Network Working Group                                        B. Friedman
Request for Comments: 4813                                     L. Nguyen
Category: Experimental                                            A. Roy
                                                               D. Yeung
                                                          Cisco Systems
                                                               A. Zinin
                                                                Alcatel
                                                          February 2007


                      OSPF Link-Local Signaling

Status of This Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

Abstract

  OSPF is a link-state intra-domain routing protocol used in IP
  networks.  OSPF routers exchange information on a link using packets
  that follow a well-defined format.  The format of OSPF packets is not
  flexible enough to enable applications to exchange arbitrary data,
  which may be necessary in certain situations.  This memo describes a
  vendor-specific, backward-compatible technique to perform link-local
  signaling, i.e., exchange arbitrary data on a link.



















Friedman, et al.              Experimental                      [Page 1]

RFC 4813               OSPF Link-Local Signaling           February 2007


Table of Contents

  1. Introduction ....................................................2
  2. Proposed Solution ...............................................2
     2.1. Options Field ..............................................3
     2.2. LLS Data Block .............................................4
     2.3. LLS TLVs ...................................................5
     2.4. Predefined TLV .............................................5
          2.4.1. Extended Options TLV ................................5
          2.4.2. Cryptographic Authentication TLV ....................6
  3. Backward Compatibility ..........................................7
  4. Security Considerations .........................................7
  5. IANA Considerations .............................................7
  6. References ......................................................8
     6.1. Normative References .......................................8
     6.2. Informative References .....................................8
  Appendix A.  Acknowledgements ......................................9

1.  Introduction

  Formats of OSPF [RFC2328] packets are not very flexible to provide an
  acceptable mechanism for opaque data transfer.  However, this appears
  to be very useful to allow OSPF routers to do so.  An example where
  such a technique could be used is exchanging some capabilities on a
  link (standard OSPF utilizes the Options field in Hello and Exchange
  packets, but there are not so many bits left in it).

  One potential way of solving this task could be introducing a new
  packet type.  However, that would mean introducing extra packets on
  the network, which may not be desirable, so this document describes
  how to exchange data using existing, standard OSPF packet types.

2.  Proposed Solution

  To perform link-local signaling (LLS), OSPF routers add a special
  data block at the end of OSPF packets or right after the
  authentication data block when cryptographic authentication is used.
  Like with OSPF cryptographic authentication, the length of the LLS-
  block is not included into the length of OSPF packet, but is included
  in the IP packet length.  Figure 1 illustrates how the LLS data block
  is attached.










Friedman, et al.              Experimental                      [Page 2]

RFC 4813               OSPF Link-Local Signaling           February 2007


                        +---------------------+ --
                        | IP Header           | ^
                        | Length = HL+X+Y+Z   | | Header Length
                        |                     | v
                        +---------------------+ --
                        | OSPF Header         | ^
                        | Length = X          | |
                        |.....................| | X
                        |                     | |
                        | OSPF Data           | |
                        |                     | v
                        +---------------------+ --
                        |                     | ^
                        | Authentication Data | | Y
                        |                     | v
                        +---------------------+ --
                        |                     | ^
                        |  LLS Data           | | Z
                        |                     | v
                        +---------------------+ --

                   Figure 1: Attaching LLS Data Block

  The LLS data block may be attached to OSPF packets of two types --
  type 1 (OSPF Hello), and type 2 (OSPF DBD).  The data included in the
  LLS block attached to a Hello packet may be used for dynamic
  signaling, since Hello packets may be sent at any moment in time.
  However, delivery of LLS data in Hello packets is not guaranteed.
  The data sent with Database Description (DBD) packets is guaranteed
  to be delivered as part of the adjacency forming process.

  This memo does not specify how the data transmitted by the LLS
  mechanism should be interpreted by OSPF routers.  The interface
  between the OSPF LLS component and its clients is implementation-
  specific.

2.1.  Options Field

  A new bit, called L (L stands for LLS), is introduced to the OSPF
  Options field (see Figure 2).  The value of the bit is 0x10.  Routers
  set the L-bit in Hello and DBD packets to indicate that the packet
  contains the LLS data block.









Friedman, et al.              Experimental                      [Page 3]

RFC 4813               OSPF Link-Local Signaling           February 2007


                    +---+---+---+---+---+---+---+---+
                    | * | O | DC| L |N/P| MC| E | * |
                    +---+---+---+---+---+---+---+-+-+

                       Figure 2: The Options Field

  L-bit

     This bit is set only in Hello and DBD packets.  It is not set in
     OSPF Link State Advertisements (LSAs) and may be used in them for
     different purposes.

2.2.  LLS Data Block

  The data block used for link-local signaling is formatted as
  described below (see Figure 3 for illustration).

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            Checksum           |       LLS Data Length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                           LLS TLVs                            |
   .                                                               .
   .                                                               .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 3: Format of the LLS Data Block

  Checksum

     The Checksum field contains the standard IP checksum of the entire
     contents of the LLS block.

  LLS Length

     The 16-bit LLS Data Length field contains the length (in 32-bit
     words) of the LLS block including the header and payload.
     Implementations should not use the Length field in the IP packet
     header to determine the length of the LLS data block.

  Note that if the OSPF packet is cryptographically authenticated, the
  LLS data block must also be cryptographically authenticated.  In this
  case, the regular LLS checksum is not calculated and the LLS block
  will contain a cryptographic authentication TLV (see Section 2.4.2).




Friedman, et al.              Experimental                      [Page 4]

RFC 4813               OSPF Link-Local Signaling           February 2007


  The rest of the block contains a set of Type/Length/Value (TLV)
  triplets as described in Section 2.3.  All TLVs must be 32-bit
  aligned (with padding if necessary).

2.3.  LLS TLVs

  The contents of the LLS data block is constructed using TLVs.  See
  Figure 4 for the TLV format.

  The Type field contains the TLV ID that is unique for each type of
  TLVs.  The Length field contains the length of the Value field (in
  bytes) that is variable and contains arbitrary data.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            Type               |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   .                                                               .
   .                             Value                             .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 4: Format of LLS TLVs

  Note that TLVs are always padded to 32-bit boundary, but padding
  bytes are not included in the TLV Length field (though it is included
  in the LLS Data Length field of the LLS block header).

2.4.  Predefined TLV

2.4.1.  Extended Options TLV

  This subsection describes a TLV called Extended Options (EO) TLV.
  The format of EO-TLV is shown in Figure 5.

  Bits in the Value field do not have any semantics from the point of
  view of the LLS mechanism.  This field may be used to announce some
  OSPF capabilities that are link-specific.  Also, other OSPF
  extensions may allocate bits in the bit vector to perform boolean
  link-local signaling.

  The length of the Value field in EO-TLV is 4 bytes.

  The value of the Type field in EO-TLV is 1.

  EO-TLV should only appear once in the LLS data block.



Friedman, et al.              Experimental                      [Page 5]

RFC 4813               OSPF Link-Local Signaling           February 2007


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             1                 |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Extended Options                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 5: Format of EO-TLV

  Currently, [RFC4811] and [RFC4812] use bits in the Extended Options
  field of the EO-TLV.  The Extended Options bits are also defined in
  Section 5.

2.4.2.  Cryptographic Authentication TLV

  This document defines a special TLV that is used for cryptographic
  authentication (CA-TLV) of the LLS data block.  This TLV should be
  included in the LLS block when the cryptographic (MD5) authentication
  is enabled on the corresponding interface.  The message digest of the
  LLS block should be calculated using the same key as that used for
  the main OSPF packet.  The cryptographic sequence number is included
  in the TLV and must be the same as the one in the main OSPF packet
  for the LLS block to be considered authentic.

  The TLV is constructed as shown Figure 6.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              2                |         AuthLen               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Sequence Number                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   .                                                               .
   .                           AuthData                            .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 6: Format of Cryptographic Authentication TLV

  The value of the Type field for CA-TLV is 2.

  The Length field in the header contains the length of the data
  portion of the TLV that includes 4 bytes for the sequence number and
  the length of the message digest (MD5) block for the whole LLS block




Friedman, et al.              Experimental                      [Page 6]

RFC 4813               OSPF Link-Local Signaling           February 2007


  in bytes (this will always be 16 bytes for MD5).  So the AuthLen
  field will have value of 20.

  The Sequence Number field contains the cryptographic sequence number
  that is used to prevent simple replay attacks.  For the LLS block to
  be considered authentic, the sequence number in the CA-TLV must match
  the sequence number in the OSPF packet.

  The AuthData field contains the message digest calculated for the LLS
  data block.

  The CA-TLV may appear in the LLS block only once.  Also, when
  present, this TLV should be the last in the LLS block.

3.  Backward Compatibility

  The modifications to OSPF packet formats are compatible with standard
  OSPF because LLS-incapable routers will not consider the extra data
  after the packet; i.e., the LLS data block will be ignored by routers
  that do not support the LLS extension.

4.  Security Considerations

  The function described in this document does not create any new
  security issues for the OSPF protocol.  The described technique
  provides the same level of security as the OSPF protocol by allowing
  LLS data to be authenticated (see Section 2.4.2 for more details).

5.  IANA Considerations

  LLS TLV types are maintained by the IANA.  Extensions to OSPF that
  require a new LLS TLV type must be reviewed by a designated expert
  from the routing area.

  Following the policies outlined in [RFC2434], LLS type values in the
  range of 0-32767 are allocated through an IETF consensus action, and
  LLS type values in the range of 32768-65536 are reserved for private
  and experimental use.

  This document assigns LLS types 1 and 2, as follows:

       LLS Type    Name                                      Reference
           0       Reserved
           1       Extended Options                          [RFC4813]
           2       Cryptographic Authentication              [RFC4813]
           3-32767 Reserved for assignment by the IANA
       32768-65535 Private Use




Friedman, et al.              Experimental                      [Page 7]

RFC 4813               OSPF Link-Local Signaling           February 2007


  This document also assigns the following bits for the Extended
  Options bits field in the EO-TLV outlined in Section 2.4.1:

       Extended Options Bit      Name                        Reference
         0x00000001              LSDB Resynchronization (LR) [RFC4811]
         0x00000002              Restart Signal (RS-bit)     [RFC4812]

  Other Extended Options bits will be allocated through an IETF
  consensus action.

6.  References

6.1.  Normative References

  [RFC2328]  Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

  [RFC2434]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 2434,
             October 1998.

6.2.  Informative References

  [RFC4811]  Nguyen, L., Roy, A., and A. Zinin, "OSPF Out-of-Band Link
             State Database (LSDB) Resynchronization", RFC 4811,
             February 2007.

  [RFC4812]  Nguyen, L., Roy, A., and A. Zinin, "OSPF Restart
             Signaling", RFC 4812, February 2007.























Friedman, et al.              Experimental                      [Page 8]

RFC 4813               OSPF Link-Local Signaling           February 2007


Appendix A.  Acknowledgments

  The authors would like to acknowledge Russ White for his review of
  this document.

Authors' Addresses

  Barry Friedman
  Cisco Systems
  225 West Tasman Drive
  San Jose, CA  95134
  USA
  EMail: [email protected]


  Liem Nguyen
  Cisco Systems
  225 West Tasman Drive
  San Jose, CA  95134
  USA
  EMail: [email protected]


  Abhay Roy
  Cisco Systems
  225 West Tasman Drive
  San Jose, CA  95134
  USA
  EMail: [email protected]


  Derek Yeung
  Cisco Systems
  225 West Tasman Drive
  San Jose, CA  95134
  USA
  EMail: [email protected]


  Alex Zinin
  Alcatel
  Sunnyvale, CA
  USA
  EMail: [email protected]







Friedman, et al.              Experimental                      [Page 9]

RFC 4813               OSPF Link-Local Signaling           February 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Friedman, et al.              Experimental                     [Page 10]