Network Working Group                                      S. Hollenbeck
Request for Comments: 4934                                VeriSign, Inc.
Obsoletes: 3734                                                 May 2007
Category: Standards Track


      Extensible Provisioning Protocol (EPP) Transport over TCP

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

Abstract

  This document describes how an Extensible Provisioning Protocol (EPP)
  session is mapped onto a single Transmission Control Protocol (TCP)
  connection.  This mapping requires use of the Transport Layer
  Security (TLS) protocol to protect information exchanged between an
  EPP client and an EPP server.  This document obsoletes RFC 3734.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . 2
    1.1.  Conventions Used in This Document . . . . . . . . . . . . . 2
  2.  Session Management  . . . . . . . . . . . . . . . . . . . . . . 2
  3.  Message Exchange  . . . . . . . . . . . . . . . . . . . . . . . 2
  4.  Data Unit Format  . . . . . . . . . . . . . . . . . . . . . . . 5
  5.  Transport Considerations  . . . . . . . . . . . . . . . . . . . 5
  6.  Internationalization Considerations . . . . . . . . . . . . . . 6
  7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 6
  8.  Security Considerations . . . . . . . . . . . . . . . . . . . . 6
  9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . 7
  10. References  . . . . . . . . . . . . . . . . . . . . . . . . . . 8
    10.1. Normative References  . . . . . . . . . . . . . . . . . . . 8
    10.2. Informative References  . . . . . . . . . . . . . . . . . . 8
  Appendix A.  Changes from RFC 3734  . . . . . . . . . . . . . . . . 9







Hollenbeck                  Standards Track                     [Page 1]

RFC 4934                   EPP TCP Transport                    May 2007


1.  Introduction

  This document describes how the Extensible Provisioning Protocol
  (EPP) is mapped onto a single client-server TCP connection.  Security
  services beyond those defined in EPP are provided by the Transport
  Layer Security (TLS) Protocol [RFC2246].  EPP is described in
  [RFC4930].  TCP is described in [RFC0793].  This document obsoletes
  RFC 3734 [RFC3734].

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  Session Management

  Mapping EPP session management facilities onto the TCP service is
  straightforward.  An EPP session first requires creation of a TCP
  connection between two peers, one that initiates the connection
  request and one that responds to the connection request.  The
  initiating peer is called the "client", and the responding peer is
  called the "server".  An EPP server MUST listen for TCP connection
  requests on a standard TCP port assigned by IANA.

  The client MUST issue an active OPEN call, specifying the TCP port
  number on which the server is listening for EPP connection attempts.
  The EPP server MUST return an EPP <greeting> to the client after the
  TCP session has been established.

  An EPP session is normally ended by the client issuing an EPP
  <logout> command.  A server receiving an EPP <logout> command MUST
  end the EPP session and close the TCP connection with a CLOSE call.
  A client MAY end an EPP session by issuing a CLOSE call.

  A server MAY limit the life span of an established TCP connection.
  EPP sessions that are inactive for more than a server-defined period
  MAY be ended by a server issuing a CLOSE call.  A server MAY also
  close TCP connections that have been open and active for longer than
  a server-defined period.

3.  Message Exchange

  With the exception of the EPP server greeting, EPP messages are
  initiated by the EPP client in the form of EPP commands.  An EPP
  server MUST return an EPP response to an EPP command on the same TCP
  connection that carried the command.  If the TCP connection is closed
  after a server receives and successfully processes a command but



Hollenbeck                  Standards Track                     [Page 2]

RFC 4934                   EPP TCP Transport                    May 2007


  before the response can be returned to the client, the server MAY
  attempt to undo the effects of the command to ensure a consistent
  state between the client and the server.  EPP commands are
  idempotent, so processing a command more than once produces the same
  net effect on the repository as successfully processing the command
  once.

  An EPP client streams EPP commands to an EPP server on an established
  TCP connection.  A client MUST NOT distribute commands from a single
  EPP session over multiple TCP connections.  A client MAY establish
  multiple TCP connections to support multiple EPP sessions with each
  session mapped to a single connection.  A server SHOULD limit a
  client to a maximum number of TCP connections based on server
  capabilities and operational load.

  EPP describes client-server interaction as a command-response
  exchange where the client sends one command to the server and the
  server returns one response to the client.  A client might be able to
  realize a slight performance gain by pipelining (sending more than
  one command before a response for the first command is received)
  commands with TCP transport, but this feature does not change the
  basic single command, single response operating mode of the core
  protocol.

  Each EPP data unit MUST contain a single EPP message.  Commands MUST
  be processed independently and in the same order as sent from the
  client.

  A server SHOULD impose a limit on the amount of time required for a
  client to issue a well-formed EPP command.  A server SHOULD end an
  EPP session and close an open TCP connection if a well-formed command
  is not received within the time limit.

  A general state machine for an EPP server is described in Section 2
  of [RFC4930].  General client-server message exchange using TCP
  transport is illustrated in Figure 1.















Hollenbeck                  Standards Track                     [Page 3]

RFC 4934                   EPP TCP Transport                    May 2007


                      Client                  Server
                 |                                     |
                 |                Connect              |
                 | >>------------------------------->> |
                 |                                     |
                 |             Send Greeting           |
                 | <<-------------------------------<< |
                 |                                     |
                 |             Send <login>            |
                 | >>------------------------------->> |
                 |                                     |
                 |             Send Response           |
                 | <<-------------------------------<< |
                 |                                     |
                 |             Send Command            |
                 | >>------------------------------->> |
                 |                                     |
                 |             Send Response           |
                 | <<-------------------------------<< |
                 |                                     |
                 |            Send Command X           |
                 | >>------------------------------->> |
                 |                                     |
                 |    Send Command Y                   |
                 | >>---------------+                  |
                 |                  |                  |
                 |                  |                  |
                 |            Send Response X          |
                 | <<---------------(---------------<< |
                 |                  |                  |
                 |                  |                  |
                 |                  +--------------->> |
                 |                                     |
                 |            Send Response Y          |
                 | <<-------------------------------<< |
                 |                                     |
                 |             Send <logout>           |
                 | >>------------------------------->> |
                 |                                     |
                 |     Send Response & Disconnect      |
                 | <<-------------------------------<< |
                 |                                     |

              Figure 1: TCP Client-Server Message Exchange







Hollenbeck                  Standards Track                     [Page 4]

RFC 4934                   EPP TCP Transport                    May 2007


4.  Data Unit Format

  The EPP data unit contains two fields: a 32-bit header that describes
  the total length of the data unit, and the EPP XML instance.  The
  length of the EPP XML instance is determined by subtracting four
  octets from the total length of the data unit.  A receiver must
  successfully read that many octets to retrieve the complete EPP XML
  instance before processing the EPP message.

  EPP Data Unit Format (one tick mark represents one bit position):

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Total Length                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         EPP XML Instance                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+//-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Total Length (32 bits): The total length of the EPP data unit
  measured in octets in network (big endian) byte order.  The octets
  contained in this field MUST be included in the total length
  calculation.

  EPP XML Instance (variable length): The EPP XML instance carried in
  the data unit.

5.  Transport Considerations

  Section 2.1 of the EPP core protocol specification [RFC4930]
  describes considerations to be addressed by protocol transport
  mappings.  This mapping addresses each of the considerations using a
  combination of features described in this document and features
  provided by TCP as follows:

  -  TCP includes features to provide reliability, flow control,
     ordered delivery, and congestion control.  Section 1.5 of RFC 793
     [RFC0793] describes these features in detail; congestion control
     principles are described further in RFC 2581 [RFC2581] and RFC
     2914 [RFC2914].  TCP is a connection-oriented protocol, and
     Section 2 of this mapping describes how EPP sessions are mapped to
     TCP connections.

  -  Sections 2 and 3 of this mapping describe how the stateful nature
     of EPP is preserved through managed sessions and controlled
     message exchanges.





Hollenbeck                  Standards Track                     [Page 5]

RFC 4934                   EPP TCP Transport                    May 2007


  -  Section 3 of this mapping notes that command pipelining is
     possible with TCP, though batch-oriented processing (combining
     multiple EPP commands in a single data unit) is not permitted.

  -  Section 4 of this mapping describes features to frame data units
     by explicitly specifying the number of octets used to represent a
     data unit.

6.  Internationalization Considerations

  This mapping does not introduce or present any internationalization
  or localization issues.

7.  IANA Considerations

  System port number 700 has been assigned by the IANA for mapping EPP
  onto TCP.

  User port number 3121 (which was used for development and test
  purposes) has been reclaimed by the IANA.

8.  Security Considerations

  EPP as-is provides only simple client authentication services using
  identifiers and plain text passwords.  A passive attack is sufficient
  to recover client identifiers and passwords, allowing trivial command
  forgery.  Protection against most other common attacks MUST be
  provided by other layered protocols.

  When layered over TCP, the Transport Layer Security (TLS) Protocol
  version 1.0 [RFC2246] or its successors (such as TLS 1.1 [RFC4346]),
  using the latest version supported by both parties, MUST be used to
  provide integrity, confidentiality, and mutual strong client-server
  authentication.  Implementations of TLS often contain a weak
  cryptographic mode that SHOULD NOT be used to protect EPP.  Clients
  and servers desiring high security SHOULD instead use TLS with
  cryptographic algorithms that are less susceptible to compromise.

  Mutual client and server authentication using the TLS Handshake
  Protocol is REQUIRED.  Signatures on the complete certification path
  for both client machine and server machine MUST be validated as part
  of the TLS handshake.  Information included in the client and server
  certificates, such as validity periods and machine names, MUST also
  be validated.  A complete description of the issues associated with
  certification path validation can be found in RFC 3280 [RFC3280].
  EPP service MUST NOT be granted until successful completion of a TLS





Hollenbeck                  Standards Track                     [Page 6]

RFC 4934                   EPP TCP Transport                    May 2007


  handshake and certificate validation, ensuring that both the client
  machine and the server machine have been authenticated and
  cryptographic protections are in place.

  Authentication using the TLS Handshake Protocol confirms the identity
  of the client and server machines.  EPP uses an additional client
  identifier and password to identify and authenticate the client's
  user identity to the server, supplementing the machine authentication
  provided by TLS.  The identity described in the client certificate
  and the identity described in the EPP client identifier can differ,
  as a server can assign multiple user identities for use from any
  particular client machine.  Acceptable certificate identities MUST be
  negotiated between client operators and server operators using an
  out-of-band mechanism.  Presented certificate identities MUST match
  negotiated identities before EPP service is granted.

  There is a risk of login credential compromise if a client does not
  properly identify a server before attempting to establish an EPP
  session.  Before sending login credentials to the server, a client
  needs to confirm that the server certificate received in the TLS
  handshake is an expected certificate for the server.  A client also
  needs to confirm that the greeting received from the server contains
  expected identification information.  After establishing a TLS
  session and receiving an EPP greeting on a protected TCP connection,
  clients MUST compare the certificate subject and/or subjectAltName to
  expected server identification information and abort processing if a
  mismatch is detected.  If certificate validation is successful, the
  client then needs to ensure that the information contained in the
  received certificate and greeting is consistent and appropriate.  As
  described above, both checks typically require an out-of-band
  exchange of information between client and server to identify
  expected values before in-band connections are attempted.

  EPP TCP servers are vulnerable to common TCP denial-of-service
  attacks including TCP SYN flooding.  Servers SHOULD take steps to
  minimize the impact of a denial-of-service attack using combinations
  of easily implemented solutions, such as deployment of firewall
  technology and border router filters to restrict inbound server
  access to known, trusted clients.

9.  Acknowledgements

  This document was originally written as an individual submission
  Internet-Draft.  The PROVREG working group later adopted it as a
  working group document and provided many invaluable comments and
  suggested improvements.  The author wishes to acknowledge the efforts
  of WG chairs Edward Lewis and Jaap Akkerhuis for their process and
  editorial contributions.



Hollenbeck                  Standards Track                     [Page 7]

RFC 4934                   EPP TCP Transport                    May 2007


  Specific suggestions that have been incorporated into this document
  were provided by Chris Bason, Randy Bush, Patrik Faltstrom, Ned
  Freed, James Gould, Dan Manley, and John Immordino.

10.  References

10.1.  Normative References

  [RFC0793]  Postel, J., "Transmission Control Protocol", STD 7,
             RFC 793, September 1981.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2246]  Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
             RFC 2246, January 1999.

  [RFC4930]  Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",
             RFC 4930, May 2007.

10.2.  Informative References

  [RFC2581]  Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
             Control", RFC 2581, April 1999.

  [RFC2914]  Floyd, S., "Congestion Control Principles", BCP 41,
             RFC 2914, September 2000.

  [RFC3280]  Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
             X.509 Public Key Infrastructure Certificate and
             Certificate Revocation List (CRL) Profile", RFC 3280,
             April 2002.

  [RFC3734]  Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
             Transport Over TCP", RFC 3734, March 2004.

  [RFC4346]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.1", RFC 4346, April 2006.













Hollenbeck                  Standards Track                     [Page 8]

RFC 4934                   EPP TCP Transport                    May 2007


Appendix A.  Changes from RFC 3734

  1.  Minor reformatting as a result of converting I-D source format
      from nroff to XML.

  2.  Updated Security Considerations to include strong authentication
      among the list of needed security services.  Removed paragraph
      describing replay attacks because it's not specific to TCP.  New
      text has been added to RFC 4930 to describe this issue.

  3.  Modified description of TCP operation as a result of IESG
      evaluation.

  4.  Moved RFCs 2581 and 2914 from the normative reference section to
      the informative reference section.

  5.  Added informative references to RFCs 3280 and 4346 and
      descriptive text for each as a result of IESG evaluation.

  6.  Revised security considerations as a result of IESG evaluation.

  7.  Updated EPP references.

Author's Address

  Scott Hollenbeck
  VeriSign, Inc.
  21345 Ridgetop Circle
  Dulles, VA  20166-6503
  US

  EMail: [email protected]



















Hollenbeck                  Standards Track                     [Page 9]

RFC 4934                   EPP TCP Transport                    May 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Hollenbeck                  Standards Track                    [Page 10]