tasman Dr.
  San Jose, CA  95134
  US

  Phone: +1 408 421-9990
  EMail: [email protected]























Rosenberg & Jennings         Informational                     [Page 27]

RFC 5039                        SIP Spam                    January 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Rosenberg & Jennings         Informational                     [Page 28]