Network Working Group                                          M. Mathis
Request for Comments: 4898                                    J. Heffner
Category: Standards Track               Pittsburgh Supercomputing Center
                                                        R. Raghunarayan
                                                          Cisco Systems
                                                               May 2007


                     TCP Extended Statistics MIB

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

Abstract

  This document describes extended performance statistics for TCP.
  They are designed to use TCP's ideal vantage point to diagnose
  performance problems in both the network and the application.  If a
  network-based application is performing poorly, TCP can determine if
  the bottleneck is in the sender, the receiver, or the network itself.
  If the bottleneck is in the network, TCP can provide specific
  information about its nature.

Table of Contents

  1. Introduction ....................................................2
  2. The Internet-Standard Management Framework ......................2
  3. Overview ........................................................2
     3.1. MIB Initialization and Persistence .........................4
     3.2. Relationship to TCP Standards ..............................4
     3.3. Diagnosing SYN-Flood Denial-of-Service Attacks .............6
  4. TCP Extended Statistics MIB .....................................7
  5. Security Considerations ........................................69
  6. IANA Considerations ............................................70
  7. Normative References ...........................................70
  8. Informative References .........................................72
  9. Contributors ...................................................73
  10. Acknowledgments ...............................................73




Mathis, et al.              Standards Track                     [Page 1]

RFC 4898              TCP Extended Statistics MIB               May 2007


1.  Introduction

  This document describes extended performance statistics for TCP.
  They are designed to use TCP's ideal vantage point to diagnose
  performance problems in both the network and the application.  If a
  network-based application is performing poorly, TCP can determine if
  the bottleneck is in the sender, the receiver, or the network itself.
  If the bottleneck is in the network, TCP can provide specific
  information about its nature.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119.

  The Simple Network Management Protocol (SNMP) objects defined in this
  document extend TCP MIB, as specified in RFC 4022 [RFC4022].  In
  addition to several new scalars and other objects, it augments two
  tables and makes one clarification to RFC 4022.  Existing management
  stations for the TCP MIB are expected to be fully compatible with
  these clarifications.

2.  The Internet-Standard Management Framework

  For a detailed overview of the documents that describe the current
  Internet-Standard Management Framework, please refer to section 7 of
  RFC 3410 [RFC3410].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  MIB objects are generally
  accessed through the Simple Network Management Protocol (SNMP).
  Objects in the MIB are defined using the mechanisms defined in the
  Structure of Management Information (SMI).  This memo specifies a MIB
  module that is compliant to the SMIv2, which is described in STD 58,
  RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
  [RFC2580].

3.  Overview

  The TCP-ESTATS-MIB defined in this memo consists of two groups of
  scalars, seven tables, and two notifications:

  *  The first group of scalars contain statistics of the TCP protocol
     engine not covered in RFC 4022.  This group consists of the single
     scalar tcpEStatsListenerTableLastChange, which provides management
     stations with an easier mechanism to validate their listener
     caches.





Mathis, et al.              Standards Track                     [Page 2]

RFC 4898              TCP Extended Statistics MIB               May 2007


  *  The second group of scalars consist of knobs to enable and disable
     information collection by the tables containing connection-related
     statistics/information.  For example, the tcpEStatsControlPath
     object controls the activation of the tcpEStatsPathTable.  The
     tcpEStatsConnTableLatency object determines how long connection
     table rows are retained after a TCP connection transitions into
     the closed state.

  *  The tcpEStatsListenerTable augments tcpListenerTable in TCP-MIB
     [RFC4022] to provide additional information on the active TCP
     listeners on a device.  It supports objects to monitor and
     diagnose SYN-flood denial-of-service attacks as described below.

  *  The tcpEStatsConnectIdTable augments the tcpConnectionTable in
     TCP-MIB [RFC4022] to provide a mapping between connection 4-tuples
     (which index tcpConnectionTable) and an integer connection index,
     tcpEStatsConnectIndex.  The connection index is used to index into
     the five remaining tables in this MIB module, and is designed to
     facilitate rapid polling of multiple objects associated with one
     TCP connection.

  *  The tcpEStatsPerfTable contains objects that are useful for
     measuring TCP performance and first check problem diagnosis.

  *  The tcpEStatsPathTable contains objects that can be used to infer
     detailed behavior of the Internet path, such as the extent that
     there are segment losses or reordering, etc.

  *  The tcpEStatsStackTable contains objects that are most useful for
     determining how well the TCP control algorithms are coping with
     this particular path.

  *  The tcpEStatsAppTable provides objects that are useful for
     determining if the application using TCP is limiting TCP
     performance.

  *  The tcpEStatsTuneTable provides per-connection controls that can
     be used to work around a number of common problems that plague TCP
     over some paths.

  *  The two notifications defined in this MIB module are
     tcpEStatsEstablishNotification, indicating that a new connection
     has been accepted (or established, see below), and
     tcpEStatsCloseNotification, indicating that an existing connection
     has recently closed.






Mathis, et al.              Standards Track                     [Page 3]

RFC 4898              TCP Extended Statistics MIB               May 2007


3.1.  MIB Initialization and Persistence

  The TCP protocol itself is specifically designed not to preserve any
  state whatsoever across system reboots, and enforces this by
  requiring randomized Initial Sequence numbers and ephemeral ports
  under any conditions where segments from old connections might
  corrupt new connections following a reboot.

  All of the objects in the MIB MUST have the same persistence
  properties as the underlying TCP implementation.  On a reboot, all
  zero-based counters MUST be cleared, all dynamically created table
  rows MUST be deleted, and all read-write objects MUST be restored to
  their default values.  It is assumed that all TCP implementation have
  some initialization code (if nothing else, to set IP addresses) that
  has the opportunity to adjust tcpEStatsConnTableLatency and other
  read-write scalars controlling the creation of the various tables,
  before establishing the first TCP connection.  Implementations MAY
  also choose to make these control scalars persist across reboots.

  The ZeroBasedCounter32 and ZeroBasedCounter64 objects in the listener
  and connection tables are initialized to zero when the table row is
  created.

  The tcpEStatsConnTableLatency object determines how long connection
  table rows are retained after a TCP connection transitions into the
  closed state, to permit reading final connection completion
  statistics.  In RFC 4022 (TCP-MIB), the discussion of
  tcpConnectionTable row latency (page 9) the words "soon after" are
  understood to mean after tcpEStatsConnTableLatency, such that all
  rows of all tables associated with one connection are retained at
  least tcpEStatsConnTableLatency after connection close.  This
  clarification to RFC 4022 only applies when TCP-ESTATS-MIB is
  implemented.  If TCP-ESTATS-MIB is not implemented, RFC 4022 permits
  an unspecified delay between connection close and row deletion.

3.2.  Relationship to TCP Standards

  There are more than 70 RFCs and other documents that specify various
  aspects of the Transmission Control Protocol (TCP) [RFC4614].  While
  most protocols are completely specified in one or two documents, this
  has not proven to be feasible for TCP.  TCP implements a reliable
  end-to-end data transport service over a very weakly constrained IP
  datagram service.  The essential problem that TCP has to solve is
  balancing the applications need for fast and reliable data transport
  against the need to make fair, efficient, and equitable use of
  network resources, with only sparse information about the state of
  the network or its capabilities.




Mathis, et al.              Standards Track                     [Page 4]

RFC 4898              TCP Extended Statistics MIB               May 2007


  TCP maintains this balance through the use of many estimators and
  heuristics that regulate various aspects of the protocol.  For
  example, RFC 2988 describes how to calculate the retransmission timer
  (RTO) from the average and variance of the network round-trip-time
  (RTT), as estimated from the round-trip time sampled on some data
  segments.  Although these algorithms are standardized, they are a
  compromise which is optimal for only common Internet environments.
  Other estimators might yield better results (higher performance or
  more efficient use of the network) in some environments, particularly
  under uncommon conditions.

  It is the consensus of the community that nearly all of the
  estimators and heuristics used in TCP might be improved through
  further research and development.  For this reason, nearly all TCP
  documents leave some latitude for future improvements, for example,
  by the use of "SHOULD" instead of "MUST" [RFC2119].  Even standard
  algorithms that are required because they critically effect fairness
  or the dynamic stability of Internet congestion control, include some
  latitude for evolution.  As a consequence, there is considerable
  diversity in the details of the TCP implementations actually in use
  today.

  The fact that the underlying algorithms are not uniform makes it
  difficult to tightly specify a MIB.  We could have chosen the point
  of view that the MIB should publish precisely defined metrics of the
  network path, even if they are different from the estimators in use
  by TCP.  This would make the MIB more useful as a measurement tool,
  but less useful for understanding how any specific TCP implementation
  is interacting with the network path and upper protocol layers.  We
  chose instead to have the MIB expose the estimators and important
  states variables of the algorithms in use, without constraining the
  TCP implementation.

  As a consequence, the MIB objects are defined in terms of fairly
  abstract descriptions (e.g., round-trip time), but are intended to
  expose the actual estimators or other state variables as they are
  used in TCP implementations, possibly transformed (e.g., scaled or
  otherwise adjusted) to match the spirit of the object descriptions in
  this document.

  This may mean that MIB objects may not be exactly comparable between
  two different TCP implementations.  A general management station can
  only assume the abstract descriptions, which are useful for a general
  assessment of how TCP is functioning.  To a TCP implementer with
  detailed knowledge about the TCP implementation on a specific host,
  this MIB might be useful for debugging or evaluating the algorithms
  in their implementation.




Mathis, et al.              Standards Track                     [Page 5]

RFC 4898              TCP Extended Statistics MIB               May 2007


  Under no conditions is this MIB intended to constrain TCP to use (or
  exclude) any particular estimator, heuristic, algorithm, or
  implementation.

3.3.  Diagnosing SYN-Flood Denial-of-Service Attacks

  The tcpEStatsListenerTable is specifically designed to provide
  information that is useful for diagnosing SYN-flood Denial-of-Service
  attacks, where a server is overwhelmed by forged or otherwise
  malicious connection attempts.  There are several different
  techniques that can be used to defend against SYN-flooding but none
  are standardized [Edd06].  These different techniques all have the
  same basic characteristics that are instrumentable with a common set
  of objects, even though the techniques differ greatly in the details.

  All SYN-flood defenses avoid allocating significant resources (memory
  or CPU) to incoming (passive open) connections until the connections
  meet some liveness criteria (to defend against forged IP source
  addresses) and the server has sufficient resources to process the
  incoming request.  Note that allocating resources is an
  implementation-specific event that may not correspond to an
  observable protocol event (e.g., segments on the wire).  There are
  two general concepts that can be applied to all known SYN-flood
  defenses.  There is generally a well-defined event when a connection
  is allocated full resources, and a "backlog" -- a queue of embryonic
  connections that have been allocated only partial resources.

  In many implementations, incoming TCP connections are allocated
  resources as a side effect of the POSIX [POSIX] accept() call.  For
  this reason we use the terminology "accepting a connection" to refer
  to this event: committing sufficient network resources to process the
  incoming request.  Accepting a connection typically entails
  allocating memory for the protocol control block [RFC793], the per-
  connection table rows described in this MIB and CPU resources, such
  as process table entries or threads.

  Note that it is not useful to accept connections before they are
  ESTABLISHED, because this would create an easy opportunity for
  Denial-of-Service attacks, using forged source IP addresses.

  The backlog consists of connections that are in SYN-RCVD or
  ESTABLISHED states, that have not been accepted.  For purposes of
  this MIB, we assume that these connections have been allocated some
  resources (e.g., an embryonic protocol control block), but not full
  resources (e.g., do not yet have MIB table rows).






Mathis, et al.              Standards Track                     [Page 6]

RFC 4898              TCP Extended Statistics MIB               May 2007


  Note that some SYN-Flood defenses dispense with explicit SYN-RCVD
  state by cryptographically encoding the state in the ISS (initial
  sequence number sent) of the SYN-ACK (sometimes called a syn-cookie),
  and then using the sequence number of the first ACK to reconstruct
  the SYN-RCVD state before transitioning to the ESTABLISHED state.
  For these implementations there is no explicit representation of the
  SYN-RCVD state, and the backlog only consists of connections that are
  ESTABLISHED and are waiting to be ACCEPTED.

  Furthermore, most SYN-flood defenses have some mechanism to throttle
  connections that might otherwise overwhelm this endpoint.  They
  generally use some combination of discarding incoming SYNs and
  discarding connections already in the backlog.  This does not cause
  all connections from legitimate clients to fail, as long as the
  clients retransmit the SYN or first ACK as specified in RFC 793.
  Most diversity in SYN flood defenses arise from variations in these
  algorithms to limit load, and therefore cannot be instrumented with a
  common standard MIB.

  The Listen Table instruments all passively opened TCP connections in
  terms of observable protocol events (e.g., sent and received
  segments) and resource allocation events (entering the backlog and
  being accepted).  This approach eases generalization to SYN-flood
  mechanisms that use alternate TCP state transition diagrams and
  implicit mechanisms to encode some states.

4.  TCP Extended Statistics MIB

  This MIB module IMPORTS definitions from [RFC2578], [RFC2579],
  [RFC2580], [RFC2856], [RFC4022], and [RFC4502].  It uses REFERENCE
  clauses to refer to [RFC791], [RFC793], [RFC1122], [RFC1191],
  [RFC1323], [RFC2018], [RFC2581], [RFC2861], [RFC2883], [RFC2988],
  [RFC3168], [RFC3260], [RFC3517], [RFC3522], and [RFC3742].

  TCP-ESTATS-MIB DEFINITIONS ::= BEGIN
  IMPORTS
         MODULE-IDENTITY, Counter32, Integer32, Unsigned32,
         Gauge32, OBJECT-TYPE, mib-2,
         NOTIFICATION-TYPE
             FROM SNMPv2-SMI                 -- [RFC2578]
         MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
             FROM SNMPv2-CONF                -- [RFC2580]
         ZeroBasedCounter32
             FROM RMON2-MIB                  -- [RFC4502]
         ZeroBasedCounter64
             FROM HCNUM-TC                   -- [RFC2856]
         TEXTUAL-CONVENTION,
         DateAndTime, TruthValue, TimeStamp



Mathis, et al.              Standards Track                     [Page 7]

RFC 4898              TCP Extended Statistics MIB               May 2007


             FROM SNMPv2-TC                  -- [RFC2579]
         tcpListenerEntry, tcpConnectionEntry
             FROM TCP-MIB;                   -- [RFC4022]

  tcpEStatsMIB MODULE-IDENTITY
      LAST-UPDATED "200705180000Z"    -- 18 May 2007
      ORGANIZATION "IETF TSV Working Group"
      CONTACT-INFO
          "Matt Mathis
          John Heffner
          Web100 Project
          Pittsburgh Supercomputing Center
          300 S. Craig St.
          Pittsburgh, PA 15213
          Email: [email protected], [email protected]

          Rajiv Raghunarayan
          Cisco Systems Inc.
          San Jose, CA 95134
          Phone: 408 853 9612
          Email: [email protected]

          Jon Saperia
          84 Kettell Plain Road
          Stow, MA 01775
          Phone: 617-201-2655
          Email: [email protected] "
      DESCRIPTION
          "Documentation of TCP Extended Performance Instrumentation
           variables from the Web100 project.  [Web100]

           All of the objects in this MIB MUST have the same
           persistence properties as the underlying TCP implementation.
           On a reboot, all zero-based counters MUST be cleared, all
           dynamically created table rows MUST be deleted, and all
           read-write objects MUST be restored to their default values.

           It is assumed that all TCP implementation have some
           initialization code (if nothing else to set IP addresses)
           that has the opportunity to adjust tcpEStatsConnTableLatency
           and other read-write scalars controlling the creation of the
           various tables, before establishing the first TCP
           connection.  Implementations MAY also choose to make these
           control scalars persist across reboots.

           Copyright (C) The IETF Trust (2007).  This version
           of this MIB module is a part of RFC 4898; see the RFC
           itself for full legal notices."



Mathis, et al.              Standards Track                     [Page 8]

RFC 4898              TCP Extended Statistics MIB               May 2007


      REVISION "200705180000Z"    -- 18 May 2007
      DESCRIPTION
          "Initial version, published as RFC 4898."
          ::= { mib-2 156 }

  tcpEStatsNotifications OBJECT IDENTIFIER ::= { tcpEStatsMIB 0 }
  tcpEStatsMIBObjects    OBJECT IDENTIFIER ::= { tcpEStatsMIB 1 }
  tcpEStatsConformance   OBJECT IDENTIFIER ::= { tcpEStatsMIB 2 }
  tcpEStats             OBJECT IDENTIFIER ::= { tcpEStatsMIBObjects 1 }
  tcpEStatsControl      OBJECT IDENTIFIER ::= { tcpEStatsMIBObjects 2 }
  tcpEStatsScalar       OBJECT IDENTIFIER ::= { tcpEStatsMIBObjects 3 }

  --
  -- Textual Conventions
  --

  TcpEStatsNegotiated  ::= TEXTUAL-CONVENTION
     STATUS             current
     DESCRIPTION
         "Indicates if some optional TCP feature was negotiated.

          Enabled(1) indicates that the feature was successfully
          negotiated on, which generally requires both hosts to agree
          to use the feature.

          selfDisabled(2) indicates that the local host refused the
          feature because it is not implemented, configured off, or
          refused for some other reason, such as the lack of
          resources.

          peerDisabled(3) indicates that the local host was willing
          to negotiate the feature, but the remote host did not
          do so."
     SYNTAX INTEGER {
                  enabled(1),
                  selfDisabled(2),
                  peerDisabled(3)
          }

  --
  -- TCP Extended statistics scalars
  --

  tcpEStatsListenerTableLastChange OBJECT-TYPE
      SYNTAX     TimeStamp
      MAX-ACCESS read-only
      STATUS     current
      DESCRIPTION



Mathis, et al.              Standards Track                     [Page 9]

RFC 4898              TCP Extended Statistics MIB               May 2007


             "The value of sysUpTime at the time of the last
              creation or deletion of an entry in the tcpListenerTable.
              If the number of entries has been unchanged since the
              last re-initialization of the local network management
              subsystem, then this object contains a zero value."
      ::= { tcpEStatsScalar 3 }

  -- ================================================================
  --
  -- The tcpEStatsControl Group
  --

  -- The scalar objects in this group are used to control the
  -- activation and deactivation of the TCP Extended Statistics
  -- tables and notifications in this module.
  --

  tcpEStatsControlPath  OBJECT-TYPE
      SYNTAX          TruthValue
      MAX-ACCESS      read-write
      STATUS          current
      DESCRIPTION
          "Controls the activation of the TCP Path Statistics
          table.

          A value 'true' indicates that the TCP Path Statistics
          table is active, while 'false' indicates that the
          table is inactive."
      DEFVAL          { false }
      ::= { tcpEStatsControl 1 }

  tcpEStatsControlStack  OBJECT-TYPE
      SYNTAX          TruthValue
      MAX-ACCESS      read-write
      STATUS          current
      DESCRIPTION
          "Controls the activation of the TCP Stack Statistics
          table.

          A value 'true' indicates that the TCP Stack Statistics
          table is active, while 'false' indicates that the
          table is inactive."
      DEFVAL          { false }
      ::= { tcpEStatsControl 2 }

  tcpEStatsControlApp  OBJECT-TYPE
      SYNTAX          TruthValue
      MAX-ACCESS      read-write



Mathis, et al.              Standards Track                    [Page 10]

RFC 4898              TCP Extended Statistics MIB               May 2007


      STATUS          current
      DESCRIPTION
          "Controls the activation of the TCP Application
          Statistics table.

          A value 'true' indicates that the TCP Application
          Statistics table is active, while 'false' indicates
          that the table is inactive."
      DEFVAL          { false }
      ::= { tcpEStatsControl 3 }

  tcpEStatsControlTune  OBJECT-TYPE
      SYNTAX          TruthValue
      MAX-ACCESS      read-write
      STATUS          current
      DESCRIPTION
          "Controls the activation of the TCP Tuning table.

          A value 'true' indicates that the TCP Tuning
          table is active, while 'false' indicates that the
          table is inactive."
      DEFVAL          { false }
      ::= { tcpEStatsControl 4 }

  tcpEStatsControlNotify  OBJECT-TYPE
      SYNTAX          TruthValue
      MAX-ACCESS      read-write
      STATUS          current
      DESCRIPTION
          "Controls the generation of all notifications defined in
          this MIB.

          A value 'true' indicates that the notifications
          are active, while 'false' indicates that the
          notifications are inactive."
      DEFVAL          { false }
      ::= { tcpEStatsControl 5 }

  tcpEStatsConnTableLatency OBJECT-TYPE
      SYNTAX          Unsigned32
      UNITS           "seconds"
      MAX-ACCESS      read-write
      STATUS          current
      DESCRIPTION
          "Specifies the number of seconds that the entity will
           retain entries in the TCP connection tables, after the
           connection first enters the closed state.  The entity
           SHOULD provide a configuration option to enable



Mathis, et al.              Standards Track                    [Page 11]

RFC 4898              TCP Extended Statistics MIB               May 2007


           customization of this value.  A value of 0
           results in entries being removed from the tables as soon as
           the connection enters the closed state.  The value of
           this object pertains to the following tables:
             tcpEStatsConnectIdTable
             tcpEStatsPerfTable
             tcpEStatsPathTable
             tcpEStatsStackTable
             tcpEStatsAppTable
             tcpEStatsTuneTable"
      DEFVAL { 0 }
      ::= { tcpEStatsControl 6 }

  -- ================================================================
  --
  -- Listener Table
  --

  tcpEStatsListenerTable OBJECT-TYPE
      SYNTAX      SEQUENCE OF TcpEStatsListenerEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "This table contains information about TCP Listeners,
          in addition to the information maintained by the
          tcpListenerTable RFC 4022."
      ::= { tcpEStats 1 }

  tcpEStatsListenerEntry OBJECT-TYPE
      SYNTAX       TcpEStatsListenerEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
          "Each entry in the table contains information about
          a specific TCP Listener."
      AUGMENTS { tcpListenerEntry }
      ::= { tcpEStatsListenerTable 1 }

  TcpEStatsListenerEntry ::= SEQUENCE {
          tcpEStatsListenerStartTime         TimeStamp,
          tcpEStatsListenerSynRcvd           ZeroBasedCounter32,
          tcpEStatsListenerInitial           ZeroBasedCounter32,
          tcpEStatsListenerEstablished       ZeroBasedCounter32,
          tcpEStatsListenerAccepted          ZeroBasedCounter32,
          tcpEStatsListenerExceedBacklog     ZeroBasedCounter32,
          tcpEStatsListenerHCSynRcvd         ZeroBasedCounter64,
          tcpEStatsListenerHCInitial         ZeroBasedCounter64,
          tcpEStatsListenerHCEstablished     ZeroBasedCounter64,



Mathis, et al.              Standards Track                    [Page 12]

RFC 4898              TCP Extended Statistics MIB               May 2007


          tcpEStatsListenerHCAccepted        ZeroBasedCounter64,
          tcpEStatsListenerHCExceedBacklog   ZeroBasedCounter64,
          tcpEStatsListenerCurConns          Gauge32,
          tcpEStatsListenerMaxBacklog        Unsigned32,
          tcpEStatsListenerCurBacklog        Gauge32,
          tcpEStatsListenerCurEstabBacklog   Gauge32
  }

  tcpEStatsListenerStartTime   OBJECT-TYPE
      SYNTAX     TimeStamp
      MAX-ACCESS read-only
      STATUS     current
      DESCRIPTION
          "The value of sysUpTime at the time this listener was
          established.  If the current state was entered prior to
          the last re-initialization of the local network management
          subsystem, then this object contains a zero value."
      ::= { tcpEStatsListenerEntry 1 }

  tcpEStatsListenerSynRcvd OBJECT-TYPE
      SYNTAX     ZeroBasedCounter32
      MAX-ACCESS read-only
      STATUS     current
      DESCRIPTION
          "The number of SYNs which have been received for this
          listener.  The total number of failed connections for
          all reasons can be estimated to be tcpEStatsListenerSynRcvd
          minus tcpEStatsListenerAccepted and
          tcpEStatsListenerCurBacklog."
      ::= { tcpEStatsListenerEntry 2 }

  tcpEStatsListenerInitial     OBJECT-TYPE
     SYNTAX     ZeroBasedCounter32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
        "The total number of connections for which the Listener
         has allocated initial state and placed the
         connection in the backlog.  This may happen in the
         SYN-RCVD or ESTABLISHED states, depending on the
         implementation."
      ::= { tcpEStatsListenerEntry 3 }

  tcpEStatsListenerEstablished OBJECT-TYPE
      SYNTAX     ZeroBasedCounter32
      MAX-ACCESS read-only
      STATUS     current
      DESCRIPTION



Mathis, et al.              Standards Track                    [Page 13]

RFC 4898              TCP Extended Statistics MIB               May 2007


          "The number of connections that have been established to
          this endpoint (e.g., the number of first ACKs that have
          been received for this listener)."
      ::= { tcpEStatsListenerEntry 4 }

  tcpEStatsListenerAccepted    OBJECT-TYPE
     SYNTAX     ZeroBasedCounter32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
        "The total number of connections for which the Listener
         has successfully issued an accept, removing the connection
         from the backlog."
      ::= { tcpEStatsListenerEntry 5 }

  tcpEStatsListenerExceedBacklog OBJECT-TYPE
     SYNTAX     ZeroBasedCounter32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
        "The total number of connections dropped from the
        backlog by this listener due to all reasons.  This
        includes all connections that are allocated initial
        resources, but are not accepted for some reason."
      ::= { tcpEStatsListenerEntry 6 }

  tcpEStatsListenerHCSynRcvd OBJECT-TYPE
      SYNTAX     ZeroBasedCounter64
      MAX-ACCESS read-only
      STATUS     current
      DESCRIPTION
          "The number of SYNs that have been received for this
          listener on systems that can process (or reject) more
          than 1 million connections per second.  See
          tcpEStatsListenerSynRcvd."
      ::= { tcpEStatsListenerEntry 7 }

  tcpEStatsListenerHCInitial     OBJECT-TYPE
     SYNTAX     ZeroBasedCounter64
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
        "The total number of connections for which the Listener
         has allocated initial state and placed the connection
         in the backlog on systems that can process (or reject)
         more than 1 million connections per second.  See
         tcpEStatsListenerInitial."
      ::= { tcpEStatsListenerEntry 8 }



Mathis, et al.              Standards Track                    [Page 14]

RFC 4898              TCP Extended Statistics MIB               May 2007


  tcpEStatsListenerHCEstablished OBJECT-TYPE
      SYNTAX     ZeroBasedCounter64
      MAX-ACCESS read-only
      STATUS     current
      DESCRIPTION
          "The number of connections that have been established to
          this endpoint on systems that can process (or reject) more
          than 1 million connections per second.  See
          tcpEStatsListenerEstablished."
      ::= { tcpEStatsListenerEntry 9 }

  tcpEStatsListenerHCAccepted    OBJECT-TYPE
     SYNTAX     ZeroBasedCounter64
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
        "The total number of connections for which the Listener
         has successfully issued an accept, removing the connection
         from the backlog on systems that can process (or reject)
         more than 1 million connections per second.  See
         tcpEStatsListenerAccepted."
      ::= { tcpEStatsListenerEntry 10 }

  tcpEStatsListenerHCExceedBacklog OBJECT-TYPE
     SYNTAX     ZeroBasedCounter64
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
        "The total number of connections dropped from the
        backlog by this listener due to all reasons on
        systems that can process (or reject) more than
        1 million connections per second.  See
        tcpEStatsListenerExceedBacklog."
      ::= { tcpEStatsListenerEntry 11 }

  tcpEStatsListenerCurConns   OBJECT-TYPE
     SYNTAX     Gauge32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
        "The current number of connections in the ESTABLISHED
         state, which have also been accepted.  It excludes
         connections that have been established but not accepted
         because they are still subject to being discarded to
         shed load without explicit action by either endpoint."
      ::= { tcpEStatsListenerEntry 12 }

  tcpEStatsListenerMaxBacklog OBJECT-TYPE



Mathis, et al.              Standards Track                    [Page 15]

RFC 4898              TCP Extended Statistics MIB               May 2007


     SYNTAX     Unsigned32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
        "The maximum number of connections allowed in the
         backlog at one time."
      ::= { tcpEStatsListenerEntry 13 }

  tcpEStatsListenerCurBacklog OBJECT-TYPE
     SYNTAX     Gauge32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
        "The current number of connections that are in the backlog.
         This gauge includes connections in ESTABLISHED or
         SYN-RECEIVED states for which the Listener has not yet
         issued an accept.

         If this listener is using some technique to implicitly
         represent the SYN-RECEIVED states (e.g., by
         cryptographically encoding the state information in the
         initial sequence number, ISS), it MAY elect to exclude
         connections in the SYN-RECEIVED state from the backlog."
      ::= { tcpEStatsListenerEntry 14 }

  tcpEStatsListenerCurEstabBacklog OBJECT-TYPE
     SYNTAX     Gauge32
     MAX-ACCESS read-only
     STATUS     current
     DESCRIPTION
        "The current number of connections in the backlog that are
         in the ESTABLISHED state, but for which the Listener has
         not yet issued an accept."
      ::= { tcpEStatsListenerEntry 15 }


  -- ================================================================
  --
  -- TCP Connection ID Table
  --

  tcpEStatsConnectIdTable    OBJECT-TYPE
      SYNTAX      SEQUENCE OF TcpEStatsConnectIdEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "This table maps information that uniquely identifies
          each active TCP connection to the connection ID used by



Mathis, et al.              Standards Track                    [Page 16]

RFC 4898              TCP Extended Statistics MIB               May 2007


          other tables in this MIB Module.  It is an extension of
          tcpConnectionTable in RFC 4022.

          Entries are retained in this table for the number of
          seconds indicated by the tcpEStatsConnTableLatency
          object, after the TCP connection first enters the closed
          state."
      ::= { tcpEStats 2 }

  tcpEStatsConnectIdEntry  OBJECT-TYPE
      SYNTAX       TcpEStatsConnectIdEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
          "Each entry in this table maps a TCP connection
          4-tuple to a connection index."
      AUGMENTS { tcpConnectionEntry }
      ::= { tcpEStatsConnectIdTable 1 }

  TcpEStatsConnectIdEntry ::= SEQUENCE {
          tcpEStatsConnectIndex             Unsigned32
  }

  tcpEStatsConnectIndex  OBJECT-TYPE
      SYNTAX          Unsigned32 (1..4294967295)
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
          "A unique integer value assigned to each TCP Connection
          entry.

          The RECOMMENDED algorithm is to begin at 1 and increase to
          some implementation-specific maximum value and then start
          again at 1 skipping values already in use."
      ::= { tcpEStatsConnectIdEntry 1 }

  -- ================================================================
  --
  -- Basic TCP Performance Statistics
  --

  tcpEStatsPerfTable    OBJECT-TYPE
      SYNTAX      SEQUENCE OF TcpEStatsPerfEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION

          "This table contains objects that are useful for



Mathis, et al.              Standards Track                    [Page 17]

RFC 4898              TCP Extended Statistics MIB               May 2007


          measuring TCP performance and first line problem
          diagnosis.  Most objects in this table directly expose
          some TCP state variable or are easily implemented as
          simple functions (e.g., the maximum value) of TCP
          state variables.

          Entries are retained in this table for the number of
          seconds indicated by the tcpEStatsConnTableLatency
          object, after the TCP connection first enters the closed
          state."
      ::= { tcpEStats 3 }

  tcpEStatsPerfEntry  OBJECT-TYPE
      SYNTAX       TcpEStatsPerfEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
          "Each entry in this table has information about the
          characteristics of each active and recently closed TCP
          connection."
     INDEX { tcpEStatsConnectIndex }
     ::= { tcpEStatsPerfTable 1 }

  TcpEStatsPerfEntry ::= SEQUENCE {

          tcpEStatsPerfSegsOut                ZeroBasedCounter32,
          tcpEStatsPerfDataSegsOut            ZeroBasedCounter32,
          tcpEStatsPerfDataOctetsOut          ZeroBasedCounter32,
          tcpEStatsPerfHCDataOctetsOut        ZeroBasedCounter64,
          tcpEStatsPerfSegsRetrans            ZeroBasedCounter32,
          tcpEStatsPerfOctetsRetrans          ZeroBasedCounter32,
          tcpEStatsPerfSegsIn                 ZeroBasedCounter32,
          tcpEStatsPerfDataSegsIn             ZeroBasedCounter32,
          tcpEStatsPerfDataOctetsIn           ZeroBasedCounter32,
          tcpEStatsPerfHCDataOctetsIn         ZeroBasedCounter64,
          tcpEStatsPerfElapsedSecs            ZeroBasedCounter32,
          tcpEStatsPerfElapsedMicroSecs       ZeroBasedCounter32,
          tcpEStatsPerfStartTimeStamp         DateAndTime,
          tcpEStatsPerfCurMSS                 Gauge32,
          tcpEStatsPerfPipeSize               Gauge32,
          tcpEStatsPerfMaxPipeSize            Gauge32,
          tcpEStatsPerfSmoothedRTT            Gauge32,
          tcpEStatsPerfCurRTO                 Gauge32,
          tcpEStatsPerfCongSignals            ZeroBasedCounter32,
          tcpEStatsPerfCurCwnd                Gauge32,
          tcpEStatsPerfCurSsthresh            Gauge32,
          tcpEStatsPerfTimeouts               ZeroBasedCounter32,
          tcpEStatsPerfCurRwinSent            Gauge32,



Mathis, et al.              Standards Track                    [Page 18]

RFC 4898              TCP Extended Statistics MIB               May 2007


          tcpEStatsPerfMaxRwinSent            Gauge32,
          tcpEStatsPerfZeroRwinSent           ZeroBasedCounter32,
          tcpEStatsPerfCurRwinRcvd            Gauge32,
          tcpEStatsPerfMaxRwinRcvd            Gauge32,
          tcpEStatsPerfZeroRwinRcvd           ZeroBasedCounter32,
          tcpEStatsPerfSndLimTransRwin        ZeroBasedCounter32,
          tcpEStatsPerfSndLimTransCwnd        ZeroBasedCounter32,
          tcpEStatsPerfSndLimTransSnd         ZeroBasedCounter32,
          tcpEStatsPerfSndLimTimeRwin         ZeroBasedCounter32,
          tcpEStatsPerfSndLimTimeCwnd         ZeroBasedCounter32,
          tcpEStatsPerfSndLimTimeSnd          ZeroBasedCounter32
      }

  --
  --  The following objects provide statistics on aggregate
  --  segments and data sent on a connection.  These provide a
  --  direct measure of the Internet capacity consumed by a
  --  connection.
  --

  tcpEStatsPerfSegsOut  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The total number of segments sent."
      ::= { tcpEStatsPerfEntry 1 }

  tcpEStatsPerfDataSegsOut  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of segments sent containing a positive length
          data segment."
      ::= { tcpEStatsPerfEntry 2 }

  tcpEStatsPerfDataOctetsOut  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of octets of data contained in transmitted
          segments, including retransmitted data.  Note that this does
          not include TCP headers."
      ::= { tcpEStatsPerfEntry 3 }




Mathis, et al.              Standards Track                    [Page 19]

RFC 4898              TCP Extended Statistics MIB               May 2007


  tcpEStatsPerfHCDataOctetsOut  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter64
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of octets of data contained in transmitted
          segments, including retransmitted data, on systems that can
          transmit more than 10 million bits per second.  Note that
          this does not include TCP headers."
      ::= { tcpEStatsPerfEntry 4 }

  tcpEStatsPerfSegsRetrans  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of segments transmitted containing at least some
          retransmitted data."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsPerfEntry 5 }

  tcpEStatsPerfOctetsRetrans  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of octets retransmitted."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsPerfEntry 6 }

  tcpEStatsPerfSegsIn  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The total number of segments received."
      ::= { tcpEStatsPerfEntry 7 }

  tcpEStatsPerfDataSegsIn  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of segments received containing a positive



Mathis, et al.              Standards Track                    [Page 20]

RFC 4898              TCP Extended Statistics MIB               May 2007


          length data segment."
      ::= { tcpEStatsPerfEntry 8 }

  tcpEStatsPerfDataOctetsIn  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of octets contained in received data segments,
          including retransmitted data.  Note that this does not
          include TCP headers."
      ::= { tcpEStatsPerfEntry 9 }

  tcpEStatsPerfHCDataOctetsIn  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter64
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of octets contained in received data segments,
          including retransmitted data, on systems that can receive
          more than 10 million bits per second.  Note that this does
          not include TCP headers."
      ::= { tcpEStatsPerfEntry 10 }

  tcpEStatsPerfElapsedSecs  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "seconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The seconds part of the time elapsed between
          tcpEStatsPerfStartTimeStamp and the most recent protocol
          event (segment sent or received)."
      ::= { tcpEStatsPerfEntry 11 }

  tcpEStatsPerfElapsedMicroSecs  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "microseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The micro-second part of time elapsed between
          tcpEStatsPerfStartTimeStamp to the most recent protocol
          event (segment sent or received).  This may be updated in
          whatever time granularity is the system supports."
      ::= { tcpEStatsPerfEntry 12 }



Mathis, et al.              Standards Track                    [Page 21]

RFC 4898              TCP Extended Statistics MIB               May 2007


  tcpEStatsPerfStartTimeStamp  OBJECT-TYPE
      SYNTAX          DateAndTime
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "Time at which this row was created and all
          ZeroBasedCounters in the row were initialized to zero."
      ::= { tcpEStatsPerfEntry 13 }

  --
  --  The following objects can be used to fit minimal
  --  performance models to the TCP data rate.
  --

  tcpEStatsPerfCurMSS  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The current maximum segment size (MSS), in octets."
      REFERENCE
         "RFC 1122, Requirements for Internet Hosts - Communication
          Layers"
      ::= { tcpEStatsPerfEntry 14 }

  tcpEStatsPerfPipeSize  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The TCP senders current estimate of the number of
          unacknowledged data octets in the network.

          While not in recovery (e.g., while the receiver is not
          reporting missing data to the sender), this is precisely the
          same as 'Flight size' as defined in RFC 2581, which can be
          computed as SND.NXT minus SND.UNA. [RFC793]

          During recovery, the TCP sender has incomplete information
          about the state of the network (e.g., which segments are
          lost vs reordered, especially if the return path is also
          dropping TCP acknowledgments).  Current TCP standards do not
          mandate any specific algorithm for estimating the number of
          unacknowledged data octets in the network.

          RFC 3517 describes a conservative algorithm to use SACK



Mathis, et al.              Standards Track                    [Page 22]

RFC 4898              TCP Extended Statistics MIB               May 2007


          information to estimate the number of unacknowledged data
          octets in the network. tcpEStatsPerfPipeSize object SHOULD
          be the same as 'pipe' as defined in RFC 3517 if it is
          implemented. (Note that while not in recovery the pipe
          algorithm yields the same values as flight size).

          If RFC 3517 is not implemented, the data octets in flight
          SHOULD be estimated as SND.NXT minus SND.UNA adjusted by
          some measure of the data that has left the network and
          retransmitted data.  For example, with Reno or NewReno style
          TCP, the number of duplicate acknowledgment is used to
          count the number of segments that have left the network.
          That is,
          PipeSize=SND.NXT-SND.UNA+(retransmits-dupacks)*CurMSS"
      REFERENCE
         "RFC 793, RFC 2581, RFC 3517"
      ::= { tcpEStatsPerfEntry 15 }

  tcpEStatsPerfMaxPipeSize  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The maximum value of tcpEStatsPerfPipeSize, for this
          connection."
      REFERENCE
         "RFC 793, RFC 2581, RFC 3517"
      ::= { tcpEStatsPerfEntry 16 }

  tcpEStatsPerfSmoothedRTT  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The smoothed round trip time used in calculation of the
          RTO. See SRTT in [RFC2988]."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsPerfEntry 17 }

  tcpEStatsPerfCurRTO  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION



Mathis, et al.              Standards Track                    [Page 23]

RFC 4898              TCP Extended Statistics MIB               May 2007


         "The current value of the retransmit timer RTO."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsPerfEntry 18 }

  tcpEStatsPerfCongSignals  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of multiplicative downward congestion window
          adjustments due to all forms of congestion signals,
          including Fast Retransmit, Explicit Congestion Notification
          (ECN), and timeouts.  This object summarizes all events that
          invoke the MD portion of Additive Increase Multiplicative
          Decrease (AIMD) congestion control, and as such is the best
          indicator of how a cwnd is being affected by congestion.

          Note that retransmission timeouts multiplicatively reduce
          the window implicitly by setting ssthresh, and SHOULD be
          included in tcpEStatsPerfCongSignals.  In order to minimize
          spurious congestion indications due to out-of-order
          segments, tcpEStatsPerfCongSignals SHOULD be incremented in
          association with the Fast Retransmit algorithm."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsPerfEntry 19 }

  tcpEStatsPerfCurCwnd  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The current congestion window, in octets."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsPerfEntry 20 }

  tcpEStatsPerfCurSsthresh  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The current slow start threshold in octets."
      REFERENCE
         "RFC 2581, TCP Congestion Control"



Mathis, et al.              Standards Track                    [Page 24]

RFC 4898              TCP Extended Statistics MIB               May 2007


      ::= { tcpEStatsPerfEntry 21 }

  tcpEStatsPerfTimeouts  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of times the retransmit timeout has expired when
          the RTO backoff multiplier is equal to one."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsPerfEntry 22 }

  --
  --  The following objects instrument receiver window updates
  --  sent by the local receiver to the remote sender.  These can
  --  be used to determine if the local receiver is exerting flow
  --  control back pressure on the remote sender.
  --

  tcpEStatsPerfCurRwinSent  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The most recent window advertisement sent, in octets."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsPerfEntry 23 }

  tcpEStatsPerfMaxRwinSent  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The maximum window advertisement sent, in octets."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsPerfEntry 24 }

  tcpEStatsPerfZeroRwinSent  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of acknowledgments sent announcing a zero



Mathis, et al.              Standards Track                    [Page 25]

RFC 4898              TCP Extended Statistics MIB               May 2007


          receive window, when the previously announced window was
          not zero."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsPerfEntry 25 }

  --
  --  The following objects instrument receiver window updates
  --  from the far end-system to determine if the remote receiver
  --  has sufficient buffer space or is exerting flow-control
  --  back pressure on the local sender.
  --

  tcpEStatsPerfCurRwinRcvd  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The most recent window advertisement received, in octets."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsPerfEntry 26 }

  tcpEStatsPerfMaxRwinRcvd  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The maximum window advertisement received, in octets."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsPerfEntry 27 }

  tcpEStatsPerfZeroRwinRcvd  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of acknowledgments received announcing a zero
          receive window, when the previously announced window was
          not zero."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsPerfEntry 28 }

  --



Mathis, et al.              Standards Track                    [Page 26]

RFC 4898              TCP Extended Statistics MIB               May 2007


  --  The following optional objects can be used to quickly
  --  identify which subsystems are limiting TCP performance.
  --  There are three parallel pairs of instruments that measure
  --  the extent to which TCP performance is limited by the
  --  announced receiver window (indicating a receiver
  --  bottleneck), the current congestion window or
  --  retransmission timeout (indicating a path bottleneck) and
  --  all others events (indicating a sender bottleneck).
  --
  --  These instruments SHOULD be updated every time the TCP
  --  output routine stops sending data.  The elapsed time since
  --  the previous stop is accumulated into the appropriate
  --  object as determined by the previous stop reason (e.g.,
  --  stop state).  The current stop reason determines which timer
  --  will be updated the next time TCP output stops.
  --
  --  Since there is no explicit stop at the beginning of a
  --  timeout, it is necessary to retroactively reclassify the
  --  previous stop as 'Congestion Limited'.
  --

  tcpEStatsPerfSndLimTransRwin  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of transitions into the 'Receiver Limited' state
          from either the 'Congestion Limited' or 'Sender Limited'
          states.  This state is entered whenever TCP transmission
          stops because the sender has filled the announced receiver
          window, i.e., when SND.NXT has advanced to SND.UNA +
          SND.WND - 1 as described in RFC 793."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsPerfEntry 31 }

  tcpEStatsPerfSndLimTransCwnd  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of transitions into the 'Congestion Limited'
          state from either the 'Receiver Limited' or 'Sender
          Limited' states.  This state is entered whenever TCP
          transmission stops because the sender has reached some
          limit defined by congestion control (e.g., cwnd) or other
          algorithms (retransmission timeouts) designed to control
          network traffic.  See the definition of 'CONGESTION WINDOW'



Mathis, et al.              Standards Track                    [Page 27]

RFC 4898              TCP Extended Statistics MIB               May 2007


          in RFC 2581."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsPerfEntry 32 }

  tcpEStatsPerfSndLimTransSnd  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of transitions into the 'Sender Limited' state
          from either the 'Receiver Limited' or 'Congestion Limited'
          states.  This state is entered whenever TCP transmission
          stops due to some sender limit such as running out of
          application data or other resources and the Karn algorithm.
          When TCP stops sending data for any reason, which cannot be
          classified as Receiver Limited or Congestion Limited, it
          MUST be treated as Sender Limited."
      ::= { tcpEStatsPerfEntry 33 }

  tcpEStatsPerfSndLimTimeRwin  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The cumulative time spent in the 'Receiver Limited' state.
          See tcpEStatsPerfSndLimTransRwin."
      ::= { tcpEStatsPerfEntry 34 }

  tcpEStatsPerfSndLimTimeCwnd  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The cumulative time spent in the 'Congestion Limited'
          state.  See tcpEStatsPerfSndLimTransCwnd.  When there is a
          retransmission timeout, it SHOULD be counted in
          tcpEStatsPerfSndLimTimeCwnd (and not the cumulative time
          for some other state.)"
      ::= { tcpEStatsPerfEntry 35 }

  tcpEStatsPerfSndLimTimeSnd  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current



Mathis, et al.              Standards Track                    [Page 28]

RFC 4898              TCP Extended Statistics MIB               May 2007


      DESCRIPTION
         "The cumulative time spent in the 'Sender Limited' state.
          See tcpEStatsPerfSndLimTransSnd."
      ::= { tcpEStatsPerfEntry 36 }

  -- ================================================================
  --
  -- Statistics for diagnosing path problems
  --

  tcpEStatsPathTable    OBJECT-TYPE
      SYNTAX      SEQUENCE OF TcpEStatsPathEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "This table contains objects that can be used to infer
          detailed behavior of the Internet path, such as the
          extent that there is reordering, ECN bits, and if
          RTT fluctuations are correlated to losses.

          Entries are retained in this table for the number of
          seconds indicated by the tcpEStatsConnTableLatency
          object, after the TCP connection first enters the closed
          state."
      ::= { tcpEStats 4 }

  tcpEStatsPathEntry  OBJECT-TYPE
      SYNTAX       TcpEStatsPathEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
          "Each entry in this table has information about the
          characteristics of each active and recently closed TCP
          connection."
     INDEX { tcpEStatsConnectIndex }
     ::= { tcpEStatsPathTable 1 }

  TcpEStatsPathEntry ::= SEQUENCE {

          tcpEStatsPathRetranThresh           Gauge32,
          tcpEStatsPathNonRecovDAEpisodes     ZeroBasedCounter32,
          tcpEStatsPathSumOctetsReordered     ZeroBasedCounter32,
          tcpEStatsPathNonRecovDA             ZeroBasedCounter32,
          tcpEStatsPathSampleRTT              Gauge32,
          tcpEStatsPathRTTVar                 Gauge32,
          tcpEStatsPathMaxRTT                 Gauge32,
          tcpEStatsPathMinRTT                 Gauge32,
          tcpEStatsPathSumRTT                 ZeroBasedCounter32,



Mathis, et al.              Standards Track                    [Page 29]

RFC 4898              TCP Extended Statistics MIB               May 2007


          tcpEStatsPathHCSumRTT               ZeroBasedCounter64,
          tcpEStatsPathCountRTT               ZeroBasedCounter32,
          tcpEStatsPathMaxRTO                 Gauge32,
          tcpEStatsPathMinRTO                 Gauge32,
          tcpEStatsPathIpTtl                  Unsigned32,
          tcpEStatsPathIpTosIn                OCTET STRING,
          tcpEStatsPathIpTosOut               OCTET STRING,
          tcpEStatsPathPreCongSumCwnd         ZeroBasedCounter32,
          tcpEStatsPathPreCongSumRTT          ZeroBasedCounter32,
          tcpEStatsPathPostCongSumRTT         ZeroBasedCounter32,
          tcpEStatsPathPostCongCountRTT       ZeroBasedCounter32,
          tcpEStatsPathECNsignals             ZeroBasedCounter32,
          tcpEStatsPathDupAckEpisodes         ZeroBasedCounter32,
          tcpEStatsPathRcvRTT                 Gauge32,
          tcpEStatsPathDupAcksOut             ZeroBasedCounter32,
          tcpEStatsPathCERcvd                 ZeroBasedCounter32,
          tcpEStatsPathECESent                ZeroBasedCounter32
      }

  --
  --  The following optional objects can be used to infer segment
  --  reordering on the path from the local sender to the remote
  --  receiver.
  --

  tcpEStatsPathRetranThresh  OBJECT-TYPE
      SYNTAX          Gauge32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of duplicate acknowledgments required to trigger
          Fast Retransmit.  Note that although this is constant in
          traditional Reno TCP implementations, it is adaptive in
          many newer TCPs."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsPathEntry 1 }

  tcpEStatsPathNonRecovDAEpisodes  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of duplicate acknowledgment episodes that did
          not trigger a Fast Retransmit because ACK advanced prior to
          the number of duplicate acknowledgments reaching
          RetranThresh.




Mathis, et al.              Standards Track                    [Page 30]

RFC 4898              TCP Extended Statistics MIB               May 2007


          In many implementations this is the number of times the
          'dupacks' counter is set to zero when it is non-zero but
          less than RetranThresh.

          Note that the change in tcpEStatsPathNonRecovDAEpisodes
          divided by the change in tcpEStatsPerfDataSegsOut is an
          estimate of the frequency of data reordering on the forward
          path over some interval."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsPathEntry 2 }

  tcpEStatsPathSumOctetsReordered  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The sum of the amounts SND.UNA advances on the
          acknowledgment which ends a dup-ack episode without a
          retransmission.

          Note the change in tcpEStatsPathSumOctetsReordered divided
          by the change in tcpEStatsPathNonRecovDAEpisodes is an
          estimates of the average reordering distance, over some
          interval."
      ::= { tcpEStatsPathEntry 3 }

  tcpEStatsPathNonRecovDA  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "Duplicate acks (or SACKS) that did not trigger a Fast
          Retransmit because ACK advanced prior to the number of
          duplicate acknowledgments reaching RetranThresh.

          In many implementations, this is the sum of the 'dupacks'
          counter, just before it is set to zero because ACK advanced
          without a Fast Retransmit.

          Note that the change in tcpEStatsPathNonRecovDA divided by
          the change in tcpEStatsPathNonRecovDAEpisodes is an
          estimate of the average reordering distance in segments
          over some interval."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsPathEntry 4 }



Mathis, et al.              Standards Track                    [Page 31]

RFC 4898              TCP Extended Statistics MIB               May 2007


  --
  --  The following optional objects instrument the round trip
  --  time estimator and the retransmission timeout timer.
  --

  tcpEStatsPathSampleRTT  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The most recent raw round trip time measurement used in
          calculation of the RTO."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsPathEntry 11 }

  tcpEStatsPathRTTVar  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The round trip time variation used in calculation of the
          RTO.  See RTTVAR in [RFC2988]."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsPathEntry 12 }

  tcpEStatsPathMaxRTT  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The maximum sampled round trip time."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsPathEntry 13 }

  tcpEStatsPathMinRTT  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The minimum sampled round trip time."
      REFERENCE



Mathis, et al.              Standards Track                    [Page 32]

RFC 4898              TCP Extended Statistics MIB               May 2007


         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsPathEntry 14 }

  tcpEStatsPathSumRTT  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The sum of all sampled round trip times.

          Note that the change in tcpEStatsPathSumRTT divided by the
          change in tcpEStatsPathCountRTT is the mean RTT, uniformly
          averaged over an enter interval."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsPathEntry 15 }

  tcpEStatsPathHCSumRTT  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter64
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The sum of all sampled round trip times, on all systems
          that implement multiple concurrent RTT measurements.

          Note that the change in tcpEStatsPathHCSumRTT divided by
          the change in tcpEStatsPathCountRTT is the mean RTT,
          uniformly averaged over an enter interval."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsPathEntry 16 }

  tcpEStatsPathCountRTT  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of round trip time samples included in
          tcpEStatsPathSumRTT and tcpEStatsPathHCSumRTT."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsPathEntry 17 }

  tcpEStatsPathMaxRTO  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "milliseconds"



Mathis, et al.              Standards Track                    [Page 33]

RFC 4898              TCP Extended Statistics MIB               May 2007


      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The maximum value of the retransmit timer RTO."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsPathEntry 18 }

  tcpEStatsPathMinRTO  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The minimum value of the retransmit timer RTO."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsPathEntry 19 }

  --
  --  The following optional objects provide information about
  --  how TCP is using the IP layer.
  --

  tcpEStatsPathIpTtl  OBJECT-TYPE
      SYNTAX          Unsigned32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The value of the TTL field carried in the most recently
          received IP header.  This is sometimes useful to detect
          changing or unstable routes."
      REFERENCE
         "RFC 791, Internet Protocol"
      ::= { tcpEStatsPathEntry 20 }

  tcpEStatsPathIpTosIn  OBJECT-TYPE
      SYNTAX          OCTET STRING (SIZE(1))
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The value of the IPv4 Type of Service octet, or the IPv6
          traffic class octet, carried in the most recently received
          IP header.

          This is useful to diagnose interactions between TCP and any
          IP layer packet scheduling and delivery policy, which might
          be in effect to implement Diffserv."



Mathis, et al.              Standards Track                    [Page 34]

RFC 4898              TCP Extended Statistics MIB               May 2007


      REFERENCE
         "RFC 3260, New Terminology and Clarifications for Diffserv"
      ::= { tcpEStatsPathEntry 21 }

  tcpEStatsPathIpTosOut  OBJECT-TYPE
      SYNTAX          OCTET STRING (SIZE(1))
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The value of the IPv4 Type Of Service octet, or the IPv6
          traffic class octet, carried in the most recently
          transmitted IP header.

          This is useful to diagnose interactions between TCP and any
          IP layer packet scheduling and delivery policy, which might
          be in effect to implement Diffserv."
      REFERENCE
         "RFC 3260, New Terminology and Clarifications for Diffserv"
      ::= { tcpEStatsPathEntry 22 }

  --
  --  The following optional objects characterize the congestion
  --  feedback signals by collecting statistics on how the
  --  congestion events are correlated to losses, changes in RTT
  --  and other protocol events.
  --

  tcpEStatsPathPreCongSumCwnd  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The sum of the values of the congestion window, in octets,
          captured each time a congestion signal is received.  This
          MUST be updated each time tcpEStatsPerfCongSignals is
          incremented, such that the change in
          tcpEStatsPathPreCongSumCwnd divided by the change in
          tcpEStatsPerfCongSignals is the average window (over some
          interval) just prior to a congestion signal."
      ::= { tcpEStatsPathEntry 23 }

  tcpEStatsPathPreCongSumRTT  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION



Mathis, et al.              Standards Track                    [Page 35]

RFC 4898              TCP Extended Statistics MIB               May 2007


         "Sum of the last sample of the RTT (tcpEStatsPathSampleRTT)
          prior to the received congestion signals.  This MUST be
          updated each time tcpEStatsPerfCongSignals is incremented,
          such that the change in tcpEStatsPathPreCongSumRTT divided by
          the change in tcpEStatsPerfCongSignals is the average RTT
          (over some interval) just prior to a congestion signal."
      ::= { tcpEStatsPathEntry 24 }

  tcpEStatsPathPostCongSumRTT  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "Sum of the first sample of the RTT (tcpEStatsPathSampleRTT)
          following each congestion signal.  Such that the change in
          tcpEStatsPathPostCongSumRTT divided by the change in
          tcpEStatsPathPostCongCountRTT is the average RTT (over some
          interval) just after a congestion signal."
      ::= { tcpEStatsPathEntry 25 }

  tcpEStatsPathPostCongCountRTT  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "milliseconds"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of RTT samples included in
          tcpEStatsPathPostCongSumRTT such that the change in
          tcpEStatsPathPostCongSumRTT divided by the change in
          tcpEStatsPathPostCongCountRTT is the average RTT (over some
          interval) just after a congestion signal."
      ::= { tcpEStatsPathEntry 26 }

  --
  --  The following optional objects can be used to detect other
  --  types of non-loss congestion signals such as source quench
  --  or ECN.
  --

  tcpEStatsPathECNsignals  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of congestion signals delivered to the TCP
          sender via explicit congestion notification (ECN).  This is
          typically the number of segments bearing Echo Congestion



Mathis, et al.              Standards Track                    [Page 36]

RFC 4898              TCP Extended Statistics MIB               May 2007


          Experienced (ECE) bits, but
          should also include segments failing the ECN nonce check or
          other explicit congestion signals."
      REFERENCE
         "RFC 3168, The Addition of Explicit Congestion Notification
          (ECN) to IP"
      ::= { tcpEStatsPathEntry 27 }

  --
  --  The following optional objects are receiver side
  --  instruments of the path from the sender to the receiver.  In
  --  general, the receiver has less information about the state
  --  of the path because the receiver does not have a robust
  --  mechanism to infer the sender's actions.
  --

  tcpEStatsPathDupAckEpisodes  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of Duplicate Acks Sent when prior Ack was not
          duplicate.  This is the number of times that a contiguous
          series of duplicate acknowledgments have been sent.

          This is an indication of the number of data segments lost
          or reordered on the path from the remote TCP endpoint to
          the near TCP endpoint."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsPathEntry 28 }

  tcpEStatsPathRcvRTT  OBJECT-TYPE
      SYNTAX          Gauge32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The receiver's estimate of the Path RTT.

          Adaptive receiver window algorithms depend on the receiver
          to having a good estimate of the path RTT."
      ::= { tcpEStatsPathEntry 29 }

  tcpEStatsPathDupAcksOut  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION



Mathis, et al.              Standards Track                    [Page 37]

RFC 4898              TCP Extended Statistics MIB               May 2007


         "The number of duplicate ACKs sent.  The ratio of the change
          in tcpEStatsPathDupAcksOut to the change in
          tcpEStatsPathDupAckEpisodes is an indication of reorder or
          recovery distance over some interval."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsPathEntry 30 }

  tcpEStatsPathCERcvd  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of segments received with IP headers bearing
          Congestion Experienced (CE) markings."
      REFERENCE
         "RFC 3168, The Addition of Explicit Congestion Notification
          (ECN) to IP"
      ::= { tcpEStatsPathEntry 31 }

  tcpEStatsPathECESent  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "Number of times the Echo Congestion Experienced (ECE) bit
          in the TCP header has been set (transitioned from 0 to 1),
          due to a Congestion Experienced (CE) marking on an IP
          header.  Note that ECE can be set and reset only once per
          RTT, while CE can be set on many segments per RTT."
      REFERENCE
         "RFC 3168, The Addition of Explicit Congestion Notification
          (ECN) to IP"
      ::= { tcpEStatsPathEntry 32 }

  -- ================================================================
  --
  -- Statistics for diagnosing stack algorithms
  --

  tcpEStatsStackTable    OBJECT-TYPE
      SYNTAX      SEQUENCE OF TcpEStatsStackEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "This table contains objects that are most useful for
          determining how well some of the TCP control
          algorithms are coping with this particular



Mathis, et al.              Standards Track                    [Page 38]

RFC 4898              TCP Extended Statistics MIB               May 2007


          path.

          Entries are retained in this table for the number of
          seconds indicated by the tcpEStatsConnTableLatency
          object, after the TCP connection first enters the closed
          state."
      ::= { tcpEStats 5 }

  tcpEStatsStackEntry  OBJECT-TYPE
      SYNTAX       TcpEStatsStackEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
          "Each entry in this table has information about the
          characteristics of each active and recently closed TCP
          connection."
     INDEX { tcpEStatsConnectIndex }
     ::= { tcpEStatsStackTable 1 }

  TcpEStatsStackEntry ::= SEQUENCE {

          tcpEStatsStackActiveOpen            TruthValue,
          tcpEStatsStackMSSSent               Unsigned32,
          tcpEStatsStackMSSRcvd               Unsigned32,
          tcpEStatsStackWinScaleSent          Integer32,
          tcpEStatsStackWinScaleRcvd          Integer32,
          tcpEStatsStackTimeStamps            TcpEStatsNegotiated,
          tcpEStatsStackECN                   TcpEStatsNegotiated,
          tcpEStatsStackWillSendSACK          TcpEStatsNegotiated,
          tcpEStatsStackWillUseSACK           TcpEStatsNegotiated,
          tcpEStatsStackState                 INTEGER,
          tcpEStatsStackNagle                 TruthValue,
          tcpEStatsStackMaxSsCwnd             Gauge32,
          tcpEStatsStackMaxCaCwnd             Gauge32,
          tcpEStatsStackMaxSsthresh           Gauge32,
          tcpEStatsStackMinSsthresh           Gauge32,
          tcpEStatsStackInRecovery            INTEGER,
          tcpEStatsStackDupAcksIn             ZeroBasedCounter32,
          tcpEStatsStackSpuriousFrDetected    ZeroBasedCounter32,
          tcpEStatsStackSpuriousRtoDetected   ZeroBasedCounter32,
          tcpEStatsStackSoftErrors            ZeroBasedCounter32,
          tcpEStatsStackSoftErrorReason       INTEGER,
          tcpEStatsStackSlowStart             ZeroBasedCounter32,
          tcpEStatsStackCongAvoid             ZeroBasedCounter32,
          tcpEStatsStackOtherReductions       ZeroBasedCounter32,
          tcpEStatsStackCongOverCount         ZeroBasedCounter32,
          tcpEStatsStackFastRetran            ZeroBasedCounter32,
          tcpEStatsStackSubsequentTimeouts    ZeroBasedCounter32,



Mathis, et al.              Standards Track                    [Page 39]

RFC 4898              TCP Extended Statistics MIB               May 2007


          tcpEStatsStackCurTimeoutCount       Gauge32,
          tcpEStatsStackAbruptTimeouts        ZeroBasedCounter32,
          tcpEStatsStackSACKsRcvd             ZeroBasedCounter32,
          tcpEStatsStackSACKBlocksRcvd        ZeroBasedCounter32,
          tcpEStatsStackSendStall             ZeroBasedCounter32,
          tcpEStatsStackDSACKDups             ZeroBasedCounter32,
          tcpEStatsStackMaxMSS                Gauge32,
          tcpEStatsStackMinMSS                Gauge32,
          tcpEStatsStackSndInitial            Unsigned32,
          tcpEStatsStackRecInitial            Unsigned32,
          tcpEStatsStackCurRetxQueue          Gauge32,
          tcpEStatsStackMaxRetxQueue          Gauge32,
          tcpEStatsStackCurReasmQueue         Gauge32,
          tcpEStatsStackMaxReasmQueue         Gauge32
      }

  --
  --  The following objects reflect TCP options carried on the
  --  SYN or SYN-ACK.  These options are used to provide
  --  additional protocol parameters or to enable various
  --  optional TCP features or algorithms.
  --
  --  Except as noted, the TCP protocol does not permit these
  --  options to change after the SYN exchange.
  --

  tcpEStatsStackActiveOpen  OBJECT-TYPE
      SYNTAX          TruthValue
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "True(1) if the local connection traversed the SYN-SENT
          state, else false(2)."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsStackEntry 1 }

  tcpEStatsStackMSSSent  OBJECT-TYPE
      SYNTAX          Unsigned32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The value sent in an MSS option, or zero if none."
      REFERENCE
         "RFC 1122, Requirements for Internet Hosts - Communication
          Layers"
      ::= { tcpEStatsStackEntry 2 }




Mathis, et al.              Standards Track                    [Page 40]

RFC 4898              TCP Extended Statistics MIB               May 2007


  tcpEStatsStackMSSRcvd  OBJECT-TYPE
      SYNTAX          Unsigned32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The value received in an MSS option, or zero if none."
      REFERENCE
         "RFC 1122, Requirements for Internet Hosts - Communication
          Layers"
      ::= { tcpEStatsStackEntry 3 }

  tcpEStatsStackWinScaleSent  OBJECT-TYPE
      SYNTAX          Integer32 (-1..14)
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The value of the transmitted window scale option if one was
          sent; otherwise, a value of -1.

          Note that if both tcpEStatsStackWinScaleSent and
          tcpEStatsStackWinScaleRcvd are not -1, then Rcv.Wind.Scale
          will be the same as this value and used to scale receiver
          window announcements from the local host to the remote
          host."
      REFERENCE
         "RFC 1323, TCP Extensions for High Performance"
      ::= { tcpEStatsStackEntry 4 }

  tcpEStatsStackWinScaleRcvd  OBJECT-TYPE
      SYNTAX          Integer32 (-1..14)
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The value of the received window scale option if one was
          received; otherwise, a value of -1.

          Note that if both tcpEStatsStackWinScaleSent and
          tcpEStatsStackWinScaleRcvd are not -1, then Snd.Wind.Scale
          will be the same as this value and used to scale receiver
          window announcements from the remote host to the local
          host."
      REFERENCE
         "RFC 1323, TCP Extensions for High Performance"
      ::= { tcpEStatsStackEntry 5 }

  tcpEStatsStackTimeStamps  OBJECT-TYPE
      SYNTAX          TcpEStatsNegotiated
      MAX-ACCESS      read-only



Mathis, et al.              Standards Track                    [Page 41]

RFC 4898              TCP Extended Statistics MIB               May 2007


      STATUS          current
      DESCRIPTION
         "Enabled(1) if TCP timestamps have been negotiated on,
          selfDisabled(2) if they are disabled or not implemented on
          the local host, or peerDisabled(3) if not negotiated by the
          remote hosts."
      REFERENCE
         "RFC 1323, TCP Extensions for High Performance"
      ::= { tcpEStatsStackEntry 6 }

  tcpEStatsStackECN  OBJECT-TYPE
      SYNTAX          TcpEStatsNegotiated
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "Enabled(1) if Explicit Congestion Notification (ECN) has
          been negotiated on, selfDisabled(2) if it is disabled or
          not implemented on the local host, or peerDisabled(3) if
          not negotiated by the remote hosts."
      REFERENCE
         "RFC 3168, The Addition of Explicit Congestion Notification
          (ECN) to IP"
      ::= { tcpEStatsStackEntry 7 }

  tcpEStatsStackWillSendSACK  OBJECT-TYPE
      SYNTAX          TcpEStatsNegotiated
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "Enabled(1) if the local host will send SACK options,
          selfDisabled(2) if SACK is disabled or not implemented on
          the local host, or peerDisabled(3) if the remote host did
          not send the SACK-permitted option.

          Note that SACK negotiation is not symmetrical.  SACK can
          enabled on one side of the connection and not the other."
      REFERENCE
         "RFC 2018, TCP Selective Acknowledgement Options"
      ::= { tcpEStatsStackEntry 8 }

  tcpEStatsStackWillUseSACK  OBJECT-TYPE
      SYNTAX          TcpEStatsNegotiated
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "Enabled(1) if the local host will process SACK options,
          selfDisabled(2) if SACK is disabled or not implemented on
          the local host, or peerDisabled(3) if the remote host sends



Mathis, et al.              Standards Track                    [Page 42]

RFC 4898              TCP Extended Statistics MIB               May 2007


          duplicate ACKs without SACK options, or the local host
          otherwise decides not to process received SACK options.

          Unlike other TCP options, the remote data receiver cannot
          explicitly indicate if it is able to generate SACK options.
          When sending data, the local host has to deduce if the
          remote receiver is sending SACK options.  This object can
          transition from Enabled(1) to peerDisabled(3) after the SYN
          exchange.

          Note that SACK negotiation is not symmetrical.  SACK can
          enabled on one side of the connection and not the other."
      REFERENCE
         "RFC 2018, TCP Selective Acknowledgement Options"
      ::= { tcpEStatsStackEntry 9 }

  --
  --  The following two objects reflect the current state of the
  --  connection.
  --

  tcpEStatsStackState  OBJECT-TYPE
      SYNTAX          INTEGER {
         tcpESStateClosed(1),
         tcpESStateListen(2),
         tcpESStateSynSent(3),
         tcpESStateSynReceived(4),
         tcpESStateEstablished(5),
         tcpESStateFinWait1(6),
         tcpESStateFinWait2(7),
         tcpESStateCloseWait(8),
         tcpESStateLastAck(9),
         tcpESStateClosing(10),
         tcpESStateTimeWait(11),
         tcpESStateDeleteTcb(12)
      }
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "An integer value representing the connection state from the
          TCP State Transition Diagram.

          The value listen(2) is included only for parallelism to the
          old tcpConnTable, and SHOULD NOT be used because the listen
          state in managed by the tcpListenerTable.

          The value DeleteTcb(12) is included only for parallelism to
          the tcpConnTable mechanism for terminating connections,



Mathis, et al.              Standards Track                    [Page 43]

RFC 4898              TCP Extended Statistics MIB               May 2007


          although this table does not permit writing."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsStackEntry 10 }

  tcpEStatsStackNagle  OBJECT-TYPE
      SYNTAX          TruthValue
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "True(1) if the Nagle algorithm is being used, else
          false(2)."
      REFERENCE
         "RFC 1122, Requirements for Internet Hosts - Communication
          Layers"
      ::= { tcpEStatsStackEntry 11 }

  --
  --  The following objects instrument the overall operation of
  --  TCP congestion control and data retransmissions.  These
  --  instruments are sufficient to fit the actual performance to
  --  an updated macroscopic performance model [RFC2581] [Mat97]
  --  [Pad98].
  --

  tcpEStatsStackMaxSsCwnd  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The maximum congestion window used during Slow Start, in
          octets."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsStackEntry 12 }

  tcpEStatsStackMaxCaCwnd  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The maximum congestion window used during Congestion
          Avoidance, in octets."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsStackEntry 13 }



Mathis, et al.              Standards Track                    [Page 44]

RFC 4898              TCP Extended Statistics MIB               May 2007


  tcpEStatsStackMaxSsthresh  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The maximum slow start threshold, excluding the initial
          value."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsStackEntry 14 }

  tcpEStatsStackMinSsthresh  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The minimum slow start threshold."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsStackEntry 15 }

  tcpEStatsStackInRecovery  OBJECT-TYPE
      SYNTAX          INTEGER {
         tcpESDataContiguous(1),
         tcpESDataUnordered(2),
         tcpESDataRecovery(3)
      }
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "An integer value representing the state of the loss
          recovery for this connection.

          tcpESDataContiguous(1) indicates that the remote receiver
          is reporting contiguous data (no duplicate acknowledgments
          or SACK options) and that there are no unacknowledged
          retransmissions.

          tcpESDataUnordered(2) indicates that the remote receiver is
          reporting missing or out-of-order data (e.g., sending
          duplicate acknowledgments or SACK options) and that there
          are no unacknowledged retransmissions (because the missing
          data has not yet been retransmitted).

          tcpESDataRecovery(3) indicates that the sender has
          outstanding retransmitted data that is still



Mathis, et al.              Standards Track                    [Page 45]

RFC 4898              TCP Extended Statistics MIB               May 2007


          unacknowledged."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsStackEntry 16 }

  tcpEStatsStackDupAcksIn  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of duplicate ACKs received."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsStackEntry 17 }

  tcpEStatsStackSpuriousFrDetected  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of acknowledgments reporting out-of-order
          segments after the Fast Retransmit algorithm has already
          retransmitted the segments. (For example as detected by the
          Eifel algorithm).'"
      REFERENCE
         "RFC 3522, The Eifel Detection Algorithm for TCP"
      ::= { tcpEStatsStackEntry 18 }

  tcpEStatsStackSpuriousRtoDetected  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of acknowledgments reporting segments that have
          already been retransmitted due to a Retransmission Timeout."
      ::= { tcpEStatsStackEntry 19 }

  --
  --  The following optional objects instrument unusual protocol
  --  events that probably indicate implementation problems in
  --  the protocol or path.
  --

  tcpEStatsStackSoftErrors  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION



Mathis, et al.              Standards Track                    [Page 46]

RFC 4898              TCP Extended Statistics MIB               May 2007


         "The number of segments that fail various consistency tests
          during TCP input processing.  Soft errors might cause the
          segment to be discarded but some do not.  Some of these soft
          errors cause the generation of a TCP acknowledgment, while
          others are silently discarded."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsStackEntry 21 }

  tcpEStatsStackSoftErrorReason  OBJECT-TYPE
      SYNTAX          INTEGER {
         belowDataWindow(1),
         aboveDataWindow(2),
         belowAckWindow(3),
         aboveAckWindow(4),
         belowTSWindow(5),
         aboveTSWindow(6),
         dataCheckSum(7),
         otherSoftError(8)
      }
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "This object identifies which consistency test most recently
          failed during TCP input processing.  This object SHOULD be
          set every time tcpEStatsStackSoftErrors is incremented.  The
          codes are as follows:

          belowDataWindow(1) - All data in the segment is below
          SND.UNA. (Normal for keep-alives and zero window probes).

          aboveDataWindow(2) - Some data in the segment is above
          SND.WND. (Indicates an implementation bug or possible
          attack).

          belowAckWindow(3) - ACK below SND.UNA. (Indicates that the
          return path is reordering ACKs)

          aboveAckWindow(4) - An ACK for data that we have not sent.
          (Indicates an implementation bug or possible attack).

          belowTSWindow(5) - TSecr on the segment is older than the
          current TS.Recent (Normal for the rare case where PAWS
          detects data reordered by the network).

          aboveTSWindow(6) - TSecr on the segment is newer than the
          current TS.Recent. (Indicates an implementation bug or
          possible attack).



Mathis, et al.              Standards Track                    [Page 47]

RFC 4898              TCP Extended Statistics MIB               May 2007



          dataCheckSum(7) - Incorrect checksum.  Note that this value
          is intrinsically fragile, because the header fields used to
          identify the connection may have been corrupted.

          otherSoftError(8) - All other soft errors not listed
          above."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsStackEntry 22 }

  --
  --  The following optional objects expose the detailed
  --  operation of the congestion control algorithms.
  --

  tcpEStatsStackSlowStart  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of times the congestion window has been
          increased by the Slow Start algorithm."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsStackEntry 23 }

  tcpEStatsStackCongAvoid  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of times the congestion window has been
          increased by the Congestion Avoidance algorithm."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsStackEntry 24 }

  tcpEStatsStackOtherReductions  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of congestion window reductions made as a result
          of anything other than AIMD congestion control algorithms.
          Examples of non-multiplicative window reductions include
          Congestion Window Validation [RFC2861] and experimental
          algorithms such as Vegas [Bra94].



Mathis, et al.              Standards Track                    [Page 48]

RFC 4898              TCP Extended Statistics MIB               May 2007



          All window reductions MUST be counted as either
          tcpEStatsPerfCongSignals or tcpEStatsStackOtherReductions."
      REFERENCE
         "RFC 2861, TCP Congestion Window Validation"
      ::= { tcpEStatsStackEntry 25 }

  tcpEStatsStackCongOverCount  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of congestion events that were 'backed out' of
          the congestion control state machine such that the
          congestion window was restored to a prior value.  This can
          happen due to the Eifel algorithm [RFC3522] or other
          algorithms that can be used to detect and cancel spurious
          invocations of the Fast Retransmit Algorithm.

          Although it may be feasible to undo the effects of spurious
          invocation of the Fast Retransmit congestion events cannot
          easily be backed out of tcpEStatsPerfCongSignals and
          tcpEStatsPathPreCongSumCwnd, etc."
      REFERENCE
         "RFC 3522, The Eifel Detection Algorithm for TCP"
      ::= { tcpEStatsStackEntry 26 }

  tcpEStatsStackFastRetran  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of invocations of the Fast Retransmit algorithm."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsStackEntry 27 }

  tcpEStatsStackSubsequentTimeouts  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of times the retransmit timeout has expired after
          the RTO has been doubled.  See Section 5.5 of RFC 2988."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsStackEntry 28 }




Mathis, et al.              Standards Track                    [Page 49]

RFC 4898              TCP Extended Statistics MIB               May 2007


  tcpEStatsStackCurTimeoutCount  OBJECT-TYPE
      SYNTAX          Gauge32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The current number of times the retransmit timeout has
          expired without receiving an acknowledgment for new data.
          tcpEStatsStackCurTimeoutCount is reset to zero when new
          data is acknowledged and incremented for each invocation of
          Section 5.5 of RFC 2988."
      REFERENCE
         "RFC 2988, Computing TCP's Retransmission Timer"
      ::= { tcpEStatsStackEntry 29 }

  tcpEStatsStackAbruptTimeouts  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of timeouts that occurred without any
          immediately preceding duplicate acknowledgments or other
          indications of congestion.  Abrupt Timeouts indicate that
          the path lost an entire window of data or acknowledgments.

          Timeouts that are preceded by duplicate acknowledgments or
          other congestion signals (e.g., ECN) are not counted as
          abrupt, and might have been avoided by a more sophisticated
          Fast Retransmit algorithm."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsStackEntry 30 }

  tcpEStatsStackSACKsRcvd  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of SACK options received."
      REFERENCE
         "RFC 2018, TCP Selective Acknowledgement Options"
      ::= { tcpEStatsStackEntry 31 }

  tcpEStatsStackSACKBlocksRcvd  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of SACK blocks received (within SACK options)."



Mathis, et al.              Standards Track                    [Page 50]

RFC 4898              TCP Extended Statistics MIB               May 2007


      REFERENCE
         "RFC 2018, TCP Selective Acknowledgement Options"
      ::= { tcpEStatsStackEntry 32 }

  tcpEStatsStackSendStall  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of interface stalls or other sender local
          resource limitations that are treated as congestion
          signals."
      ::= { tcpEStatsStackEntry 33 }

  tcpEStatsStackDSACKDups  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of duplicate segments reported to the local host
          by D-SACK blocks."
      REFERENCE
         "RFC 2883, An Extension to the Selective Acknowledgement
          (SACK) Option for TCP"
      ::= { tcpEStatsStackEntry 34 }

  --
  --  The following optional objects instrument path MTU
  --  discovery.
  --

  tcpEStatsStackMaxMSS  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The maximum MSS, in octets."
      REFERENCE
         "RFC 1191, Path MTU discovery"
      ::= { tcpEStatsStackEntry 35 }

  tcpEStatsStackMinMSS  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION



Mathis, et al.              Standards Track                    [Page 51]

RFC 4898              TCP Extended Statistics MIB               May 2007


         "The minimum MSS, in octets."
      REFERENCE
         "RFC 1191, Path MTU discovery"
      ::= { tcpEStatsStackEntry 36 }

  --
  --  The following optional initial value objects are useful for
  --  conformance testing instruments on application progress and
  --  consumed network resources.
  --

  tcpEStatsStackSndInitial  OBJECT-TYPE
      SYNTAX          Unsigned32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "Initial send sequence number.  Note that by definition
          tcpEStatsStackSndInitial never changes for a given
          connection."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsStackEntry 37 }

  tcpEStatsStackRecInitial  OBJECT-TYPE
      SYNTAX          Unsigned32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "Initial receive sequence number.  Note that by definition
          tcpEStatsStackRecInitial never changes for a given
          connection."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsStackEntry 38 }

  --
  --  The following optional objects instrument the senders
  --  buffer usage, including any buffering in the application
  --  interface to TCP and the retransmit queue.  All 'buffer
  --  memory' instruments are assumed to include OS data
  --  structure overhead.
  --

  tcpEStatsStackCurRetxQueue  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current



Mathis, et al.              Standards Track                    [Page 52]

RFC 4898              TCP Extended Statistics MIB               May 2007


      DESCRIPTION
         "The current number of octets of data occupying the
          retransmit queue."
      ::= { tcpEStatsStackEntry 39 }

  tcpEStatsStackMaxRetxQueue  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The maximum number of octets of data occupying the
          retransmit queue."
      ::= { tcpEStatsStackEntry 40 }

  tcpEStatsStackCurReasmQueue  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The current number of octets of sequence space spanned by
          the reassembly queue.  This is generally the difference
          between rcv.nxt and the sequence number of the right most
          edge of the reassembly queue."
      ::= { tcpEStatsStackEntry 41 }

  tcpEStatsStackMaxReasmQueue  OBJECT-TYPE
      SYNTAX          Gauge32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The maximum value of tcpEStatsStackCurReasmQueue"
      ::= { tcpEStatsStackEntry 42 }

  -- ================================================================
  --
  -- Statistics for diagnosing interactions between
  -- applications and TCP.
  --

  tcpEStatsAppTable    OBJECT-TYPE
      SYNTAX      SEQUENCE OF TcpEStatsAppEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "This table contains objects that are useful for
          determining if the application using TCP is



Mathis, et al.              Standards Track                    [Page 53]

RFC 4898              TCP Extended Statistics MIB               May 2007


          limiting TCP performance.

          Entries are retained in this table for the number of
          seconds indicated by the tcpEStatsConnTableLatency
          object, after the TCP connection first enters the closed
          state."
      ::= { tcpEStats 6 }

  tcpEStatsAppEntry  OBJECT-TYPE
      SYNTAX       TcpEStatsAppEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
          "Each entry in this table has information about the
          characteristics of each active and recently closed TCP
          connection."
     INDEX { tcpEStatsConnectIndex }
     ::= { tcpEStatsAppTable 1 }

  TcpEStatsAppEntry ::= SEQUENCE {

          tcpEStatsAppSndUna                  Counter32,
          tcpEStatsAppSndNxt                  Unsigned32,
          tcpEStatsAppSndMax                  Counter32,
          tcpEStatsAppThruOctetsAcked         ZeroBasedCounter32,
          tcpEStatsAppHCThruOctetsAcked       ZeroBasedCounter64,
          tcpEStatsAppRcvNxt                  Counter32,
          tcpEStatsAppThruOctetsReceived      ZeroBasedCounter32,
          tcpEStatsAppHCThruOctetsReceived    ZeroBasedCounter64,
          tcpEStatsAppCurAppWQueue            Gauge32,
          tcpEStatsAppMaxAppWQueue            Gauge32,
          tcpEStatsAppCurAppRQueue            Gauge32,
          tcpEStatsAppMaxAppRQueue            Gauge32
      }

  --
  --  The following objects provide throughput statistics for the
  --  connection including sequence numbers and elapsed
  --  application data.  These permit direct observation of the
  --  applications progress, in terms of elapsed data delivery
  --  and elapsed time.
  --

  tcpEStatsAppSndUna  OBJECT-TYPE
      SYNTAX          Counter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION



Mathis, et al.              Standards Track                    [Page 54]

RFC 4898              TCP Extended Statistics MIB               May 2007


         "The value of SND.UNA, the oldest unacknowledged sequence
          number.

          Note that SND.UNA is a TCP state variable that is congruent
          to Counter32 semantics."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsAppEntry 1 }

  tcpEStatsAppSndNxt  OBJECT-TYPE
      SYNTAX          Unsigned32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The value of SND.NXT, the next sequence number to be sent.
          Note that tcpEStatsAppSndNxt is not monotonic (and thus not
          a counter) because TCP sometimes retransmits lost data by
          pulling tcpEStatsAppSndNxt back to the missing data."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsAppEntry 2 }

  tcpEStatsAppSndMax  OBJECT-TYPE
      SYNTAX          Counter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The farthest forward (right most or largest) SND.NXT value.
          Note that this will be equal to tcpEStatsAppSndNxt except
          when tcpEStatsAppSndNxt is pulled back during recovery."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsAppEntry 3 }

  tcpEStatsAppThruOctetsAcked  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of octets for which cumulative acknowledgments
          have been received.  Note that this will be the sum of
          changes to tcpEStatsAppSndUna."
      ::= { tcpEStatsAppEntry 4 }

  tcpEStatsAppHCThruOctetsAcked  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter64
      UNITS           "octets"



Mathis, et al.              Standards Track                    [Page 55]

RFC 4898              TCP Extended Statistics MIB               May 2007


      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of octets for which cumulative acknowledgments
          have been received, on systems that can receive more than
          10 million bits per second.  Note that this will be the sum
          of changes in tcpEStatsAppSndUna."
      ::= { tcpEStatsAppEntry 5 }

  tcpEStatsAppRcvNxt  OBJECT-TYPE
      SYNTAX          Counter32
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The value of RCV.NXT.  The next sequence number expected on
          an incoming segment, and the left or lower edge of the
          receive window.

          Note that RCV.NXT is a TCP state variable that is congruent
          to Counter32 semantics."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsAppEntry 6 }

  tcpEStatsAppThruOctetsReceived  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of octets for which cumulative acknowledgments
          have been sent.  Note that this will be the sum of changes
          to tcpEStatsAppRcvNxt."
      ::= { tcpEStatsAppEntry 7 }

  tcpEStatsAppHCThruOctetsReceived  OBJECT-TYPE
      SYNTAX          ZeroBasedCounter64
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The number of octets for which cumulative acknowledgments
          have been sent, on systems that can transmit more than 10
          million bits per second.  Note that this will be the sum of
          changes in tcpEStatsAppRcvNxt."
      ::= { tcpEStatsAppEntry 8 }

  tcpEStatsAppCurAppWQueue  OBJECT-TYPE



Mathis, et al.              Standards Track                    [Page 56]

RFC 4898              TCP Extended Statistics MIB               May 2007


      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The current number of octets of application data buffered
          by TCP, pending first transmission, i.e., to the left of
          SND.NXT or SndMax.  This data will generally be transmitted
          (and SND.NXT advanced to the left) as soon as there is an
          available congestion window (cwnd) or receiver window
          (rwin).  This is the amount of data readily available for
          transmission, without scheduling the application.  TCP
          performance may suffer if there is insufficient queued
          write data."
      ::= { tcpEStatsAppEntry 11 }

  tcpEStatsAppMaxAppWQueue  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The maximum number of octets of application data buffered
          by TCP, pending first transmission.  This is the maximum
          value of tcpEStatsAppCurAppWQueue.  This pair of objects can
          be used to determine if insufficient queued data is steady
          state (suggesting insufficient queue space) or transient
          (suggesting insufficient application performance or
          excessive CPU load or scheduler latency)."
      ::= { tcpEStatsAppEntry 12 }

  tcpEStatsAppCurAppRQueue  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION
         "The current number of octets of application data that has
          been acknowledged by TCP but not yet delivered to the
          application."
      ::= { tcpEStatsAppEntry 13 }

  tcpEStatsAppMaxAppRQueue  OBJECT-TYPE
      SYNTAX          Gauge32
      UNITS           "octets"
      MAX-ACCESS      read-only
      STATUS          current
      DESCRIPTION



Mathis, et al.              Standards Track                    [Page 57]

RFC 4898              TCP Extended Statistics MIB               May 2007


         "The maximum number of octets of application data that has
          been acknowledged by TCP but not yet delivered to the
          application."
      ::= { tcpEStatsAppEntry 14 }

  -- ================================================================
  --
  -- Controls for Tuning TCP
  --

  tcpEStatsTuneTable    OBJECT-TYPE
      SYNTAX      SEQUENCE OF TcpEStatsTuneEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "This table contains per-connection controls that can
          be used to work around a number of common problems that
          plague TCP over some paths.  All can be characterized as
          limiting the growth of the congestion window so as to
          prevent TCP from overwhelming some component in the
          path.

          Entries are retained in this table for the number of
          seconds indicated by the tcpEStatsConnTableLatency
          object, after the TCP connection first enters the closed
          state."
      ::= { tcpEStats 7 }

  tcpEStatsTuneEntry  OBJECT-TYPE
      SYNTAX       TcpEStatsTuneEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
          "Each entry in this table is a control that can be used to
          place limits on each active TCP connection."
     INDEX { tcpEStatsConnectIndex }
     ::= { tcpEStatsTuneTable 1 }

  TcpEStatsTuneEntry ::= SEQUENCE {

          tcpEStatsTuneLimCwnd                Unsigned32,
          tcpEStatsTuneLimSsthresh            Unsigned32,
          tcpEStatsTuneLimRwin                Unsigned32,
          tcpEStatsTuneLimMSS                 Unsigned32
      }

  tcpEStatsTuneLimCwnd  OBJECT-TYPE
      SYNTAX          Unsigned32



Mathis, et al.              Standards Track                    [Page 58]

RFC 4898              TCP Extended Statistics MIB               May 2007


      UNITS           "octets"
      MAX-ACCESS      read-write
      STATUS          current
      DESCRIPTION
         "A control to set the maximum congestion window that may be
          used, in octets."
      REFERENCE
         "RFC 2581, TCP Congestion Control"
      ::= { tcpEStatsTuneEntry 1 }

  tcpEStatsTuneLimSsthresh  OBJECT-TYPE
      SYNTAX          Unsigned32
      UNITS           "octets"
      MAX-ACCESS      read-write
      STATUS          current
      DESCRIPTION
         "A control to limit the maximum queue space (in octets) that
          this TCP connection is likely to occupy during slowstart.

          It can be implemented with the algorithm described in
          RFC 3742 by setting the max_ssthresh parameter to twice
          tcpEStatsTuneLimSsthresh.

          This algorithm can be used to overcome some TCP performance
          problems over network paths that do not have sufficient
          buffering to withstand the bursts normally present during
          slowstart."
      REFERENCE
         "RFC 3742, Limited Slow-Start for TCP with Large Congestion
          Windows"
      ::= { tcpEStatsTuneEntry 2 }

  tcpEStatsTuneLimRwin  OBJECT-TYPE
      SYNTAX          Unsigned32
      UNITS           "octets"
      MAX-ACCESS      read-write
      STATUS          current
      DESCRIPTION
         "A control to set the maximum window advertisement that may
          be sent, in octets."
      REFERENCE
         "RFC 793, Transmission Control Protocol"
      ::= { tcpEStatsTuneEntry 3 }

  tcpEStatsTuneLimMSS  OBJECT-TYPE
      SYNTAX          Unsigned32
      UNITS           "octets"
      MAX-ACCESS      read-write



Mathis, et al.              Standards Track                    [Page 59]

RFC 4898              TCP Extended Statistics MIB               May 2007


      STATUS          current
      DESCRIPTION
         "A control to limit the maximum segment size in octets, that
          this TCP connection can use."
      REFERENCE
         "RFC 1191, Path MTU discovery"
      ::= { tcpEStatsTuneEntry 4 }

  -- ================================================================
  --
  -- TCP Extended Statistics Notifications Group
  --

  tcpEStatsEstablishNotification NOTIFICATION-TYPE
      OBJECTS     {
                    tcpEStatsConnectIndex
                  }
      STATUS      current
      DESCRIPTION
          "The indicated connection has been accepted
          (or alternatively entered the established state)."
      ::= { tcpEStatsNotifications 1 }

  tcpEStatsCloseNotification NOTIFICATION-TYPE
      OBJECTS     {
                    tcpEStatsConnectIndex
                  }
      STATUS      current
      DESCRIPTION
          "The indicated connection has left the
          established state"
      ::= { tcpEStatsNotifications 2 }

  -- ================================================================
  --
  -- Conformance Definitions
  --

     tcpEStatsCompliances   OBJECT IDENTIFIER
          ::= { tcpEStatsConformance 1 }
     tcpEStatsGroups        OBJECT IDENTIFIER
          ::= { tcpEStatsConformance 2 }

  --
  -- Compliance Statements
  --

    tcpEStatsCompliance MODULE-COMPLIANCE



Mathis, et al.              Standards Track                    [Page 60]

RFC 4898              TCP Extended Statistics MIB               May 2007


       STATUS current
       DESCRIPTION
           "Compliance statement for all systems that implement TCP
           extended statistics."
       MODULE -- this module
           MANDATORY-GROUPS {
                              tcpEStatsListenerGroup,
                              tcpEStatsConnectIdGroup,
                              tcpEStatsPerfGroup,
                              tcpEStatsPathGroup,
                              tcpEStatsStackGroup,
                              tcpEStatsAppGroup
                            }
           GROUP tcpEStatsListenerHCGroup
           DESCRIPTION
               "This group is mandatory for all systems that can
                wrap the values of the 32-bit counters in
                tcpEStatsListenerGroup in less than one hour."

           GROUP tcpEStatsPerfOptionalGroup
           DESCRIPTION
               "This group is optional for all systems."

           GROUP tcpEStatsPerfHCGroup
           DESCRIPTION
               "This group is mandatory for systems that can
               wrap the values of the 32-bit counters in
               tcpEStatsPerfGroup in less than one hour.

               Note that any system that can attain 10 Mb/s
               can potentially wrap 32-Bit Octet counters in
               under one hour."

           GROUP tcpEStatsPathOptionalGroup
           DESCRIPTION
               "This group is optional for all systems."

           GROUP tcpEStatsPathHCGroup
           DESCRIPTION
               "This group is mandatory for systems that can
               wrap the values of the 32-bit counters in
               tcpEStatsPathGroup in less than one hour.

               Note that any system that can attain 10 Mb/s
               can potentially wrap 32-Bit Octet counters in
               under one hour."

           GROUP tcpEStatsStackOptionalGroup



Mathis, et al.              Standards Track                    [Page 61]

RFC 4898              TCP Extended Statistics MIB               May 2007


           DESCRIPTION
               "This group is optional for all systems."

           GROUP tcpEStatsAppHCGroup
           DESCRIPTION
               "This group is mandatory for systems that can
               wrap the values of the 32-bit counters in
               tcpEStatsStackGroup in less than one hour.

               Note that any system that can attain 10 Mb/s
               can potentially wrap 32-Bit Octet counters in
               under one hour."

           GROUP tcpEStatsAppOptionalGroup
           DESCRIPTION
               "This group is optional for all systems."

           GROUP tcpEStatsTuneOptionalGroup
           DESCRIPTION
               "This group is optional for all systems."

           GROUP tcpEStatsNotificationsGroup
           DESCRIPTION
               "This group is optional for all systems."

           GROUP tcpEStatsNotificationsCtlGroup
           DESCRIPTION
               "This group is mandatory for systems that include the
                tcpEStatsNotificationGroup."

     ::= { tcpEStatsCompliances 1 }

  -- ================================================================
  --
  -- Units of Conformance
  --
      tcpEStatsListenerGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsListenerTableLastChange,
                tcpEStatsListenerStartTime,
                tcpEStatsListenerSynRcvd,
                tcpEStatsListenerInitial,
                tcpEStatsListenerEstablished,
                tcpEStatsListenerAccepted,
                tcpEStatsListenerExceedBacklog,
                tcpEStatsListenerCurConns,
                tcpEStatsListenerMaxBacklog,
                tcpEStatsListenerCurBacklog,



Mathis, et al.              Standards Track                    [Page 62]

RFC 4898              TCP Extended Statistics MIB               May 2007


                tcpEStatsListenerCurEstabBacklog
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsListener group includes objects that
                provide valuable statistics and debugging
                information for TCP Listeners."
        ::= { tcpEStatsGroups 1 }

      tcpEStatsListenerHCGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsListenerHCSynRcvd,
                tcpEStatsListenerHCInitial,
                tcpEStatsListenerHCEstablished,
                tcpEStatsListenerHCAccepted,
                tcpEStatsListenerHCExceedBacklog
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsListenerHC group includes 64-bit
                 counters in tcpEStatsListenerTable."
        ::= { tcpEStatsGroups 2 }

      tcpEStatsConnectIdGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsConnTableLatency,
                tcpEStatsConnectIndex
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsConnectId group includes objects that
                identify TCP connections and control how long TCP
                connection entries are retained in the tables."
        ::= { tcpEStatsGroups 3 }

      tcpEStatsPerfGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsPerfSegsOut, tcpEStatsPerfDataSegsOut,
                tcpEStatsPerfDataOctetsOut,
                tcpEStatsPerfSegsRetrans,
                tcpEStatsPerfOctetsRetrans, tcpEStatsPerfSegsIn,
                tcpEStatsPerfDataSegsIn,
                tcpEStatsPerfDataOctetsIn,
                tcpEStatsPerfElapsedSecs,
                tcpEStatsPerfElapsedMicroSecs,
                tcpEStatsPerfStartTimeStamp, tcpEStatsPerfCurMSS,
                tcpEStatsPerfPipeSize, tcpEStatsPerfMaxPipeSize,
                tcpEStatsPerfSmoothedRTT, tcpEStatsPerfCurRTO,



Mathis, et al.              Standards Track                    [Page 63]

RFC 4898              TCP Extended Statistics MIB               May 2007


                tcpEStatsPerfCongSignals, tcpEStatsPerfCurCwnd,
                tcpEStatsPerfCurSsthresh, tcpEStatsPerfTimeouts,
                tcpEStatsPerfCurRwinSent,
                tcpEStatsPerfMaxRwinSent,
                tcpEStatsPerfZeroRwinSent,
                tcpEStatsPerfCurRwinRcvd,
                tcpEStatsPerfMaxRwinRcvd,
                tcpEStatsPerfZeroRwinRcvd
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsPerf group includes those objects that
                provide basic performance data for a TCP connection."
        ::= { tcpEStatsGroups 4 }

      tcpEStatsPerfOptionalGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsPerfSndLimTransRwin,
                tcpEStatsPerfSndLimTransCwnd,
                tcpEStatsPerfSndLimTransSnd,
                tcpEStatsPerfSndLimTimeRwin,
                tcpEStatsPerfSndLimTimeCwnd,
                tcpEStatsPerfSndLimTimeSnd
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsPerf group includes those objects that
                provide basic performance data for a TCP connection."
        ::= { tcpEStatsGroups 5 }

      tcpEStatsPerfHCGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsPerfHCDataOctetsOut,
                tcpEStatsPerfHCDataOctetsIn
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsPerfHC group includes 64-bit
                counters in the tcpEStatsPerfTable."
        ::= { tcpEStatsGroups 6 }


      tcpEStatsPathGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsControlPath,
                tcpEStatsPathRetranThresh,
                tcpEStatsPathNonRecovDAEpisodes,
                tcpEStatsPathSumOctetsReordered,



Mathis, et al.              Standards Track                    [Page 64]

RFC 4898              TCP Extended Statistics MIB               May 2007


                tcpEStatsPathNonRecovDA
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsPath group includes objects that
                control the creation of the tcpEStatsPathTable,
                and provide information about the path
                for each TCP connection."
        ::= { tcpEStatsGroups 7 }

      tcpEStatsPathOptionalGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsPathSampleRTT, tcpEStatsPathRTTVar,
                tcpEStatsPathMaxRTT, tcpEStatsPathMinRTT,
                tcpEStatsPathSumRTT, tcpEStatsPathCountRTT,
                tcpEStatsPathMaxRTO, tcpEStatsPathMinRTO,
                tcpEStatsPathIpTtl, tcpEStatsPathIpTosIn,
                tcpEStatsPathIpTosOut,
                tcpEStatsPathPreCongSumCwnd,
                tcpEStatsPathPreCongSumRTT,
                tcpEStatsPathPostCongSumRTT,
                tcpEStatsPathPostCongCountRTT,
                tcpEStatsPathECNsignals,
                tcpEStatsPathDupAckEpisodes, tcpEStatsPathRcvRTT,
                tcpEStatsPathDupAcksOut, tcpEStatsPathCERcvd,
                tcpEStatsPathECESent
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsPath group includes objects that
                provide additional information about the path
                for each TCP connection."
        ::= { tcpEStatsGroups 8 }

    tcpEStatsPathHCGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsPathHCSumRTT
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsPathHC group includes 64-bit
                counters in the tcpEStatsPathTable."
        ::= { tcpEStatsGroups 9 }

      tcpEStatsStackGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsControlStack,
                tcpEStatsStackActiveOpen, tcpEStatsStackMSSSent,



Mathis, et al.              Standards Track                    [Page 65]

RFC 4898              TCP Extended Statistics MIB               May 2007


                tcpEStatsStackMSSRcvd, tcpEStatsStackWinScaleSent,
                tcpEStatsStackWinScaleRcvd,
                tcpEStatsStackTimeStamps, tcpEStatsStackECN,
                tcpEStatsStackWillSendSACK,
                tcpEStatsStackWillUseSACK, tcpEStatsStackState,
                tcpEStatsStackNagle, tcpEStatsStackMaxSsCwnd,
                tcpEStatsStackMaxCaCwnd,
                tcpEStatsStackMaxSsthresh,
                tcpEStatsStackMinSsthresh,
                tcpEStatsStackInRecovery, tcpEStatsStackDupAcksIn,
                tcpEStatsStackSpuriousFrDetected,
                tcpEStatsStackSpuriousRtoDetected
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsConnState group includes objects that
                control the creation of the tcpEStatsStackTable,
                and provide information about the operation of
                algorithms used within TCP."
        ::= { tcpEStatsGroups 10 }

      tcpEStatsStackOptionalGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsStackSoftErrors,
                tcpEStatsStackSoftErrorReason,
                tcpEStatsStackSlowStart, tcpEStatsStackCongAvoid,
                tcpEStatsStackOtherReductions,
                tcpEStatsStackCongOverCount,
                tcpEStatsStackFastRetran,
                tcpEStatsStackSubsequentTimeouts,
                tcpEStatsStackCurTimeoutCount,
                tcpEStatsStackAbruptTimeouts,
                tcpEStatsStackSACKsRcvd,
                tcpEStatsStackSACKBlocksRcvd,
                tcpEStatsStackSendStall, tcpEStatsStackDSACKDups,
                tcpEStatsStackMaxMSS, tcpEStatsStackMinMSS,
                tcpEStatsStackSndInitial,
                tcpEStatsStackRecInitial,
                tcpEStatsStackCurRetxQueue,
                tcpEStatsStackMaxRetxQueue,
                tcpEStatsStackCurReasmQueue,
                tcpEStatsStackMaxReasmQueue
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsConnState group includes objects that
                provide additional information about the operation of
                algorithms used within TCP."



Mathis, et al.              Standards Track                    [Page 66]

RFC 4898              TCP Extended Statistics MIB               May 2007


        ::= { tcpEStatsGroups 11 }

      tcpEStatsAppGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsControlApp,
                tcpEStatsAppSndUna, tcpEStatsAppSndNxt,
                tcpEStatsAppSndMax, tcpEStatsAppThruOctetsAcked,
                tcpEStatsAppRcvNxt,
                tcpEStatsAppThruOctetsReceived
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsConnState group includes objects that
                control the creation of the tcpEStatsAppTable,
                and provide information about the operation of
                algorithms used within TCP."
        ::= { tcpEStatsGroups 12 }

    tcpEStatsAppHCGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsAppHCThruOctetsAcked,
                tcpEStatsAppHCThruOctetsReceived
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsStackHC group includes 64-bit
                counters in the tcpEStatsStackTable."
        ::= { tcpEStatsGroups 13 }

      tcpEStatsAppOptionalGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsAppCurAppWQueue,
                tcpEStatsAppMaxAppWQueue,
                tcpEStatsAppCurAppRQueue,
                tcpEStatsAppMaxAppRQueue
           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsConnState group includes objects that
                provide additional information about how applications
                are interacting with each TCP connection."
        ::= { tcpEStatsGroups 14 }

      tcpEStatsTuneOptionalGroup  OBJECT-GROUP
           OBJECTS {
                tcpEStatsControlTune,
                tcpEStatsTuneLimCwnd, tcpEStatsTuneLimSsthresh,
                tcpEStatsTuneLimRwin, tcpEStatsTuneLimMSS



Mathis, et al.              Standards Track                    [Page 67]

RFC 4898              TCP Extended Statistics MIB               May 2007


           }
           STATUS current
           DESCRIPTION
                "The tcpEStatsConnState group includes objects that
                control the creation of the tcpEStatsConnectionTable,
                which can be used to set tuning parameters
                for each TCP connection."
        ::= { tcpEStatsGroups 15 }

      tcpEStatsNotificationsGroup      NOTIFICATION-GROUP
           NOTIFICATIONS {
                         tcpEStatsEstablishNotification,
                         tcpEStatsCloseNotification
           }
           STATUS   current
           DESCRIPTION
               "Notifications sent by a TCP extended statistics agent."
        ::= { tcpEStatsGroups 16 }

      tcpEStatsNotificationsCtlGroup  OBJECT-GROUP
           OBJECTS {
                         tcpEStatsControlNotify
           }
           STATUS   current
           DESCRIPTION
               "The tcpEStatsNotificationsCtl group includes the
                object that controls the creation of the events
                in the tcpEStatsNotificationsGroup."
        ::= { tcpEStatsGroups 17 }

     END




















Mathis, et al.              Standards Track                    [Page 68]

RFC 4898              TCP Extended Statistics MIB               May 2007


5.  Security Considerations

  There are a number of management objects defined in this MIB module
  with a MAX-ACCESS clause of read-write and/or read-create.  Such
  objects may be considered sensitive or vulnerable in some network
  environments.  The support for SET operations in a non-secure
  environment without proper protection can have a negative effect on
  network operations.  These are the tables and objects and their
  sensitivity/vulnerability:

  *  Changing tcpEStatsConnTableLatency or any of the control objects
     in the tcpEStatsControl group (tcpEStatsControlPath,
     tcpEStatsControlStack, tcpEStatsControlApp, tcpEStatsControlTune)
     may affect the correctness of other management applications
     accessing this MIB.  Generally, local policy should only permit
     limited write access to these controls (e.g., only by one
     management station or only during system configuration).

  *  The objects in the tcpEStatsControlTune group
     (tcpEStatsTuneLimCwnd, tcpEStatsTuneLimSsthresh,
     tcpEStatsTuneLimRwin) can be used to limit resources consumed by
     TCP connections or to limit TCP throughput.  An attacker might
     manipulate these objects to reduce performance to levels below the
     minimum acceptable for a particular application.

  Some of the readable objects in this MIB module (i.e., objects with a
  MAX-ACCESS other than not-accessible) may be considered sensitive or
  vulnerable in some network environments.  It is thus important to
  control even GET and/or NOTIFY access to these objects and possibly
  to even encrypt the values of these objects when sending them over
  the network via SNMP.  These are the tables and objects and their
  sensitivity/vulnerability:

  *  All objects which expose TCP sequence numbers (tcpEStatsAppSndUna,
     tcpEStatsAppSndNxt, tcpEStatsAppSndMax, tcpEStatsStackSndInitial,
     tcpEStatsAppRcvNxt, and tcpEStatsStackRecInitial) might make it
     easier for an attacker to forge in sequence TCP segments to
     disrupt TCP connections.

  *  Nearly all objects in this (or any other) MIB may be used to
     estimate traffic volumes, which may reveal unanticipated
     information about an organization to the outside world.

  SNMP versions prior to SNMPv3 did not include adequate security.
  Even if the network itself is secure (for example by using IPsec),
  even then, there is no control as to who on the secure network is
  allowed to access and GET/SET (read/change/create/delete) the objects
  in this MIB module.



Mathis, et al.              Standards Track                    [Page 69]

RFC 4898              TCP Extended Statistics MIB               May 2007


  It is RECOMMENDED that implementers consider the security features as
  provided by the SNMPv3 framework (see [RFC3410], section 8),
  including full support for the SNMPv3 cryptographic mechanisms (for
  authentication and privacy).

  Further, deployment of SNMP versions prior to SNMPv3 is NOT
  RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
  enable cryptographic security.  It is then a customer/operator
  responsibility to ensure that the SNMP entity giving access to an
  instance of this MIB module is properly configured to give access to
  the objects only to those principals (users) that have legitimate
  rights to indeed GET or SET (change/create/delete) them.

6.  IANA Considerations

  The MIB module in this document uses the following IANA-assigned
  OBJECT IDENTIFIER values recorded in the SMI Numbers registry:

         Descriptor        OBJECT IDENTIFIER value
         ------------      -----------------------
         tcpEStatsMIB      { mib-2 156 }

7.  Normative References

  [RFC791]   Postel, J., "Internet Protocol", STD 5, RFC 791, September
             1981.

  [RFC793]   Postel, J., "Transmission Control Protocol", STD 7, RFC
             793, September 1981.

  [RFC1122]  Braden, R., Ed., "Requirements for Internet Hosts -
             Communication Layers", STD 3, RFC 1122, October 1989.

  [RFC1191]  Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
             November 1990.

  [RFC1323]  Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
             for High Performance", RFC 1323, May 1992.

  [RFC2018]  Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
             Selective Acknowledgment Options", RFC 2018, October 1996.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.







Mathis, et al.              Standards Track                    [Page 70]

RFC 4898              TCP Extended Statistics MIB               May 2007


  [RFC2578]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
             Rose, M., and S. Waldbusser, "Structure of Management
             Information Version 2 (SMIv2)", STD 58, RFC 2578, April
             1999.

  [RFC2579]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
             Rose, M., and S. Waldbusser, "Textual Conventions for
             SMIv2", RFC 2579, STD 58, April 1999.

  [RFC2580]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
             Rose, M., and S. Waldbusser, "Conformance Statements for
             SMIv2", RFC 2580, STD 58, April 1999.

  [RFC2581]  Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
             Control", RFC 2581, April 1999.

  [RFC2856]  Bierman, A., McCloghrie, K., and R. Presuhn, "Textual
             Conventions for Additional High Capacity Data Types", RFC
             2856, June 2000.

  [RFC2883]  Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
             Extension to the Selective Acknowledgement (SACK) Option
             for TCP", RFC 2883, July 2000.

  [RFC2988]  Paxson, V. and M. Allman, "Computing TCP's Retransmission
             Timer", RFC 2988, November 2000.

  [RFC3168]  Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
             of Explicit Congestion Notification (ECN) to IP", RFC
             3168, September 2001.

  [RFC3517]  Blanton, E., Allman, M., Fall, K., and L. Wang, "A
             Conservative Selective Acknowledgment (SACK)-based Loss
             Recovery Algorithm for TCP", RFC 3517, April 2003.

  [RFC4022]  Raghunarayan, R., Ed., "Management Information Base for
             the Transmission Control Protocol (TCP)", RFC 4022, March
             2005.

  [RFC4502]  Waldbusser, S., "Remote Network Monitoring Management
             Information Base Version 2", RFC 4502, May 2006.










Mathis, et al.              Standards Track                    [Page 71]

RFC 4898              TCP Extended Statistics MIB               May 2007


8.  Informative References

  [Mat97]    M. Mathis, J. Semke, J. Mahdavi, T. Ott, "The Macroscopic
             Behavior of the TCP Congestion Avoidance Algorithm",
             Computer Communication Review, volume 27, number 3, July
             1997.

  [Bra94]    Brakmo, L., O'Malley, S., "TCP Vegas, New Techniques for
             Congestion Detection and Avoidance", SIGCOMM'94, London,
             pp 24-35, October 1994.

  [Edd06]    Eddy, W., "TCP SYN Flooding Attacks and Common
             Mitigations", Work in Progress, May 2007.

  [POSIX]    Portable Operating System Interface, IEEE Std 1003.1

  [Pad98]    Padhye, J., Firoiu, V., Towsley, D., Kurose, J., "Modeling
             TCP Throughput: A Simple Model and its Empirical
             Validation", SIGCOMM'98.

  [Web100]   Mathis, M., J. Heffner, R. Reddy, "Web100: Extended TCP
             Instrumentation for Research, Education and Diagnosis",
             ACM Computer Communications Review, Vol 33, Num 3, July
             2003.

  [RFC2861]  Handley, M., Padhye, J., and S. Floyd, "TCP Congestion
             Window Validation", RFC 2861, June 2000.

  [RFC3260]  Grossman, D., "New Terminology and Clarifications for
             Diffserv", RFC 3260, April 2002.

  [RFC3410]  Case, J., Mundy, R., Partain, D. and B. Stewart,
             "Introduction and Applicability Statements for Internet-
             Standard Management Framework", RFC 3410, December 2002.

  [RFC3522]  Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm
             for TCP", RFC 3522, April 2003.

  [RFC3742]  Floyd, S., "Limited Slow-Start for TCP with Large
             Congestion Windows", RFC 3742, March 2004.

  [RFC4614]  Duke M., Braden, R., Eddy, W., Blanton, E.  "A Roadmap for
             Transmission Control Protocol (TCP) Specification
             Documents", RFC 4614, September 2006.







Mathis, et al.              Standards Track                    [Page 72]

RFC 4898              TCP Extended Statistics MIB               May 2007


9.  Contributors

  The following people contributed text that was incorporated into this
  document:

  Jon Saperia <[email protected]> converted Web100 internal
  documentation into a true MIB.

  Some of the objects in this document were moved from an early version
  of the TCP-MIB by Bill Fenner, et al.

  Some of the object descriptions are based on an earlier unpublished
  document by Jeff Semke.

10.  Acknowledgments

  This document is a product of the Web100 project (www.web100.org), a
  joint effort of Pittsburgh Supercomputing Center (www.psc.edu),
  National Center for Atmospheric Research (www.ncar.ucar.edu), and
  National Center for Supercomputer Applications (www.ncsa.edu).

  It would not have been possible without all of the hard work by the
  entire Web100 team, especially Peter O'Neal, who read and reread the
  entire document several times; Janet Brown and Marla Meehl, who
  patiently managed the unmanageable.  The Web100 project would not
  have been successful without all of the early adopters who suffered
  our bugs to provide many good suggestions and insights into their
  needs for TCP instrumentation.

  Web100 was supported by the National Science Foundation under Grant
  No. 0083285 and a research grant from Cisco Systems.

  We would also like to thank all of the people who built experimental
  implementations of this MIB from early versions and provided us with
  constructive feedback:  Glenn Turner at AARnet, Kristine Adamson at
  IBM, and Xinyan Zan at Microsoft.

  And last, but not least, we would like to thank Dan Romascanu, our
  "MIB Doctor" and Bert Wijnen, the Operations Area Director, for
  patiently steering us through the MIB review process.











Mathis, et al.              Standards Track                    [Page 73]

RFC 4898              TCP Extended Statistics MIB               May 2007


Authors' Addresses

  Matt Mathis
  Pittsburgh Supercomputing Center
  300 S. Craig St.
  Pittsburgh, PA 15213
  Phone: 412-268-4960
  EMail: [email protected]

  John Heffner
  Pittsburgh Supercomputing Center
  300 S. Craig St.
  Pittsburgh, PA 15213
  Phone: 412-268-4960
  EMail: [email protected]

  Rajiv Raghunarayan
  Cisco Systems Inc.
  San Jose, CA 95134
  Phone: 408 853 9612
  EMail: [email protected]






























Mathis, et al.              Standards Track                    [Page 74]

RFC 4898              TCP Extended Statistics MIB               May 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Mathis, et al.              Standards Track                    [Page 75]