Network Working Group                                         C. Carroll
Request for Comments: 4784                              Ropes & Gray LLP
Category: Informational                                         F. Quick
                                                          Qualcomm Inc.
                                                              June 2007


            Verizon Wireless Dynamic Mobile IP Key Update
                      for cdma2000(R) Networks

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2007).

IESG Note

  This document describes an existing deployed technology that was
  developed outside the IETF.  It utilizes the RADIUS Access-Reject in
  order to provision service, which is incompatible with the RADIUS
  protocol, and practices the sharing of secret keys in public-key
  cryptosystems, which is not a practice the IETF recommends.  The IESG
  recommends against using this protocol as a basis for solving similar
  problems in the future.

Abstract

  The Verizon Wireless Dynamic Mobile IP Key Update procedure is a
  mechanism for distributing and updating Mobile IP (MIP) cryptographic
  keys in cdma2000(R) networks (including High Rate Packet Data, which
  is often referred to as 1xEV-DO).  The Dynamic Mobile IP Key Update
  (DMU) procedure occurs between the MIP Mobile Node (MN) and RADIUS
   Authentication, Authorization and Accounting (AAA) Server via a
  cdma2000(R) Packet Data Serving Node (PDSN) that is acting as a
  Mobile IP Foreign Agent (FA).

  cdma2000(R) is a registered trademark of the Telecommunications
  Industry Association (TIA).








Carroll & Quick              Informational                      [Page 1]

RFC 4784                 Dynamic MIP Key Update                June 2007


Table of Contents

  1. Introduction ....................................................3
     1.1. Conventions Used in This Document ..........................3
  2. Basic Dynamic MIP Key Update Mechanism ..........................3
     2.1. RSA Encrypted Key Distribution .............................4
     2.2. Mutual Authentication (1X) .................................5
     2.3. Encrypted Password Authentication ..........................8
  3. Dynamic MIP Key Update Advantages over OTASP ...................10
  4. Detailed DMU Procedure Description and Requirements ............10
     4.1. RSA Public Key Cryptography ...............................11
     4.2. Other Public Key Algorithms ...............................11
     4.3. Why No Public Key Infrastructure (PKI)? ...................11
     4.4. Cryptographic Key Generation ..............................12
     4.5. MIP_Key_Data Payload ......................................12
     4.6. RSA Key Management ........................................13
     4.7. RADIUS AAA Server .........................................14
     4.8. MN (Handset or Modem) .....................................16
     4.9. PDSN / Foreign Agent (FA) .................................19
     4.10. Home Agent (HA) ..........................................20
     4.11. DMU Procedure Network Flow ...............................20
  5. DMU Procedure Failure Operation ................................25
  6. cdma2000(R) HRPD/1xEV-DO Support ...............................28
     6.1. RADIUS AAA Support ........................................28
     6.2. MN Support ................................................29
     6.3. Informative: MN_Authenticator Support .....................30
  7. Security Considerations ........................................31
     7.1. Cryptographic Key Generation by the MN ....................31
     7.2. Man-in-the-Middle Attack ..................................31
     7.3. RSA Private Key Compromise ................................32
     7.4. RSA Encryption ............................................32
     7.5. False Base Station/PDSN ...................................32
     7.6. cdma2000(R) 1X False MN ...................................32
     7.7. HRPD/1xEV-DO False MN .....................................32
     7.8. Key Lifetimes .............................................32
     7.9. Network Message Security ..................................33
  8. Verizon Wireless RADIUS Attributes .............................33
  9. Verizon Wireless Mobile IP Extensions ..........................34
  10. Public Key Identifier and DMU Version .........................36
  11. Conclusion ....................................................40
  12. Normative References ..........................................41
  13. Informative References ........................................41
  14. Acknowledgments ...............................................42
  Appendix A. Cleartext-Mode Operation ..............................43







Carroll & Quick              Informational                      [Page 2]

RFC 4784                 Dynamic MIP Key Update                June 2007


1.  Introduction

  The Verizon Wireless Dynamic Mobile IP Key Update procedure is a
  mechanism for distributing and updating Mobile IP (MIP) cryptographic
  keys in cdma2000(R) 1xRTT (1X) [2] and High Rate Packet Data (HRPD) /
  1xEV-DO networks [3].  The Dynamic Mobile IP Key Update (DMU)
  procedure occurs between the Mobile IP Mobile Node (MN) and the home
  RADIUS [4] (or Diameter [5]) Authentication, Authorization and
  Accounting (AAA) Server via a cdma2000(R) Packet Data Serving Node
  (PDSN) that is acting as a Mobile IP Foreign Agent (FA).  (In this
  document, we use the acronym AAAH to indicate the home AAA server as
  opposed to an AAA server that may be located in a visited system.)
  This procedure is intended to support wireless systems conforming to
  Telecommunications Industry Association (TIA) TR-45 Standard IS-835
  [6].  DMU, however, could be performed in any MIP network to enable
  bootstrapping of a shared secret between the Mobile Node (MN) and
  RADIUS AAA Server.

  The DMU procedure utilizes RSA public key cryptography to securely
  distribute unique MIP keys to potentially millions of cdma2000(R) 1X
  and HRPD/1xEV-DO Mobile Nodes (MN) using the same RSA public key.

  By leveraging the existing cdma2000(R) 1X authentication process, the
  Dynamic Mobile IP Key Update process employs a mutual authentication
  mechanism in which device-to-network authentication is facilitated
  using cdma2000(R) 1X challenge-response authentication, and network-
  to-device authentication is facilitated using RSA encryption.

  By utilizing RSA encryption, the MN (or MN manufacturer) is able to
  pre-generate MIP keys (and the Challenge Handshake Authentication
  Protocol (CHAP) key) and pre-encrypt the MIP keys prior to initiation
  of the DMU procedure.  By employing this pre-computation capability,
  the DMU process requires less computation (by an order of magnitude)
  during the key exchange than Diffie-Hellman Key Exchange.

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [1].

2.  Basic Dynamic MIP Key Update Mechanism

  The DMU procedure is basically an authentication and key distribution
  protocol that is more easily understood by separately describing the
  mechanism's two functional goals: 1) encrypted key distribution and
  2) mutual authentication.




Carroll & Quick              Informational                      [Page 3]

RFC 4784                 Dynamic MIP Key Update                June 2007


2.1.  RSA Encrypted Key Distribution

  By utilizing RSA public key cryptography, MNs can be pre-loaded with
  a common RSA public (encryption) key (by the MN manufacturer), while
  the associated RSA Private (decryption) key is securely distributed
  from the MN manufacturer to a trusted service provider.
  Alternatively, a service provider can generate its own RSA
  public/private key pair and only distribute the RSA public key to MN
  manufacturers for pre-loading of MNs.

  During the manufacturing process, the MN manufacturer pre-loads each
  MN with the RSA public key.  When the MN is powered-up (or client
  application initiated), the MN can pre-generate and encrypt MIP keys
  for distribution to the Home RADIUS AAA Server during the DMU
  process.  Alternatively, the MN manufacturer can pre-generate MIP
  keys, encrypt the MIP key payload, and pre-load the MN with multiple
  encrypted MIP key payloads to enable the DMU procedure.

  During the initial registration process (or when the AAA requires MIP
  key update), the MN: 1) generates the appropriate MIP keys, CHAP key,
  and authentication information, 2) uses the embedded RSA public key
  to encrypt the payload information, 3) and appends the payload to the
  MIP Registration Request.  The Registration Request is sent to the
  Mobile IP Foreign Agent (FA) via the cellular Base Station (BS) and
  Packet Data Serving Node (PDSN).  When the RADIUS AAA Server receives
  the encrypted payload (defined later as MIP_Key_Data), the AAA Server
  uses the RSA Private key to decrypt the payload and recover the MIP
  keys.























Carroll & Quick              Informational                      [Page 4]

RFC 4784                 Dynamic MIP Key Update                June 2007


             MN                 BS/PDSN/FA                 AAA
             --                 ----------                 ---
              |                     |                       |
      ------------------            |              -------------------
     |  RSA Public Key  |           |             |  RSA Private Key  |
     |  Pre-loaded by   |           |             |  Pre-loaded by    |
     |  Manufacturer    |           |             |  Service Provider |
      ------------------            |               -------------------
              |  Registration Request,                      |
              |  (MIP keys), RSA    |                       |
              |  Public Key         |                       |
              |-------------------->|                       |
              |                     |  Access Request, (MIP keys),
              |                     |  RSA Public Key       |
              |                     |---------------------->|
              |                     |              -------------------
              |                     |             |  Decrypt MIP      |
              |                     |             |  Keys using RSA   |
              |                     |             |  Private Key      |
              |                     |              -------------------

                Figure 1.  RSA Encrypted Key Distribution

2.2.  Mutual Authentication (1X)

  Mutual authentication can be achieved by delegation of the MN/device
  authentication by the RADIUS AAA Server to the cdma2000(R) 1X Home
  Location Register (HLR) and its associated Authentication Center (AC)
  [7], while the MN utilizes RSA encryption to authenticate the RADIUS
  AAA Server.

  MN/device authentication via an HLR/AC is based on the assumption
  that the MN's Mobile Station (MS) has an existing Authentication Key
  (A-key) and Shared Secret Data (SSD) with the cdma2000(R) 1X network.
  When MS call origination occurs, the AC authenticates the MS.  If
  authentication is successful, the BS passes the Mobile Station
  Identifier (MSID) (e.g., Mobile Identification Number (MIN)) to the
  PDSN.  The "Authenticated MSID" is then included in the RADIUS Access
  Request (ARQ) message [4] sent from the PDSN to the RADIUS AAA
  server.  Because the RADIUS AAA server stores the MSID associated
  with an MN subscription, the RADIUS AAA server is able to authorize
  MN access if the "Authenticated MSID" matches the RADIUS AAA MSID,
  i.e., the RADIUS AAA server is delegating its authentication function
  to the cdma2000(R) 1X HLR/AC.







Carroll & Quick              Informational                      [Page 5]

RFC 4784                 Dynamic MIP Key Update                June 2007


  RADIUS AAA Server authentication (by the MN) is enabled by including
  a random number (AAA_Authenticator) in the encrypted payload sent
  from the MN to the RADIUS AAA Server.  Only the possessor of the
  proper RSA Private key will have the ability to decrypt the payload
  and recover the unique AAA_Authenticator.  If the MN receives the
  correct AAA_Authenticator (returned by the RADIUS AAA Server), the MN
  is assured that it is not interacting with a false Base Station (BS).












































Carroll & Quick              Informational                      [Page 6]

RFC 4784                 Dynamic MIP Key Update                June 2007


          MN           BS/PDSN/FA         HLR/AC          AAA
          --           ----------         ------          ---
   ------------------     |                 |      -------------------
  |  RSA Public Key  |    |                 |     |  RSA Private Key  |
  |  Pre-loaded by   |    |                 |     |  Pre-loaded by    |
  |  Manufacturer    |    |                 |     |  Service Provider |
   ------------------     |                 |      -------------------
           |  Global Challenge              |              |
           |<-------------|                 |              |
           |              |                 |              |
           |  Auth_Response                 |              |
           |------------->|                 |              |
           |              |  Auth_Response  |              |
           |              |---------------->|              |
           |              |          ------------------    |
           |              |         |  IS-2000         |   |
           |              |         |  Authentication  |   |
           |              |          ------------------    |
           |              |   Auth_Success  |              |
           |              |<----------------|              |
           |     ------------------         |              |
           |    |  BS forwards     |        |              |
           |    |  Authenticated   |        |              |
           |    |  MSID to PDSN    |        |              |
           |     ------------------         |              |
           |              |                 |              |
           |  Registration Request          |              |
           |  (MIP keys, AAA_Authenticator),               |
           |  RSA Public Key                |              |
           |------------->|                 |              |
           |              |  Access Request, MSID,         |
           |              |  (MIP keys, AAA_Authenticator),
           |              |  RSA Public Key                |
           |              |------------------------------->|
           |              |                 |     -------------------
           |              |                 |    |  Check MSID,      |
           |              |                 |    |  Decrypt AAA_-    |
           |              |                 |    |  Authenticator    |
           |              |                 |     -------------------
           |             Access Reject, AAA_Authenticator  |
           |              |<-------------------------------|
       Registration Reply, AAA_Authenticator               |
           |<-------------|                 |              |
   ------------------     |                 |              |
  |  Check AAA_-     |    |                 |              |
  |  Authenticator   |    |                 |              |
   ------------------     |                 |              |
                     Figure 2. Mutual Authentication



Carroll & Quick              Informational                      [Page 7]

RFC 4784                 Dynamic MIP Key Update                June 2007



2.3.  Encrypted Password Authentication

  Because cdma2000(R) A-key/SSD authentication is not available in
  1xEV-DO, or a particular cdma2000(R) 1X network may not support A-key
  authentication, the DMU procedure also includes a random number
  (MN_Authenticator) generated by the MN (and/or pre-loaded by the
  manufacturer), which enables the RADIUS AAA Server to optionally
  authenticate the MN (in 1XEV DO network only).

  The MN_Authenticator is transmitted from the MN to the Home AAA
  Server within the RSA-encrypted MIP_Key_Data payload to prevent
  interception and possible re-use by an attacker.  Ideally, the
  MN_Authenticator is utilized as a One-Time Password; however, RSA
  encryption allows the MN_Authenticator to possibly be re-used based
  on each service provider's key distribution policy.

  When the encrypted MIP keys are decrypted at the Home RADIUS AAA
  Server, the MN_Authenticator is also decrypted and compared with a
  copy of the MN_Authenticator stored within the Home RADIUS AAA
  Server.  The Home RADIUS AAA Server receives a copy of the
  MN_Authenticator out-of-band (not using the cdma2000(R) network)
  utilizing one of numerous possible methods outside the scope of the
  standard.  For example, the MN_Authenticator MAY be: 1) read out by a
  Point-of-Sale provisioner from the MN, input into the subscriber
  profile, and delivered, along with the Network Access Identifier
  (NAI), via the billing/provision system to the Home RADIUS AAA
  server, 2) verbally communicated to a customer care representative
  via a call, or 3) input by the user interfacing with an interactive
  voice recognition server.  The out-of-band MN_Authenticator delivery
  is not specified in this document to maximize the service provider's
  implementation flexibility.

  It is possible for an unscrupulous provisioner or distribution
  employee to extract the MN_Authenticator prior to the DMU procedure;
  however, the risk associated with such a disclosure is minimal.
  Because the HRPD/1xEV-DO MN does not transmit a device identifier
  during the initial registration process, an attacker, even with a
  stolen MN_Authenticator, cannot correlate the password with a
  particular MN device or NAI, which is typically provisioned just
  prior to DMU procedure initiation.

  The MN_Authenticator is typically generated by a random/pseudorandom
  number generator within the MN.  MN_Authenticator generation is
  initiated by the MN user; however, it may be initially pre-loaded by
  the manufacturer.  When the MN_Authenticator is reset (i.e., a new
  MN_Authenticator is generated), all MIP_Data_Key payloads using the
  previous MN_Authenticator are discarded and the MN immediately re-



Carroll & Quick              Informational                      [Page 8]

RFC 4784                 Dynamic MIP Key Update                June 2007


  encrypts a MIP_Key_Data payload containing the new MN_Authenticator.
  The MN_Authenticator MUST NOT change unless it is explicitly reset by
  the MN user.  Thus, the MN will generate new MIP_Key_Data payloads
  using the same MN_Authenticator until the MN_Authenticator is
  updated.

                                        -------------------------
                                       |  User-initiated         |
                                       |  MN_Authenticator[x]    |
                                       |  Generation             |
                                        -------------------------
                                                   |
                                                   v
   -----------------------------        ------------------------------
  |  Manufacturer               |      |  Delete MN_Authenticator[y], |
  |  MN_Authenticator[y]        |----->|  Store  MN_Authenticator[x]  |
  |  Generation**               |      |  in MN                       |
   -----------------------------        ------------------------------
                                                   |
                                                   v
                                        -------------------------
                                       |  Delete MIP_Key_Data    |
                                       |  Payloads based on      |
                                       |  MN_Authenticator[y]    |
                                        -------------------------
                                                   |
                                                   v
   -----------------------------        -------------------------
  |  KEYS_VALID state and       |      |  Generate MIP_Key_Data  |
  |  committed, delete          |----->|  Payloads based on      |
  |  MIP_Key_Data Payload       |      |  MN_Authenticator[x]    |
   -----------------------------        -------------------------
                ^                                  |
                |                                  v
   -----------------------------        -------------------------
  |  DMU MIP_Key_Data           |      |  Store MIP_Key_Data     |
  |  Delivery                   |<-----|  Payload                |
   -----------------------------        -------------------------

    Figure 3. MN_Authenticator and MIP_Key_Data Payload State Machine

  **Note: Manufacturer pre-load of MN_Authenticator is not essential
  since the MN_Authenticator is typically generated by the MN.
  However, manufacturer pre-load may reduce the provisioner burden of
  accessing a device such as a modem to recover the MN_Authenticator
  for entry into the service provider provisioning system.





Carroll & Quick              Informational                      [Page 9]

RFC 4784                 Dynamic MIP Key Update                June 2007


3.  Dynamic MIP Key Update Advantages over OTASP

  The DMU procedure has numerous advantages over the current Over-the-
  Air Service Provisioning (OTASP) [8] procedure, including:

     *  In DMU, MIP key distribution occurs directly between the MN and
        AAA Server at the IP Layer.  This eliminates the need for an
        interface between the Over-the-Air Functionality (OTAF) and
        RADIUS AAA server.

     *  DMU Supports MIP key distribution for cdma2000(R) 1X and
        HRPD/1xEV-DO MN.  OTASP only supports cdma2000(R) 1X MIP key
        distribution.

     *  DMU facilitates MIP key distribution to an MN in a Relay-mode
        MS.  OTASP only delivers the MIP keys to the MS.  For example,
        OTASP cannot deliver MIP keys to a Laptop MN interfacing with
        an MS modem.

     *  Pre-encryption of MIP_Key_Data allows the DMU procedure to be
        an order of magnitude faster than Diffie-Hellman Key Exchange.

     *  In DMU, an MN manufacturer can pre-generate MIP keys, pre-
        encrypt the MIP key payload, and pre-load the payload in the
        MN.  Thus, an MN with limited processing power is never
        required to use RSA encryption.  An OTASP device is always
        forced to perform computationally expensive exponentiations
        during the key update process.

     *  In DMU, the MN is protected against Denial-of-Service (DOS)
        attacks in which a false BS changes the MIP key for MNs in its
        vicinity.  OTASP Diffie-Hellman Key Exchange is vulnerable to a
        false BS DOS attack.

     *  DMU utilizes mutual authentication.  OTASP Diffie-Hellman Key
        Exchange does not utilize mutual authentication.

4.  Detailed DMU Procedure Description and Requirements

  The Verizon Wireless Dynamic Mobile IP Update procedure is a secure,
  yet extremely efficient mechanism for distributing essential MIP
  cryptographic keys (e.g., MN-AAAH key and MN-HA key) and the Simple
  IP CHAP key.  The DMU protocol enables pre-computation of the
  encrypted key material payload, known as MIP_Key_Data.  The DMU
  procedure purposely avoids the use of Public Key Infrastructure (PKI)
  Certificates, greatly enhancing the procedure's efficiency.





Carroll & Quick              Informational                     [Page 10]

RFC 4784                 Dynamic MIP Key Update                June 2007


4.1.  RSA Public Key Cryptography

  RSA public key encryption and decryption MUST be performed in
  accordance with RFC 3447 [9] PKCS #1: RSA Encryption Version 1.5. DMU
  MUST support RSA with a 1024-bit modulus by default.  DMU MAY also
  support 768-bit or 2048-bit RSA, depending on the MN user's
  efficiency or security requirements.  RSA computation speed-ups using
  a public RSA exponent that is small or has a small number of nonzero
  bits (e.g., 65537) are acceptable.

4.2.  Other Public Key Algorithms

  DMU does not preclude the use of other public key technologies.  The
  protocol includes a Public Key Type field that defines the type of
  encryption used.

4.3.  Why No Public Key Infrastructure (PKI)?

  DMU is designed to maximize the efficiency of Mobile IP (MIP) key
  distribution for cdma2000(R) MNs.  The use of a public key
  Certificate would improve the flexibility of the MIP key update
  process by allowing a Certificate Authority (CA) to vouch for the RSA
  public key delivered to the MN.  Unfortunately, the use of a public
  key certificate would significantly reduce the efficiency (speed and
  overhead) of the MIP key update process.  For instance, each MN must
  be pre-loaded with the CA's public key.  During the MIP key
  distribution process, the network must first deliver its RSA public
  key (in a certificate) to the MN.  The MN must then use RSA to
  decrypt the Certificate's digital signature to verify that the
  presented RSA public key is legitimate.  Such a process significantly
  increases the number of exchanges, increases air interface overhead,
  increases the amount of MN computation, and slows the MIP key update
  process.

  Aside from the operational efficiency issues, there are numerous
  policy and procedural issues that have previously hampered the
  deployment of PKI in commercial networks.

  On a more theoretical basis, PKI is likely unnecessary for this key
  distribution model.  PKI is ideal for a Many-to-Many communications
  model, such as within the Internet, where many different users
  interface with many different Websites.  However, in the cellular/PCS
  Packet Data environment, a Many-to-One (or few) distribution model
  exists, in which many users interface with one wireless Carrier to
  establish their Mobile IP security associations (i.e., cryptographic
  keys).





Carroll & Quick              Informational                     [Page 11]

RFC 4784                 Dynamic MIP Key Update                June 2007


4.4.  Cryptographic Key Generation

  The DMU procedure relies on each MN to randomly/pseudo-randomly
  generate the MN_AAAH key, MN_HA key, and Simple IP CHAP key.  Each MN
  MUST have the capability to generate random/pseudo-random numbers in
  accordance with the guidelines specified in RFC 4086 "Randomness
  Requirements for Security".

  Although it may be more secure for the network to generate
  cryptographic keys at the RADIUS AAA server, client cryptographic key
  generation is acceptable due to the significant efficiency
  improvement in the update process via pre-generation and pre-
  encryption of the MIP keys.

4.5.  MIP_Key_Data Payload

  MIP cryptographic keys (MN_AAAH key and MN_HA key) and the Simple IP
  CHAP key are encapsulated and encrypted into a MIP_Key_Data Payload
  (along with the AAA_Authenticator and MN_Authenticator).  The
  MIP_Key_Data Payload is appended to the MN's MIP Registration Request
  (RRQ) as a MIP Vendor/Organization-Specific Extension (VSE) (see RFC
  3115 [10] Mobile IP Vendor/Organization-Specific Extensions).  When
  the PDSN converts the MIP RRQ to a RADIUS Access Request (ARQ)
  message, the MIP_Key_Data Payload is converted from a MIP
  Vendor/Organization-Specific Extension to a Vendor Specific RADIUS
  Attribute (VSA).

  Upon receipt of the RADIUS Access Request, the RADIUS AAA Server
  decrypts the MIP_Key_Data payload using the RSA private (decryption)
  key associated with the RSA public (encryption) used to encrypt the
  MIP_Key_Data payload.  The MIP_Key_Data is defined as follows:

  MIP_Key_Data = RSA_Public_Key [MN_AAAH key, MN_HA key, CHAP_key,
  MN_Authenticator, AAA_Authenticator], Public_Key_ID, DMUV

  Where:

     MN_AAAH key = 128-bit random MN / RADIUS AAA Server key
        (encrypted)

     MN_HA key = 128-bit random MN / Home Agent (HA) key (encrypted)

     CHAP_key = 128-bit random Simple IP authentication key (encrypted)
        Note: the Simple IP CHAP key is not the same as the AT-CHAP key
        used for A12 Interface authentication [11].

     MN_Authenticator = 24-bit random number (displayed as an 8 decimal
        digit number).  (To be used for 1xEV-DO networks.) (encrypted)



Carroll & Quick              Informational                     [Page 12]

RFC 4784                 Dynamic MIP Key Update                June 2007


     AAA_Authenticator = 64-bit random number used by MN to
        authenticate the RADIUS AAA Server. (encrypted)

     DMU Version (DMUV) = 4-bit identifier of DMU version.

  Public Key Identifier (Public_Key_ID) = PKOID, PKOI, PK_Expansion,
  ATV

  Where:

     Public Key Organization Identifier (PKOID) = 8-bit serial number
        identifier of Public Key Organization (PKO) that created the
        Public Key.

     Public Key Organization Index (PKOI) = 8-bit serial number used at
        PKO discretion to distinguish different public/private key
        pairs.

     PK_Expansion = 8-bit field to enable possible expansion of PKOID
        or PKOI fields. (Note: Default value = 0xFF)

     Algorithm Type and Version (ATV) = 4-bit identifier of the
        algorithm used.

  Note: If 1024-bit RSA is used, the encrypted portion of the payload
  is 1024 bits (128 bytes) long.  With the 28-bit Public Key Identifier
  and 4-bit DMUV, the total MIP_Key_Data payload is 132 bytes long.

4.6.  RSA Key Management

  The wireless service provider or carrier MUST generate the RSA
  Public/Private key pair(s).  An organization within the service
  provider MUST be designated by the service provider to generate,
  manage, protect, and distribute RSA Private keys (to the RADIUS AAA
  Server) and public keys (to the MN manufacturers) in support of the
  DMU procedure.

  Each RSA public/private key pair, generated by the wireless carrier,
  MUST be assigned a unique Public Key Identifier in accordance with
  Section 9.

  RSA Private keys MUST be protected from disclosure to unauthorized
  parties.  The service provider organization with the responsibility
  of generating the RSA public/private key pairs MUST establish an RSA
  key management policy to protect the RSA Private (decryption) keys.

  RSA public keys MAY be freely distributed to all MN manufacturers
  (along with the Public Key Identifier).  Because one RSA public key



Carroll & Quick              Informational                     [Page 13]

RFC 4784                 Dynamic MIP Key Update                June 2007


  can be distributed to million of MNs, it is acceptable to distribute
  the RSA public key (and Public Key Identifier) to MN manufacturers
  via e-mail, floppy disk, or a Website.  The preferred method is to
  simply publish the RSA public key and associated Public Key
  Identifier in the DMU Requirements document sent to each MN
  manufacturer/OEM.

  When public keys are distributed, the public keys MUST be protected
  against alteration.  If an invalid public key is programmed into a
  terminal, the terminal may be denied service because DMU cannot be
  performed successfully.

  RSA Private keys MAY be loaded into the RADIUS AAA server manually.
  Access to the RADIUS AAA Server RSA Private keys MUST be restricted
  to authorized personnel only.

  The wireless service provider MAY accept RSA Private key(s) (and
  Public Key Identifier) from MN manufacturers that have preloaded MNs
  with manufacturer-generated RSA public keys.

4.7.  RADIUS AAA Server

  The RADIUS AAA Server used for DMU MUST support the DMU Procedure.
  The AAA Server MUST support RSA public key cryptography and maintain
  a database of RSA Private (decryption) keys indexed by the Public Key
  Identifier.

  Delivery of the RSA Private key(s) to an AAA Server from the MN
  manufacturer(s) is outside the scope of this document.  However, RSA
  Private key(s) delivery via encrypted e-mail or physical (mail)
  delivery is likely acceptable.

  Access to the RADIUS AAA Server MUST be limited to authorized
  personnel only.

  The RADIUS AAA Server MUST support 1024-bit RSA decryption.

  The RADIUS AAA Server MUST maintain a database of RSA public/private
  key pair indexed by the Public Key Identifier.

  The RADIUS AAA Server MUST support the RADIUS attributes specified in
  Section 8.

  The RADIUS AAA Server MUST support a subscriber-specific MIP Update
  State Field.  When the MIP Update State Field is set to UPDATE KEYS
  (1), the RADIUS AAA Server MUST initiate the DMU procedure by
  including the MIP_Key_Request attribute in an Access Reject message
  sent to the PDSN.  The MIP Update State Field MAY be set to UPDATE



Carroll & Quick              Informational                     [Page 14]

RFC 4784                 Dynamic MIP Key Update                June 2007


  KEYS (1) by the service provider's Billing/Provisioning system based
  on IT policy.  Upon verification of MN-AAA Authentication Extension
  using the decrypted MN_AAA key, the RADIUS AAA Server MUST set the
  MIP Update State Field to KEYS UPDATED (2).  Upon verification of the
  MN-Authentication Extension on a subsequent RRQ/ARQ, the RADIUS AAA
  Server MUST set the MIP Update State Field to KEYS VALID (0).

  Note that the inclusion of a vendor-specific attribute in the Access
  Reject message is not consistent with Section 5.44 of [4].  A RADIUS
  AAA server that supports DMU SHOULD NOT include a vendor-specific
  attribute if the corresponding Access Request message was not
  received from a DMU-compliant PDSN.  This use of Access Reject is
  strongly discouraged for any future work based on this document.
  Future work should consider the use of Access-Challenge to carry this
  vendor-specific attribute.

  The RADIUS AAA Server MUST maintain a MIP Update State Field, for
  each subscription, in one of three states (0 = KEYS VALID, 1 = UPDATE
  KEYS, 2 = KEYS UPDATED).

  The RADIUS AAA Server MUST decrypt the encrypted portion of the
  MIP_Key_Data payload using the appropriate RSA Private (decryption)
  key.

  The RADIUS AAA Server MUST check the MN_AAA Authentication Extension
  of the DMU RRQ using the decrypted MN_AAA key.

  The RADIUS AAA Server MUST include the AAA_Authenticator in the
  Access Accept as a Vendor-Specific RADIUS Attribute.

  The RADIUS AAA Server MUST support the MN_Authenticator options
  specified in Section 6.1.

  The RADIUS AAA Server MUST comply with DMU Procedure failure
  operation specified in Section 5.

  The RADIUS AAA Server MUST support manual hexadecimal entry of MN_AAA
  key, MN_HA key, and Simple IP CHAP key via the AAA GUI for each
  subscription.

  The RADIUS AAA Server MUST provide a mechanism to validate the
  MIN/International Mobile Subscriber Identity (IMSI).  When the
  MIN/IMSI validation is on, the RADIUS AAA Server MUST compare the
  MIN/IMSI sent from the PDSN with the MIN/IMSI in the AAA subscription
  record/profile.  If the MINs or IMSIs do not match, the RADIUS AAA
  Server MUST send an Access Reject to the PDSN/FA.  The Access Reject
  MUST NOT contain a MIP Key Data request




Carroll & Quick              Informational                     [Page 15]

RFC 4784                 Dynamic MIP Key Update                June 2007


  When the "Ignore MN_Authenticator" bit is not set, the RADIUS AAA
  Server MUST check whether MN_AuthenticatorMN = MN_AuthenticatorAAA.
  If the MN_Authenticators do not match, the RADIUS AAA Server MUST
  send an Access Reject to the PDSN/FA.  The Access Reject MUST NOT
  contain a MIP_Key_Data request.

  The RADIUS AAA Server MUST include its PKOID (or another designated
  PKOID) in the MIP_Key_Request RADIUS Attribute.

  The RADIUS AAA Server MUST compare the PKOID sent in the MIP_Key_Data
  RADIUS Attribute with a list of valid PKOIDs in the RADIUS AAA
  Server.  If the PKOID is not valid, the RADIUS AAA Server MUST send
  an Access Reject to the PDSN with the "Invalid Public Key" Verizon
  Wireless RADIUS Vendor Specific Attribute (VSA).  Note: the same
  RADIUS attribute may be assigned a different Vendor identifier.

  Note that the inclusion of a vendor-specific attribute in the Access
  Reject message is not consistent with section 5.44 of [4].  A RADIUS
  AAA server that supports DMU SHOULD NOT include a vendor-specific
  attribute if the corresponding Access Request message was not
  received from a DMU-compliant PDSN.  This use of Access Reject is
  strongly discouraged for any future work based on this document.
  Future work should consider the use of Access-Challenge to carry this
  vendor-specific attribute.

  The RADIUS AAA Server MUST support delivery of the MN-HA key using
  3GPP2 RADIUS VSAs as specified in 3GPP2 X.S0011-005-C.  The 3GPP2
  VSAs used are the MN-HA Shared Key (Vendor-Type = 58) and MN-HA
  Security Parameter Index (SPI) (Vendor-Type = 57).

  The RADIUS AAA Server SHOULD always accept an Access Request from a
  cdma2000(R) Access Node (AN) for a particular subscriber when the
  UPDATE KEYS (1) and KEYS UPDATED (2) states are set.  In the KEYS
  VALID (0) state, the RADIUS AAA Server MUST check the Access Request
  normally.

  The RADIUS AAA Server MUST reject an Access Request with the
  MIP_Key_Data RADIUS Attribute while the RADIUS AAA Server is in the
  KEYS VALID state, i.e., the AAA MUST NOT allow an unsolicited key
  update to occur.

4.8.  MN (Handset or Modem)

  The MN manufacturer MUST pre-load the Wireless Carrier RSA public key
  (and Public Key Identifier).

  The MN manufacturer MUST pre-generate and pre-load the
  MN_Authenticator.



Carroll & Quick              Informational                     [Page 16]

RFC 4784                 Dynamic MIP Key Update                June 2007


  The MN MUST support 1024-bit RSA Encryption using the pre-loaded RSA
  public key.

  The MN MUST support MN_AAA, MN_HA, and CHAP random/pseudo-random key
  generation (in accordance with RFC 4086).

  The MN MUST support random/pseudo-random AAA_Authenticator and
  MN_Authenticator generation (in accordance with RFC 4086).

  Upon power-up of an MN handset or launch of the MN client, the MN
  MUST check whether a MIP_Key_Data payload has been computed.  If no
  MIP_Key_Data payload exists, the MN MUST generate and store a
  MIP_Key_Data payload.  The MN MUST maintain at least one pre-
  generated MIP_Key_Data payload.

  The MN MUST construct the MIP_Key_Data payload in accordance with
  Section 4.5.

  The MN MUST initiate the DMU Procedure upon receipt of a MIP
  Registration Reply (RRP) with the MIP_Key_Request Verizon Wireless
  Vendor/Organization-Specific Extension (VSE).

  Upon receipt of an RRP including the MIP_Key_Request, the MN MUST
  check the PKOID sent in the MIP_Key_Request.  If the MN has a public
  key associated with the PKOID, the MN MUST encrypt the MIP_Key_Data
  payload using that public key.

  The MN MUST have the capability to designate one public key as the
  default public key if the MN supports multiple public keys.

  The MN MUST insert the Verizon Wireless MIP_Key_Data VSE (or another
  Organization-specific MIP_Key_Data VSE) after the Mobile-Home
  Authentication Extension, but before the MN-AAA Authentication
  Extension.  The MIP_Key_Data Extension must also be located after the
  FA Challenge Extension, if present.

  Note:  The order of the extensions is important for interoperability.
  After the FA receives the Access Accept from the RADIUS AAA server,
  the FA may strip away all MIP extensions after the Mobile-Home
  Authenticator.  If this occurs, it is not necessary for the HA to
  process the DMU extensions.  Other compatibility problems have also
  been identified during testing with FAs from various vendors who
  place extensions in various locations.  Explicit placement of the
  extensions eliminates these issues.

  Upon initiation of the DMU Procedure, the MN MUST compute the MIP
  authentication extensions using the newly-generated temporary MN_AAA
  and MN_HA keys.  Upon receipt of the AAA_Authenticator MIP Extension,



Carroll & Quick              Informational                     [Page 17]

RFC 4784                 Dynamic MIP Key Update                June 2007


  the MN MUST compare the AAA_AuthenticatorMN (sent in the encrypted
  MIP_Key_Data payload) with the AAA_AuthenticatorAAA (returned by the
  RADIUS AAA Server).  If both values are the same, the MN MUST
  designate the temporary MN_AAA, MN_HA key, and the Simple IP CHAP key
  as permanent.  The MN MUST set its MIP Update State field to KEYS
  VALID.

  The MN MUST support reset (re-generation) of the MN_Authenticator by
  the MN user as specified in Section 6.2.

  The MN MUST enable the MN user to view the MN_Authenticator.
  MN_Authenticator (24-bit random number) MUST be displayed as an 8
  decimal digit number as specified in Section 6.2.

  The MN manufacturer MUST pre-load each MN with a unique random 24-bit
  MN_Authenticator.

  Upon reset of the MN_Authenticator, the MN MUST delete all
  MIP_Key_Data payloads based on the old MN_Authenticator and generate
  all subsequent MIP_Key_Data payloads using the new MN_Authenticator
  (until the MN_Authenticator is explicitly re-set again by the MN
  user).

  The MN MUST support manual entry of all cryptographic keys such as
  the MN_AAA, MN_HA, and Simple IP CHAP key.  MN MUST support
  hexadecimal digit entry of a 128-bit key.  (Note: certain Simple IP
  devices only enable ASCII entry of a password as the CHAP key.  It is
  acceptable for future devices to provide both capabilities, i.e.,
  ASCII for a password or hexadecimal for a key.  The authors recommend
  the use of strong cryptographic keys.)

  The MN MUST support the Verizon Wireless MIP Vendor/Organization-
  Specific Extensions specified in Section 9.

  The MN MUST update the RRQ Identification field when re-transmitting
  the same MIP_Key_Data in a new RRQ.

  The MN MUST comply with the DMU Procedure failure operation specified
  in Section 5.

  The RSA public key MAY be stored in the MN flash memory as a constant
  while being updatable via software patch.









Carroll & Quick              Informational                     [Page 18]

RFC 4784                 Dynamic MIP Key Update                June 2007


4.9.  PDSN / Foreign Agent (FA)

  The PDSN MUST support the Verizon Wireless RADIUS Vendor-Specific
  Attributes (VSA) specified in Section 8 and the Verizon Wireless MIP
  Vendor/Organization-Specific Extensions (VSEs) specified in Section
  9.

  The PDSN MAY support the RADIUS VSAs specified in Section 8 and the
  MIP VSEs specified in Section 9 using another Organization
  identifier.

  Upon receipt of an Access Reject containing the
  MIP_Key_Update_Request VSA, PDSN MUST send an RRP to the MN with the
  MIP_Key_Request VSE.  The PDSN MUST use the RRP error code = 89
  (Vendor Specific) and MUST not tear down the PPP session after
  transmission.

  Upon receipt of an Access Reject containing the AAA_Authenticator
  VSA, the PDSN MUST send an RRP with the AAA_Authenticator MIP VSE.
  The PDSN MUST use the RRP error code = 89 (Vendor Specific) and MUST
  NOT tear down the PPP session after transmission.

  Upon receipt of an Access Reject containing the Public Key Invalid
  VSA, the PDSN MUST send an RRP with the Public Key Invalid MIP VSE.
  The PDSN MUST use the RRP error code = 89 (Vendor Specific) and MUST
  NOT tear down the PPP session after transmission.

  Note that the inclusion of a vendor-specific attribute in the Access
  Reject message is not consistent with section 5.44 of [4].  A PDSN
  that supports DMU MUST accept an Access Reject message containing a
  vendor-specific attribute.  This use of Access Reject is strongly
  discouraged for any future work based on this document.  Future work
  should consider the use of Access-Challenge to carry this vendor-
  specific attribute.

  Upon receipt of an RRQ with the MIP_Key_Data VSE, the PDSN MUST
  convert the RRQ to an ARQ with the MIP_Key_Data VSA.  The PDSN MUST
  send the ARQ to the RADIUS AAA server.

  The PDSN/FA MUST comply with the DMU Procedure failure operation
  specified in Section 5.

  The PDSN/FA MUST include the PKOID from the Access Reject
  MIP_Key_Update_Request VSA in the MIP_Key_Request MIP VSE sent to the
  MN.






Carroll & Quick              Informational                     [Page 19]

RFC 4784                 Dynamic MIP Key Update                June 2007


4.10.  Home Agent (HA)

  The HA MUST support the Verizon Wireless MIP Vendor/Organization-
  Specific Extensions (VSEs) specified in Section 9.  (Note: the HA may
  not encounter a DMU MIP extension if the FA strips away all
  extensions after the Mobile-Home authentication extension.)

  The HA MAY support the MIP VSEs specified in Section 9 using another
  Organization identifier.  (Note: the HA may not encounter a DMU MIP
  extension if the FA strips away all extensions after the Mobile-Home
  authentication extension.)

  The HA MUST support delivery of the MN-HA key from the Home RADIUS
  AAA server using 3GPP2 RADIUS Vendor-Specific Attributes (VSA) as
  specified in 3GPP2 X.S0011-005-C.  The 3GPP2 VSAs used are the MN-HA
  Shared Key (Vendor-Type = 58) and the MN-HA SPI (Vendor-Type = 57).

4.11.  DMU Procedure Network Flow

  This section provides a flow diagram and detailed description of the
  process flow involving the Dynamic Mobile IP Update procedure process
  within the IS-2000 network.





























Carroll & Quick              Informational                     [Page 20]

RFC 4784                 Dynamic MIP Key Update                June 2007


          MN                              PDSN/FA         AAAH
          --                              -------         ----
   ---------------------                     |     -------------------
  |  1: RSA Public Key  |                    |    |  RSA Private Key  |
  |  Pre-loaded by      |                    |    |  Pre-loaded by    |
  |  Manufacturer       |                    |    |  Service Provider |
   ---------------------                     |     -------------------
        ---------------------------------------------------------
       |  2: MS/BS: IS-2000 Call Origination and Authentication  |
       |  3: MN/PDSN/FA: PPP Session Establishment               |
        ---------------------------------------------------------
          |  4: Registration Request (RRQ)   |             |
          |--------------------------------->| 5: Access Request w/MSID
          |                                  |------------>|
          |                                  |    --------------------
          |                                  |   | 6: MIP Update State|
          |                                  |   | is UPDATE KEYS   |
          |                                  |    --------------------
          |                        7: Access Reject with   |
          |                        MIP_Key_Update_Request  |
          |                        RADIUS Attribute        |
          |                                  |<------------|
          |  8: Registration Reply (RRP)     |             |
          |  with MIP_Key_Request MIP        |             |
          |  Vendor/organization-specific    |             |
          |  extension                       |             |
          |<---------------------------------|             |
   -------------------                       |             |
  |  9: MN generates  |                      |             |
  |  MIP_Key_Data     |                      |             |
  |  using temporary  |                      |             |
  |  MIP keys         |                      |             |
   -------------------                       |             |
          |  10: RRQ with MIP_Key_Data       |             |
          |  Vendor/organization-specific extension        |
          |--------------------------------->|  11: Access Request
          |                                  |  w/MSID
          |                                  |  and MIP_Key_Data
          |                                  |  RADIUS attribute
          |                                  |------------>|

                  Figure 4. DMU Procedure Flow (part 1)









Carroll & Quick              Informational                     [Page 21]

RFC 4784                 Dynamic MIP Key Update                June 2007


          MN                              PDSN/FA         AAAH
          --                              -------         ----
          |                                  |             |
          |                                  |    -------------------
          |                                  |   |  12: decrypt      |
          |                                  |   |  MIP_Key_Data,    |
          |                                  |   |  verify MN-AAA    |
          |                                  |   |  authentication   |
          |                                  |   |  extension, set   |
          |                                  |   |  MIP Update State |
          |                                  |   |  = KEYS UPDATED |
          |                                  |    -------------------
          |                        13: Access Reject with  |
          |                        AAA_Authenticator       |
          |                        RADIUS Attribute        |
          |                                  |<------------|
          |  14: Registration Reply (RRP)    |             |
          |  with AAA_Authenticator MIP      |             |
          |  Vendor/organization-specific    |             |
          |  extension                       |             |
          |<---------------------------------|             |
   ----------------------                    |             |
  |  15: verify          |                   |             |
  |  AAA_Authenticator,  |                   |             |
  |  store temporary     |                   |             |
  |  MIP keys as         |                   |             |
  |  permanent keys      |                   |             |
   ----------------------                    |             |
          |  16: RRQ                         |             |
          |--------------------------------->|  Access Request
          |                                  |  w/MSID
          |                                  |------------>|
          |                                  |    --------------------
          |                                  |   |  17: verify MN-AAA |
          |                                  |   |  authentication    |
          |                                  |   |  extension, set    |
          |                                  |   |  MIP Update State  |
          |                                  |   |  = KEYS VALID    |
          |                                  |    --------------------
          |                                  Access Accept |
          |                                  |<------------|

                  Figure 4. DMU Procedure Flow (part 2)








Carroll & Quick              Informational                     [Page 22]

RFC 4784                 Dynamic MIP Key Update                June 2007


          MN           PDSN/FA         AAAH                HA
          --           -------         ----                --
          |               |              |                  |
          |               |  18. Registration Request (RRQ) |
          |               |-------------------------------->|
          |               |              19: Access Request |
          |               |              |<-----------------|
          |               |              | Access Accept    |
          |               |              | with MN-HA key   |
          |               |              |----------------->|
          |               |              |        -------------------
          |               |              |       |  verify           |
          |               |              |       |  mobile-home      |
          |               |              |       |  authentication   |
          |               |              |       |  extension        |
          |               |              |        -------------------
          |               |    20. Registration Reply (RRP) |
          |               |<--------------------------------|
          |          RRP  |              |                  |
          |<--------------|              |                  |

                  Figure 4. DMU Procedure Flow (part 3)

  Each step in the Figure 4 DMU Process is described as follows:

     1.  Each RSA public/private key pair MUST be generated in
         accordance with RFC 3447.  Each public/private key pair MUST
         be assigned a unique Public Key Identifier (PKOID) by its
         creator.

         If the service provider does not generate the public/private
         key pair and deliver the RSA public key to the MN manufacturer
         for pre-installation in the MN, the MN manufacturer MUST
         generate the RSA public/private key pair (using a 1024-bit
         modulus) and pre-load all MNs with the RSA public (encryption)
         key.  The MN manufacturer MUST distribute the RSA Private
         (decryption) key, in a secure manner, to the appropriate
         service provider.

     2.  Assuming that the cdma2000(R) 1X MN has been provisioned with
         an A-key and SSD, the cdma2000(R) 1X MS initiates a call
         origination and authenticates itself to the IS-2000 network.
         Upon IS-2000 authentication success, the BS sends the
         "authenticated" MSID (e.g., MIN) to the PDSN.

     3.  The MN and PDSN establish a PPP session.

     4.  The MN sends a MIP Registration Request (RRQ) to the PDSN.



Carroll & Quick              Informational                     [Page 23]

RFC 4784                 Dynamic MIP Key Update                June 2007


     5.  The PDSN converts the MIP RRQ into a RADIUS Access Request
         (ARQ) message, includes the MSID in the ARQ, and forwards the
         ARQ to the Home RADIUS AAA server.

     6.  The RADIUS AAA Server compares the authenticated MSID (sent
         from the PDSN) with the MSID in its subscriber database
         (associated with the NAI).  If the AAA MIP Update State Field
         is set to UPDATE KEYS (1), the RADIUS AAA Server rejects
         Packet Data access and orders a MIP key update.

     7.  The RADIUS AAA Server sends an Access Reject (code = 3)
         message to the PDSN with the MIP_Key_Update_Request RADIUS
         VSA.

     8.  The PDSN converts the Access Reject to a MIP Registration
         Reply (RRP) with a MIP_Key_Request MIP VSE and sends the RRP
         to the MN.  RRP Code = 89 (Vendor Specific).

     9.  The MN sets the MN MIP Update State = UPDATE KEYS.  If the MN
         has no pre-generated and pre-encrypted MIP_Key_Data payload,
         the MN MUST generate the MN_AAA key, MN_HA key, Chap key,
         MN_Authenticator, and AAA_Authenticator in accordance with RFC
         4086.  Except for the Public Key Identifier, all generated
         values MUST be encrypted using the pre-loaded RSA public
         (encryption) key.  The newly generated MN_AAATEMP Key and
         MN_HATEMP MUST be used to calculate the MN-AAA and Mobile-Home
         Authentication Extensions for the current RRQ.  Note: the MN
         MAY pre-compute the MIP_Key_Data payload by checking whether a
         payload exists during each MN power-up or application
         initiation.

     10. The MN sends the RRQ with MIP_Key_Data MIP VSE to the PDSN.

     11. The PDSN converts the RRQ to a RADIUS ARQ with MIP_Key_Data
         RADIUS VSA and forwards the ARQ to the home RADIUS AAA Server.
         The MSID is included in the ARQ.

     12. The RADIUS AAA Server compares the authenticated MSID (sent
         from the PDSN) with the MSID in its subscriber database
         (associated with the NAI).  If MSIDPDSN = MSIDAAA, the RADIUS
         AAA server, using the Public Key Identifier, determines the
         appropriate RSA Private key and decrypts the encrypted portion
         of the MIP_Key_Data payload.  The RADIUS AAA Server verifies
         the MN-AAA Authentication Extension Authenticator using the
         decrypted MN_AAA key.  If successful, the RADIUS AAA Server
         updates the subscriber profile with the decrypted MN_AAA key,
         MN_HA key, and CHAP key.  The RADIUS AAA Server sets the AAA
         MIP Update State Field to KEYS UPDATED (2).



Carroll & Quick              Informational                     [Page 24]

RFC 4784                 Dynamic MIP Key Update                June 2007


     13. The RADIUS AAA Server sends an Access Reject with
         AAA_Authenticator RADIUS VSA to the PDSN.

     14. The PDSN converts the Access Reject to a MIP RRP with
         AAA_Authenticator MIP VSE.  RRP Code = 89 (Vendor Specific).

     15. If AAA_AuthenticatorMN = AAA_AuthenticatorAAA, the MN assigns
         MN_AAATEMP to MN_AAA key and MN_HATEMP to MN_HA key (MN MIP
         Update State = KEYS VALID).  Otherwise, the MN discards the
         temporary keys.

     16. The MN initiates a new RRQ that is converted to an ARQ by the
         PDSN and forwarded to the RADIUS AAA Server.

     17. The RADIUS AAA Server verifies the MN-AAA Authentication
         Extension and sets the AAA MIP Update State Field to KEYS
         VALID (0).  The RADIUS AAA Server sends an Access Accept to
         the PDSN/FA.

     18. The PDSN/FA sends the RRQ to the Home Agent (HA).

     19. The HA sends an Access Request to the RADIUS AAA Server.  The
         RADIUS AAA Server sends an Access Accept to the HA with the
         MN_HA key.  The HA verifies the Mobile-Home Authentication
         Extension using the MN_HA key.

     20. The HA sends an RRP to the PDSN/FA, which forwards the RRP to
         the MN.  RRP Code = 0 (Success).

5.  DMU Procedure Failure Operation

  To improve the robustness of the DMU Procedure to account for
  interruptions due to UDP message loss, RRQ retransmission, or MN
  failure, the RADIUS AAA Server MUST maintain a MIP Update State
  Field, for each subscription, in one of three states (0 = KEYS VALID,
  1 = UPDATE KEYS, 2 = KEYS UPDATED).















Carroll & Quick              Informational                     [Page 25]

RFC 4784                 Dynamic MIP Key Update                June 2007


             MN           PDSN/FA         AAAH               HA
             --           -------         ----               --
      ----------------       |       ----------------         |
     |  MN state =    |      |      |  AAAH state =  |        |
     |  KEYS VALID    |      |      |  UPDATE KEYS   |        |
      ----------------       |       ----------------         |
             | (A) RRQ       |              |                 |
             |-------------->|  ARQ         |                 |
             |               |------------->|                 |
             |               AR(Key_Update) |                 |
       (B) RRP (Key_Update)  |<-------------|                 |
             |<--------------|              |                 |
      ----------------       |              |                 |
     |  MN state =    |      |              |                 |
     |  UPDATE KEYS   |      |              |                 |
      ----------------       |              |                 |
             | (C) RRQ (MIP_Key_Data)       |                 |
             |-------------->|  ARQ (MIP_Key_Data)            |
             |               |------------->|                 |
             |               |       ----------------         |
             |               |      |  AAAH state =  |        |
             |               |      |  KEYS UPDATED  |        |
             |               |       ----------------         |
             |               AR (AAA_Auth)  |                 |
          (D) RRP (AAA_Auth) |<-------------|                 |
             |<--------------|              |                 |
      ----------------       |              |                 |
     |  MN state =    |      |              |                 |
     |  KEYS VALID    |      |              |                 |
      ----------------       |              |                 |
             |  RRQ          |              |                 |
             |-------------->|  ARQ         |                 |
             |               |------------->|                 |
             |               |       ----------------         |
             |               |      |  AAAH state =  |        |
             |               |      |  KEYS VALID    |        |
             |               |       ----------------         |
             |               |          AA  |                 |
             |               |<-------------|  RRQ            |
             |               |------------------------------->|
             |               |              |            ARQ  |
             |               |              |<----------------|
             |               |              |  AA             |
             |               |              |---------------->|
             |               |              |            RRP  |
             |               |         RRP  |<----------------|
             |<-----------------------------|                 |
            Figure 5.  DMU Failure Call Flow with MN and AAA States



Carroll & Quick              Informational                     [Page 26]

RFC 4784                 Dynamic MIP Key Update                June 2007


  Each step in Figure 5 is described as follows:

     1. If (A) is lost, the MN retransmits (A).  The RADIUS AAA server
        expects (A).  If the AAA server is in the UPDATE KEYS state,
        the RADIUS AAA Server sends AR with MIP_Key_Update_Request VSA,
        and the PDSN/FA sends (B).

     2. If (B) is lost, the MN retransmits (A).  The RADIUS AAA server
        expects (C).  If it receives (A), the RADIUS AAA Server sends
        AR with MIP_Key_Update_Request VSA, and the PDSN/FA retransmits
        (B).

     3. If (C) is lost, the mobile retransmits (C).  The RADIUS AAA
        server expects (C) and updates the MIP keys appropriately.  The
        RADIUS AAA server transitions to KEYS UPDATED and commits the
        MIP_Key_Data.  The RADIUS AAA Server sends the AR with
        AAA_Authenticator VSA, and the PDSN/FA replies to the MN with
        (D).

     4. If (D) is lost, the mobile retransmits (C) using the same key
        data sent previously.  The RADIUS AAA server expects (A) using
        the same keys.

        a. If the RADIUS AAA server receives (C) with the same keys it
           received previously, it retransmits the AR with
           AAA_Authenticator VSA and the PDSN replies with (D),
           containing the AAA_Authenticator.

        b. If the RADIUS AAA server receives (C) with different keys
           than it received previously, the RADIUS AAA Server sends AR
           with MIP_Key_Update_Request VSA, the PDSN/FA retransmits
           (B), and the RADIUS AAA server transitions to UPDATE KEYS.

        c. If the RADIUS AAA server receives (A), which fails
           authentication using the keys sent in (C), the RADIUS AAA
           Server sends AR with MIP_Key_Update_Request, the PDSN/FA
           retransmits (B), and the RADIUS AAA server transitions to
           UPDATE KEYS.

     5. Once the PDSN/FA receives (A), forwards the ARQ to the RADIUS
        AAA server, and the MN-AAA Authenticator is verified using the
        MN_AAA key, the RADIUS AAA Server transitions to the KEYS VALID
        state and the DMU process is complete.








Carroll & Quick              Informational                     [Page 27]

RFC 4784                 Dynamic MIP Key Update                June 2007


  The AAA DMU state machine is described in Figure 6.

                              --------------
       --------------------->|  KEYS VALID  |---------------
      |  Auth success using   --------------   Need Key     |
      |  MIP_Key_Data                          Update       |
      |                                                     |
      |            Auth failed (invalid keys)               |
      |            or RRQ with different MIP_Key_Data       |
      |           ---------------------------------         |
      |          |                                 |        |
      |          |                                 v        v
   ----------------                              ---------------
  |  KEYS UPDATED  |                            |  UPDATE KEYS  |
   ----------------                              ---------------
      |       ^  ^                                 |
      |       |  |                                 |
       -------    ---------------------------------
  RRQ with same           Got MIP_Key_Data
  MIP_Key_Data

              Figure 6. RADIUS AAA Server DMU State Machine

6.  cdma2000(R) HRPD/1xEV-DO Support

  Because the DMU Procedure occurs at the IP Layer, the DMU Procedure
  supports MIP key distribution in either the cdma2000(R) 1X or
  HRPD/1xEV-DO network.  Because the cdma2000(R) HRPD/1xEV-DO network
  does not provide Radio Access Network (RAN) authentication, the DMU
  Procedure is more susceptible to a false MN attack (than in an
  cdma2000(R) 1X network with Cellular Authentication and Voice
  Encryption (CAVE) RAN authentication).  For this reason, the DMU
  Procedure has the capability to optionally support device-to-network
  authentication using the MN_Authenticator.

  The method of MN_Authenticator delivery to the RADIUS AAA server is
  outside the scope of this document, allowing service providers the
  flexibility to determine the most efficient/least intrusive procedure
  to support MN authentication during the DMU Procedure.

6.1.  RADIUS AAA Support

  The RADIUS AAA server MUST support three MN_Authenticator options:

  1. Ignore MN_Authenticator

     Depending on other potential authentication/fraud prevention
     options (outside the scope of the DMU Procedure), the RADIUS AAA



Carroll & Quick              Informational                     [Page 28]

RFC 4784                 Dynamic MIP Key Update                June 2007


     Server MUST have the capability to ignore the MN_Authenticator.
     For example, when the RADIUS AAA Server decrypts the MIP_Key_Data
     payload, the AAA Server silently discards the MN_Authenticator.

  2. Pre-Update Validation

     Prior to updating a subscription profile with the delivered MIP
     keys, the RADIUS AAA Server MUST compare the MN_AuthenticatorMN
     (delivered via the encrypted MIP_Key_Data payload) with the
     MN_AuthenticatorAAA (possibly delivered via the service provider
     customer care or billing/provisioning system).

  3. Post-Update Validation

     After the DMU Procedure is complete, the RADIUS AAA Server stores
     the delivered MN_AuthenticatorMN and waits for delivery of the
     MN_AuthenticatorAAA (via Customer Care, interactive voice response
     (IVR), or some other unspecified process).  Once the
     MN_Authenticator is delivered to the RADIUS AAA Server, the AAA
     MUST compare the MN_AuthenticatorMN (delivered via the encrypted
     MIP_Key_Data payload) with the MN_AuthenticatorAAA.  If the
     Authenticators match, the RADIUS AAA Server authorizes access and
     final update of the MIP keys.

6.2.  MN Support

  The Mobile Node (MN) MUST store the 24-bit MN_Authenticator.

  The MN MUST display the MN_Authenticator as an 8 decimal digit number
  (via LCD display on a handset or via a GUI for a modem).  If the MN
  resides within a handset, the user MAY display the MN_Authenticator
  using the following keypad sequence:  "FCN + * + * + M + I + P +
  RCL".  Otherwise, the MN MUST display the MN_Authenticator via the
  device's GUI.

  The MN MUST have the capability to reset the MN_Authenticator.  In
  other words, the MN MUST have the capability to randomly/pseudo-
  randomly generate a new 24-bit MN_Authenticator upon user command, in
  accordance with RFC 4086.  The reset feature mitigates possible
  compromise of the MN_Authenticator during shipment/storage.  If the
  MN resides within a handset, the user MAY reset the MN_Authenticator
  using the following keypad sequence:  "FCN + * + * + M + I + P + C +
  C + RCL".  Otherwise, the MN MUST reset the MN_Authenticator via the
  device's GUI.

  The MN manufacturer MAY pre-load the MN with the MN_Authenticator.
  For example, by pre-loading the MN_Authenticator and affixing a
  sticker with the MN_Authenticator (8 decimal digit representation) to



Carroll & Quick              Informational                     [Page 29]

RFC 4784                 Dynamic MIP Key Update                June 2007


  the MN (e.g., modem), the point-of-sale representative does not have
  to retrieve the MN_Authenticator from the MN interface.

  [Optional] The MN MAY maintain a separate primary and secondary queue
  of MN_Authenticator/MIP_Key_Data Payload pairs.  When the MN user
  resets the primary MN_Authenticator, the MN discards the primary
  MN_Authenticator (and any associated MIP_Key_Data Payload) and
  assigns the MN_Authenticator in the secondary queue as the primary
  MN_Authenticator (and assigns any associated MIP_Key_Data Payloads to
  the primary queue).  This feature enables the user/provisioner to
  reset the MN_Authenticator and immediately initiate the DMU procedure
  without losing the MIP_Key_Data Payload pre-encryption advantage.
  Upon MN_Authenticator transfer from the secondary to primary queue,
  the MN MUST generate a new MN_Authenticator and associated
  MIP_Key_Data Payload for the secondary queue.  The MN MUST check both
  the primary and secondary MN_Authenticator/MIP_Key_Data Payload
  queues upon power-up or application initiation.  The MN MUST maintain
  at least one MN_Authenticator/MIP_Key_Data Payload pair in each
  queue.

6.3.  Informative: MN_Authenticator Support

  MN authentication using the MN_Authenticator gives the service
  provider the maximum flexibility in determining how to deliver the
  MN_Authenticator to the RADIUS AAA Server.  The method of
  MN_Authenticator delivery is outside the scope of this document.

  However, to provide some context as to how the MN_Authenticator may
  support MN authentication/fraud prevention in the HRPD/1xEV-DO
  environment, we describe the following possible provisioning
  scenario.

  When a subscriber initially acquires their HRPD/1xEV-DO device and
  service, the point-of-sale representative records the subscription
  information into the billing/provision system via a computer terminal
  at the point-of-sale.  The billing/provisioning system delivers
  certain information to the RADIUS AAA Server (e.g., NAI, MSID,
  Electronic Serial Number (ESN)) including the MN_Authenticator, which
  the point-of-sale representative retrieves via the MN device's
  display.  In the case of a modem, the manufacturer may have pre-
  loaded the MN_Authenticator and placed a copy of the MN_Authenticator
  on a sticker attached to the modem.  The point-of-sale representative
  simply copies the 8 decimal digit value of the MN_Authenticator into
  the customer profile.  Once the MN is loaded with the proper NAI and
  powered-up, the MN initiates the DMU Procedure with the RADIUS AAA
  Server.  The RADIUS AAA Server compares the MN-delivered
  MN_Authenticator with the billing-system-delivered MN_Authenticator.
  If the authenticators match, the RADIUS AAA Server updates the



Carroll & Quick              Informational                     [Page 30]

RFC 4784                 Dynamic MIP Key Update                June 2007


  subscriber profile with the delivered MIP keys and authorizes
  service.  If the Post-Update option is enabled within the RADIUS AAA
  Server, the RADIUS AAA Server tentatively updates the subscription
  profile until it receives the MN_Authenticator via the
  billing/provision system.

  As another option, the service provider MAY use an IVR system in
  which the HRPD/1xEV-DO subscriber calls a provisioning number and
  inputs the MN_Authenticator.  The IVR system then delivers the
  MN_Authenticator to the RADIUS AAA Server for final validation and
  Packet Data Access.

7.  Security Considerations

  The DMU Procedure is designed to maximize the efficiency of MIP key
  distribution while providing adequate key distribution security.  The
  following provides a description of potential security
  vulnerabilities and their relative risk to the DMU Procedure:

7.1.  Cryptographic Key Generation by the MN

  Because the MN is required to properly generate the MN_AAA, MN_HA,
  and CHAP key, the MN must perform cryptographic key generation in
  accordance with accepted random/pseudo-random number generation
  procedures.  MN manufacturers MUST comply with RFC 4086 [12]
  guidelines, and service providers SHOULD ensure that manufacturers
  implement acceptable key generation procedures.  The use of
  predictable cryptographic keys could be devastating to MIP security.
  However, the risk of not using acceptable random/pseudo-random key
  generation is minimal as long as MN manufacturers adhere to RFC 4086
  guidelines.  Furthermore, if a key generation flaw is identified, the
  flaw appears readily correctable via a software patch, minimizing the
  impact.

7.2.  Man-in-the-Middle Attack

  The DMU procedure is susceptible to a Man-in-the-Middle (MITM)
  attack; however, such an attack appears relatively complex and
  expensive.  When Authentication and Key Agreement (AKA) is deployed
  within cdma2000(R) 1X, the MITM Attack will be eliminated.  The risk
  of an MITM Attack is minimal due to required expertise, attack
  expense, and impending cdma2000(R) 1X mutual authentication
  protection.  If a particular cdma2000(R) 1X network does not support
  A-key authentication, the MN_Authenticator MAY optionally be used.







Carroll & Quick              Informational                     [Page 31]

RFC 4784                 Dynamic MIP Key Update                June 2007


7.3.  RSA Private Key Compromise

  Because one RSA Private key may be associated with millions of MNs
  (RSA public key), it is important to protect the RSA Private key from
  disclosure to unauthorized parties.  If a MN manufacturer is
  generating the RSA public/private key pair, the MN manufacturer MUST
  establish adequate security procedures/policies regarding the
  dissemination of the RSA Private key to the appropriate service
  provider.  An RSA Private key SHOULD be distributed to a legitimate
  cdma2000(R) service provider only.  If a service provider is
  generating their own RSA public/private key pair, the service
  provider MUST protect the RSA Private key from disclosure to
  unauthorized parties.

7.4.  RSA Encryption

  Several vulnerabilities have been identified in certain
  implementations of RSA; however, they do not appear applicable to the
  DMU Procedure.

7.5.  False Base Station/PDSN

  The MN appears to be protected against a false BS denial-of-service
  (DOS) attack, since only the proper RADIUS AAA server can recover the
  AAA_Authenticator.  This method of preventing a false base station
  attack assumes security of the network messaging between the AAA and
  the serving system, as discussed in Section 7.9.

7.6.  cdma2000(R) 1X False MN

  The cdma2000(R) 1X network appears adequately protected against a
  false MN by IS-2000 challenge-response authentication.  If DMU is
  used outside the cellular domain, equivalent authentication
  procedures are required for the same level of security.

7.7.  HRPD/1xEV-DO False MN

  The 1xEV-DO RADIUS AAA Server MAY optionally authenticate the MN
  using the MN_Authenticator to prevent a fraudulent MN activation.

7.8.  Key Lifetimes

  There is no explicit lifetime for the keys distributed by DMU.

  The lifetime of the keys distributed by DMU is determined by the
  system operator through the RADIUS AAA server.  The MN_AAA and MN_HA
  key lifetimes can be controlled by initiating an update as needed.




Carroll & Quick              Informational                     [Page 32]

RFC 4784                 Dynamic MIP Key Update                June 2007


  Furthermore, the DMU process is protected against false initiation
  because the MN cannot initiate DMU.  This makes it unworkable to
  provide an explicit lifetime to the MN, since the MN cannot take any
  action to renew the keys after expiration.

7.9.  Network Message Security

  The security of the MN-HA keys delivered from the RADIUS AAA server
  to the MIP home agent requires confidentiality for network messages
  containing such keys.  The specification of security requirements for
  network messages is the responsibility of the operator, and is
  outside the scope of this document. (Note that similar considerations
  apply to the distribution of Shared Secret Data, which is already
  transmitted between nodes in the ANSI-41 network.)

  If DMU is used outside the domain of a cellular operator, RADIUS
  security features MAY be used, including the Request-Authenticator
  and Response-Authenticator fields defined in [4] and the Message-
  Authenticator attribute defined in [13].

8.  Verizon Wireless RADIUS Attributes

  Three new RADIUS Attributes are required to support the DMU Procedure
  and are specified as follows:

  Type: 26
  Length: >9
  Verizon Wireless Enterprise/Vendor ID: 12951

  MIP_Key_Update_Request:
  ----------------------

  The Home RADIUS AAA Server includes this attribute to indicate that
  MIP key update is required.

  Vendor-Type = 1
  Vendor-Length = 3 bytes
  Vendor-Value = PKOID of the RADIUS AAA Server

  MIP_Key_Data:
  ------------

  Key data payload containing the encrypted MN_AAA key, MN_HA key, CHAP
  key, MN_Authenticator, and AAA_Authenticator.  This payload also
  contains the Public Key Identifier.

     Vendor-Type = 2
     Vendor-Length = 134 bytes



Carroll & Quick              Informational                     [Page 33]

RFC 4784                 Dynamic MIP Key Update                June 2007


     NOTE: Vendor-Length depends on the size of the RSA modulus.  For
        example, when RSA-512 is used, Vendor-Length = 70 bytes.
     Vendor-Value = 128 byte RSA encryption payload (when 1024-bit RSA
        used), which contains encrypted MN_AAA key, MN_HA key, CHAP
        key, MN_Authenticator, and AAA_Authenticator.
     The four (4) byte Public Key Identifier is concatenated to the
        encrypted payload.

  AAA_Authenticator:
  -----------------

  The 64-bit AAA_Authenticator value decrypted by the Home RADIUS AAA
  Server.

     Vendor-Type = 3
     Vendor-Length = 10 bytes
     Vendor-Value = decrypted AAA_Authenticator from Home RADIUS AAA
        Server.

  Public Key Invalid:
  ------------------

  The home RADIUS AAA Server includes this attribute to indicate that
  the public key used by the MN is not valid.

     Vendor-Type = 4
     Vendor-Length = 2 bytes
     Vendor-Value = none.

  Note:  An Organization may define RADIUS VSAs using its own
  Organization identifier.

9.  Verizon Wireless Mobile IP Extensions

  Three Verizon Wireless Mobile IP Vendor/Organization-Specific
  Extensions (VSEs) (RFC 3115), required to support the DMU Procedure,
  are specified as follows:

  Type: 38 (CVSE-TYPE-NUMBER)

  Verizon Wireless Vendor ID: 12951 (high-order octet is 0 and low
  order octets are the SMI Network Management Private Enterprise Code
  of the Vendor in the network byte order, as defined by IANA).








Carroll & Quick              Informational                     [Page 34]

RFC 4784                 Dynamic MIP Key Update                June 2007


           0          7 8         15 16                     31
           ---------------------------------------------------
          |    Type    |  Reserved  |        Length           |
           ---------------------------------------------------
          |                 Vendor/Org-ID                     |
           ---------------------------------------------------
          |   Vendor-CVSE-Type      |   Vendor-CVSE-Value ... |
           ---------------------------------------------------

       Figure 7.  Critical Vendor/Organization-Specific Extension

  MIP_Key_Request:
  ---------------

  The Home RADIUS AAA Server includes this extension to indicate that
  MIP key update is required.

     Length = 7

     NOTE: The RFC 3115 Editor has stated that the Reserved field is
        not included in the length determination.
     Vendor-CVSE-Type = 1
     Vendor-CVSE-Value = PKOID sent in the RADIUS
        MIP_Key_Update_Request attribute.

  MIP_Key_Data:
  ------------

  Key data payload containing encrypted MN_AAA key, MN_HA key, CHAP
  key, MN_Authenticator, and AAA_Authenticator.  This payload also
  contains the Public Key Identifier.

     Length = 138
     NOTE: Length depends on the size of the RSA modulus.  For example,
        when RSA-512 is used, Length = 74 bytes.
     Vendor-CVSE-Type = 2
     Vendor-CVSE-Value = 128 byte RSA encryption payload (when 1024-bit
        RSA used) which contains encrypted MN_AAA key, MN_HA key, CHAP
        key, MN_Authenticator, and AAA_Authenticator.
     The four (4) byte Public Key Identifier and DMUV is concatenated
        to the encrypted payload.

  AAA_Authenticator:
  -----------------

  The 64-bit AAA_Authenticator value decrypted by the Home RADIUS AAA
  Server.




Carroll & Quick              Informational                     [Page 35]

RFC 4784                 Dynamic MIP Key Update                June 2007


     Length = 14 bytes
     Vendor-CVSE-Type = 3
     Vendor-CVSE-Value = decrypted AAA_Authenticator from the Home
        RADIUS AAA Server.

  Public Key Invalid:
  ------------------

  The Home RADIUS AAA Server includes this extension to indicate that
  the public key used by the MN is not valid.

     Length = 6 bytes
     Vendor-CVSE-Type = 4
     Vendor-CVSE-Value = none.

  Note:  An Organization may define VSEs using their own Organization
  identifier.

10.  Public Key Identifier and DMU Version

  The Public Key Identifier (Pub_Key_ID) is used during the Dynamic
  Mobile IP Update (DMU) procedure to allow the RADIUS AAA Server to
  distinguish between different public keys (which may be assigned by
  different manufacturers, service providers, or other organizations).
  The Public Key Identifier consists of the PKOID, PKOI, PK_Identifier,
  and ATV fields.  The DMU Version field enables subsequent revisions
  of the DMU procedure.

             ----------------------------------------------
            | PKOID  |   PKOI  | PK_Expansion | ATV | DMUV |
             ----------------------------------------------
             0      7 8      15 16          23 24 27 28  31

                Figure 8. Public Key Identifier and DMUV

  Each Public Key Organization (PKO) MUST be assigned a Public Key
  Organization Identifier (PKOID) to enable the RADIUS AAA Server to
  distinguish between different public keys created by different PKOs
  (see Table 1).

  If a service provider does not provide the MN manufacturer with a
  (RSA) public key, the manufacturer MUST generate a unique RSA
  Public/Private key pair and pre-load each MN with the RSA public key
  (1024-bit modulus by default).  The manufacturer MAY share the same
  RSA Private key with multiple service providers as long as reasonable
  security procedures are established and maintained (by the
  manufacturer) to prevent disclosure of the RSA Private (decryption)
  key to an unauthorized party.



Carroll & Quick              Informational                     [Page 36]

RFC 4784                 Dynamic MIP Key Update                June 2007


  The Public Key Organization Index (PKOI) is an 8-bit field whose
  value is defined at the discretion of the PKO.  For example, a device
  manufacturer MAY incrementally assign a new PKOI for each
  Public/Private key pair when the pair is created.

  The PK_Expansion field enables support for additional PKOs or
  expansion of the PKOI.

  The DMU Version field allows for DMU Procedure version identification
  (see Table 2).

  The Algorithm Type and Version (ATV) field allows for identification
  of the public key algorithm and version used (see Table 3).






































Carroll & Quick              Informational                     [Page 37]

RFC 4784                 Dynamic MIP Key Update                June 2007


         Table 1.  Public Key Organization Identification Table

  PKOID    Public Key                 PKOID    Public Key
  (HEX)    Organization (PKO)         (HEX)    Organization (PKO)
  -----    ------------------         -----    ------------------
  00       RESERVED                   40       Sanyo Fisher Company
  01       RESERVED                   41       Sharp Laboratories of
                                               America
  02       RESERVED                   42       Sierra Wireless, Inc.
  03       RESERVED                   43       Sony Electronics
  04       RESERVED                   44       Synertek, Inc.
  05       RESERVED                   45       Tantivy Communications,
                                               Inc.
  06       RESERVED                   46       Tellus Technology, Inc.
  07       RESERVED                   47       Wherify Wireless, Inc.
  08       RESERVED                   48       Airbiquity
  09       RESERVED                   49       ArrayComm
  0A       Verizon Wireless           4A       Celletra Ltd.
  0B       AAPT Ltd.                  4B       CIBERNET Corporation
  0C       ALLTEL Communications      4C       CommWorks Corporation,
                                               a 3Com Company
  0D       Angola Telecom             4D       Compaq Computer
                                               Corporation
  0E       Bell Mobility              4E       ETRI
  0F       BellSouth International    4F       Glenayre Electronics
                                               Inc.
  10       China Unicom               50       GTRAN, Inc.
  11       KDDI Corporation           51       Logica
  12       Himachal Futuristic        52       LSI Logic
           Communications Ltd.
  13       Hutchison Telecom (HK),    53       Metapath Software
           Ltd.                                International, Inc.
  14       IUSACELL                   54       Metawave Communications
  15       Komunikasi Selular         55       Openwave Systems Inc.
           Indonesia (Komselindo)
  16       Korea Telecom Freetel,     56       ParkerVision, Inc.
           Inc.
  17       Leap                       57       QUALCOMM, Inc.
  18       LG Telecom, Ltd.           58       QuickSilver Technologies
  19       Mahanagar Telephone Nigam  59       Research Institute of
           Limited (MTNL)                      Telecommunication
                                               Transmission, MII (RITT)
  1A       Nextel Communications,     5A       Schema, Ltd.
           Inc.
  1B       Operadora UNEFON SA de CV  5B       SchlumbergerSema
  1C       Pacific Bangladesh         5C       ScoreBoard, Inc.
           Telecom Limited
  1D       Pegaso PCS, S.A. DE C.V.   5D       SignalSoft Corp.



Carroll & Quick              Informational                     [Page 38]

RFC 4784                 Dynamic MIP Key Update                June 2007


  PKOID    Public Key                 PKOID    Public Key
  (HEX)    Organization (PKO)         (HEX)    Organization (PKO)
  -----    ------------------         -----    ------------------
  1E       Pele-Phone                 5E       SmartServ Online,
           Communications Ltd.                 Inc.
  1F       Qwest                      5F       TDK Corporation
  20       Reliance Infocom Limited   60       Texas Instruments
  21       Shinsegi Telecomm, Inc.    61       Wherify Wireless, Inc.
  22       Shyam Telelink Limited     62       Acterna
  23       SK Telecom                 63       Anritsu Company
  24       Sprint PCS                 64       Ericsson
  25       Tata Teleservices Ltd.     65       Grayson Wireless
  26       Telecom Mobile Limited     66       LinkAir Communications,
                                               Inc.
  27       Telstra Corporation        67       Racal Instruments
           Limited
  28       Telus Mobility Cellular,   68       Rohde & Schwarz
           Inc.
  29       US Cellular                69       Spirent Communications
  2A       3G Cellular                6A       Willtech, Inc.
  2B       Acer Communication &       6B       Wireless Test Systems
           Multimedia Inc.
  2C       AirPrime, Inc.             6C       Airvana, Inc.
  2D       Alpine Electronics, Inc.   6D       COM DEV Wireless
  2E       Audiovox Communications    6E       Conductus, Inc.
           Corporation
  2F       DENSO Wireless             6F       Glenayre Electronics
                                               Inc.
  30       Ditrans Corporation        70       Hitachi Telecom (USA),
                                               Inc.
  31       Fujitsu Network            71       Hyundai Syscomm Inc.
           Communication, Inc.
  32       Gemplus Corporation        72       ISCO
  33       Giga Telecom Inc.          73       LG Electronics, Inc.
  34       Hyundai CURITEL, Inc.      74       LinkAir Communications,
                                               Inc.
  35       InnovICs Corp              75       Lucent Technologies,
                                               Inc.
  36       Kyocera Corporation        76       Motorola CIG
  37       LG Electronics, Inc.       77       Nortel Networks
  38       LinkAir Communications,    78       Repeater Technologies
           Inc.
  39       Motorola, Inc.             79       Samsung Electronics Co.,
                                               Ltd.
  3A       Nokia Corporation          7A       Starent Networks
  3B       Novatel Wireless, Inc.     7B       Tahoe Networks, Inc.
  3C       OKI Network Technologies   7C       Tantivy Communications,
                                               Inc.



Carroll & Quick              Informational                     [Page 39]

RFC 4784                 Dynamic MIP Key Update                June 2007


  PKOID    Public Key                 PKOID    Public Key
  (HEX)    Organization (PKO)         (HEX)    Organization (PKO)
  -----    ------------------         -----    ------------------
  3D       Pixo                       7D       WaterCove Networks
  3E       Research In Motion         7E       Winphoria Networks, Inc.
  3F       Samsung Electronics        7F       ZTE Corporation
           Co., Ltd.

  Note: 80 through FF will be assigned by the PKOID administrator
  (Verizion Wireless).

                          Table 2.  DMU Version

                       DMU Version    DMU Version
                          Value
                       -----------    -----------
                       00             RFC 4784
                       01             Reserved
                       02             Reserved
                       03             Reserved
                       04             Reserved
                       05             Reserved
                       06             Reserved
                       07             Cleartext Mode

                  Table 3.  Algorithm Type and Version

                       ATV      Public Key Algorithm
                       Value    Type and Version
                       -----    --------------------
                       00       Reserved
                       01       RSA - 1024
                       02       RSA - 768
                       03       RSA - 2048
                       04       Reserved
                       05       Reserved
                       06       Reserved
                       07       Reserved

11.  Conclusion

  The Dynamic Mobile IP Key Update (DMU) Procedure enables the
  efficient, yet secure, delivery of critical Mobile IP cryptographic
  keys.  The use of cryptographic keys (and hence, the bootstrapping of
  such MIP keys using the DMU Procedure) is essential to commercial
  delivery of Mobile IP service in cdma2000 1xRTT and HRPD/1xEV-DO
  networks or other networks that utilize Mobile IP.




Carroll & Quick              Informational                     [Page 40]

RFC 4784                 Dynamic MIP Key Update                June 2007


12.  Normative References

  [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

13.  Informative References

  [2]  TIA/EIA/IS-2000 Series, Revision A, Telecommunications Industry
       Association, March 2000.

  [3]  TIA/EIA/IS-856, cdma2000(R) High Rate Packet Data Air Interface
       Specification, Telecommunications Industry Association, November
       2000.

  [4]  Rigney, C., Willens, S., Rubens, A., and W. Simpson, "Remote
       Authentication Dial In User Service (RADIUS)", RFC 2865, June
       2000.

  [5]  Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J. Arkko,
       "Diameter Base Protocol", RFC 3588, September 2003.

  [6]  TIA/EIA/IS-835-A, cdma2000(R) Wireless IP Network Standard,
       Telecommunications Industry Association, May 2001.

  [7]  ANSI/TIA/EIA-41-D-97, Cellular Radiotelecommunications
       Intersystem Operations, Telecommunications Industry Association,
       December 1997

  [8]  ANSI/TIA/EIA-683-B-2001, Over-the-Air Service Provisioning of
       Mobile Stations in Spread Spectrum Systems, Telecommunications
       Industry Association, December 2001

  [9]  Jonsson, J. and B. Kaliski, "Public-Key Cryptography Standards
       (PKCS) #1: RSA Cryptography Specifications Version 2.1", RFC
       3447, February 2003.

  [10] Dommety, G. and K. Leung, "Mobile IP Vendor/Organization-
       Specific Extensions", RFC 3115, April 2001.

  [11] TIA-2001-A, Interoperability Specifications (IOS) for
       cdma2000(R) Access Network Interfaces, Telecommunications
       Industry Association, August 2001.

  [12] Eastlake, D., 3rd, Schiller, J., and S. Crocker, "Randomness
       Requirements for Security", BCP 106, RFC 4086, June 2005.

  [13] Rigney, C., Willats, W., and P. Calhoun, "RADIUS Extensions",
       RFC 2869, June 2000.



Carroll & Quick              Informational                     [Page 41]

RFC 4784                 Dynamic MIP Key Update                June 2007


14.  Acknowledgments

  Thanks to Jeffrey Dyck (Qualcomm), James Willkie (Qualcomm), Jayanth
  Mandayam (Qualcomm), Marcello Lioy (Qualcomm), Michael Borella
  (CommWorks), Cliff Randall (CommWorks), Daniel Cassinelli
  (CommWorks), Edward Dunn (CommWorks), Suresh Sarvepalli (CommWorks),
  Gabriella Ambramovici (Lucent), Semyon Mizikovsky (Lucent), Sarvar
  Patel (Lucent), Peter McCann (Lucent), Ganapathy Sundaram (Lucent),
  Girish Patel (Nortel), Glen Baxley (Nortel), Diane Thompson
  (Ericsson), Brian Hickman (Ericsson), Somsay Sychaleun (Bridgewater),
  Parm Sandhu (Sierra Wireless), Iulian Mucano (Sierra Wireless), and
  Samy Touati (Ericsson) for their useful discussions and comments.







































Carroll & Quick              Informational                     [Page 42]

RFC 4784                 Dynamic MIP Key Update                June 2007


Appendix A: Cleartext-Mode Operation

  DMU supports a cleartext mode for development testing where DMUV = 7.
  The MIP_Key_Data payload will assume the same size as if RSA 1024-bit
  encryption were applied to the payload.  In this mode, the
  MIP_Key_Data RADIUS Attribute and MIP Vendor Specific Extension will
  be 134 bytes and 138 bytes in length, respectively.  Thus, in
  cleartext mode, the payload MUST consist of 48 bytes of keys (MN_AAA,
  MN_HA, and CHAP key), 8-byte AAA_Authenticator, 3-byte
  MN_Authenticator.  The next 69 bytes will be padded with "0" bits.

  MIP_Key_Data = MN_AAAH key, MN_HA key, CHAP_key, MN_Authenticator,
  AAA_Authenticator, Padding (69 bytes), Public_Key_IDi, DMUV

  Where:

     MN_AAA key = 128-bit random MN / RADIUS AAA Server key.

     MN_HA key = 128-bit random MN / Home Agent (HA) key.

     CHAP_key = 128-bit random Simple IP authentication key.

     MN_Authenticator = 24-bit random number.

     AAA_Authenticator = 64-bit random number used by MN to
        authenticate the RADIUS AAA Server.

     Padding = 69 bytes of 0's.

     DMU Version (DMUV) = 4-bit identifier of DMU version.

  Public Key Identifier (Pub _Key_ID) = PKOID, PKOI, PK_Expansion, ATV

  Where:

     Public Key Organization Identifier (PKOID) = 8-bit serial number
        identifier of the Public Key Organization (PKO) that created
        the Public Key.

     Public Key Organization Index (PKOI) = 8-bit serial number used at
        PKO discretion to distinguish different Public/Private key
        pairs.

     PK_Expansion = 8-bit field to enable possible expansion of PKOID
        or PKOI fields. (Note: Default value = 0xFF)

     Algorithm Type and Version (ATV) = 4-bit identifier of the
        algorithm used.



Carroll & Quick              Informational                     [Page 43]

RFC 4784                 Dynamic MIP Key Update                June 2007


Authors' Addresses

  Christopher Carroll*
  Ropes & Gray LLP
  Fish & Neave IP Group
  One International Place
  Boston, MA 02110

  Phone: 617-951-7756
  EMail: [email protected]

  * This document was developed while at Verizon Wireless.


  Frank Quick
  Qualcomm Incorporated
  5775 Morehouse Drive
  San Diego, CA 92121 USA

  Phone: 858-658-3608
  EMail: [email protected]






























Carroll & Quick              Informational                     [Page 44]

RFC 4784                 Dynamic MIP Key Update                June 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78 and at www.rfc-editor.org/copyright.html, and
  except as set forth therein, the authors retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Carroll & Quick              Informational                     [Page 45]