Network Working Group                                           T. Ernst
Request for Comments: 4886                                         INRIA
Category: Informational                                        July 2007


           Network Mobility Support Goals and Requirements

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

Abstract

  Network mobility arises when a router connecting a network to the
  Internet dynamically changes its point of attachment to the Internet
  thereby causing the reachability of the said network to be changed in
  relation to the fixed Internet topology.  Such a type of network is
  referred to as a mobile network.  With appropriate mechanisms,
  sessions established between nodes in the mobile network and the
  global Internet can be maintained after the mobile router changes its
  point of attachment.  This document outlines the goals expected from
  network mobility support and defines the requirements that must be
  met by the NEMO Basic Support solution.






















Ernst                        Informational                      [Page 1]

RFC 4886                       NEMO Goals                      July 2007


Table of Contents

  1. Introduction ....................................................2
  2. NEMO Working Group Objectives and Methodology ...................3
  3. NEMO Support Design Goals .......................................5
     3.1. Migration Transparency .....................................5
     3.2. Performance Transparency and Seamless Mobility .............5
     3.3. Network Mobility Support Transparency ......................5
     3.4. Operational Transparency ...................................5
     3.5. Arbitrary Configurations ...................................5
     3.6. Local Mobility and Global Mobility .........................6
     3.7. Scalability ................................................7
     3.8. Backward Compatibility .....................................7
     3.9. Secure Signaling ...........................................7
     3.10. Location Privacy ..........................................8
     3.11. IPv4 and NAT Traversal ....................................8
     3.12. Minimal Impact on Internet Routing ........................8
  4. NEMO Basic Support One-Liner Requirements .......................8
  5. Security Considerations ........................................10
  6. Acknowledgments ................................................11
  7. References .....................................................11
     7.1. Normative References ......................................11
     7.2. Informative References ....................................11

1.  Introduction

  Network mobility support (see [1] for the related terminology) is
  concerned with managing the mobility of an entire network, viewed as
  a single unit that changes its point of attachment to the Internet
  and thus its reachability in the Internet topology.  Such a network
  is referred to as a mobile network and includes one or more mobile
  routers (MRs), which connect it to the global Internet.  Nodes behind
  the MR(s) (MNNs) are both fixed (LFNs) and mobile (VMNs or LMNs).  In
  most cases, the internal structure of the mobile network will be
  relatively stable (no dynamic change of the topology), but this is
  not always true.

  Cases of mobile networks include, for instance:

  o  Networks attached to people (Personal Area Networks or PANs): a
     cell phone with one cellular interface and one Bluetooth interface
     together with a Bluetooth-enabled PDA constitute a very simple
     instance of a mobile network.  The cell phone is the mobile router
     while the PDA is used for web browsing or runs a personal web
     server.






Ernst                        Informational                      [Page 2]

RFC 4886                       NEMO Goals                      July 2007


  o  Networks of sensors and computers deployed in vehicles: vehicles
     are increasingly equipped with a number of processing units for
     safety and ease of driving reasons, as advocated by ITS
     (Intelligent Transportation Systems) applications ([4]).

  o  Access networks deployed in public transportation (buses, trains,
     taxis, aircrafts): they provide Internet access to IP devices
     carried by passengers (laptop, camera, mobile phone); host
     mobility within network mobility or PANs; network mobility within
     network mobility, i.e., nested mobility (see [1] for the
     definition of nested mobility).

  o  Ad-hoc networks connected to the Internet via an MR: for instance,
     students in a train who need to both set up an ad-hoc network
     among themselves and get Internet connectivity through the MR
     connecting the train to the Internet.

  Mobility of networks does not cause MNNs to change their own physical
  point of attachment; however, they do change their topological
  location with respect to the global Internet.  If network mobility is
  not explicitly supported by some mechanisms, the mobility of the MR
  results in MNNs losing Internet access and breaking ongoing sessions
  between arbitrary correspondent nodes (CNs) in the global Internet
  and those MNNs located within the mobile network.  In addition, the
  communication path between MNNs and correspondent nodes becomes sub-
  optimal, and multiple levels of mobility will cause extremely sub-
  optimal routing.

  Mobility-related terms used in this document are defined in [2],
  whereas terms specifically pertaining to network mobility are defined
  in [1].  This document is structured as follows: in Section 2, we
  define the rough objectives and methodology of the NEMO working group
  to handle network mobility issues and we emphasize the stepwise
  approach the working group has decided to follow.  A number of
  desirable design goals are listed in Section 3.  Those design goals
  then serve as guidelines to define the requirements listed in Section
  4 for basic network mobility support [3].

2.  NEMO Working Group Objectives and Methodology

  The mechanisms required for handling network mobility issues were
  lacking within the IETF standards when the NEMO working group (WG)
  was set up at the IETF in 2002.  At that time, work conducted on
  mobility support (particularly in the Mobile IP working group) was to
  provide continuous Internet connectivity and optimal routing to
  mobile hosts only (host mobility support).  Such mechanisms specified





Ernst                        Informational                      [Page 3]

RFC 4886                       NEMO Goals                      July 2007


  in Mobile IPv6 [5] are unable to support network mobility.  The NEMO
  working group has therefore been set up to deal with issues specific
  to network mobility.

  The primary objective of the NEMO work is to specify a solution that
  allows mobile network nodes (MNNs) to remain connected to the
  Internet and continuously reachable while the mobile router serving
  the mobile network changes its point of attachment.  The secondary
  goal of the work is to investigate the effects of network mobility on
  various aspects of Internet communication such as routing protocol
  changes, implications of real-time traffic and fast handovers, and
  optimizations.  This should support the primary goal of reachability
  for mobile network nodes.  Security is an important consideration
  too, and efforts should be made to use existing security solutions if
  they are appropriate.  Although a well-designed solution may include
  security inherent in other protocols, mobile networks also introduce
  new challenges.

  To complete these tasks, the NEMO working group has decided to take a
  stepwise approach.  The steps in this approach include standardizing
  a basic solution to preserve session continuity (NEMO Basic Support,
  see [3]) and studying the possible approaches and issues with
  providing more optimal routing with potentially nested mobile
  networks (NEMO Extended Support, see [6] and [7] for a discussion on
  routing optimization issues and [8] for a discussion on multihoming
  issues).  However, the working group is not chartered to actually
  standardize a solution for Extended Support at this point in time.
  If deemed necessary, the working group will be rechartered based on
  the conclusions of the discussions.

  For NEMO Basic Support, the working group assumes that none of the
  nodes behind the MR is aware of the network's mobility; thus, the
  network's movement needs to be completely transparent to the nodes
  inside the mobile network.  This assumption accommodates nodes inside
  the network that are not generally aware of mobility.

  The efforts of the Mobile IP working group have resulted in the
  Mobile IPv4 and Mobile IPv6 protocols, which have already solved the
  issue of host mobility support.  Since challenges to enabling mobile
  networks are vastly reduced by this work, basic network mobility
  support has adopted the methods for host mobility support used in
  Mobile IP and has extended them in the simplest way possible to
  achieve its goals.  The Basic Support solution, now defined in [3]
  following the requirements stated in Section 4 of the present
  document, is for each MR to have a Home Agent (HA), and use bi-
  directional tunneling between the MR and HA to preserve session
  continuity while the MR moves.  The MR acquires a Care-of Address
  (CoA) at its attachment point much like what is done for mobile hosts



Ernst                        Informational                      [Page 4]

RFC 4886                       NEMO Goals                      July 2007


  (MHs), using Mobile IP.  This approach allows nested mobile networks,
  since each MR will appear to its attachment point as a single node.

3.  NEMO Support Design Goals

  This section details the fundamental design goals the solutions will
  intend to achieve.  Those design goals serve to define the issues and
  to impose a list of requirements for forthcoming solutions.  Actual
  requirements for NEMO Basic Support are in Section 4; NEMO Extended
  Support is not yet considered at the time of this writing.

3.1.  Migration Transparency

  Permanent connectivity to the Internet has to be provided to all
  MNNs, since continuous sessions are expected to be maintained as the
  mobile router changes its point of attachment.  For maintaining those
  sessions, MNNs are expected to be reachable via their permanent IP
  addresses.

3.2.  Performance Transparency and Seamless Mobility

  NEMO support is expected to be provided with limited signaling
  overhead and to minimize the impact of handovers on applications, in
  terms of packet loss or delay.  However, although variable delays of
  transmission and losses between MNNs and their respective CNs could
  be perceived as the network is displaced, it would not be considered
  a lack of performance transparency.

3.3.  Network Mobility Support Transparency

  MNNs behind the MR(s) do not change their own physical point of
  attachment as a result of the mobile network's displacement in the
  Internet topology.  Consequently, NEMO support is expected to be
  performed only by the MR(s).  Specific support functions on any node
  other than the MR(s) would better be avoided.

3.4.  Operational Transparency

  NEMO support is to be implemented at the level of IP layer.  It is
  expected to be transparent to upper layers so that any upper-layer
  protocol can run unchanged on top of an IP layer extended with NEMO
  support.

3.5.  Arbitrary Configurations

  The formation of a mobile network can occur in various levels of
  complexity.  In the simplest case, a mobile network contains just a
  mobile router and a host.  In the most complicated case, a mobile



Ernst                        Informational                      [Page 5]

RFC 4886                       NEMO Goals                      July 2007


  network is multihomed and is itself a multi-level aggregation of
  mobile networks with collectively thousands of mobile routers and
  hosts.  While the list of potential configurations of mobile networks
  cannot be limited, at least the following ones are desirable:

  o  Mobile networks of any size, ranging from a sole subnet with a few
     IP devices to a collection of subnets with a large number of IP
     devices.

  o  Nodes that change their point of attachment within the mobile
     network.

  o  Foreign mobile nodes that attach to the mobile network.

  o  Multihomed mobile network: either when a single MR has multiple
     attachments to the internet, or when the mobile network is
     attached to the Internet by means of multiple MRs (see definition
     in [1] and the analysis in [8]).

  o  Nested mobile networks (mobile networks attaching to other mobile
     networks (see definition in [1]).  Although the complexity
     requirements of these nested networks are not clear, it is
     desirable to support arbitrary levels of recursive networks.  The
     solution should only impose restrictions on nesting (e.g., path
     MTU) when this is impractical and protocol concerns preclude such
     support.

  o  Distinct mobility frequencies (see mobility factor in [2]).

  o  Distinct access media.

  In order to keep complexity minimal, transit networks are excluded
  from this list.  A transit network is one in which data would be
  forwarded between two endpoints outside of the network, so that the
  network itself simply serves as a transitional conduit for packet
  forwarding.  A stub network (leaf network), on the other hand, does
  not serve as a data forwarding path.  Data on a stub network is
  either sent by or addressed to a node located within that network.

3.6.  Local Mobility and Global Mobility

  Mobile networks and mobile nodes owned by different administrative
  entities are expected to be displaced within a domain boundary or
  between domain boundaries.  Multihoming, vertical and horizontal
  handoffs, and access control mechanisms are desirable to achieve this
  goal.  Such mobility is not expected to be limited for any
  consideration other than administrative and security policies.




Ernst                        Informational                      [Page 6]

RFC 4886                       NEMO Goals                      July 2007


3.7.  Scalability

  NEMO support signaling and processing is expected to scale to a
  potentially large number of mobile networks irrespective of their
  configuration, mobility frequency, size, and number of CNs.

3.8.  Backward Compatibility

  NEMO support will have to co-exist with established IPv6 standards
  and not interfere with them.  Standards defined in other IETF working
  groups have to be reused as much as possible and extended only if
  deemed necessary.  For instance, the following mechanisms defined by
  other working groups are expected to function without modification:

  o  Address allocation and configuration mechanisms.

  o  Host mobility support: mobile nodes and correspondent nodes,
     either located within or outside the mobile network, are expected
     to continue operating protocols defined by the Mobile IP working
     group.  This includes mechanisms for host mobility support (Mobile
     IPv6) and seamless mobility (FMIPv6).

  o  Multicast support intended for MNNs is expected to be maintained
     while the mobile router changes its point of attachment.

  o  Access control protocols and mechanisms used by visiting mobile
     hosts and routers to be authenticated and authorized, gaining
     access to the Internet via the mobile network infrastructure
     (MRs).

  o  Security protocols and mechanisms.

  o  Mechanisms performed by routers deployed in both visited networks
     and mobile networks (routing protocols, Neighbor Discovery, ICMP,
     Router Renumbering).

3.9.  Secure Signaling

  NEMO support will have to comply with the usual IETF security
  policies and recommendations and is expected to have its specific
  security issues fully addressed.  In practice, all NEMO support
  control messages transmitted in the network will have to be protected
  with an acceptable level of security to prevent intruders from
  usurping identities and forge data.  Specifically, the following
  issues have to be considered:

  o  Authentication of the sender to prevent identity usurpation.




Ernst                        Informational                      [Page 7]

RFC 4886                       NEMO Goals                      July 2007


  o  Authorization, to make sure the sender is granted permission to
     perform the operation as indicated in the control message.

  o  Confidentiality of the data contained in the control message.

3.10.  Location Privacy

  Location privacy means hiding the actual location of MNN to third
  parties other than the HA are desired.  It is not clear to which
  extend this has to be enforced, since it is always possible to
  determine the topological location by analyzing IPv6 headers.  It
  would thus require some kind of encryption of the IPv6 header to
  prevent third parties from monitoring IPv6 addresses between the MR
  and the HA.  On the other hand, it is at the very least desirable to
  provide a means for MNNs to hide their real topological location to
  their CNs.

3.11.  IPv4 and NAT Traversal

  IPv4 clouds and NAT are likely to co-exist with IPv6 for a long time,
  so it is desirable to ensure that mechanisms developed for NEMO will
  be able to traverse such clouds.

3.12.  Minimal Impact on Internet Routing

  Any NEMO solution needs have minimal negative effect on the global
  Internet routing system.  The solution must therefore limit both the
  amount of information that must be injected into Internet routing, as
  well as the dynamic changes in the information that is injected into
  the global routing system.

  As one example of why this is necessary, consider the approach of
  advertising each mobile network's connectivity into BGP and, for
  every movement, withdrawing old routes and injecting new routes.  If
  there were tens of thousands of mobile networks each advertising and
  withdrawing routes, for example, at the speed that an airplane can
  move from one ground station to another, the potential effect on BGP
  could be very unfortunate.  In this example, the total amount of
  routing information advertised into BGP may be acceptable, but the
  dynamic instability of the information (i.e., the number of changes
  over time) would be unacceptable.

4.  NEMO Basic Support One-Liner Requirements

  For basic network mobility support, the NEMO WG is to specify a
  unified and unique "Network Mobility (NEMO) Basic Support" solution,
  hereafter referred to as "the solution".  This solution is to allow
  all nodes in the mobile network to be reachable via permanent IP



Ernst                        Informational                      [Page 8]

RFC 4886                       NEMO Goals                      July 2007


  addresses, as well as maintain ongoing sessions as the MR changes its
  point of attachment to the Internet topology.  This is to be done by
  maintaining a bi-directional tunnel between an MR and its Home Agent.

  The NEMO Working Group, after some investigation of alternatives, has
  decided to reuse and extend the existing Mobile IPv6 [5] mechanisms
  for tunnel management.

  The list of requirements below has been imposed on the NEMO Basic
  Support solution.  The requirements have mostly been met by the
  resulting specification, which can now be found in [3].  Associated
  deployment issues are discussed in [9].

  R01: The solution must be implemented at the IP layer level.

  R02: The solution must set up a bi-directional tunnel between a
       mobile router and its Home Agent (MRHA tunnel).

  R03: All traffic exchanged between an MNN and a CN in the global
       Internet must transit through the bi-directional MRHA tunnel.

  R04: MNNs must be reachable at a permanent IP address and name.

  R05: The solution must maintain continuous sessions (both unicast and
       multicast) between MNNs and arbitrary CNs after IP handover of
       (one of) the MRs.

  R06: The solution must not require modifications to any node other
       than MRs and HAs.

  R07: The solution must support fixed nodes, mobile hosts, and mobile
       routers in the mobile network.

  R08: The solution must allow MIPv6-enabled MNNs to use a mobile
       network link as either a home link or a foreign link.

  R09: The solution must ensure backward compatibility with other
       standards defined by the IETF.  In particular, this includes the
       following:

       R09.1: The solution must not prevent the proper operation of
              Mobile IPv6 (i.e., the solution must allow MIPv6-enabled
              MNNs to operate either the CN, HA, or MN operations
              defined in [5]).







Ernst                        Informational                      [Page 9]

RFC 4886                       NEMO Goals                      July 2007


  R10: The solution must be agnostic to the internal configuration.
       This means the solution will behave the same way if NEMO is
       nested, comprises one or several subnets, or comprises MNNs that
       are LFNs, VMNs, LFNs or a mixture of them.

  R11: The solution must support at least 2 levels of nested mobile
       networks, while, in principle, arbitrary levels of recursive
       mobile networks should be supported.

  R12: The solution must function for multihomed MRs and multihomed
       mobile networks as defined in [1].

  R13: NEMO support signaling over the bi-directional must be
       minimized.

  R14: Signaling messages between the HA and the MR must be secured:

       R14.1: The receiver must be able to authenticate the sender.

       R14.2: The function performed by the sender must be authorized
              for the content carried.

       R14.3: Anti-replay must be provided.

       R14.4: The signaling messages may be encrypted.

  R15: The solution must ensure transparent continuation of routing and
       management operations over the bi-directional tunnel (this
       includes, e.g., unicast and multicast routing protocols, router
       renumbering, Dynamic Host Configuration Protocol (DHCPv6)).

  R16: When one egress interface fails, the solution may preserve
       sessions established through another egress interface.

  R17: The solution should have a minimal impact on the global Internet
       routing system.

5.  Security Considerations

  Security considerations of the NEMO Basic Support solution are
  addressed in [RFC3963].

  Section 3.9 of this document discusses the security goals for all
  forms of existing and forthcoming NEMO solutions.







Ernst                        Informational                     [Page 10]

RFC 4886                       NEMO Goals                      July 2007


6.  Acknowledgments

  The material presented in this document takes most of its text from
  discussions and previous documents submitted to the NEMO working
  group.  This includes initial contributions from Motorola, INRIA,
  Ericsson, and Nokia.  We are particularly grateful to Hesham Soliman
  (Ericsson) and the IETF Area Directors (ADs) at the time (Erik
  Nordmark and Thomas Narten), who greatly helped to set up the NEMO
  working group.  We are also grateful to all the following people
  whose comments greatly contributed to the present document: T.J.
  Kniveton (Nokia), Alexandru Petrescu (Motorola), Christophe Janneteau
  (Motorola), Pascal Thubert (Cisco), Hong-Yon Lach (Motorola), Mattias
  Petterson (Ericsson), and all the others who have expressed their
  opinions on the NEMO mailing lists (formerly known as MONET).
  Thierry Ernst wishes to personally acknowledge INRIA Rhone-Alpes and
  Motorola Labs Paris for their support and direction in bringing up
  this topic to the IETF in 2001--particularly Claude Castelluccia
  (INRIA) and Hong-Yon Lach (Motorola)--and his past employer, Keio
  University, Japan, which supported most of the costs associated with
  the IETF during the timelife of previous versions of this document.

7.  References

7.1.  Normative References

  [1]  Ernst, T. and H. Lach, "Network Mobility Support Terminology",
       RFC 4885, July 2007.

  [2]  Manner, J. and M. Kojo, "Mobility Related Terminology", RFC
       3753, June 2004.

  [3]  Devarapalli, V., Wakikawa, R., Petrescu, A., and P. Thubert,
       "Network Mobility (NEMO) Basic Support Protocol", RFC 3963,
       January 2005.

7.2.  Informative References

  [4]  "CALM - Medium and Long Range, High Speed, Air Interfaces
       parameters and protocols for broadcast, point to point, vehicle
       to vehicle, and vehicle to point communication in the ITS sector
       - Networking Protocol - Complementary Element", ISO Draft ISO/WD
       21210, February 2005.

  [5]  Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in
       IPv6", RFC 3775, June 2004.

  [6]  Ng, C., Thubert, P., Watari, M., and F. Zhao, "Network Mobility
       Route Optimization Problem Statement", RFC 4888, July 2007.



Ernst                        Informational                     [Page 11]

RFC 4886                       NEMO Goals                      July 2007


  [7]  Ng, C., Zhao, F., Watari, M., and P. Thubert, "Network Mobility
       Route Optimization Solution Space Analysis", RFC 4889, July
       2007.

  [8]  Ng, C., Ernst, T., Paik, E., and M. Bagnulo, "Analysis of
       Multihoming in Network Mobility Support", Work in Progress),
       February 2007.

  [9]  Thubert, P., Wakikawa, R., and V. Devarapalli, "Network Mobility
       (NEMO) Home Network Models", RFC 4887, July 2007.

Author's Address

  Thierry Ernst
  INRIA
  INRIA Rocquencourt
  Domaine de Voluceau B.P. 105
  78 153 Le Chesnay Cedex
  France

  Phone: +33 1 39 63 59 30
  Fax:   +33 1 39 63 54 91
  EMail: [email protected]
  URI:   http://www-rocq.inria.fr/imara



























Ernst                        Informational                     [Page 12]

RFC 4886                       NEMO Goals                      July 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Ernst                        Informational                     [Page 13]