Network Working Group                                     T. Nadeau, Ed.
Request for Comment: 4802                            Cisco Systems, Inc.
Category: Standards Track                                 A. Farrel, Ed.
                                                     Old Dog Consulting
                                                          February 2007


          Generalized Multiprotocol Label Switching (GMPLS)
           Traffic Engineering Management Information Base

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

Abstract

  This memo defines a portion of the Management Information Base (MIB)
  for use with network management protocols in the Internet community.
  In particular, it describes managed objects for Generalized
  Multiprotocol Label Switching (GMPLS)-based traffic engineering.























Nadeau & Farrel             Standards Track                     [Page 1]

RFC 4802                      GMPLS TE MIB                 February 2007


Table of Contents

  1. Introduction ....................................................2
     1.1. Migration Strategy .........................................3
  2. Terminology .....................................................3
  3. The Internet-Standard Management Framework ......................4
  4. Outline .........................................................4
     4.1. Summary of GMPLS Traffic Engineering MIB Module ............4
  5. Brief Description of GMPLS TE MIB Objects .......................5
     5.1. gmplsTunnelTable ...........................................5
     5.2. gmplsTunnelHopTable ........................................6
     5.3. gmplsTunnelARHopTable ......................................6
     5.4. gmplsTunnelCHopTable .......................................6
     5.5. gmplsTunnelErrorTable ......................................6
     5.6. gmplsTunnelReversePerfTable ................................6
     5.7. Use of 32-bit and 64-bit Counters ..........................7
  6. Cross-referencing to the gmplsLabelTable ........................7
  7. Example of GMPLS Tunnel Setup ...................................8
  8. GMPLS Traffic Engineering MIB Module ...........................11
  9. Security Considerations ........................................47
  10. Acknowledgments ...............................................48
  11. IANA Considerations ...........................................49
     11.1. IANA Considerations for GMPLS-TE-STD-MIB .................49
     11.2. Dependence on IANA MIB Modules ...........................49
          11.2.1. IANA-GMPLS-TC-MIB Definition ......................50
  12. References ....................................................56
     12.1. Normative References .....................................56
     12.2. Informative References ...................................58

1.  Introduction

  This memo defines a portion of the Management Information Base (MIB)
  for use with network management protocols in the Internet community.
  In particular, it describes managed objects for modeling Generalized
  Multiprotocol Label Switching (GMPLS) [RFC3945] based traffic
  engineering (TE).  The tables and objects defined in this document
  extend those defined in the equivalent document for MPLS traffic
  engineering [RFC3812], and management of GMPLS traffic engineering is
  built on management of MPLS traffic engineering.

  The MIB modules in this document should be used in conjunction with
  the companion document [RFC4803] for GMPLS-based traffic engineering
  configuration and management.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, [RFC2119].




Nadeau & Farrel             Standards Track                     [Page 2]

RFC 4802                      GMPLS TE MIB                 February 2007


1.1.  Migration Strategy

  MPLS-TE Label Switched paths (LSPs) may be modeled and managed using
  the MPLS-TE-STD-MIB module [RFC3812].

  Label Switching Routers (LSRs) may be migrated to model and manage
  their TE LSPs using the MIB modules in this document in order to
  migrate the LSRs to GMPLS support, or to take advantage of additional
  MIB objects defined in these MIB modules that are applicable to
  MPLS-TE.

  The GMPLS TE MIB module (GMPLS-TE-STD-MIB) defined in this document
  extends the MPLS-TE-STD-MIB module [RFC3812] through a series of
  augmentations and sparse augmentations of the MIB tables.  The only
  additions are for support of GMPLS or to support the increased
  complexity of MPLS and GMPLS systems.

  In order to migrate from MPLS-TE-STD-MIB support to GMPLS-TE-STD-MIB
  support, an implementation needs only to add support for the
  additional tables and objects defined in GMPLS-TE-STD-MIB.  The
  gmplsTunnelLSPEncoding may be set to tunnelLspNotGmpls to allow an
  MPLS-TE LSP tunnel to benefit from the additional objects and tables
  of GMPLS-LSR-STD-MIB without supporting the GMPLS protocols.

  The companion document for modeling and managing GMPLS-based LSRs
  [RFC4803] extends the MPLS-LSR-STD-MIB module [RFC3813] with the same
  intentions.

  Textual conventions are defined in [RFC3811] and the IANA-GMPLS-TC-
  MIB module.

2.  Terminology

  This document uses terminology from the MPLS architecture document
  [RFC3031], from the GMPLS architecture document [RFC3945], and from
  the MPLS Traffic Engineering MIB [RFC3812].  Some frequently used
  terms are described next.

  An explicitly routed LSP (ERLSP) is referred to as a GMPLS tunnel.
  It consists of in-segment(s) and/or out-segment(s) at the
  egress/ingress LSRs, each segment being associated with one GMPLS-
  enabled interface.  These are also referred to as tunnel segments.

  Additionally, at an intermediate LSR, we model a connection as
  consisting of one or more in-segments and/or one or more out-
  segments.  The binding or interconnection between in-segments and
  out-segments is performed using a cross-connect.




Nadeau & Farrel             Standards Track                     [Page 3]

RFC 4802                      GMPLS TE MIB                 February 2007


  These segment and cross-connect objects are defined in the MPLS Label
  Switching Router MIB (MPLS-LSR-STD-MIB) [RFC3813], but see also the
  GMPLS Label Switching Router MIB (GMPLS-LSR-STD-MIB) [RFC4803] for
  the GMPLS-specific extensions to these objects.

3.  The Internet-Standard Management Framework

  For a detailed overview of the documents that describe the current
  Internet-Standard Management Framework, please refer to section 7 of
  RFC 3410 [RFC3410].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  MIB objects are generally
  accessed through the Simple Network Management Protocol (SNMP).
  Objects in the MIB are defined using the mechanisms defined in the
  Structure of Management Information (SMI).  This memo specifies a MIB
  module that is compliant to the SMIv2, which is described in STD 58,
  RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
  [RFC2580].

4.  Outline

  Support for GMPLS traffic-engineered tunnels requires the following
  configuration.

  -  Setting up tunnels with appropriate MPLS configuration parameters
     using [RFC3812].

  -  Extending the tunnel definitions with GMPLS configuration
     parameters.

  -  Configuring loose and strict source routed tunnel hops.

  These actions may need to be accompanied with corresponding actions
  using [RFC3813] and [RFC4803] to establish and configure tunnel
  segments, if this is done manually.  Also, the in-segment and out-
  segment performance tables, mplsInSegmentPerfTable and
  mplsOutSegmentPerfTable [RFC3813], should be used to determine
  performance of the tunnels and tunnel segments, although it should be
  noted that those tables may not be appropriate for measuring
  performance on some types of GMPLS links.

4.1.  Summary of GMPLS Traffic Engineering MIB Module

  The following tables contain MIB objects for performing the actions
  listed above when they cannot be performed solely using MIB objects
  defined in MPLS-TE-STD-MIB [RFC3812].




Nadeau & Farrel             Standards Track                     [Page 4]

RFC 4802                      GMPLS TE MIB                 February 2007


  -  Tunnel table (gmplsTunnelTable) for providing GMPLS-specific
     tunnel configuration parameters.

  -  Tunnel hop, actual tunnel hop, and computed tunnel hop tables
     (gmplsTunnelHopTable, gmplsTunnelARHopTable, and
     gmplsTunnelCHopTable) for providing additional configuration of
     strict and loose source routed tunnel hops.

  -  Performance and error reporting tables
     (gmplsTunnelReversePerfTable and gmplsTunnelErrorTable).

  These tables are described in the subsequent sections.

  Additionally, the GMPLS-TE-STD-MIB module contains a new
  notification.

  -  The GMPLS Tunnel Down Notification (gmplsTunnelDown) should be
     used for all GMPLS tunnels in place of the mplsTunnelDown
     notification defined in [RFC3812].  An implementation must not
     issue both the gmplsTunnelDown and the mplsTunnelDown
     notifications for the same event.  As well as indicating that a
     tunnel has transitioned to operational down state, this new
     notification indicates the cause of the failure.

5.  Brief Description of GMPLS TE MIB Objects

  The objects described in this section support the functionality
  described in [RFC3473] and [RFC3472] for GMPLS tunnels.  The tables
  support both manually configured and signaled tunnels.

5.1.  gmplsTunnelTable

  The gmplsTunnelTable extends the MPLS traffic engineering MIB module
  (MPLS-TE-STD-MIB [RFC3812]) to allow GMPLS tunnels to be created
  between an LSR and a remote endpoint, and existing GMPLS tunnels to
  be reconfigured or removed.

  Note that we only support point-to-point tunnel segments, although
  multipoint-to-point and point-to-multipoint connections are supported
  by an LSR acting as a cross-connect.

  Each tunnel can thus have one out-segment originating at an LSR
  and/or one in-segment terminating at that LSR.

  Three objects within this table utilize enumerations in order to map
  to enumerations that are used in GMPLS signaling.  In order to
  protect the GMPLS-TE-STD-MIB module from changes (in particular,
  extensions) to the range of enumerations supported by the signaling



Nadeau & Farrel             Standards Track                     [Page 5]

RFC 4802                      GMPLS TE MIB                 February 2007


  protocols, these MIB objects use textual conventions with values
  maintained by IANA.  For further details, see the IANA Considerations
  section of this document.

5.2.  gmplsTunnelHopTable

  The gmplsTunnelHopTable is used to indicate additional parameters for
  the hops, strict or loose, of a GMPLS tunnel defined in the
  gmplsTunnelTable, when it is established using signaling.  Multiple
  tunnels may share hops by pointing to the same entry in this table.

5.3.  gmplsTunnelARHopTable

  The gmplsTunnelARHopTable is used to indicate the actual hops
  traversed by a tunnel as reported by the signaling protocol after the
  tunnel is set up.  The support of this table is optional since not
  all GMPLS signaling protocols support this feature.

5.4.  gmplsTunnelCHopTable

  The gmplsTunnelCHopTable lists the actual hops computed by a
  constraint-based routing algorithm based on the gmplsTunnelHopTable.
  The support of this table is optional since not all implementations
  support computation of hop lists using a constraint-based routing
  protocol.

5.5.  gmplsTunnelErrorTable

  The gmplsTunnelErrorTable provides access to information about the
  last error that occurred on each tunnel known about by the MIB.  It
  indicates the nature of the error and when and how it was reported,
  and it can give recovery advice through an admin string.

5.6.  gmplsTunnelReversePerfTable

  The gmplsTunnelReversePerfTable provides additional counters to
  measure the performance of bidirectional GMPLS tunnels in which
  packets are visible.  It supplements the counters in
  mplsTunnelPerfTable and augments gmplsTunnelTable.

  Note that not all counters may be appropriate or available for some
  types of tunnel.









Nadeau & Farrel             Standards Track                     [Page 6]

RFC 4802                      GMPLS TE MIB                 February 2007


5.7.  Use of 32-bit and 64-bit Counters

  64-bit counters are provided in the GMPLS-TE-STD-MIB module for
  high-speed interfaces where the use of 32-bit counters might be
  impractical.  The requirements on the use of 32-bit and 64-bit
  counters (copied verbatim from [RFC2863]) are as follows:

     For interfaces that operate at 20,000,000 (20 million) bits per
     second or less, 32-bit byte and packet counters MUST be supported.
     For interfaces that operate faster than 20,000,000 bits/second,
     and slower than 650,000,000 bits/second, 32-bit packet counters
     MUST be supported and 64-bit octet counters MUST be supported.
     For interfaces that operate at 650,000,000 bits/second or faster,
     64-bit packet counters AND 64-bit octet counters MUST be
     supported.

6.  Cross-referencing to the gmplsLabelTable

  The gmplsLabelTable is found in the GMPLS-LABEL-STD-MIB module in
  [RFC4803] and provides a way to model labels in a GMPLS system where
  labels might not be simple 32-bit integers.

  The hop tables in this document (gmplsTunnelHopTable,
  gmplsTunnelCHopTable, and gmplsTunnelARHopTable) and the segment
  tables in [RFC3813] (mplsInSegmentTable and mplsOutSegmentTable)
  contain objects with syntax MplsLabel.

  MplsLabel (defined in [RFC3811]) is a 32-bit integer that is capable
  of representing any MPLS Label and most GMPLS Labels.  However, some
  GMPLS Labels are larger than 32 bits and may be of arbitrary length.
  Furthermore, some labels that may be safely encoded in 32 bits are
  constructed from multiple sub-fields.  Additionally, some GMPLS
  technologies support the concatenation of individual labels to
  represent a data flow carried as multiple sub-flows.

  These GMPLS cases require that something other than a simple 32-bit
  integer be made available to represent the labels.  This is achieved
  through the gmplsLabelTable contained in the GMPLS-LABEL-STD-MIB
  [RFC4803].

  The tables in this document and [RFC3813] that include objects with
  syntax MplsLabel also include companion objects that are row
  pointers.  If the row pointer is set to zeroDotZero (0.0), then an
  object of syntax MplsLabel contains the label encoded as a 32-bit
  integer.  But otherwise the row pointer indicates a row in another
  MIB table that includes the label.  In these cases, the row pointer
  may indicate a row in the gmplsLabelTable.




Nadeau & Farrel             Standards Track                     [Page 7]

RFC 4802                      GMPLS TE MIB                 February 2007


  This provides both a good way to support legacy systems that
  implement MPLS-TE-STD-MIB [RFC3812], and a significant simplification
  in GMPLS systems that are limited to a single, simple label type.

  Note that gmplsLabelTable supports concatenated labels through the
  use of a label sub-index (gmplsLabelSubindex).

7.  Example of GMPLS Tunnel Setup

  This section contains an example of which MIB objects should be
  modified to create a GMPLS tunnel.  This example shows a best effort,
  loosely routed, bidirectional traffic engineered tunnel, which spans
  two hops of a simple network, uses Generalized Label requests with
  Lambda encoding, has label recording and shared link layer
  protection.  Note that these objects should be created on the "head-
  end" LSR.

  First in the mplsTunnelTable:
  {
    mplsTunnelIndex                = 1,
    mplsTunnelInstance             = 1,
    mplsTunnelIngressLSRId         = 192.0.2.1,
    mplsTunnelEgressLSRId          = 192.0.2.2,
    mplsTunnelName                 = "My first tunnel",
    mplsTunnelDescr                = "Here to there and back again",
    mplsTunnelIsIf                 = true(1),
    mplsTunnelXCPointer            = mplsXCIndex.3.0.0.12,
    mplsTunnelSignallingProto      = none(1),
    mplsTunnelSetupPrio            = 0,
    mplsTunnelHoldingPrio          = 0,
    mplsTunnelSessionAttributes    = recordRoute(4),
    mplsTunnelOwner                = snmp(2),
    mplsTunnelLocalProtectInUse    = false(2),
    mplsTunnelResourcePointer      = mplsTunnelResourceIndex.6,
    mplsTunnelInstancePriority     = 1,
    mplsTunnelHopTableIndex        = 1,
    mplsTunnelPrimaryInstance      = 0,
    mplsTunnelIncludeAnyAffinity   = 0,
    mplsTunnelIncludeAllAffinity   = 0,
    mplsTunnelExcludeAnyAffinity   = 0,
    mplsTunnelPathInUse            = 1,
    mplsTunnelRole                 = head(1),
    mplsTunnelRowStatus            = createAndWait(5),
  }







Nadeau & Farrel             Standards Track                     [Page 8]

RFC 4802                      GMPLS TE MIB                 February 2007


  In gmplsTunnelTable(1,1,192.0.2.1,192.0.2.2):
  {
    gmplsTunnelUnnumIf             = true(1),
    gmplsTunnelAttributes          = labelRecordingRequired(1),
    gmplsTunnelLSPEncoding         = tunnelLspLambda,
    gmplsTunnelSwitchingType       = lsc,
    gmplsTunnelLinkProtection      = shared(2),
    gmplsTunnelGPid                = lambda,
    gmplsTunnelSecondary           = false(2),
    gmplsTunnelDirection           = bidirectional(1)
    gmplsTunnelPathComp            = explicit(2),
    gmplsTunnelSendPathNotifyRecipientType = ipv4(1),
    gmplsTunnelSendPathNotifyRecipient     = 'C0000201'H,
    gmplsTunnelAdminStatusFlags    = 0,
    gmplsTunnelExtraParamsPtr      = 0.0
  }

  Entries in the mplsTunnelResourceTable, mplsTunnelHopTable, and
  gmplsTunnelHopTable are created and activated at this time.

  In mplsTunnelResourceTable:
  {
    mplsTunnelResourceIndex        = 6,
    mplsTunnelResourceMaxRate      = 0,
    mplsTunnelResourceMeanRate     = 0,
    mplsTunnelResourceMaxBurstSize = 0,
    mplsTunnelResourceRowStatus    = createAndGo(4)
  }

  The next two instances of mplsTunnelHopEntry are used to denote the
  hops this tunnel will take across the network.

  The following denotes the beginning of the network, or the first hop
  in our example.  We have used the fictitious LSR identified by
  "192.0.2.1" as our head-end router.

  In mplsTunnelHopTable:
  {
    mplsTunnelHopListIndex         = 1,
    mplsTunnelPathOptionIndex      = 1,
    mplsTunnelHopIndex             = 1,
    mplsTunnelHopAddrType          = ipv4(1),
    mplsTunnelHopIpv4Addr          = 192.0.2.1,
    mplsTunnelHopIpv4PrefixLen     = 9,
    mplsTunnelHopType              = strict(1),
    mplsTunnelHopRowStatus         = createAndWait(5),
  }




Nadeau & Farrel             Standards Track                     [Page 9]

RFC 4802                      GMPLS TE MIB                 February 2007


  The following denotes the end of the network, or the last hop in our
  example.  We have used the fictitious LSR identified by "192.0.2.2"
  as our tail-end router.

  In mplsTunnelHopTable:
  {
    mplsTunnelHopListIndex         = 1,
    mplsTunnelPathOptionIndex      = 1,
    mplsTunnelHopIndex             = 2,
    mplsTunnelHopAddrType          = ipv4(1),
    mplsTunnelHopIpv4Addr          = 192.0.2.2,
    mplsTunnelHopIpv4PrefixLen     = 9,
    mplsTunnelHopType              = loose(2),
    mplsTunnelHopRowStatus         = createAndGo(4)
  }

  Now an associated entry in the gmplsTunnelHopTable is created to
  provide additional GMPLS hop configuration indicating that the first
  hop is an unnumbered link using Explicit Forward and Reverse Labels.

  An entry in the gmplsLabelTable is created first to include the
  Explicit Label.

  In gmplsLabelTable:
  {
    gmplsLabelInterface            = 2,
    gmplsLabelIndex                = 1,
    gmplsLabelSubindex             = 0,
    gmplsLabelType                 = gmplsFreeformLabel(3),
    gmplsLabelFreeform             = 0xFEDCBA9876543210
    gmplsLabelRowStatus            = createAndGo(4)
  }

  In gmplsTunnelHopTable(1,1,1):
  {
    gmplsTunnelHopLabelStatuses           = forwardPresent(0)
                                               +reversePresent(1),
    gmplsTunnelHopExplicitForwardLabelPtr = gmplsLabelTable(2,1,0)
    gmplsTunnelHopExplicitReverseLabelPtr = gmplsLabelTable(2,1,0)
  }

  The first hop is now activated:

  In mplsTunnelHopTable(1,1,1):
  {
    mplsTunnelHopRowStatus         = active(1)
  }




Nadeau & Farrel             Standards Track                    [Page 10]

RFC 4802                      GMPLS TE MIB                 February 2007


  No gmplsTunnelHopEntry is created for the second hop as it contains
  no special GMPLS features.

  Finally, the mplsTunnelEntry is activated:

  In mplsTunnelTable(1,1,192.0.2.1,192.0.2.2)
  {
    mplsTunnelRowStatus            = active(1)
  }

8.  GMPLS Traffic Engineering MIB Module

  This MIB module makes reference to the following documents:
  [RFC2205], [RFC2578], [RFC2579], [RFC2580], [RFC3209], [RFC3411],
  [RFC3471], [RFC3473], [RFC3477], [RFC3812], [RFC4001], and [RFC4202].

GMPLS-TE-STD-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 Unsigned32, Counter32, Counter64, zeroDotZero, Gauge32
   FROM SNMPv2-SMI                                   -- RFC 2578
 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
   FROM SNMPv2-CONF                                  -- RFC 2580
 TruthValue, TimeStamp, RowPointer
   FROM SNMPv2-TC                                    -- RFC 2579
 InetAddress, InetAddressType
   FROM INET-ADDRESS-MIB                             -- RFC 4001
 SnmpAdminString
   FROM SNMP-FRAMEWORK-MIB                           -- RFC 3411
 mplsTunnelIndex, mplsTunnelInstance, mplsTunnelIngressLSRId,
 mplsTunnelEgressLSRId, mplsTunnelHopListIndex,
 mplsTunnelHopPathOptionIndex, mplsTunnelHopIndex,
 mplsTunnelARHopListIndex, mplsTunnelARHopIndex,
 mplsTunnelCHopListIndex, mplsTunnelCHopIndex,
 mplsTunnelEntry,
 mplsTunnelAdminStatus, mplsTunnelOperStatus,
 mplsTunnelGroup, mplsTunnelScalarGroup
   FROM MPLS-TE-STD-MIB                              -- RFC3812
 IANAGmplsLSPEncodingTypeTC, IANAGmplsSwitchingTypeTC,
 IANAGmplsGeneralizedPidTC, IANAGmplsAdminStatusInformationTC
   FROM IANA-GMPLS-TC-MIB
 mplsStdMIB
   FROM MPLS-TC-STD-MIB                              -- RFC 3811
;






Nadeau & Farrel             Standards Track                    [Page 11]

RFC 4802                      GMPLS TE MIB                 February 2007


gmplsTeStdMIB MODULE-IDENTITY
     LAST-UPDATED
        "200702270000Z" -- 27 February 2007 00:00:00 GMT
     ORGANIZATION
       "IETF Common Control and Measurement Plane (CCAMP) Working
        Group"
     CONTACT-INFO
       "       Thomas D. Nadeau
               Cisco Systems, Inc.
        Email: [email protected]
               Adrian Farrel
               Old Dog Consulting
        Email: [email protected]

        Comments about this document should be emailed directly
        to the CCAMP working group mailing list at
        [email protected]."

     DESCRIPTION
       "Copyright (C) The IETF Trust (2007).  This version of
        this MIB module is part of RFC 4802; see the RFC itself for
        full legal notices.

        This MIB module contains managed object definitions
        for GMPLS Traffic Engineering (TE) as defined in:
        1. Generalized Multi-Protocol Label Switching (GMPLS)
           Signaling Functional Description, Berger, L. (Editor),
           RFC 3471, January 2003.
        2. Generalized MPLS Signaling - RSVP-TE Extensions, Berger,
           L. (Editor), RFC 3473, January 2003.
        "
     REVISION
       "200702270000Z" -- 27 February 2007 00:00:00 GMT
     DESCRIPTION
       "Initial version issued as part of RFC 4802."
::= { mplsStdMIB 13 }

gmplsTeNotifications OBJECT IDENTIFIER ::= { gmplsTeStdMIB 0 }
gmplsTeScalars OBJECT IDENTIFIER ::= { gmplsTeStdMIB 1 }
gmplsTeObjects OBJECT IDENTIFIER ::= { gmplsTeStdMIB 2 }
gmplsTeConformance OBJECT IDENTIFIER ::= { gmplsTeStdMIB 3 }

gmplsTunnelsConfigured OBJECT-TYPE
 SYNTAX  Gauge32
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "The number of GMPLS tunnels configured on this device.  A GMPLS



Nadeau & Farrel             Standards Track                    [Page 12]

RFC 4802                      GMPLS TE MIB                 February 2007


    tunnel is considered configured if an entry for the tunnel
    exists in the gmplsTunnelTable and the associated
    mplsTunnelRowStatus is active(1)."
::= { gmplsTeScalars 1 }

gmplsTunnelsActive OBJECT-TYPE
 SYNTAX  Gauge32
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "The number of GMPLS tunnels active on this device.  A GMPLS
    tunnel is considered active if there is an entry in the
    gmplsTunnelTable and the associated mplsTunnelOperStatus for the
    tunnel is up(1)."
::= { gmplsTeScalars 2 }

gmplsTunnelTable OBJECT-TYPE
 SYNTAX  SEQUENCE OF GmplsTunnelEntry
 MAX-ACCESS not-accessible
 STATUS  current
 DESCRIPTION
   "The gmplsTunnelTable sparsely extends the mplsTunnelTable of
    MPLS-TE-STD-MIB.  It allows GMPLS tunnels to be created between
    an LSR and a remote endpoint, and existing tunnels to be
    reconfigured or removed.

    Note that only point-to-point tunnel segments are supported,
    although multipoint-to-point and point-to-multipoint
    connections are supported by an LSR acting as a cross-connect.
    Each tunnel can thus have one out-segment originating at this
    LSR and/or one in-segment terminating at this LSR.

    The row status of an entry in this table is controlled by the
    mplsTunnelRowStatus in the corresponding entry in the
    mplsTunnelTable.  When the corresponding mplsTunnelRowStatus has
    value active(1), a row in this table may not be created or
    modified.

    The exception to this rule is the
    gmplsTunnelAdminStatusInformation object, which can be modified
    while the tunnel is active."
 REFERENCE
   "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE)
       Management Information Base (MIB), RFC 3812."
::= { gmplsTeObjects 1 }






Nadeau & Farrel             Standards Track                    [Page 13]

RFC 4802                      GMPLS TE MIB                 February 2007


gmplsTunnelEntry OBJECT-TYPE
 SYNTAX  GmplsTunnelEntry
 MAX-ACCESS not-accessible
 STATUS  current
 DESCRIPTION
   "An entry in this table in association with the corresponding
    entry in the mplsTunnelTable represents a GMPLS tunnel.

    An entry can be created by a network administrator via SNMP SET
    commands, or in response to signaling protocol events."
 INDEX {
   mplsTunnelIndex,
   mplsTunnelInstance,
   mplsTunnelIngressLSRId,
   mplsTunnelEgressLSRId
 }
::= { gmplsTunnelTable 1 }

 GmplsTunnelEntry ::= SEQUENCE {
  gmplsTunnelUnnumIf                       TruthValue,
  gmplsTunnelAttributes                    BITS,
  gmplsTunnelLSPEncoding                   IANAGmplsLSPEncodingTypeTC,
  gmplsTunnelSwitchingType                 IANAGmplsSwitchingTypeTC,
  gmplsTunnelLinkProtection                BITS,
  gmplsTunnelGPid                          IANAGmplsGeneralizedPidTC,
  gmplsTunnelSecondary                     TruthValue,
  gmplsTunnelDirection                     INTEGER,
  gmplsTunnelPathComp                      INTEGER,
  gmplsTunnelUpstreamNotifyRecipientType   InetAddressType,
  gmplsTunnelUpstreamNotifyRecipient       InetAddress,
  gmplsTunnelSendResvNotifyRecipientType   InetAddressType,
  gmplsTunnelSendResvNotifyRecipient       InetAddress,
  gmplsTunnelDownstreamNotifyRecipientType InetAddressType,
  gmplsTunnelDownstreamNotifyRecipient     InetAddress,
  gmplsTunnelSendPathNotifyRecipientType   InetAddressType,
  gmplsTunnelSendPathNotifyRecipient       InetAddress,
  gmplsTunnelAdminStatusFlags        IANAGmplsAdminStatusInformationTC,
  gmplsTunnelExtraParamsPtr                RowPointer
  }

gmplsTunnelUnnumIf OBJECT-TYPE
 SYNTAX  TruthValue
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "Denotes whether or not this tunnel corresponds to an unnumbered
    interface represented by an entry in the interfaces group table
    (the ifTable) with ifType set to mpls(166).



Nadeau & Farrel             Standards Track                    [Page 14]

RFC 4802                      GMPLS TE MIB                 February 2007


    This object is only used if mplsTunnelIsIf is set to 'true'.

    If both this object and the mplsTunnelIsIf object are set to
    'true', the originating LSR adds an LSP_TUNNEL_INTERFACE_ID
    object to the outgoing Path message.

    This object contains information that is only used by the
    terminating LSR."
 REFERENCE
   "1. Signalling Unnumbered Links in RSVP-TE, RFC 3477."
 DEFVAL  { false }
::= { gmplsTunnelEntry 1 }

gmplsTunnelAttributes OBJECT-TYPE
 SYNTAX BITS {
   labelRecordingDesired(0)
 }
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "This bitmask indicates optional parameters for this tunnel.
    These bits should be taken in addition to those defined in
    mplsTunnelSessionAttributes in order to determine the full set
    of options to be signaled (for example SESSION_ATTRIBUTES flags
    in RSVP-TE).  The following describes these bitfields:

    labelRecordingDesired
      This flag is set to indicate that label information should be
      included when doing a route record.  This bit is not valid
      unless the recordRoute bit is set."
 REFERENCE
   "1. RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209,
       sections 4.4.3, 4.7.1, and 4.7.2."
 DEFVAL  { { } }
::= { gmplsTunnelEntry 2 }

gmplsTunnelLSPEncoding OBJECT-TYPE
 SYNTAX  IANAGmplsLSPEncodingTypeTC
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "This object indicates the encoding of the LSP being requested.

    A value of 'tunnelLspNotGmpls' indicates that GMPLS signaling is
    not in use.  Some objects in this MIB module may be of use for
    MPLS signaling extensions that do not use GMPLS signaling.  By
    setting this object to 'tunnelLspNotGmpls', an application may




Nadeau & Farrel             Standards Track                    [Page 15]

RFC 4802                      GMPLS TE MIB                 February 2007


    indicate that only those objects meaningful in MPLS should be
    examined.

    The values to use are defined in the TEXTUAL-CONVENTION
    IANAGmplsLSPEncodingTypeTC found in the IANA-GMPLS-TC-MIB
    module."
 DEFVAL  { tunnelLspNotGmpls }
::= { gmplsTunnelEntry 3 }

gmplsTunnelSwitchingType OBJECT-TYPE
 SYNTAX  IANAGmplsSwitchingTypeTC
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "Indicates the type of switching that should be performed on
    a particular link.  This field is needed for links that
    advertise more than one type of switching capability.

    The values to use are defined in the TEXTUAL-CONVENTION
    IANAGmplsSwitchingTypeTC found in the IANA-GMPLS-TC-MIB module.

    This object is only meaningful if gmplsTunnelLSPEncodingType
    is not set to 'tunnelLspNotGmpls'."
 DEFVAL  { unknown }
::= { gmplsTunnelEntry 4 }

gmplsTunnelLinkProtection OBJECT-TYPE
 SYNTAX  BITS {
   extraTraffic(0),
   unprotected(1),
   shared(2),
   dedicatedOneToOne(3),
   dedicatedOnePlusOne(4),
   enhanced(5)
 }
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "This bitmask indicates the level of link protection required.  A
    value of zero (no bits set) indicates that any protection may be
    used.  The following describes these bitfields:

    extraTraffic
      This flag is set to indicate that the LSP should use links
      that are protecting other (primary) traffic.  Such LSPs may be
      preempted when the links carrying the (primary) traffic being
      protected fail.




Nadeau & Farrel             Standards Track                    [Page 16]

RFC 4802                      GMPLS TE MIB                 February 2007


    unprotected
      This flag is set to indicate that the LSP should not use any
      link layer protection.

    shared
      This flag is set to indicate that a shared link layer
      protection scheme, such as 1:N protection, should be used to
      support the LSP.

    dedicatedOneToOne
      This flag is set to indicate that a dedicated link layer
      protection scheme, i.e., 1:1 protection, should be used to
      support the LSP.

    dedicatedOnePlusOne
      This flag is set to indicate that a dedicated link layer
      protection scheme, i.e., 1+1 protection, should be used to
      support the LSP.

    enhanced
      This flag is set to indicate that a protection scheme that is
      more reliable than Dedicated 1+1 should be used, e.g., 4 fiber
      BLSR/MS-SPRING.

    This object is only meaningful if gmplsTunnelLSPEncoding is
    not set to 'tunnelLspNotGmpls'."
 REFERENCE
    "1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling
        Functional Description, RFC 3471, section 7.1."
 DEFVAL  { { } }
::= { gmplsTunnelEntry 5 }

gmplsTunnelGPid OBJECT-TYPE
 SYNTAX  IANAGmplsGeneralizedPidTC
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "This object indicates the payload carried by the LSP.  It is only
    required when GMPLS will be used for this LSP.

    The values to use are defined in the TEXTUAL-CONVENTION
    IANAGmplsGeneralizedPidTC found in the IANA-GMPLS-TC-MIB module.

    This object is only meaningful if gmplsTunnelLSPEncoding is not
    set to 'tunnelLspNotGmpls'."
 DEFVAL  { unknown }
::= { gmplsTunnelEntry 6 }




Nadeau & Farrel             Standards Track                    [Page 17]

RFC 4802                      GMPLS TE MIB                 February 2007


gmplsTunnelSecondary OBJECT-TYPE
 SYNTAX  TruthValue
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "Indicates that the requested LSP is a secondary LSP.

    This object is only meaningful if gmplsTunnelLSPEncoding is not
    set to 'tunnelLspNotGmpls'."
 REFERENCE
   "1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling
       Functional Description, RFC 3471, section 7.1."
 DEFVAL  { false }
::= { gmplsTunnelEntry 7 }

gmplsTunnelDirection OBJECT-TYPE
 SYNTAX  INTEGER {
   forward(0),
   bidirectional(1)
 }
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "Whether this tunnel carries forward data only (is
    unidirectional) or is bidirectional.

    Values of this object other than 'forward' are meaningful
    only if gmplsTunnelLSPEncoding is not set to
    'tunnelLspNotGmpls'."
 DEFVAL { forward }
::= { gmplsTunnelEntry 8 }

gmplsTunnelPathComp OBJECT-TYPE
 SYNTAX  INTEGER {
   dynamicFull(1),   -- CSPF fully computed
   explicit(2),      -- fully specified path
   dynamicPartial(3) -- CSPF partially computed
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
   "This value instructs the source node on how to perform path
    computation on the explicit route specified by the associated
    entries in the gmplsTunnelHopTable.

    dynamicFull
      The user specifies at least the source and
      destination of the path and expects that the Constrained



Nadeau & Farrel             Standards Track                    [Page 18]

RFC 4802                      GMPLS TE MIB                 February 2007


      Shortest Path First (CSPF) will calculate the remainder
      of the path.

    explicit
      The user specifies the entire path for the tunnel to
      take.  This path may contain strict or loose hops.
      Evaluation of the explicit route will be performed
      hop by hop through the network.

    dynamicPartial
      The user specifies at least the source and
      destination of the path and expects that the CSPF
      will calculate the remainder of the path.  The path
      computed by CSPF is allowed to be only partially
      computed allowing the remainder of the path to be
      filled in across the network.

    When an entry is present in the gmplsTunnelTable for a
    tunnel, gmplsTunnelPathComp MUST be used and any
    corresponding mplsTunnelHopEntryPathComp object in the
    mplsTunnelHopTable MUST be ignored and SHOULD not be set.

    mplsTunnelHopTable and mplsTunnelHopEntryPathComp are part of
    MPLS-TE-STD-MIB.

    This object should be ignored if the value of
    gmplsTunnelLSPEncoding is 'tunnelLspNotGmpls'."
 REFERENCE
   "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE)
       Management Information Base (MIB), RFC 3812."
 DEFVAL { dynamicFull }
::= { gmplsTunnelEntry 9 }

gmplsTunnelUpstreamNotifyRecipientType OBJECT-TYPE
 SYNTAX  InetAddressType
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
  "This object is used to aid in interpretation of
   gmplsTunnelUpstreamNotifyRecipient."
 DEFVAL { unknown }
::= { gmplsTunnelEntry 10 }

gmplsTunnelUpstreamNotifyRecipient OBJECT-TYPE
 SYNTAX  InetAddress
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION



Nadeau & Farrel             Standards Track                    [Page 19]

RFC 4802                      GMPLS TE MIB                 February 2007


   "Indicates the address of the upstream recipient for Notify
    messages relating to this tunnel and issued by this LSR.  This
    information is typically received from an upstream LSR in a Path
    message.

    This object is only valid when signaling a tunnel using RSVP.

    It is also not valid at the head end of a tunnel since there are
    no upstream LSRs to which to send a Notify message.

    This object is interpreted in the context of the value of
    gmplsTunnelUpstreamNotifyRecipientType. If this object is set to
    0, the value of gmplsTunnelUpstreamNotifyRecipientType MUST be
    set to unknown(0)."
 REFERENCE
   "1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473,
       section 4.2. "
 DEFVAL { '00000000'H } -- 0.0.0.0
::= { gmplsTunnelEntry 11 }

gmplsTunnelSendResvNotifyRecipientType OBJECT-TYPE
 SYNTAX  InetAddressType
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
  "This object is used to aid in interpretation of
   gmplsTunnelSendResvNotifyRecipient."
 DEFVAL { unknown }
::= { gmplsTunnelEntry 12 }

gmplsTunnelSendResvNotifyRecipient OBJECT-TYPE
 SYNTAX  InetAddress
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "Indicates to an upstream LSR the address to which it should send
    downstream Notify messages relating to this tunnel.

    This object is only valid when signaling a tunnel using RSVP.

    It is also not valid at the head end of the tunnel since no Resv
    messages are sent from that LSR for this tunnel.

    If set to 0, no Notify Request object will be included in the
    outgoing Resv messages.

    This object is interpreted in the context of the value of
    gmplsTunnelSendResvNotifyRecipientType. If this object is set to



Nadeau & Farrel             Standards Track                    [Page 20]

RFC 4802                      GMPLS TE MIB                 February 2007


    0, the value of gmplsTunnelSendResvNotifyRecipientType MUST be
    set to unknown(0)."
 REFERENCE
   "1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473,
       section 4.2. "
 DEFVAL { '00000000'H } -- 0.0.0.0
::= { gmplsTunnelEntry 13 }

gmplsTunnelDownstreamNotifyRecipientType OBJECT-TYPE
 SYNTAX  InetAddressType
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
  "This object is used to aid in interpretation of
   gmplsTunnelDownstreamNotifyRecipient."
 DEFVAL { unknown }
::= { gmplsTunnelEntry 14 }

gmplsTunnelDownstreamNotifyRecipient OBJECT-TYPE
 SYNTAX  InetAddress
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "Indicates the address of the downstream recipient for Notify
    messages relating to this tunnel and issued by this LSR.  This
    information is typically received from an upstream LSR in a Resv
    message.  This object is only valid when signaling a tunnel using
    RSVP.

    It is also not valid at the tail end of a tunnel since there are
    no downstream LSRs to which to send a Notify message.

    This object is interpreted in the context of the value of
    gmplsTunnelDownstreamNotifyRecipientType. If this object is set
    to 0, the value of gmplsTunnelDownstreamNotifyRecipientType MUST
    be set to unknown(0)."
 REFERENCE
   "1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473,
       section 4.2.
   "
 DEFVAL { '00000000'H } -- 0.0.0.0
::= { gmplsTunnelEntry 15 }

gmplsTunnelSendPathNotifyRecipientType OBJECT-TYPE
 SYNTAX  InetAddressType
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION



Nadeau & Farrel             Standards Track                    [Page 21]

RFC 4802                      GMPLS TE MIB                 February 2007


  "This object is used to aid in interpretation of
   gmplsTunnelSendPathNotifyRecipient."
 DEFVAL { unknown }
::= { gmplsTunnelEntry 16 }

gmplsTunnelSendPathNotifyRecipient OBJECT-TYPE
 SYNTAX  InetAddress
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "Indicates to a downstream LSR the address to which it should
    send upstream Notify messages relating to this tunnel.

    This object is only valid when signaling a tunnel using RSVP.

    It is also not valid at the tail end of the tunnel since no Path
    messages are sent from that LSR for this tunnel.

    If set to 0, no Notify Request object will be included in the
    outgoing Path messages.

    This object is interpreted in the context of the value of
    gmplsTunnelSendPathNotifyRecipientType.  If this object is set to
    0, the value of gmplsTunnelSendPathNotifyRecipientType MUST be
    set to unknown(0)."
 REFERENCE
   "1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473,
       section 4.2. "
 DEFVAL { '00000000'H } -- 0.0.0.0
::= { gmplsTunnelEntry 17 }

gmplsTunnelAdminStatusFlags OBJECT-TYPE
  SYNTAX   IANAGmplsAdminStatusInformationTC
  MAX-ACCESS   read-create
  STATUS       current
  DESCRIPTION
    "Determines the setting of the Admin Status flags in the
     Admin Status object or TLV, as described in RFC 3471.  Setting
     this field to a non-zero value will result in the inclusion of
     the Admin Status object on signaling messages.

     The values to use are defined in the TEXTUAL-CONVENTION
     IANAGmplsAdminStatusInformationTC found in the
     IANA-GMPLS-TC-MIB module.

     This value of this object can be modified when the
     corresponding mplsTunnelRowStatus and mplsTunnelAdminStatus
     is active(1).  By doing so, a new signaling message will be



Nadeau & Farrel             Standards Track                    [Page 22]

RFC 4802                      GMPLS TE MIB                 February 2007


     triggered including the requested Admin Status object or
     TLV."
 REFERENCE
   "1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling
       Functional Description, RFC 3471, section 8."
 DEFVAL  { { } }
 ::= { gmplsTunnelEntry 18 }

gmplsTunnelExtraParamsPtr  OBJECT-TYPE
 SYNTAX       RowPointer
 MAX-ACCESS   read-create
 STATUS       current
 DESCRIPTION
   "Some tunnels will run over transports that can usefully support
    technology-specific additional parameters (for example,
    Synchronous Optical Network (SONET) resource usage).  Such
    parameters can be supplied in an external table and referenced
    from here.

    A value of zeroDotzero in this attribute indicates that there
    is no such additional information."
 DEFVAL  { zeroDotZero }
 ::= { gmplsTunnelEntry 19 }

gmplsTunnelHopTable  OBJECT-TYPE
 SYNTAX  SEQUENCE OF GmplsTunnelHopEntry
 MAX-ACCESS not-accessible
 STATUS  current
 DESCRIPTION
   "The gmplsTunnelHopTable sparsely extends the mplsTunnelHopTable
    of MPLS-TE-STD-MIB.  It is used to indicate the Explicit Labels
    to be used in an explicit path for a GMPLS tunnel defined in the
    mplsTunnelTable and gmplsTunnelTable, when it is established
    using signaling.  It does not insert new hops, but does define
    new values for hops defined in the mplsTunnelHopTable.

    Each row in this table is indexed by the same indexes as in the
    mplsTunnelHopTable.  It is acceptable for some rows in the
    mplsTunnelHopTable to have corresponding entries in this table
    and some to have no corresponding entry in this table.

    The storage type for this entry is given by the value
    of mplsTunnelHopStorageType in the corresponding entry in the
    mplsTunnelHopTable.

    The row status of an entry in this table is controlled by
    mplsTunnelHopRowStatus in the corresponding entry in the
    mplsTunnelHopTable.  That is, it is not permitted to create a row



Nadeau & Farrel             Standards Track                    [Page 23]

RFC 4802                      GMPLS TE MIB                 February 2007


    in this table, or to modify an existing row, when the
    corresponding mplsTunnelHopRowStatus has the value active(1)."
 REFERENCE
   "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE)
       Management Information Base (MIB), RFC 3812.
    2. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473.
   "
::= { gmplsTeObjects 2 }

gmplsTunnelHopEntry  OBJECT-TYPE
 SYNTAX  GmplsTunnelHopEntry
 MAX-ACCESS not-accessible
 STATUS  current
 DESCRIPTION
   "An entry in this table represents additions to a tunnel hop
    defined in mplsTunnelHopEntry.  At an ingress to a tunnel, an
    entry in this table is created by a network administrator for an
    ERLSP to be set up by a signaling protocol.  At transit and
    egress nodes, an entry in this table may be used to represent the
    explicit path instructions received using the signaling
    protocol."
 INDEX {
   mplsTunnelHopListIndex,
   mplsTunnelHopPathOptionIndex,
   mplsTunnelHopIndex
 }
::= { gmplsTunnelHopTable 1 }

GmplsTunnelHopEntry ::= SEQUENCE {
 gmplsTunnelHopLabelStatuses           BITS,
 gmplsTunnelHopExplicitForwardLabel    Unsigned32,
 gmplsTunnelHopExplicitForwardLabelPtr RowPointer,
 gmplsTunnelHopExplicitReverseLabel    Unsigned32,
 gmplsTunnelHopExplicitReverseLabelPtr RowPointer
}

gmplsTunnelHopLabelStatuses OBJECT-TYPE
 SYNTAX  BITS {
   forwardPresent(0),
   reversePresent(1)
 }
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "This bitmask indicates the presence of labels indicated by the
    gmplsTunnelHopExplicitForwardLabel or
    gmplsTunnelHopExplicitForwardLabelPtr, and
    gmplsTunnelHopExplicitReverseLabel or



Nadeau & Farrel             Standards Track                    [Page 24]

RFC 4802                      GMPLS TE MIB                 February 2007


    gmplsTunnelHopExplicitReverseLabelPtr objects.

    For the Present bits, a set bit indicates that a label is
    present for this hop in the route.  This allows zero to be a
    valid label value."
 DEFVAL  { { } }
::= { gmplsTunnelHopEntry 1 }

gmplsTunnelHopExplicitForwardLabel OBJECT-TYPE
 SYNTAX  Unsigned32
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "If gmplsTunnelHopLabelStatuses object indicates that a Forward
    Label is present and gmplsTunnelHopExplicitForwardLabelPtr
    contains the value zeroDotZero, then the label to use on this
    hop is represented by the value of this object."
::= { gmplsTunnelHopEntry 2 }

gmplsTunnelHopExplicitForwardLabelPtr OBJECT-TYPE
 SYNTAX  RowPointer
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "If the gmplsTunnelHopLabelStatuses object indicates that a
    Forward Label is present, this object contains a pointer to a
    row in another MIB table (such as the gmplsLabelTable of
    GMPLS-LABEL-STD-MIB) that contains the label to use on this hop
    in the forward direction.

    If the gmplsTunnelHopLabelStatuses object indicates that a
    Forward Label is present and this object contains the value
    zeroDotZero, then the label to use on this hop is found in the
    gmplsTunnelHopExplicitForwardLabel object."
 DEFVAL  { zeroDotZero }
::= { gmplsTunnelHopEntry 3 }

gmplsTunnelHopExplicitReverseLabel OBJECT-TYPE
 SYNTAX  Unsigned32
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "If the gmplsTunnelHopLabelStatuses object indicates that a
    Reverse Label is present and
    gmplsTunnelHopExplicitReverseLabelPtr contains the value
    zeroDotZero, then the label to use on this hop is found in
    this object encoded as a 32-bit integer."
::= { gmplsTunnelHopEntry 4 }



Nadeau & Farrel             Standards Track                    [Page 25]

RFC 4802                      GMPLS TE MIB                 February 2007


gmplsTunnelHopExplicitReverseLabelPtr OBJECT-TYPE
 SYNTAX  RowPointer
 MAX-ACCESS read-create
 STATUS  current
 DESCRIPTION
   "If the gmplsTunnelHopLabelStatuses object indicates that a
    Reverse Label is present, this object contains a pointer to a
    row in another MIB table (such as the gmplsLabelTable of
    GMPLS-LABEL-STD-MIB) that contains the label to use on this hop
    in the reverse direction.

    If the gmplsTunnelHopLabelStatuses object indicates that a
    Reverse Label is present and this object contains the value
    zeroDotZero, then the label to use on this hop is found in the
    gmplsTunnelHopExplicitReverseLabel object."
 DEFVAL  { zeroDotZero }
::= { gmplsTunnelHopEntry 5 }

gmplsTunnelARHopTable  OBJECT-TYPE
 SYNTAX  SEQUENCE OF GmplsTunnelARHopEntry
 MAX-ACCESS not-accessible
 STATUS  current
 DESCRIPTION
   "The gmplsTunnelARHopTable sparsely extends the
    mplsTunnelARHopTable of MPLS-TE-STD-MIB.  It is used to
    indicate the labels currently in use for a GMPLS tunnel
    defined in the mplsTunnelTable and gmplsTunnelTable, as
    reported by the signaling protocol.  It does not insert
    new hops, but does define new values for hops defined in
    the mplsTunnelARHopTable.

    Each row in this table is indexed by the same indexes as in the
    mplsTunnelARHopTable.  It is acceptable for some rows in the
    mplsTunnelARHopTable to have corresponding entries in this table
    and some to have no corresponding entry in this table.

    Note that since the information necessary to build entries
    within this table is not provided by some signaling protocols
    and might not be returned in all cases of other signaling
    protocols, implementation of this table and the
    mplsTunnelARHopTable is optional.  Furthermore, since the
    information in this table is actually provided by the
    signaling protocol after the path has been set up, the entries
    in this table are provided only for observation, and hence,
    all variables in this table are accessible exclusively as
    read-only."
 REFERENCE
   "1. Extensions to RSVP for LSP Tunnels, RFC 3209.



Nadeau & Farrel             Standards Track                    [Page 26]

RFC 4802                      GMPLS TE MIB                 February 2007


    2. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473.
    3. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE)
       Management Information Base (MIB), RFC 3812."
::= { gmplsTeObjects 3 }

gmplsTunnelARHopEntry  OBJECT-TYPE
 SYNTAX  GmplsTunnelARHopEntry
 MAX-ACCESS not-accessible
 STATUS  current
 DESCRIPTION
   "An entry in this table represents additions to a tunnel hop
    visible in mplsTunnelARHopEntry.  An entry is created by the
    signaling protocol for a signaled ERLSP set up by the signaling
    protocol.

    At any node on the LSP (ingress, transit, or egress), this table
    and the mplsTunnelARHopTable (if the tables are supported and if
    the signaling protocol is recording actual route information)
    contain the actual route of the whole tunnel.  If the signaling
    protocol is not recording the actual route, this table MAY
    report the information from the gmplsTunnelHopTable or the
    gmplsTunnelCHopTable.

    Note that the recording of actual labels is distinct from the
    recording of the actual route in some signaling protocols.  This
    feature is enabled using the gmplsTunnelAttributes object."
 INDEX {
   mplsTunnelARHopListIndex,
   mplsTunnelARHopIndex
 }
::= { gmplsTunnelARHopTable 1 }

GmplsTunnelARHopEntry ::= SEQUENCE {
 gmplsTunnelARHopLabelStatuses           BITS,
 gmplsTunnelARHopExplicitForwardLabel    Unsigned32,
 gmplsTunnelARHopExplicitForwardLabelPtr RowPointer,
 gmplsTunnelARHopExplicitReverseLabel    Unsigned32,
 gmplsTunnelARHopExplicitReverseLabelPtr RowPointer,
 gmplsTunnelARHopProtection              BITS
}

gmplsTunnelARHopLabelStatuses OBJECT-TYPE
 SYNTAX  BITS {
   forwardPresent(0),
   reversePresent(1),
   forwardGlobal(2),
   reverseGlobal(3)
 }



Nadeau & Farrel             Standards Track                    [Page 27]

RFC 4802                      GMPLS TE MIB                 February 2007


 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "This bitmask indicates the presence and status of labels
    indicated by the gmplsTunnelARHopExplicitForwardLabel or
    gmplsTunnelARHopExplicitForwardLabelPtr, and
    gmplsTunnelARHopExplicitReverseLabel or
    gmplsTunnelARHopExplicitReverseLabelPtr objects.

    For the Present bits, a set bit indicates that a label is
    present for this hop in the route.

    For the Global bits, a set bit indicates that the label comes
    from the Global Label Space; a clear bit indicates that this is
    a Per-Interface label.  A Global bit only has meaning if the
    corresponding Present bit is set."
::= { gmplsTunnelARHopEntry 1 }

gmplsTunnelARHopExplicitForwardLabel OBJECT-TYPE
 SYNTAX  Unsigned32
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "If the gmplsTunnelARHopLabelStatuses object indicates that a
    Forward Label is present and
    gmplsTunnelARHopExplicitForwardLabelPtr contains the value
    zeroDotZero, then the label in use on this hop is found in this
    object encoded as a 32-bit integer."
::= { gmplsTunnelARHopEntry 2 }

gmplsTunnelARHopExplicitForwardLabelPtr OBJECT-TYPE
 SYNTAX  RowPointer
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "If the gmplsTunnelARHopLabelStatuses object indicates that a
    Forward Label is present, this object contains a pointer to a
    row in another MIB table (such as the gmplsLabelTable of
    GMPLS-LABEL-STD-MIB) that contains the label in use on this hop
    in the forward direction.

    If the gmplsTunnelARHopLabelStatuses object indicates that a
    Forward Label is present and this object contains the value
    zeroDotZero, then the label in use on this hop is found in the
    gmplsTunnelARHopExplicitForwardLabel object."
::= { gmplsTunnelARHopEntry 3 }





Nadeau & Farrel             Standards Track                    [Page 28]

RFC 4802                      GMPLS TE MIB                 February 2007


gmplsTunnelARHopExplicitReverseLabel OBJECT-TYPE
 SYNTAX  Unsigned32
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "If the gmplsTunnelARHopLabelStatuses object indicates that a
    Reverse Label is present and
    gmplsTunnelARHopExplicitReverseLabelPtr contains the value
    zeroDotZero, then the label in use on this hop is found in this
    object encoded as a 32-bit integer."
::= { gmplsTunnelARHopEntry 4 }

gmplsTunnelARHopExplicitReverseLabelPtr OBJECT-TYPE
 SYNTAX  RowPointer
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "If the gmplsTunnelARHopLabelStatuses object indicates that a
    Reverse Label is present, this object contains a pointer to a
    row in another MIB table (such as the gmplsLabelTable of
    GMPLS-LABEL-STD-MIB) that contains the label in use on this hop
    in the reverse direction.

    If the gmplsTunnelARHopLabelStatuses object indicates that a
    Reverse Label is present and this object contains the value
    zeroDotZero, then the label in use on this hop is found in the
    gmplsTunnelARHopExplicitReverseLabel object."
::= { gmplsTunnelARHopEntry 5 }

gmplsTunnelARHopProtection  OBJECT-TYPE
 SYNTAX  BITS {
   localAvailable(0),
   localInUse(1)
 }
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "Availability and usage of protection on the reported link.

    localAvailable
      This flag is set to indicate that the link downstream of this
      node is protected via a local repair mechanism.

    localInUse
      This flag is set to indicate that a local repair mechanism is
      in use to maintain this tunnel (usually in the face of an
      outage of the link it was previously routed over)."
 REFERENCE



Nadeau & Farrel             Standards Track                    [Page 29]

RFC 4802                      GMPLS TE MIB                 February 2007


   "1. RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209,
       section 4.4.1."
::= { gmplsTunnelARHopEntry 6 }

gmplsTunnelCHopTable  OBJECT-TYPE
 SYNTAX  SEQUENCE OF GmplsTunnelCHopEntry
 MAX-ACCESS not-accessible
 STATUS  current
 DESCRIPTION
   "The gmplsTunnelCHopTable sparsely extends the
    mplsTunnelCHopTable of MPLS-TE-STD-MIB.  It is used to indicate
    additional information about the hops of a GMPLS tunnel defined
    in the mplsTunnelTable and gmplsTunnelTable, as computed by a
    constraint-based routing protocol, based on the
    mplsTunnelHopTable and the gmplsTunnelHopTable.

    Each row in this table is indexed by the same indexes as in the
    mplsTunnelCHopTable.  It is acceptable for some rows in the
    mplsTunnelCHopTable to have corresponding entries in this table
    and some to have no corresponding entry in this table.

    Please note that since the information necessary to build
    entries within this table may not be supported by some LSRs,
    implementation of this table is optional.

    Furthermore, since the information in this table is actually
    provided by a path computation component after the path has been
    computed, the entries in this table are provided only for
    observation, and hence, all objects in this table are accessible
    exclusively as read-only."
 REFERENCE
   "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE)
       Management Information Base (MIB), RFC 3812.
    2. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473."
::= { gmplsTeObjects 4 }

gmplsTunnelCHopEntry  OBJECT-TYPE
 SYNTAX  GmplsTunnelCHopEntry
 MAX-ACCESS not-accessible
 STATUS  current
 DESCRIPTION
   "An entry in this table represents additions to a computed tunnel
    hop visible in mplsTunnelCHopEntry.  An entry is created by a
    path computation component based on the hops specified in the
    corresponding mplsTunnelHopTable and gmplsTunnelHopTable.

    At a transit LSR, this table (if the table is supported) MAY
    contain the path computed by a path computation engine on (or on



Nadeau & Farrel             Standards Track                    [Page 30]

RFC 4802                      GMPLS TE MIB                 February 2007


    behalf of) the transit LSR."
 INDEX {
   mplsTunnelCHopListIndex,
   mplsTunnelCHopIndex
 }
::= { gmplsTunnelCHopTable 1 }

GmplsTunnelCHopEntry ::= SEQUENCE {
 gmplsTunnelCHopLabelStatuses           BITS,
 gmplsTunnelCHopExplicitForwardLabel    Unsigned32,
 gmplsTunnelCHopExplicitForwardLabelPtr RowPointer,
 gmplsTunnelCHopExplicitReverseLabel    Unsigned32,
 gmplsTunnelCHopExplicitReverseLabelPtr RowPointer
}

gmplsTunnelCHopLabelStatuses OBJECT-TYPE
 SYNTAX  BITS {
   forwardPresent(0),
   reversePresent(1)
 }
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "This bitmask indicates the presence of labels indicated by the
    gmplsTunnelCHopExplicitForwardLabel or
    gmplsTunnelCHopExplicitForwardLabelPtr and
    gmplsTunnelCHopExplicitReverseLabel or
    gmplsTunnelCHopExplicitReverseLabelPtr objects.

    A set bit indicates that a label is present for this hop in the
    route, thus allowing zero to be a valid label value."
::= { gmplsTunnelCHopEntry 1 }

gmplsTunnelCHopExplicitForwardLabel OBJECT-TYPE
 SYNTAX  Unsigned32
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "If the gmplsTunnelCHopLabelStatuses object indicates that a
    Forward Label is present and
    gmplsTunnelCHopExplicitForwardLabelPtr contains the value
    zeroDotZero, then the label to use on this hop is found in this
    object encoded as a 32-bit integer."
::= { gmplsTunnelCHopEntry 2 }

gmplsTunnelCHopExplicitForwardLabelPtr OBJECT-TYPE
 SYNTAX  RowPointer
 MAX-ACCESS read-only



Nadeau & Farrel             Standards Track                    [Page 31]

RFC 4802                      GMPLS TE MIB                 February 2007


 STATUS  current
 DESCRIPTION
   "If the gmplsTunnelCHopLabelStatuses object indicates that a
    Forward Label is present, this object contains a pointer to a
    row in another MIB table (such as the gmplsLabelTable of
    GMPLS-LABEL-STD-MIB) that contains the label to use on this hop
    in the forward direction.

    If the gmplsTunnelCHopLabelStatuses object indicates that a
    Forward Label is present and this object contains the value
    zeroDotZero, then the label to use on this hop is found in the
    gmplsTunnelCHopExplicitForwardLabel object."
::= { gmplsTunnelCHopEntry 3 }

gmplsTunnelCHopExplicitReverseLabel OBJECT-TYPE
 SYNTAX  Unsigned32
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "If the gmplsTunnelCHopLabelStatuses object indicates that a
    Reverse Label is present and
    gmplsTunnelCHopExplicitReverseLabelPtr contains the value
    zeroDotZero, then the label to use on this hop is found in this
    object encoded as a 32-bit integer."
::= { gmplsTunnelCHopEntry 4 }

gmplsTunnelCHopExplicitReverseLabelPtr OBJECT-TYPE
 SYNTAX  RowPointer
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "If the gmplsTunnelCHopLabelStatuses object indicates that a
    Reverse Label is present, this object contains a pointer to a
    row in another MIB table (such as the gmplsLabelTable of
    GMPLS-LABEL-STD-MIB) that contains the label to use on this hop
    in the reverse direction.

    If the gmplsTunnelCHopLabelStatuses object indicates that a
    Reverse Label is present and this object contains the value
    zeroDotZero, then the label to use on this hop is found in the
    gmplsTunnelCHopExplicitReverseLabel object."
::= { gmplsTunnelCHopEntry 5 }

gmplsTunnelReversePerfTable  OBJECT-TYPE
 SYNTAX  SEQUENCE OF GmplsTunnelReversePerfEntry
 MAX-ACCESS not-accessible
 STATUS  current
 DESCRIPTION



Nadeau & Farrel             Standards Track                    [Page 32]

RFC 4802                      GMPLS TE MIB                 February 2007


   "This table augments the gmplsTunnelTable to provide
    per-tunnel packet performance information for the reverse
    direction of a bidirectional tunnel.  It can be seen as
    supplementing the mplsTunnelPerfTable, which augments the
    mplsTunnelTable.

    For links that do not transport packets, these packet counters
    cannot be maintained.  For such links, attempts to read the
    objects in this table will return noSuchInstance.

    A tunnel can be known to be bidirectional by inspecting the
    gmplsTunnelDirection object."
 REFERENCE
   "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE)
       Management Information Base (MIB), RFC 3812."
::= { gmplsTeObjects 5 }

gmplsTunnelReversePerfEntry OBJECT-TYPE
 SYNTAX  GmplsTunnelReversePerfEntry
 MAX-ACCESS not-accessible
 STATUS  current
 DESCRIPTION
   "An entry in this table is created by the LSR for every
    bidirectional GMPLS tunnel where packets are visible to the
    LSR."
 AUGMENTS { gmplsTunnelEntry }
::= { gmplsTunnelReversePerfTable 1 }

GmplsTunnelReversePerfEntry ::= SEQUENCE {
 gmplsTunnelReversePerfPackets     Counter32,
 gmplsTunnelReversePerfHCPackets   Counter64,
 gmplsTunnelReversePerfErrors      Counter32,
 gmplsTunnelReversePerfBytes       Counter32,
 gmplsTunnelReversePerfHCBytes     Counter64
}

gmplsTunnelReversePerfPackets OBJECT-TYPE
 SYNTAX  Counter32
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "Number of packets forwarded on the tunnel in the reverse
    direction if it is bidirectional.

    This object represents the 32-bit value of the least
    significant part of the 64-bit value if both
    gmplsTunnelReversePerfHCPackets and this object are returned.




Nadeau & Farrel             Standards Track                    [Page 33]

RFC 4802                      GMPLS TE MIB                 February 2007


    For links that do not transport packets, this packet counter
    cannot be maintained.  For such links, this value will return
    noSuchInstance."
::= { gmplsTunnelReversePerfEntry 1 }

gmplsTunnelReversePerfHCPackets OBJECT-TYPE
 SYNTAX  Counter64
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "High-capacity counter for number of packets forwarded on the
    tunnel in the reverse direction if it is bidirectional.

    For links that do not transport packets, this packet counter
    cannot be maintained.  For such links, this value will return
    noSuchInstance."
::= { gmplsTunnelReversePerfEntry 2 }

gmplsTunnelReversePerfErrors OBJECT-TYPE
 SYNTAX  Counter32
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "Number of errored packets received on the tunnel in the reverse
    direction if it is bidirectional.  For links that do not
    transport packets, this packet counter cannot be maintained.  For
    such links, this value will return noSuchInstance."
::= { gmplsTunnelReversePerfEntry 3 }

gmplsTunnelReversePerfBytes OBJECT-TYPE
 SYNTAX  Counter32
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "Number of bytes forwarded on the tunnel in the reverse direction
    if it is bidirectional.

    This object represents the 32-bit value of the least
    significant part of the 64-bit value if both
    gmplsTunnelReversePerfHCBytes and this object are returned.

    For links that do not transport packets, this packet counter
    cannot be maintained.  For such links, this value will return
    noSuchInstance."
::= { gmplsTunnelReversePerfEntry 4 }

gmplsTunnelReversePerfHCBytes OBJECT-TYPE
 SYNTAX  Counter64



Nadeau & Farrel             Standards Track                    [Page 34]

RFC 4802                      GMPLS TE MIB                 February 2007


 MAX-ACCESS read-only
 STATUS  current

 DESCRIPTION
   "High-capacity counter for number of bytes forwarded on the
    tunnel in the reverse direction if it is bidirectional.

    For links that do not transport packets, this packet counter
    cannot be maintained.  For such links, this value will return
    noSuchInstance."
::= { gmplsTunnelReversePerfEntry 5 }

gmplsTunnelErrorTable  OBJECT-TYPE
 SYNTAX  SEQUENCE OF GmplsTunnelErrorEntry
 MAX-ACCESS not-accessible
 STATUS  current
 DESCRIPTION
   "This table augments the mplsTunnelTable.

    This table provides per-tunnel information about errors.  Errors
    may be detected locally or reported through the signaling
    protocol.  Error reporting is not exclusive to GMPLS, and this
    table may be applied in MPLS systems.

    Entries in this table are not persistent over system resets
    or re-initializations of the management system."
 REFERENCE
   "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE)
       Management Information Base (MIB), RFC 3812."
::= { gmplsTeObjects 6 }

gmplsTunnelErrorEntry OBJECT-TYPE
 SYNTAX  GmplsTunnelErrorEntry
 MAX-ACCESS not-accessible
 STATUS  current
 DESCRIPTION
   "An entry in this table is created by the LSR for every tunnel
    where error information is visible to the LSR.

    Note that systems that read the objects in this table one at
    a time and do not perform atomic operations to read entire
    instantiated table rows at once, should, for each conceptual
    column with valid data, read gmplsTunnelErrorLastTime
    prior to the other objects in the row and again subsequent to
    reading the last object of the row.  They should verify that
    the value of gmplsTunnelErrorLastTime did not change and
    thereby ensure that all data read belongs to the same error
    event."



Nadeau & Farrel             Standards Track                    [Page 35]

RFC 4802                      GMPLS TE MIB                 February 2007


 AUGMENTS { mplsTunnelEntry }
::= { gmplsTunnelErrorTable 1 }

GmplsTunnelErrorEntry ::= SEQUENCE {
 gmplsTunnelErrorLastErrorType      INTEGER,
 gmplsTunnelErrorLastTime           TimeStamp,
 gmplsTunnelErrorReporterType       InetAddressType,
 gmplsTunnelErrorReporter           InetAddress,
 gmplsTunnelErrorCode               Unsigned32,
 gmplsTunnelErrorSubcode            Unsigned32,
 gmplsTunnelErrorTLVs               OCTET STRING,
 gmplsTunnelErrorHelpString         SnmpAdminString
}

gmplsTunnelErrorLastErrorType OBJECT-TYPE
 SYNTAX  INTEGER {
   noError(0),
   unknown(1),
   protocol(2),
   pathComputation(3),
   localConfiguration(4),
   localResources(5),
   localOther(6)
 }
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "The nature of the last error.  Provides interpretation context
    for gmplsTunnelErrorProtocolCode and
    gmplsTunnelErrorProtocolSubcode.

    A value of noError(0) shows that there is no error associated
    with this tunnel and means that the other objects in this table
    entry (conceptual row) have no meaning.

    A value of unknown(1) shows that there is an error but that no
    additional information about the cause is known.  The error may
    have been received in a signaled message or generated locally.

    A value of protocol(2) or pathComputation(3) indicates the
    cause of an error and identifies an error that has been received
    through signaling or will itself be signaled.

    A value of localConfiguration(4), localResources(5) or
    localOther(6) identifies an error that has been detected
    by the local node but that will not be reported through
    signaling."
::= { gmplsTunnelErrorEntry 1 }



Nadeau & Farrel             Standards Track                    [Page 36]

RFC 4802                      GMPLS TE MIB                 February 2007


gmplsTunnelErrorLastTime OBJECT-TYPE
 SYNTAX  TimeStamp
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "The time at which the last error occurred.  This is presented as
    the value of SysUpTime when the error occurred or was reported
    to this node.

    If gmplsTunnelErrorLastErrorType has the value noError(0), then
    this object is not valid and should be ignored.

    Note that entries in this table are not persistent over system
    resets or re-initializations of the management system."
::= { gmplsTunnelErrorEntry 2 }

gmplsTunnelErrorReporterType OBJECT-TYPE
  SYNTAX     InetAddressType
  MAX-ACCESS read-only
  STATUS  current
  DESCRIPTION
    "The address type of the error reported.

     This object is used to aid in interpretation of
     gmplsTunnelErrorReporter."
::= { gmplsTunnelErrorEntry 3 }

gmplsTunnelErrorReporter OBJECT-TYPE
 SYNTAX  InetAddress
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "The address of the node reporting the last error, or the address
    of the resource (such as an interface) associated with the
    error.

    If gmplsTunnelErrorLastErrorType has the value noError(0), then
    this object is not valid and should be ignored.

    If gmplsTunnelErrorLastErrorType has the value unknown(1),
    localConfiguration(4), localResources(5), or localOther(6),
    this object MAY contain a zero value.

    This object should be interpreted in the context of the value of
    the object gmplsTunnelErrorReporterType."
 REFERENCE
   "1. Textual Conventions for Internet Network Addresses, RFC 4001,
       section 4, Usage Hints."



Nadeau & Farrel             Standards Track                    [Page 37]

RFC 4802                      GMPLS TE MIB                 February 2007


::= { gmplsTunnelErrorEntry 4 }

gmplsTunnelErrorCode OBJECT-TYPE
 SYNTAX  Unsigned32
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "The primary error code associated with the last error.

    The interpretation of this error code depends on the value of
    gmplsTunnelErrorLastErrorType.  If the value of
    gmplsTunnelErrorLastErrorType is noError(0), the value of this
    object should be 0 and should be ignored.  If the value of
    gmplsTunnelErrorLastErrorType is protocol(2), the error should
    be interpreted in the context of the signaling protocol
    identified by the mplsTunnelSignallingProto object."
 REFERENCE
   "1. Resource ReserVation Protocol -- Version 1 Functional
       Specification, RFC 2205, section B.
    2. RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209,
       section 7.3.
    3. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473,
       section 13.1."
::= { gmplsTunnelErrorEntry 5 }

gmplsTunnelErrorSubcode OBJECT-TYPE
 SYNTAX  Unsigned32
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "The secondary error code associated with the last error and the
    protocol used to signal this tunnel.  This value is interpreted
    in the context of the value of gmplsTunnelErrorCode.
    If the value of gmplsTunnelErrorLastErrorType is noError(0), the
    value of this object should be 0 and should be ignored."
 REFERENCE
   "1. Resource ReserVation Protocol -- Version 1 Functional
       Specification, RFC 2205, section B.
    2. RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209,
       section 7.3.
    3. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473,
       section 13.1. "
::= { gmplsTunnelErrorEntry 6 }

gmplsTunnelErrorTLVs OBJECT-TYPE
 SYNTAX  OCTET STRING (SIZE(0..65535))
 MAX-ACCESS read-only
 STATUS  current



Nadeau & Farrel             Standards Track                    [Page 38]

RFC 4802                      GMPLS TE MIB                 February 2007


 DESCRIPTION
   "The sequence of interface identifier TLVs reported with the
    error by the protocol code.  The interpretation of the TLVs and
    the encoding within the protocol are described in the
    references.  A value of zero in the first octet indicates that no
    TLVs are present."
  REFERENCE
   "1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473,
       section 8.2."
::= { gmplsTunnelErrorEntry 7 }

gmplsTunnelErrorHelpString OBJECT-TYPE
 SYNTAX  SnmpAdminString
 MAX-ACCESS read-only
 STATUS  current
 DESCRIPTION
   "A textual string containing information about the last error,
    recovery actions, and support advice.  If there is no help string,
    this object contains a zero length string.
    If the value of gmplsTunnelErrorLastErrorType is noError(0),
    this object should contain a zero length string, but may contain
    a help string indicating that there is no error."
::= { gmplsTunnelErrorEntry 8 }

--
-- Notifications
--

gmplsTunnelDown NOTIFICATION-TYPE
OBJECTS  {
 mplsTunnelAdminStatus,
 mplsTunnelOperStatus,
 gmplsTunnelErrorLastErrorType,
 gmplsTunnelErrorReporterType,
 gmplsTunnelErrorReporter,
 gmplsTunnelErrorCode,
 gmplsTunnelErrorSubcode
}
STATUS      current
DESCRIPTION
    "This notification is generated when an mplsTunnelOperStatus
     object for a tunnel in the gmplsTunnelTable is about to enter
     the down state from some other state (but not from the
     notPresent state).  This other state is indicated by the
     included value of mplsTunnelOperStatus.

     The objects in this notification provide additional error
     information that indicates the reason why the tunnel has



Nadeau & Farrel             Standards Track                    [Page 39]

RFC 4802                      GMPLS TE MIB                 February 2007


     transitioned to down(2).

     Note that an implementation MUST only issue one of
     mplsTunnelDown and gmplsTunnelDown for any single event on a
     single tunnel.  If the tunnel has an entry in the
     gmplsTunnelTable, an implementation SHOULD use gmplsTunnelDown
     for all tunnel-down events and SHOULD NOT use mplsTunnelDown.

     This notification is subject to the control of
     mplsTunnelNotificationEnable.  When that object is set
     to false(2), then the notification must not be issued.

     Further, this notification is also subject to
     mplsTunnelNotificationMaxRate.  That object indicates the
     maximum number of notifications issued per second.  If events
     occur more rapidly, the implementation may simply fail to emit
     some notifications during that period, or may queue them until
     an appropriate time.  The notification rate applies to the sum
     of all notifications in the MPLS-TE-STD-MIB and
     GMPLS-TE-STD-MIB modules applied across the whole of the
     reporting device.

     mplsTunnelOperStatus, mplsTunnelAdminStatus, mplsTunnelDown,
     mplsTunnelNotificationEnable, and mplsTunnelNotificationMaxRate
     objects are found in MPLS-TE-STD-MIB."
   REFERENCE
     "1. Multiprotocol Label Switching (MPLS) Traffic Engineering
         (TE) Management Information Base (MIB), RFC 3812."
::= { gmplsTeNotifications 1 }

gmplsTeGroups
 OBJECT IDENTIFIER ::= { gmplsTeConformance 1 }

gmplsTeCompliances
 OBJECT IDENTIFIER ::= { gmplsTeConformance 2 }

-- Compliance requirement for fully compliant implementations.

gmplsTeModuleFullCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
    "Compliance statement for agents that provide full support for
     GMPLS-TE-STD-MIB.  Such devices can then be monitored and also
     be configured using this MIB module.

     The mandatory group has to be implemented by all LSRs that
     originate, terminate, or act as transit for TE-LSPs/tunnels.
     In addition, depending on the type of tunnels supported, other



Nadeau & Farrel             Standards Track                    [Page 40]

RFC 4802                      GMPLS TE MIB                 February 2007


     groups become mandatory as explained below."

 MODULE MPLS-TE-STD-MIB -- The MPLS-TE-STD-MIB, RFC 3812

 MANDATORY-GROUPS {
    mplsTunnelGroup,
    mplsTunnelScalarGroup
 }

MODULE -- this module

MANDATORY-GROUPS {
 gmplsTunnelGroup,
 gmplsTunnelScalarGroup
}

GROUP gmplsTunnelSignaledGroup
 DESCRIPTION
   "This group is mandatory for devices that support signaled
    tunnel set up, in addition to gmplsTunnelGroup.  The following
    constraints apply:
        mplsTunnelSignallingProto should be at least read-only
        returning a value of ldp(2) or rsvp(3)."

GROUP gmplsTunnelOptionalGroup
 DESCRIPTION
   "Objects in this group are optional."

GROUP gmplsTeNotificationGroup
 DESCRIPTION
   "This group is mandatory for those implementations that can
    implement the notifications contained in this group."

::= { gmplsTeCompliances 1 }

-- Compliance requirement for read-only compliant implementations.

gmplsTeModuleReadOnlyCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
   "Compliance requirement for implementations that only provide
    read-only support for GMPLS-TE-STD-MIB.  Such devices can then be
    monitored but cannot be configured using this MIB module."

 MODULE -- this module

-- The mandatory group has to be implemented by all LSRs that
-- originate, terminate, or act as transit for TE-LSPs/tunnels.



Nadeau & Farrel             Standards Track                    [Page 41]

RFC 4802                      GMPLS TE MIB                 February 2007


-- In addition, depending on the type of tunnels supported, other
-- groups become mandatory as explained below.

MANDATORY-GROUPS {
 gmplsTunnelGroup,
 gmplsTunnelScalarGroup
}

GROUP gmplsTunnelSignaledGroup
 DESCRIPTION
   "This group is mandatory for devices that support signaled
    tunnel set up, in addition to gmplsTunnelGroup.  The following
    constraints apply:
        mplsTunnelSignallingProto should be at least read-only
        returning a value of ldp(2) or rsvp(3)."

GROUP gmplsTunnelOptionalGroup
 DESCRIPTION
   "Objects in this group are optional."

GROUP gmplsTeNotificationGroup
 DESCRIPTION
   "This group is mandatory for those implementations that can
    implement the notifications contained in this group."

OBJECT gmplsTunnelUnnumIf
 MIN-ACCESS  read-only
 DESCRIPTION
   "Write access is not required."

OBJECT gmplsTunnelAttributes
 MIN-ACCESS  read-only
 DESCRIPTION
   "Write access is not required."

OBJECT gmplsTunnelLSPEncoding
 MIN-ACCESS  read-only
 DESCRIPTION
   "Write access is not required."

OBJECT gmplsTunnelSwitchingType
 MIN-ACCESS  read-only
 DESCRIPTION
   "Write access is not required."

OBJECT gmplsTunnelLinkProtection
 MIN-ACCESS  read-only
 DESCRIPTION



Nadeau & Farrel             Standards Track                    [Page 42]

RFC 4802                      GMPLS TE MIB                 February 2007


   "Write access is not required."

OBJECT gmplsTunnelGPid
 MIN-ACCESS  read-only
 DESCRIPTION
   "Write access is not required."

OBJECT gmplsTunnelSecondary
 MIN-ACCESS  read-only
 DESCRIPTION
   "Write access is not required."

OBJECT gmplsTunnelDirection
 MIN-ACCESS  read-only
 DESCRIPTION
   "Only forward(0) is required."

OBJECT gmplsTunnelPathComp
 MIN-ACCESS  read-only
 DESCRIPTION
   "Only explicit(2) is required."

OBJECT gmplsTunnelUpstreamNotifyRecipientType
 SYNTAX       InetAddressType { unknown(0), ipv4(1), ipv6(2) }
 MIN-ACCESS   read-only
 DESCRIPTION  "Only unknown(0), ipv4(1), and ipv6(2) support
                is required."

OBJECT gmplsTunnelUpstreamNotifyRecipient
 SYNTAX      InetAddress (SIZE(0|4|16))
 MIN-ACCESS  read-only
 DESCRIPTION "An implementation is only required to support
              unknown(0), ipv4(1), and ipv6(2) sizes."

OBJECT gmplsTunnelSendResvNotifyRecipientType
 SYNTAX       InetAddressType { unknown(0), ipv4(1), ipv6(2) }
 MIN-ACCESS read-only
 DESCRIPTION "Only unknown(0), ipv4(1), and ipv6(2) support
              is required."

OBJECT gmplsTunnelSendResvNotifyRecipient
 SYNTAX      InetAddress (SIZE(0|4|16))
 MIN-ACCESS read-only
 DESCRIPTION "An implementation is only required to support
              unknown(0), ipv4(1), and ipv6(2) sizes."

OBJECT gmplsTunnelDownstreamNotifyRecipientType
 SYNTAX       InetAddressType { unknown(0), ipv4(1), ipv6(2) }



Nadeau & Farrel             Standards Track                    [Page 43]

RFC 4802                      GMPLS TE MIB                 February 2007


 MIN-ACCESS read-only
 DESCRIPTION "Only unknown(0), ipv4(1), and ipv6(2) support
              is required."

OBJECT gmplsTunnelDownstreamNotifyRecipient
 SYNTAX      InetAddress (SIZE(0|4|16))
 MIN-ACCESS read-only
 DESCRIPTION "An implementation is only required to support
              unknown(0), ipv4(1), and ipv6(2) sizes."

OBJECT gmplsTunnelSendPathNotifyRecipientType
 SYNTAX       InetAddressType { unknown(0), ipv4(1), ipv6(2) }
 MIN-ACCESS read-only
 DESCRIPTION "Only unknown(0), ipv4(1), and ipv6(2) support
              is required."

OBJECT gmplsTunnelSendPathNotifyRecipient
 SYNTAX      InetAddress (SIZE(0|4|16))
 MIN-ACCESS read-only
 DESCRIPTION "An implementation is only required to support
              unknown(0), ipv4(1), and ipv6(2) sizes."

OBJECT gmplsTunnelAdminStatusFlags
 MIN-ACCESS read-only
 DESCRIPTION
   "Write access is not required."

OBJECT gmplsTunnelExtraParamsPtr
 MIN-ACCESS read-only
 DESCRIPTION
   "Write access is not required."

-- gmplsTunnelHopLabelStatuses has max access read-only

OBJECT gmplsTunnelHopExplicitForwardLabel
 MIN-ACCESS  read-only
 DESCRIPTION
   "Write access is not required."

OBJECT gmplsTunnelHopExplicitForwardLabelPtr
 MIN-ACCESS  read-only
 DESCRIPTION
   "Write access is not required."

OBJECT gmplsTunnelHopExplicitReverseLabel
 MIN-ACCESS  read-only
 DESCRIPTION
   "Write access is not required."



Nadeau & Farrel             Standards Track                    [Page 44]

RFC 4802                      GMPLS TE MIB                 February 2007


OBJECT gmplsTunnelHopExplicitReverseLabelPtr
 MIN-ACCESS  read-only
 DESCRIPTION
   "Write access is not required."

-- gmplsTunnelARHopTable
-- all objects have max access read-only

-- gmplsTunnelCHopTable
-- all objects have max access read-only

-- gmplsTunnelReversePerfTable
-- all objects have max access read-only

-- gmplsTunnelErrorTable
-- all objects have max access read-only

OBJECT gmplsTunnelErrorReporterType
 SYNTAX       InetAddressType { unknown(0), ipv4(1), ipv6(2) }
 DESCRIPTION "Only unknown(0), ipv4(1), and ipv6(2) support
              is required."

OBJECT gmplsTunnelErrorReporter
 SYNTAX      InetAddress (SIZE(0|4|16))
 DESCRIPTION "An implementation is only required to support
              unknown(0), ipv4(1), and ipv6(2)."
::= { gmplsTeCompliances 2 }

gmplsTunnelGroup OBJECT-GROUP
 OBJECTS {
   gmplsTunnelDirection,
   gmplsTunnelReversePerfPackets,
   gmplsTunnelReversePerfHCPackets,
   gmplsTunnelReversePerfErrors,
   gmplsTunnelReversePerfBytes,
   gmplsTunnelReversePerfHCBytes,
   gmplsTunnelErrorLastErrorType,
   gmplsTunnelErrorLastTime,
   gmplsTunnelErrorReporterType,
   gmplsTunnelErrorReporter,
   gmplsTunnelErrorCode,
   gmplsTunnelErrorSubcode,
   gmplsTunnelErrorTLVs,
   gmplsTunnelErrorHelpString,
   gmplsTunnelUnnumIf
 }
 STATUS  current
 DESCRIPTION



Nadeau & Farrel             Standards Track                    [Page 45]

RFC 4802                      GMPLS TE MIB                 February 2007


   "Necessary, but not sufficient, set of objects to implement
    tunnels.  In addition, depending on the type of the tunnels
    supported (for example, manually configured or signaled,
    persistent or non-persistent, etc.), the
    gmplsTunnelSignaledGroup group is mandatory."
::= { gmplsTeGroups 1 }

gmplsTunnelSignaledGroup OBJECT-GROUP
 OBJECTS {
   gmplsTunnelAttributes,
   gmplsTunnelLSPEncoding,
   gmplsTunnelSwitchingType,
   gmplsTunnelLinkProtection,
   gmplsTunnelGPid,
   gmplsTunnelSecondary,
   gmplsTunnelPathComp,
   gmplsTunnelUpstreamNotifyRecipientType,
   gmplsTunnelUpstreamNotifyRecipient,
   gmplsTunnelSendResvNotifyRecipientType,
   gmplsTunnelSendResvNotifyRecipient,
   gmplsTunnelDownstreamNotifyRecipientType,
   gmplsTunnelDownstreamNotifyRecipient,
   gmplsTunnelSendPathNotifyRecipientType,
   gmplsTunnelSendPathNotifyRecipient,
   gmplsTunnelAdminStatusFlags,
   gmplsTunnelHopLabelStatuses,
   gmplsTunnelHopExplicitForwardLabel,
   gmplsTunnelHopExplicitForwardLabelPtr,
   gmplsTunnelHopExplicitReverseLabel,
   gmplsTunnelHopExplicitReverseLabelPtr
 }
 STATUS  current
 DESCRIPTION
   "Objects needed to implement signaled tunnels."
::= { gmplsTeGroups 2 }

gmplsTunnelScalarGroup OBJECT-GROUP
 OBJECTS {
   gmplsTunnelsConfigured,
   gmplsTunnelsActive
 }
 STATUS  current
 DESCRIPTION
   "Scalar objects needed to implement MPLS tunnels."
::= { gmplsTeGroups 3 }

gmplsTunnelOptionalGroup OBJECT-GROUP
 OBJECTS {



Nadeau & Farrel             Standards Track                    [Page 46]

RFC 4802                      GMPLS TE MIB                 February 2007


   gmplsTunnelExtraParamsPtr,
   gmplsTunnelARHopLabelStatuses,
   gmplsTunnelARHopExplicitForwardLabel,
   gmplsTunnelARHopExplicitForwardLabelPtr,
   gmplsTunnelARHopExplicitReverseLabel,
   gmplsTunnelARHopExplicitReverseLabelPtr,
   gmplsTunnelARHopProtection,
   gmplsTunnelCHopLabelStatuses,
   gmplsTunnelCHopExplicitForwardLabel,
   gmplsTunnelCHopExplicitForwardLabelPtr,
   gmplsTunnelCHopExplicitReverseLabel,
   gmplsTunnelCHopExplicitReverseLabelPtr
 }
 STATUS  current
 DESCRIPTION
   "The objects in this group are optional."
::= { gmplsTeGroups 4 }

gmplsTeNotificationGroup NOTIFICATION-GROUP
 NOTIFICATIONS {
    gmplsTunnelDown
 }
 STATUS  current
 DESCRIPTION
   "Set of notifications implemented in this module.  None is
    mandatory."
::= { gmplsTeGroups 5 }

END

9. Security Considerations

  It is clear that the MIB modules described in this document in
  association with MPLS-TE-STD-MIB [RFC3812] are potentially useful for
  monitoring of MPLS and GMPLS tunnels.  These MIB modules can also be
  used for configuration of certain objects, and anything that can be
  configured can be incorrectly configured, with potentially disastrous
  results.

  There are a number of management objects defined in these MIB modules
  with a MAX-ACCESS clause of read-write and/or read-create.  Such
  objects may be considered sensitive or vulnerable in some network
  environments.  The support for SET operations in a non-secure
  environment without proper protection can have a negative effect on
  network operations.  These are the tables and objects and their
  sensitivity/vulnerability:





Nadeau & Farrel             Standards Track                    [Page 47]

RFC 4802                      GMPLS TE MIB                 February 2007


  o  the gmplsTunnelTable and gmplsTunnelHopTable collectively contain
     objects to provision GMPLS tunnels interfaces at their ingress
     LSRs.  Unauthorized write access to objects in these tables could
     result in disruption of traffic on the network.  This is
     especially true if a tunnel has already been established.

  Some of the readable objects in these MIB modules (i.e., objects with
  a MAX-ACCESS other than not-accessible) may be considered sensitive
  or vulnerable in some network environments.  It is thus important to
  control even GET and/or NOTIFY access to these objects and possibly
  to even encrypt the values of these objects when sending them over
  the network via SNMP.  These are the tables and objects and their
  sensitivity/vulnerability:

  o  the gmplsTunnelTable, gmplsTunnelHopTable, gmplsTunnelARHopTable,
     gmplsTunnelCHopTable, gmplsTunnelReversePerfTable, and
     gmplsTunnelErrorTable collectively show the tunnel network
     topology and status.  If an administrator does not want to reveal
     this information, then these tables should be considered
     sensitive/vulnerable.

  SNMP versions prior to SNMPv3 did not include adequate security.
  Even if the network itself is secure (for example by using IPsec),
  even then, there is no control as to who on the secure network is
  allowed to access and GET/SET (read/change/create/delete) the objects
  in these MIB modules.

  It is RECOMMENDED that implementers consider the security features as
  provided by the SNMPv3 framework (see [RFC3410], section 8),
  including full support for the SNMPv3 cryptographic mechanisms (for
  authentication and privacy).

  Further, deployment of SNMP versions prior to SNMPv3 is NOT
  RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
  enable cryptographic security.  It is then a customer/operator
  responsibility to ensure that the SNMP entity giving access to an
  instance of this MIB module, is properly configured to give access to
  the objects only to those principals (users) that have legitimate
  rights to indeed GET or SET (change/create/delete) them.

10.  Acknowledgments

  This document is a product of the CCAMP Working Group.

  This document extends [RFC3812].  The authors would like to express
  their gratitude to all those who worked on that earlier MIB document.
  Thanks also to Tony Zinicola and Jeremy Crossen for their valuable
  contributions during an early implementation, and to Lars Eggert,



Nadeau & Farrel             Standards Track                    [Page 48]

RFC 4802                      GMPLS TE MIB                 February 2007


  Baktha Muralidharan, Tom Petch, Dan Romascanu, Dave Thaler, and Bert
  Wijnen for their review comments.

  Special thanks to Joan Cucchiara and Len Nieman for their help with
  compilation issues.

  Joan Cucchiara provided a helpful and very thorough MIB Doctor
  review.

11.  IANA Considerations

  IANA has rooted MIB objects in the MIB modules contained in this
  document according to the sections below.

11.1.  IANA Considerations for GMPLS-TE-STD-MIB

  IANA has rooted MIB objects in the GMPLS-TE-STD-MIB module contained
  in this document under the mplsStdMIB subtree.

  IANA has made the following assignments in the "NETWORK MANAGEMENT
  PARAMETERS" registry located at http://www.iana.org/assignments/
  smi-numbers in table:

  ...mib-2.transmission.mplsStdMIB (1.3.6.1.2.1.10.166)

  Decimal  Name                  References
  -------  -----                 ----------
  13       GMPLS-TE-STD-MIB      [RFC4802]

  In the future, GMPLS-related standards-track MIB modules should be
  rooted under the mplsStdMIB (sic) subtree.  IANA has been requested
  to manage that namespace in the SMI Numbers registry [RFC3811].  New
  assignments can only be made via a Standards Action as specified in
  [RFC2434].

11.2.  Dependence on IANA MIB Modules

  Three MIB objects in the GMPLS-TE-STD-MIB module defined in this
  document (gmplsTunnelLSPEncoding, gmplsTunnelSwitchingType, and
  gmplsTunnelGPid) use textual conventions imported from the IANA-
  GMPLS-TC-MIB module.  The purpose of defining these textual
  conventions in a separate MIB module is to allow additional values to
  be defined without having to issue a new version of this document.
  The Internet Assigned Numbers Authority (IANA) is responsible for the
  assignment of all Internet numbers; it will administer the values
  associated with these textual conventions.





Nadeau & Farrel             Standards Track                    [Page 49]

RFC 4802                      GMPLS TE MIB                 February 2007


  The rules for additions or changes to IANA-GMPLS-TC-MIB are outlined
  in the DESCRIPTION clause associated with its MODULE-IDENTITY
  statement.

  The current version of IANA-GMPLS-TC-MIB can be accessed from the
  IANA home page at: http://www.iana.org/.

11.2.1.  IANA-GMPLS-TC-MIB Definition

  This section provides the base definition of the IANA GMPLS TC MIB
  module.  This MIB module is under the direct control of IANA.  Please
  see the most updated version of this MIB at
  <http://www.iana.org/assignments/ianagmplstc-mib>.

  This MIB makes reference to the following documents: [RFC2578],
  [RFC2579], [RFC3471], [RFC3473], [RFC4202], [RFC4328], and [RFC4783].

  IANA assigned an OID to the IANA-GMPLS-TC-MIB module specified in
  this document as { mib-2 152 }.

  IANA-GMPLS-TC-MIB DEFINITIONS ::= BEGIN

  IMPORTS
      MODULE-IDENTITY, mib-2              FROM SNMPv2-SMI  -- RFC 2578
      TEXTUAL-CONVENTION                  FROM SNMPv2-TC;  -- RFC 2579

  ianaGmpls MODULE-IDENTITY
      LAST-UPDATED
                 "200702270000Z" -- 27 February 2007 00:00:00 GMT
      ORGANIZATION
                 "IANA"
      CONTACT-INFO
                 "Internet Assigned Numbers Authority
                  Postal: 4676 Admiralty Way, Suite 330
                          Marina del Rey, CA 90292
                  Tel:    +1 310 823 9358
                  E-Mail: [email protected]"
      DESCRIPTION
        "Copyright (C) The IETF Trust (2007).  The initial version
         of this MIB module was published in RFC 4802.  For full legal
         notices see the RFC itself.  Supplementary information
         may be available on:
         http://www.ietf.org/copyrights/ianamib.html"

         REVISION
          "200702270000Z" -- 27 February 2007 00:00:00 GMT
        DESCRIPTION
          "Initial version issued as part of RFC 4802."



Nadeau & Farrel             Standards Track                    [Page 50]

RFC 4802                      GMPLS TE MIB                 February 2007


      ::= { mib-2 152 }

  IANAGmplsLSPEncodingTypeTC ::= TEXTUAL-CONVENTION
      STATUS       current
      DESCRIPTION
           "This type is used to represent and control
            the LSP encoding type of an LSP signaled by a GMPLS
            signaling protocol.

            This textual convention is strongly tied to the LSP
            Encoding Types sub-registry of the GMPLS Signaling
            Parameters registry managed by IANA.  Values should be
            assigned by IANA in step with the LSP Encoding Types
            sub-registry and using the same registry management rules.
            However, the actual values used in this textual convention
            are solely within the purview of IANA and do not
            necessarily match the values in the LSP Encoding Types
            sub-registry.

            The definition of this textual convention with the
            addition of newly assigned values is published
            periodically by the IANA, in either the Assigned
            Numbers RFC, or some derivative of it specific to
            Internet Network Management number assignments.  (The
            latest arrangements can be obtained by contacting the
            IANA.)

            Requests for new values should be made to IANA via
            email ([email protected])."
      REFERENCE
           "1. Generalized Multi-Protocol Label Switching (GMPLS)
               Signaling Functional Description, RFC 3471, section
               3.1.1.
            2. Generalized MPLS Signalling Extensions for G.709 Optical
               Transport Networks Control, RFC 4328, section 3.1.1."
      SYNTAX  INTEGER {
                 tunnelLspNotGmpls(0),        -- GMPLS is not in use
                 tunnelLspPacket(1),          -- Packet
                 tunnelLspEthernet(2),        -- Ethernet
                 tunnelLspAnsiEtsiPdh(3),     -- PDH
                 -- the value 4 is deprecated
                 tunnelLspSdhSonet(5),        -- SDH or SONET
                 -- the value 6 is deprecated
                 tunnelLspDigitalWrapper(7),  -- Digital Wrapper
                 tunnelLspLambda(8),          -- Lambda
                 tunnelLspFiber(9),           -- Fiber
                 -- the value 10 is deprecated
                 tunnelLspFiberChannel(11),   -- Fiber Channel



Nadeau & Farrel             Standards Track                    [Page 51]

RFC 4802                      GMPLS TE MIB                 February 2007


                 tunnelDigitalPath(12),       -- Digital Path
                 tunnelOpticalChannel(13)     -- Optical Channel
               }

  IANAGmplsSwitchingTypeTC ::= TEXTUAL-CONVENTION
      STATUS       current
      DESCRIPTION
           "This type is used to represent and
            control the LSP switching type of an LSP signaled by a
            GMPLS signaling protocol.

            This textual convention is strongly tied to the Switching
            Types sub-registry of the GMPLS Signaling Parameters
            registry managed by IANA.  Values should be assigned by
            IANA in step with the Switching Types sub-registry and
            using the same registry management rules.  However, the
            actual values used in this textual convention are solely
            within the purview of IANA and do not necessarily match
            the values in the Switching Types sub-registry.

            The definition of this textual convention with the
            addition of newly assigned values is published
            periodically by the IANA, in either the Assigned
            Numbers RFC, or some derivative of it specific to
            Internet Network Management number assignments.  (The
            latest arrangements can be obtained by contacting the
            IANA.)

            Requests for new values should be made to IANA via
            email ([email protected])."
      REFERENCE
           "1. Routing Extensions in Support of Generalized
               Multi-Protocol Label Switching, RFC 4202, section 2.4.
            2. Generalized Multi-Protocol Label Switching (GMPLS)
               Signaling Functional Description, RFC 3471, section
               3.1.1."
      SYNTAX  INTEGER {
                 unknown(0),   -- none of the following, or not known
                 psc1(1),      -- Packet-Switch-Capable 1
                 psc2(2),      -- Packet-Switch-Capable 2
                 psc3(3),      -- Packet-Switch-Capable 3
                 psc4(4),      -- Packet-Switch-Capable 4
                 l2sc(51),     -- Layer-2-Switch-Capable
                 tdm(100),     -- Time-Division-Multiplex
                 lsc(150),     -- Lambda-Switch-Capable
                 fsc(200)      -- Fiber-Switch-Capable
               }




Nadeau & Farrel             Standards Track                    [Page 52]

RFC 4802                      GMPLS TE MIB                 February 2007


  IANAGmplsGeneralizedPidTC ::= TEXTUAL-CONVENTION
      STATUS       current
      DESCRIPTION
           "This data type is used to represent and control the LSP
            Generalized Protocol Identifier (G-PID) of an LSP
            signaled by a GMPLS signaling protocol.

            This textual convention is strongly tied to the Generalized
            PIDs (G-PID) sub-registry of the GMPLS Signaling Parameters
            registry managed by IANA.  Values should be assigned by
            IANA in step with the Generalized PIDs (G-PID) sub-registry
            and using the same registry management rules.  However, the
            actual values used in this textual convention are solely
            within the purview of IANA and do not necessarily match the
            values in the Generalized PIDs (G-PID) sub-registry.

            The definition of this textual convention with the
            addition of newly assigned values is published
            periodically by the IANA, in either the Assigned
            Numbers RFC, or some derivative of it specific to
            Internet Network Management number assignments.  (The
            latest arrangements can be obtained by contacting the
            IANA.)

            Requests for new values should be made to IANA via
            email ([email protected])."
       REFERENCE
           "1. Generalized Multi-Protocol Label Switching (GMPLS)
               Signaling Functional Description, RFC 3471, section
               3.1.1.
            2. Generalized MPLS Signalling Extensions for G.709 Optical
               Transport Networks Control, RFC 4328, section 3.1.3."
       SYNTAX  INTEGER {
                 unknown(0),      -- unknown or none of the following
                 -- the values 1, 2, 3 and 4 are reserved in RFC 3471
                 asynchE4(5),
                 asynchDS3T3(6),
                 asynchE3(7),
                 bitsynchE3(8),
                 bytesynchE3(9),
                 asynchDS2T2(10),
                 bitsynchDS2T2(11),
                 reservedByRFC3471first(12),
                 asynchE1(13),
                 bytesynchE1(14),
                 bytesynch31ByDS0(15),
                 asynchDS1T1(16),
                 bitsynchDS1T1(17),



Nadeau & Farrel             Standards Track                    [Page 53]

RFC 4802                      GMPLS TE MIB                 February 2007


                 bytesynchDS1T1(18),
                 vc1vc12(19),
                 reservedByRFC3471second(20),
                 reservedByRFC3471third(21),
                 ds1SFAsynch(22),
                 ds1ESFAsynch(23),
                 ds3M23Asynch(24),
                 ds3CBitParityAsynch(25),
                 vtLovc(26),
                 stsSpeHovc(27),
                 posNoScramble16BitCrc(28),
                 posNoScramble32BitCrc(29),
                 posScramble16BitCrc(30),
                 posScramble32BitCrc(31),
                 atm(32),
                 ethernet(33),
                 sdhSonet(34),
                 digitalwrapper(36),
                 lambda(37),
                 ansiEtsiPdh(38),
                 lapsSdh(40),
                 fddi(41),
                 dqdb(42),
                 fiberChannel3(43),
                 hdlc(44),
                 ethernetV2DixOnly(45),
                 ethernet802dot3Only(46),
                 g709ODUj(47),
                 g709OTUk(48),
                 g709CBRorCBRa(49),
                 g709CBRb(50),
                 g709BSOT(51),
                 g709BSNT(52),
                 gfpIPorPPP(53),
                 gfpEthernetMAC(54),
                 gfpEthernetPHY(55),
                 g709ESCON(56),
                 g709FICON(57),
                 g709FiberChannel(58)
               }

  IANAGmplsAdminStatusInformationTC ::= TEXTUAL-CONVENTION
       STATUS current
       DESCRIPTION
           "This data type determines the setting of the
            Admin Status flags in the Admin Status object or TLV, as
            described in RFC 3471.  Setting this object to a non-zero
            value will result in the inclusion of the Admin Status



Nadeau & Farrel             Standards Track                    [Page 54]

RFC 4802                      GMPLS TE MIB                 February 2007


            object or TLV on signaling messages.

            This textual convention is strongly tied to the
            Administrative Status Information Flags sub-registry of
            the GMPLS Signaling Parameters registry managed by IANA.
            Values should be assigned by IANA in step with the
            Administrative Status Flags sub-registry and using the
            same registry management rules.  However, the actual
            values used in this textual convention are solely
            within the purview of IANA and do not necessarily match
            the values in the Administrative Status Information
            Flags sub-registry.

            The definition of this textual convention with the
            addition of newly assigned values is published
            periodically by the IANA, in either the Assigned
            Numbers RFC, or some derivative of it specific to
            Internet Network Management number assignments.  (The
            latest arrangements can be obtained by contacting the
            IANA.)

            Requests for new values should be made to IANA via
            email ([email protected])."
       REFERENCE
           "1. Generalized Multi-Protocol Label Switching (GMPLS)
               Signaling Functional Description, RFC 3471, section 8.
            2. Generalized MPLS Signaling - RSVP-TE Extensions,
               RFC 3473, section 7.
            3. GMPLS - Communication of Alarm Information,
               RFC 4783, section 3.2.1."
       SYNTAX BITS {
                 reflect(0), -- Reflect bit (RFC 3471)
                 reserved1(1), -- reserved
                 reserved2(2), -- reserved
                 reserved3(3), -- reserved
                 reserved4(4), -- reserved
                 reserved5(5), -- reserved
                 reserved6(6), -- reserved
                 reserved7(7), -- reserved
                 reserved8(8), -- reserved
                 reserved9(9), -- reserved
                 reserved10(10), -- reserved
                 reserved11(11), -- reserved
                 reserved12(12), -- reserved
                 reserved13(13), -- reserved
                 reserved14(14), -- reserved
                 reserved15(15), -- reserved
                 reserved16(16), -- reserved



Nadeau & Farrel             Standards Track                    [Page 55]

RFC 4802                      GMPLS TE MIB                 February 2007


                 reserved17(17), -- reserved
                 reserved18(18), -- reserved
                 reserved19(19), -- reserved
                 reserved20(20), -- reserved
                 reserved21(21), -- reserved
                 reserved22(22), -- reserved
                 reserved23(23), -- reserved
                 reserved24(24), -- reserved
                 reserved25(25), -- reserved
                 reserved26(26), -- reserved
                 reserved27(27), -- Inhibit Alarm bit (RFC 4783)
                 reserved28(28), -- reserved
                 testing(29), -- Testing bit (RFC 3473)
                 administrativelyDown(30), -- Admin down (RFC 3473)
                 deleteInProgress(31) -- Delete bit (RFC 3473)
               }
  END

12.  References

12.1.  Normative References

  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2205] Braden, R., Zhang, L., Berson, S., Herzog, S., and S.
            Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
            Functional Specification", RFC 2205, September 1997.

  [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
            IANA Considerations Section in RFCs", BCP 26, RFC 2434,
            October 1998.

  [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
            "Structure of Management Information Version 2 (SMIv2)",
            STD 58, RFC 2578, April 1999.

  [RFC2579] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Textual
            Conventions for SMIv2", STD 58, RFC 2579, April 1999.

  [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
            "Conformance Statements for SMIv2", STD 58, RFC 2580, April
            1999.

  [RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
            Label Switching Architecture", RFC 3031, January 2001.





Nadeau & Farrel             Standards Track                    [Page 56]

RFC 4802                      GMPLS TE MIB                 February 2007


  [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
            and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
            Tunnels", RFC 3209, December 2001.

  [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
            Architecture for Describing Simple Network Management
            Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
            December 2002.

  [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching
            (GMPLS) Signaling Functional Description", RFC 3471,
            January 2003.

  [RFC3473] Berger, L., "Generalized Multi-Protocol Label Switching
            (GMPLS) Signaling Resource ReserVation Protocol-Traffic
            Engineering (RSVP-TE) Extensions", RFC 3473, January 2003.

  [RFC3477] Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links
            in Resource ReSerVation Protocol - Traffic Engineering
            (RSVP-TE)", RFC 3477, January 2003.

  [RFC3811] Nadeau, T. and J. Cucchiara, "Definitions of Textual
            Conventions (TCs) for Multiprotocol Label Switching (MPLS)
            Management", RFC 3811, June 2004.

  [RFC3812] Srinivasan, C., Viswanathan, A., and T. Nadeau,
            "Multiprotocol Label Switching (MPLS) Traffic Engineering
            (TE) Management Information Base (MIB)", RFC 3812, June
            2004.

  [RFC3813] Srinivasan, C., Viswanathan, A., and T. Nadeau,
            "Multiprotocol Label Switching (MPLS) Label Switching
            Router (LSR) Management Information Base (MIB)", RFC 3813,
            June 2004.

  [RFC3945] Mannie, E., "Generalized Multi-Protocol Label Switching
            (GMPLS) Architecture", RFC 3945, October 2004.

  [RFC4001] Daniele, M., Haberman, B., Routhier, S., and J.
            Schoenwaelder, "Textual Conventions for Internet Network
            Addresses", RFC 4001, February 2005.

  [RFC4202] Kompella, K. and Y. Rekhter, "Routing Extensions in Support
            of Generalized Multi-Protocol Label Switching (GMPLS)", RFC
            4202, October 2005.






Nadeau & Farrel             Standards Track                    [Page 57]

RFC 4802                      GMPLS TE MIB                 February 2007


  [RFC4328] Papadimitriou, D., "Generalized Multi-Protocol Label
            Switching (GMPLS) Signaling Extensions for G.709 Optical
            Transport Networks Control", RFC 4328, January 2006.

  [RFC4783] Berger, L., "GMPLS - Communication of Alarm Information",
            RFC 4783, December 2006.

  [RFC4803] Nadeau, T., Ed. and A. Farrel, Ed., "Generalized
            Multiprotocol Label Switching (GMPLS) Label Switching
            Router (LSR) Management Information Base", RFC 4803,
            February 2007.

12.2.  Informative References

  [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
            MIB", RFC 2863, June 2000.

  [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
            "Introduction and Applicability Statements for Internet-
            Standard Management Framework", RFC 3410, December 2002.

  [RFC3472] Ashwood-Smith, P. and L. Berger, "Generalized Multi-
            Protocol Label Switching (GMPLS) Signaling Constraint-based
            Routed Label Distribution Protocol (CR-LDP) Extensions",
            RFC 3472, January 2003.


























Nadeau & Farrel             Standards Track                    [Page 58]

RFC 4802                      GMPLS TE MIB                 February 2007


Contact Information

  Thomas D. Nadeau
  Cisco Systems, Inc.
  1414 Massachusetts Ave.
  Boxborough, MA 01719

  EMail: [email protected]


  Cheenu Srinivasan
  Bloomberg L.P.
  731 Lexington Ave.
  New York, NY 10022

  Phone: +1-212-617-3682
  EMail: [email protected]


  Adrian Farrel
  Old Dog Consulting

  Phone: +44-(0)-1978-860944
  EMail: [email protected]


  Tim Hall
  Data Connection Ltd.
  100 Church Street
  Enfield, Middlesex
  EN2 6BQ, UK

  Phone: +44 20 8366 1177
  EMail: [email protected]


  Ed Harrison
  Data Connection Ltd.
  100 Church Street
  Enfield, Middlesex
  EN2 6BQ, UK

  Phone: +44 20 8366 1177
  EMail: [email protected]







Nadeau & Farrel             Standards Track                    [Page 59]

RFC 4802                      GMPLS TE MIB                 February 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Nadeau & Farrel             Standards Track                    [Page 60]