Network Working Group                                    L. Martini, Ed.
Request for Comments: 4906                                 E. Rosen, Ed.
Category: Historic                                   Cisco Systems, Inc.
                                                       N. El-Aawar, Ed.
                                            Level 3 Communications, LLC
                                                              June 2007


                Transport of Layer 2 Frames Over MPLS

Status of This Memo

  This memo defines a Historic Document for the Internet community.  It
  does not specify an Internet standard of any kind.  Distribution of
  this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

Abstract

  This document describes methods for transporting the Protocol Data
  Units (PDUs) of layer 2 protocols such as Frame Relay, Asynchronous
  Transfer Mode (ATM) Adaption Layer 5 (AAL5), and Ethernet, and for
  providing a Synchronized Optical Network (SONET) circuit emulation
  service across an MPLS network.  This document describes the so-
  called "draft-martini" protocol, which has since been superseded by
  the Pseudowire Emulation Edge to Edge Working Group specifications
  described in RFC 4447 and related documents.





















Martini, et al.                 Historic                        [Page 1]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


Table of Contents

  1. Introduction ....................................................3
  2. Specification of Requirements ...................................3
  3. Special Note ....................................................3
  4. Tunnel Labels and Virtual Circuit (VC) Labels ...................4
  5. Protocol-Specific Details .......................................5
     5.1. Frame Relay ................................................5
     5.2. ATM ........................................................6
          5.2.1. ATM AAL5 VCC Transport ..............................6
          5.2.2. ATM Transparent Cell Transport ......................6
          5.2.3. ATM VCC and VPC Cell Transport ......................6
          5.2.4. OAM Cell Support ....................................6
          5.2.5. ILMI Support ........................................7
     5.3. Ethernet VLAN ..............................................7
     5.4. Ethernet ...................................................8
     5.5. HDLC .......................................................8
     5.6. PPP ........................................................8
  6. LDP .............................................................8
     6.1. Interface Parameters Field ................................10
     6.2. C Bit Handling Procedures .................................12
          6.2.1. VC Types for Which the Control Word is REQUIRED ....12
          6.2.2. VC Types for Which the Control Word is NOT
                 Mandatory ..........................................12
          6.2.3. Status Codes .......................................15
     6.3. LDP Label Withdrawal Procedures ...........................15
     6.4. Sequencing Considerations .................................15
          6.4.1. Label Mapping Advertisements .......................15
          6.4.2. Label Mapping Release ..............................16
  7. IANA Considerations ............................................16
  8. Security Considerations ........................................16
  9. Normative References ...........................................17
  10. Informative References ........................................18
  11. Co-Authors ....................................................18

















Martini, et al.                 Historic                        [Page 2]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


1.  Introduction

  In an MPLS network, it is possible to carry the Protocol Data Units
  (PDUs) of layer 2 protocols by prepending an MPLS label stack to
  these PDUs.  This document specifies the necessary label distribution
  procedures for accomplishing this using the encapsulation methods in
  [RFC4905].  We restrict discussion to the case of point-to-point
  transport.  Quality of service (QoS)-related issues are not discussed
  in this document.  This document describes methods for transporting a
  number of protocols; in some cases, transporting a particular
  protocol may have several modes of operation.  Each of these
  protocols and/or modes may be implemented independently.

  An accompanying document [CEM] also describes a method for
  transporting time division multiplexed (TDM) digital signals (TDM
  circuit emulation) over a packet-oriented MPLS network.  The
  transmission system for circuit-oriented TDM signals is the
  Synchronous Optical Network (SONET) [ANSI.T1.105] / Synchronous
  Digital Hierarchy (SDH) [ITU.G.707].  To support TDM traffic, which
  includes voice, data, and private leased line service, the MPLS
  network must emulate the circuit characteristics of SONET/SDH
  payloads.  MPLS labels and a new circuit emulation header are used to
  encapsulate TDM signals and provide the Circuit Emulation Service
  over MPLS (CEM).

2.  Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Special Note

  This document describes the so-called "draft-martini" protocol, which
  is used in many deployed implementations.  This document and its
  contents have since been superseded by the Pseudowire Emulation Edge
  to Edge Working Group specifications: [RFC4447], [RFC4385],
  [RFC4448], [RFC4717], [RFC4618], [RFC4619], [RFC4553], [RFC4842], and
  related documents.  This document serves as a documentation of
  current implementations, and MUST NOT be used for new
  implementations.  The PWE3 Label Distribution Protocol (LDP) control
  document [RFC4447], which is backward compatible with this document,
  MUST be used for all new implementations of this protocol.








Martini, et al.                 Historic                        [Page 3]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


4.  Tunnel Labels and Virtual Circuit (VC) Labels

  Suppose it is desired to transport layer 2 PDUs from ingress Label
  Switching Router (LSR) R1 to egress LSR R2, across an intervening
  MPLS network.  We assume that there is a Label Switched Path (LSP)
  from R1 to R2.  That is, we assume that R1 can cause a packet to be
  delivered to R2 by pushing some label onto the packet and sending the
  result to one of its adjacencies.  Call this label the "tunnel
  label", and the corresponding LSP the "tunnel LSP".

  The tunnel LSP merely gets packets from R1 to R2; the corresponding
  label doesn't tell R2 what to do with the payload.  In fact, if
  penultimate hop popping is used, R2 may never even see the
  corresponding label.  (If R1 itself is the penultimate hop, a tunnel
  label may not even get pushed on.)  Thus, if the payload is not an IP
  packet, there must be a label, which becomes visible to R2, that
  tells R2 how to treat the received packet.  Call this label the "VC
  label".

  So when R1 sends a layer 2 PDU to R2, it first pushes a VC label on
  its label stack, and then (if R1 is not adjacent to R2) pushes on a
  tunnel label.  The tunnel label gets the MPLS packet from R1 to R2;
  the VC label is not visible until the MPLS packet reaches R2.  R2's
  disposition of the packet is based on the VC label.

  Note that the tunnel could be a Generic Routing Encapsulation (GRE)-
  encapsulated MPLS tunnel between R1 and R2.  In this case, R1 would
  be adjacent to R2, and only the VC label would be used, and the
  intervening network need only carry IP packets.

  If the payload of the MPLS packet is, for example, an ATM AAL5 PDU,
  the VC label will generally correspond to a particular ATM VC at R2.
  That is, R2 needs to be able to infer from the VC label the outgoing
  interface and the VPI/VCI (Virtual Path Identifier / Virtual Circuit
  Identifier) value for the AAL5 PDU.  If the payload is a Frame Relay
  PDU, then R2 needs to be able to infer from the VC label the outgoing
  interface and the DLCI (Data Link Connection Identifier) value.  If
  the payload is an Ethernet frame, then R2 needs to be able to infer
  from the VC label the outgoing interface, and perhaps the VLAN
  identifier.  This process is unidirectional, and will be repeated
  independently for bidirectional operation.  It is REQUIRED to assign
  the same VC ID, and VC type for a given circuit in both directions.
  The group ID (see below) MUST NOT be required to match in both
  directions.  The transported frame MAY be modified when it reaches
  the egress router.  If the header of the transported layer 2 frame is
  modified, this MUST be done at the egress LSR only.





Martini, et al.                 Historic                        [Page 4]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


  Note that the VC label must always be at the bottom of the label
  stack, and the tunnel label, if present, must be immediately above
  the VC label.  Of course, as the packet is transported across the
  MPLS network, additional labels may be pushed on (and then popped
  off) as needed.  Even R1 itself may push on additional labels above
  the tunnel label.  If R1 and R2 are directly adjacent LSRs, then it
  may not be necessary to use a tunnel label at all.

  This document does not specify a method for distributing the tunnel
  label or any other labels that may appear above the VC label on the
  stack.  Any acceptable method of MPLS label distribution will do.

  This document does specify a method for assigning and distributing
  the VC label.  Static label assignment MAY be used, and
  implementations SHOULD provide support for this.  When signaling is
  used, the VC label MUST be distributed from R2 to R1 using LDP in the
  downstream unsolicited mode; this requires that an LDP session be
  created between R1 and R2.  It should be noted that this LDP session
  is not necessarily transported along the same path as the Layer 2
  PDUs [RFC3036].  In addition, when using LDP to distribute the VC
  label, liberal label retention mode SHOULD be used.  However, as
  required in [RFC3036], the label request operation (mainly used by
  conservative label retention mode) MUST be implemented.  VC labels
  MUST be allocated from the per-platform label space.

  Note that this technique allows an unbounded number of layer 2 "VCs"
  to be carried together in a single "tunnel".  Thus, it scales quite
  well in the network backbone.

  While this document currently defines the emulation of Frame Relay
  and ATM Permanent Virtual Circuit (PVC) services, it specifically
  does not preclude future enhancements to support switched service
  (Switched Virtual Circuit (SVC) and Switched Permanent Virtual
  Circuit (SPVC)) emulation.

5.  Protocol-Specific Details

5.1.  Frame Relay

  The Frame Relay PDUs are encapsulated according to the procedures
  defined in [RFC4905].  The MPLS edge LSR MUST provide Frame Relay PVC
  status signaling to the Frame Relay network.  If the MPLS edge LSR
  detects a service affecting condition, as defined in [Q.933] Annex
  A.5 cited in Implementation Agreement FRF.1.1, it MUST withdraw the
  label that corresponds to the frame relay DLCI.  The egress LSR
  SHOULD generate the corresponding errors and alarms as defined in
  [Q.933] on the egress Frame relay VC.




Martini, et al.                 Historic                        [Page 5]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


5.2.  ATM

5.2.1.  ATM AAL5 VCC Transport

  ATM AAL5 Common Part Convergence Sublayer - Service Data Units
  (CPCS-SDUs) are encapsulated according to [RFC4905] ATM AAL5 CPCS-SDU
  mode.  This mode allows the transport of ATM AAL5 CSPS-SDUs traveling
  on a particular ATM PVC across the MPLS network to another ATM PVC.

5.2.2.  ATM Transparent Cell Transport

  This mode is similar to the Ethernet port mode.  Every cell that is
  received at the ingress ATM port on the ingress LSR, R1, is
  encapsulated according to [RFC4905], ATM cell mode, and sent across
  the LSP to the egress LSR, R2.  This mode allows an ATM port to be
  connected to only one other ATM port.  [RFC4905] allows for grouping
  of multiple cells into a single MPLS frame.  Grouping of ATM cells is
  OPTIONAL for transmission at the ingress LSR, R1.  If the Egress LSR
  R2 supports cell concatenation, the ingress LSR, R1, should only
  concatenate cells up to the "Maximum Number of concatenated ATM
  cells" parameter received as part of the FEC element.

5.2.3.  ATM VCC and VPC Cell Transport

  This mode is similar to the ATM AAL5 Virtual Channel Connection (VCC)
  transport except that cells are transported.  Every cell that is
  received on a pre-defined ATM PVC or ATM Permanent Virtual Path
  (PVP), at the ingress ATM port on the ingress LSR, R1, is
  encapsulated according to [RFC4905], ATM cell mode, and sent across
  the LSP to the egress LSR R2.  Grouping of ATM cells is OPTIONAL for
  transmission at the ingress LSR, R1.  If the egress LSR R2 supports
  cell concatenation, the ingress LSR, R1, MUST only concatenate cells
  up to the "Maximum Number of concatenated ATM cells in a frame"
  parameter received as part of the FEC element.

5.2.4.  OAM Cell Support

  Operations and Management (OAM) cells MAY be transported on the VC
  LSP.  When the LSR is operating in AAL5 CPCS-SDU transport mode, if
  it does not support transport of ATM cells, the LSR MUST discard
  incoming MPLS frames on an ATM VC LSP that contain a VC label with
  the T bit set [RFC4905].  When operating in AAL5 SDU transport mode,
  an LSR that supports transport of OAM cells using the T bit defined
  in [RFC4905], or an LSR operating in any of the three cell transport
  modes, MUST follow the procedures outlined in [FAST] Section 8 for
  mode 0 only, in addition to the applicable procedures specified in
  [ITU.G.707].




Martini, et al.                 Historic                        [Page 6]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


5.2.4.1.  OAM Cell Emulation Mode

  AN LSR that does not support transport of OAM cells across an LSP MAY
  provide OAM support on ATM PVCs using the following procedures:

  A pair of LSRs MAY emulate a bidirectional ATM VC by two
  unidirectional LSPs.  If an F5 end-to-end OAM cell is received from a
  ATM VC, by either LSR that is transporting this ATM VC, with a
  loopback indication value of 1, and the LSR has a label mapping for
  the ATM VC, then the LSR MUST decrement the loopback indication value
  and loop back the cell on the ATM VC.  Otherwise, the loopback cell
  MUST be discarded by the LSR.

  The ingress LSR, R1, may also optionally be configured to
  periodically generate F5 end-to-end loopback OAM cells on a VC.  If
  the LSR fails to receive a response to an F5 end-to-end loopback OAM
  cell for a pre-defined period of time it MUST withdraw the label
  mapping for the VC.

  If an ingress LSR, R1, receives an AIS (Alarm Indication Signal) F5
  OAM cell, or R1 fails to receive a pre-defined number of the End-to-
  End loop OAM cells, or a physical interface goes down, it MUST
  withdraw the label mappings for all VCs associated with the failure.
  When a VC label mapping is withdrawn, the egress LSR, R2, MUST
  generate AIS F5 OAM cells on the VC associated with the withdrawn
  label mapping.  In this mode it is very useful to apply a unique
  group ID to each interface.  In the case where a physical interface
  goes down, a wild card label withdraw can be sent to all LDP
  neighbors, greatly reducing the signaling response time.

5.2.5.  ILMI Support

  An MPLS edge LSR MAY provide an ATM Integrated Local Management
  Interface (ILMI) to the ATM edge switch.  If an ingress LSR receives
  an ILMI message indicating that the ATM edge switch has deleted a VC,
  or if the physical interface goes down, it MUST withdraw the label
  mappings for all VCs associated with the failure.  When a VC label
  mapping is withdrawn, the egress LSR SHOULD notify its client of this
  failure by deleting the VC using ILMI.

5.3.  Ethernet VLAN

  The Ethernet frame will be encapsulated according to the procedures
  in [RFC4905].  It should be noted that if the VLAN identifier is
  modified by the egress LSR, according to the procedures outlined
  above, the Ethernet spanning tree protocol might fail to work
  properly.  If the LSR detects a failure on the Ethernet physical




Martini, et al.                 Historic                        [Page 7]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


  port, or the port is administratively disabled, it MUST withdraw the
  label mappings for all VCs associated with the port.

5.4.  Ethernet

  The Ethernet frame will be encapsulated according to the procedures
  in [RFC4905].  If the LSR detects a failure on the Ethernet physical
  port, or the port is administratively disabled, the corresponding VC
  label mapping MUST be withdrawn.

5.5.  HDLC

  HDLC (High-Level Data Link Control) frames are encapsulated according
  to the procedures in [RFC4905].  If the MPLS edge LSR detects that
  the physical link has failed, or the port is administratively
  disabled, it MUST withdraw the label mapping that corresponds to the
  HDLC link.

5.6.  PPP

  PPP frames are encapsulated according to the procedures in [RFC4905].
  If the MPLS edge LSR detects that the physical link has failed, or
  the port is administratively disabled, it MUST withdraw the label
  mapping that corresponds to the PPP link.

6.  LDP

  The VC label bindings are distributed using the LDP downstream
  unsolicited mode described in [RFC3036].  The LSRs will establish an
  LDP session using the Extended Discovery mechanism described in
  sections 2.4.2 and 2.5 of [RFC3036]; for this purpose, a new type of
  FEC element is defined.  The FEC element type is 128.  Only a single
  VC FEC element MUST be advertised per LDP VC label.  The Virtual
  Circuit FEC element is defined as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    VC tlv     |C|         VC Type             |VC info Length |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Group ID                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        VC ID                                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Interface parameters                    |
  |                              "                                |
  |                              "                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Martini, et al.                 Historic                        [Page 8]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


     - VC Type

       A 15-bit quantity containing a value that represents the type of
       VC.  Assigned values are:

               VC Type  Description

               0x0001   Frame Relay DLCI
               0x0002   ATM AAL5 VCC transport
               0x0003   ATM transparent cell transport
               0x0004   Ethernet VLAN
               0x0005   Ethernet
               0x0006   HDLC
               0x0007   PPP
               0x8008   CEM [CEM]
               0x0009   ATM VCC cell transport
               0x000A   ATM VPC cell transport

     - Control word bit (C)

       The highest order bit (C) of the VC type is used to flag the
       presence of a control word (defined in [RFC4905]) as follows:

               bit 15 = 1 control word present on this VC.
               bit 15 = 0 no control word present on this VC.

       Please see Section 6.2, "C Bit Handling Procedures", for further
       explanation.

     - VC information length

       Length of the VC ID field and the interface parameters field in
       octets.  If this value is 0, then it references all VCs using
       the specified group ID, and there is no VC ID present, nor any
       interface parameters.

     - Group ID

       An arbitrary 32-bit value, which represents a group of VCs that
       is used to create groups in the VC space.  The group ID is
       intended to be used as a port index, or a virtual tunnel index.
       To simplify configuration, a particular VC ID at ingress could
       be part of the virtual tunnel for transport to the egress
       router.  The group ID is very useful to send wild card label
       withdrawals to remote LSRs upon physical port failure.






Martini, et al.                 Historic                        [Page 9]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


     - VC ID

       A non-zero 32-bit connection ID that, together with the VC type,
       identifies a particular VC.

     - Interface parameters

       This variable length field is used to provide interface-specific
       parameters, such as interface MTU.

6.1.  Interface Parameters Field

  This field specifies interface-specific parameters.  When applicable,
  it MUST be used to validate that the LSRs, and the ingress and egress
  ports at the edges of the circuit, have the necessary capabilities to
  interoperate with each other.  The field structure is defined as
  follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Parameter ID |    Length     |    Variable Length Value      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Variable Length Value                 |
  |                             "                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The parameter ID is defined as follows:

  Parameter   ID Length    Description

      0x01         4       Interface MTU in octets.
      0x02         4       Maximum Number of concatenated ATM cells.
      0x03   up to 82      Optional Interface Description string.
      0x04         4       CEM [CEM] Payload Bytes.
      0x05         4       CEM options.

  The Length field is defined as the length of the interface parameter
  including the Parameter ID and Length field itself.  Processing of
  the interface parameters should continue when encountering unknown
  interface parameters, and they MUST be silently ignored.

     - Interface MTU

       A 2-octet value indicating the MTU in octets.  This is the
       Maximum Transmission Unit, excluding encapsulation overhead, of
       the egress packet interface that will be transmitting the
       decapsulated PDU that is received from the MPLS network.  This



Martini, et al.                 Historic                       [Page 10]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


       parameter is applicable only to VC types 1, 2, 4, 5, 6, and 7,
       and is REQUIRED for these VC types.  If this parameter does not
       match in both directions of a specific VC, that VC MUST NOT be
       enabled.

     - Maximum Number of concatenated ATM cells

       A 2-octet value specifying the maximum number of concatenated
       ATM cells that can be processed as a single PDU by the egress
       LSR.  An ingress LSR transmitting concatenated cells on this VC
       can concatenate a number of cells up to the value of this
       parameter, but MUST NOT exceed it.  This parameter is applicable
       only to VC types 3, 9, and 0x0a, and is REQUIRED for these VC
       types.  This parameter does not need to match in both directions
       of a specific VC.

     - Optional Interface Description string

       This arbitrary, OPTIONAL interface description string can be
       used to send an administrative description text string to the
       remote LSR.  This parameter is OPTIONAL, and is applicable to
       all VC types.  The interface description parameter string length
       is variable, and can be from 0 to 80 octets.

     - Payload Bytes

       A 2-octet value indicating the number of TDM payload octets
       contained in all packets on the CEM stream from 48 to 1,023
       octets.  All of the packets in a given CEM stream have the same
       number of payload bytes.  Note that there is a possibility that
       the packet size may exceed the Synchronous Payload Envelope
       (SPE) size in the case of an STS-1 SPE, which could cause two
       pointers to be needed in the CEM header, since the payload may
       contain two J1 bytes for consecutive SPEs.  For this reason, the
       number of payload bytes must be less than or equal to 783 for
       STS-1 SPEs.

     - CEM Options

       An optional 16-bit value of CEM flags.  See [CEM] for the
       definition of the bit values.










Martini, et al.                 Historic                       [Page 11]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


6.2.  C Bit Handling Procedures

6.2.1.  VC Types for Which the Control Word is REQUIRED

  The Label Mapping messages which are sent in order to set up these
  VCs MUST have c=1.  When a Label Mapping message for a VC of one of
  these types is received, and c=0, a Label Release MUST be sent, with
  an "Illegal C-bit" status code.  In this case, the VC will not come
  up.

6.2.2.  VC Types for Which the Control Word is NOT Mandatory

  If a system is capable of sending and receiving the control word on
  VC types for which the control word is not mandatory, then each such
  VC endpoint MUST be configurable with a parameter that specifies
  whether the use of the control word is PREFERRED or NOT PREFERRED.
  For each VC, there MUST be a default value of this parameter.  This
  specification does NOT state what the default value should be.

  If a system is NOT capable of sending and receiving the control word
  on VC types for which the control word is not mandatory, then it
  behaves exactly as if it were configured for the use of the control
  word to be NOT PREFERRED.

  If a Label Mapping message for the VC has already been received, but
  no Label Mapping message for the VC has yet been sent, then the
  procedure is the following:

    -i. If the received Label Mapping message has c=0, send a Label
        Mapping message with c=0, and the control word is not used.

   -ii. If the received Label Mapping message has c=1, and the VC is
        locally configured such that the use of the control word is
        preferred, then send a Label Mapping message with c=1, and the
        control word is used.

  -iii. If the received Label Mapping message has c=1, and the VC is
        locally configured such that the use of the control word is not
        preferred or the control word is not supported, then act as if
        no Label Mapping message for the VC had been received (i.e.,
        proceed to the next paragraph).

  If a Label Mapping message for the VC has not already been received
  (or if the received Label Mapping message had c=1, and either local
  configuration says that the use of the control word is not preferred
  or the control word is not supported), then send a Label Mapping
  message in which the c bit is set to correspond to the locally
  configured preference for use of the control word.  (That is, set c=1



Martini, et al.                 Historic                       [Page 12]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


  if locally configured to prefer the control word, set c=0 if locally
  configured to prefer not to use the control word or if the control
  word is not supported).

  The next action depends on what control message is next received for
  that VC.  The possibilities are:

    -i. A Label Mapping message with the same c bit value as specified
        in the Label Mapping message that was sent.  VC setup is now
        complete, and the control word is used if c=1 but not used if
        c=0.

   -ii. A Label Mapping message with c=1, but the Label Mapping message
        that was sent has c=0.  In this case, ignore the received Label
        Mapping message, and continue to wait for the next control
        message for the VC.

  -iii. A Label Mapping message with c=0, but the Label Mapping message
        that was sent has c=1.  In this case, send a Label Withdraw
        message with a "Wrong C-bit" status code, followed by a Label
        Mapping message that has c=0.  VC setup is now complete, and
        the control word is not used.

   -iv. A Label Withdraw message with the "Wrong C-bit" status code.
        Treat as a normal Label Withdraw, but do not respond.  Continue
        to wait for the next control message for the VC.

  If, at any time after a Label Mapping message has been received, a
  corresponding Label Withdraw or Release is received, the action taken
  is the same as for any Label Withdraw or Release that might be
  received at any time.

  If both endpoints prefer the use of the control word, this procedure
  will cause it to be used.  If either endpoint prefers not to use the
  control word, or does not support the control word, this procedure
  will cause it not to be used.  If one endpoint prefers to use the
  control word but the other does not, the one that prefers not to use
  it is has no extra protocol to execute; it just waits for a Label
  Mapping message that has c=0.

  The following diagram illustrates the above procedures:










Martini, et al.                 Historic                       [Page 13]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


                  ------------------
              Y   | Received Label |       N
           -------|  Mapping Msg?  |--------------
           |      ------------------             |
           |                                     |
       --------------                            |
       |            |                            |
       |            |                            |
    -------      -------                         |
    | C=0 |      | C=1 |                         |
    -------      -------                         |
       |            |                            |
       |            |                            |
       |    ----------------                     |
       |    | Control Word |     N               |
       |    |    Capable?  |-----------          |
       |    ----------------          |          |
       |          Y |                 |          |
       |            |                 |          |
       |   ----------------           |          |
       |   | Control Word |  N        |          |
       |   |  Preferred?  |----       |          |
       |   ----------------   |       |          |
       |          Y |         |       |          |
       |            |         |       |   ----------------
       |            |         |       |   | Control Word |
       |            |         |       |   |  Preferred?  |
       |            |         |       |   ----------------
       |            |         |       |     N |     Y |
       |            |         |       |       |       |
     Send         Send      Send    Send    Send    Send
      C=0          C=1       C=0     C=0     C=0     C=1
                              |       |       |       |
                           ----------------------------------
                           | If receive the same as sent,   |
                           | VC setup is complete.  If not: |
                           ----------------------------------
                              |       |       |       |
                             ------------------- -----------
                             |     Receive     | | Receive |
                             |       C=1       | |   C=0   |
                             ------------------- -----------
                                      |               |
                                Wait for the        Send
                                next message     Wrong C-Bit
                                                      |
                                             Send Label Mapping
                                              Message with C=0



Martini, et al.                 Historic                       [Page 14]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


6.2.3.  Status Codes

  RFC 3036 has a range of Status Code values, which are assigned by
  IANA on a First Come, First Served basis.  These are in the range
  0x20000000-0x3effffff.  The following new status codes are defined:

          0x20000001 "Illegal C-Bit"
          0x20000002 "Wrong C-Bit"

6.3.  LDP Label Withdrawal Procedures

  As mentioned above, the Group ID field can be used to withdraw all VC
  labels associated with a particular group ID.  This procedure is
  OPTIONAL, and if it is implemented, the LDP label withdraw message
  should be as follows: the VC information length field is set to 0,
  the VC ID field is not present, and the interface parameters field is
  not present.  For the purpose of this document, this is called the
  "wild card withdraw procedure", and all LSRs implementing this design
  are REQUIRED to accept such a withdraw message, but are not required
  to send it.

  The interface parameters field MUST NOT be present in any LDP VC
  label withdrawal message or release message.  A wild card release
  message MUST include only the group ID.  A Label Release message
  initiated from the imposition router must always include the VC ID.

6.4.  Sequencing Considerations

  In the case where the router considers the sequence number field in
  the control word, it is important to note the following when
  advertising labels.

6.4.1.  Label Mapping Advertisements

  After a label has been withdrawn by the disposition router and/or
  released by the imposition router, care must be taken to not re-
  advertise (reuse) the released label until the disposition router can
  be reasonably certain that old packets containing the released label
  no longer persist in the MPLS network.

  This precaution is required to prevent the imposition router from
  restarting packet forwarding with sequence number of 1 when it
  receives the same label mapping if there are still older packets
  persisting in the network with sequence number between 1 and 32768.
  For example, if there is a packet with sequence number=n where n is
  in the interval[1,32768] traveling through the network, it would be
  possible for the disposition router to receive that packet after it
  re-advertises the label.  Since the label has been released by the



Martini, et al.                 Historic                       [Page 15]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


  imposition router, the disposition router SHOULD be expecting the
  next packet to arrive with sequence number of 1.  Receipt of a packet
  with sequence number equal to n will result in n packets potentially
  being rejected by the disposition router until the imposition router
  imposes a sequence number of n+1 into a packet.  Possible methods to
  avoid this are for the disposition router to always advertise a
  different VC label, or for the disposition router to wait for a
  sufficient time before attempting to re-advertise a recently released
  label.  This is only an issue when sequence number processing at the
  disposition router is enabled.

6.4.2.  Label Mapping Release

  In situations where the imposition router wants to restart forwarding
  of packets with sequence number 1, the router shall 1) send a label
  mapping release to the disposition router, and 2) send a label
  mapping request to the disposition router.  When sequencing is
  supported, advertisement of a VC label in response to a label mapping
  request MUST also consider the issues discussed in Section 6.4.1.

7.  IANA Considerations

  As specified in this document, a Virtual Circuit FEC element contains
  the VC Type field.  VC Type value 0 is reserved.  VC Type values 1
  through 10 are defined in this document.  VC Type values 11 through
  63 are to be assigned by IANA using the "IETF Consensus" policy
  defined in RFC 2434.  VC Type values 64 through 127 are to be
  assigned by IANA, using the "First Come First Served" policy defined
  in RFC 2434.  VC Type values 128 through 32767 are vendor-specific,
  and values in this range are not to be assigned by IANA.

  As specified in this document, a Virtual Circuit FEC element contains
  the Interface Parameters field, which is a list of one or more
  parameters, and each parameter is identified by the Parameter ID
  field.  Parameter ID value 0 is reserved.  Parameter ID values 1
  through 5 are defined in this document.  Parameter ID values 6
  through 63 are to be assigned by IANA using the "IETF Consensus"
  policy defined in RFC 2434.  Parameter ID values 64 through 127 are
  to be assigned by IANA, using the "First Come First Served" policy
  defined in RFC 2434.  Parameter ID values 128 through 255 are
  vendor-specific, and values in this range are not to be assigned by
  IANA.

8.  Security Considerations

  This document does not affect the underlying security issues of MPLS,
  described in [RFC3032].  More detailed security considerations are
  also described in Section 8 of [RFC4447].



Martini, et al.                 Historic                       [Page 16]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


9.  Normative References

  [RFC2119]     Bradner, S., "Key words for use in RFCs to Indicate
                Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC4447]     Martini, L., Ed., Rosen, E., El-Aawar, N., Smith, T.,
                and G. Heron, "Pseudowire Setup and Maintenance Using
                the Label Distribution Protocol (LDP)", RFC 4447, April
                2006.

  [RFC4385]     Bryant, S., Swallow, G., Martini, L., and D. McPherson,
                "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word
                for Use over an MPLS PSN", RFC 4385, February 2006.

  [RFC4842]     Malis, A., Pate, P., Cohen, R., Ed., and D. Zelig,
                "Synchronous Optical Network/Synchronous Digital
                Hierarchy (SONET/SDH) Circuit Emulation over Packet
                (CEP)", RFC 4842, April 2007.

  [RFC4553]     Vainshtein, A., Ed., and YJ. Stein, Ed., "Structure-
                Agnostic Time Division Multiplexing (TDM) over Packet
                (SAToP)", RFC 4553, June 2006.

  [RFC4619]     Martini, L., Ed., Kawa, C., Ed., and A. Malis, Ed.,
                "Encapsulation Methods for Transport of Frame Relay
                over Multiprotocol Label Switching (MPLS) Networks",
                RFC 4619, September 2006.

  [RFC4717]     Martini, L., Jayakumar, J., Bocci, M., El-Aawar, N.,
                Brayley, J., and G. Koleyni, "Encapsulation Methods for
                Transport of Asynchronous Transfer Mode (ATM) over MPLS
                Networks", RFC 4717, December 2006.

  [RFC4618]     Martini, L., Rosen, E., Heron, G., and A. Malis,
                "Encapsulation Methods for Transport of PPP/High-Level
                Data Link Control (HDLC) over MPLS Networks", RFC 4618,
                September 2006.

  [RFC4448]     Martini, L., Ed., Rosen, E., El-Aawar, N., and G.
                Heron, "Encapsulation Methods for Transport of Ethernet
                over MPLS Networks", RFC 4448, April 2006.

  [RFC3036]     Andersson, L., Doolan, P., Feldman, N., Fredette, A.,
                and B. Thomas, "LDP Specification", RFC 3036, January
                2001.

  [Q.933]       ITU-T Recommendation Q.933, and Q.922 Specification for
                Frame Mode Basic call control, ITU Geneva 1995.



Martini, et al.                 Historic                       [Page 17]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


  [RFC3032]     Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
                Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
                Encoding", RFC 3032, January 2001.

  [ANSI.T1.105] American National Standards Institute, "Synchronous
                Optical Network Formats," ANSI T1.105-1995.

  [ITU.G.707]   ITU Recommendation G.707, "Network Node Interface For
                The Synchronous Digital Hierarchy", 1996.

  [RFC4905]     Martini, L., Ed., Rosen, E., Ed., and N. El-Aawar, Ed.,
                "Encapsulation Methods for Transport of Layer 2 Frames
                over MPLS Networks", RFC 4905, June 2007.

10.  Informative References

  [CEM]         Malis, A., Brayley, J., Vogelsang., S., Shirron, J.,
                and L. Martini, "SONET/SDH Circuit Emulation Service
                Over MPLS (CEM) Encapsulation", Work in Progress, June
                2007.

  [FAST]        ATM Forum, "Frame Based ATM over SONET/SDH Transport
                (FAST)", af-fbatm-0151.000, July 2000.

11.  Co-Authors

  Giles Heron
  Tellabs
  Abbey Place
  24-28 Easton Street
  High Wycombe
  Bucks
  HP11 1NT
  UK
  EMail: [email protected]


  Dimitri Stratton Vlachos
  Mazu Networks, Inc.
  125 Cambridgepark Drive
  Cambridge, MA 02140
  EMail: [email protected]









Martini, et al.                 Historic                       [Page 18]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


  Dan Tappan
  Cisco Systems, Inc.
  250 Apollo Drive
  Chelmsford, MA 01824
  EMail: [email protected]


  Jayakumar Jayakumar,
  Cisco Systems Inc.
  225, E.Tasman, MS-SJ3/3,
  San Jose, CA 95134
  EMail: [email protected]


  Alex Hamilton,
  Cisco Systems Inc.
  285 W. Tasman, MS-SJCI/3/4,
  San Jose, CA 95134
  EMail: [email protected]


  Steve Vogelsang
  Laurel Networks, Inc.
  Omega Corporate Center
  1300 Omega Drive
  Pittsburgh, PA 15205
  EMail: [email protected]


  John Shirron
  Laurel Networks, Inc.
  Omega Corporate Center
  1300 Omega Drive
  Pittsburgh, PA 15205
  EMail: [email protected]


  Toby Smith
  Network Appliance, Inc.
  800 Cranberry Woods Drive
  Suite 300
  Cranberry Township, PA 16066
  EMail: [email protected]








Martini, et al.                 Historic                       [Page 19]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


  Andrew G. Malis
  Tellabs
  90 Rio Robles Dr.
  San Jose, CA 95134
  EMail: [email protected]


  Vinai Sirkay
  Reliance Infocomm
  Dhirubai Ambani Knowledge City
  Navi Mumbai 400 709
  India
  EMail: [email protected]


  Vasile Radoaca
  Nortel Networks
  600  Technology Park
  Billerica MA 01821
  EMail: [email protected]


  Chris Liljenstolpe
  Alcatel
  11600 Sallie Mae Dr.
  9th Floor
  Reston, VA 20193
  EMail: [email protected]


  Dave Cooper
  Global Crossing
  960 Hamlin Court
  Sunnyvale, CA 94089
  EMail: [email protected]


  Kireeti Kompella
  Juniper Networks
  1194 N. Mathilda Ave
  Sunnyvale, CA 94089
  EMail: [email protected]









Martini, et al.                 Historic                       [Page 20]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


Authors' Addresses

  Luca Martini
  Cisco Systems, Inc.
  9155 East Nichols Avenue, Suite 400
  Englewood, CO 80112
  EMail: [email protected]


  Nasser El-Aawar
  Level 3 Communications, LLC.
  1025 Eldorado Blvd.
  Broomfield, CO 80021
  EMail: [email protected]


  Eric Rosen
  Cisco Systems, Inc.
  250 Apollo Drive
  Chelmsford, MA 01824
  EMail: [email protected]






























Martini, et al.                 Historic                       [Page 21]

RFC 4906         Transport of Layer 2 Frames Over MPLS         June 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Martini, et al.                 Historic                       [Page 22]