Network Working Group                                         Y. Rekhter
Request for Comments: 4781                                   R. Aggarwal
Category: Standards Track                               Juniper Networks
                                                           January 2007


             Graceful Restart Mechanism for BGP with MPLS

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2007).

Abstract

  A mechanism for BGP that helps minimize the negative effects on
  routing caused by BGP restart has already been developed and is
  described in a separate document ("Graceful Restart Mechanism for
  BGP").  This document extends this mechanism to minimize the negative
  effects on MPLS forwarding caused by the Label Switching Router's
  (LSR's) control plane restart, and specifically by the restart of its
  BGP component when BGP is used to carry MPLS labels and the LSR is
  capable of preserving the MPLS forwarding state across the restart.

  The mechanism described in this document is agnostic with respect to
  the types of the addresses carried in the BGP Network Layer
  Reachability Information (NLRI) field.  As such, it works in
  conjunction with any of the address families that could be carried in
  BGP (e.g., IPv4, IPv6, etc.).















Rekhter & Aggarwal          Standards Track                     [Page 1]

RFC 4781           Graceful Restart Mechanism for BGP       January 2007


Table of Contents

  1. Introduction ....................................................2
     1.1. Specification of Requirements ..............................3
  2. General Requirements ............................................3
  3. Capability Advertisement ........................................4
  4. Procedures for the Restarting LSR ...............................4
     4.1. Case 1 .....................................................4
     4.2. Case 2 .....................................................5
     4.3. Case 3 .....................................................5
  5. Alternative Procedures for the Restarting LSR ...................6
  6. Procedures for a Neighbor of a Restarting LSR ...................6
  7. Comparison between Alternative Procedures for the
     Restarting LSR ..................................................7
  8. Security Considerations .........................................8
  9. Acknowledgments .................................................9
  10. References .....................................................9
     10.1. Normative References ......................................9
     10.2. Informative References ....................................9

1.  Introduction

  In the case where a Label Switching Router (LSR) could preserve its
  MPLS forwarding state across restart of its control plane, and
  specifically its BGP component, and BGP is used to carry MPLS labels
  (e.g., as specified in [RFC3107]), it may be desirable not to perturb
  the LSPs going through that LSR (and specifically, the LSPs
  established by BGP) after failure or restart of the BGP component of
  the control plane.  In this document, we describe a mechanism that
  allows this goal to be accomplished.  The mechanism described in this
  document works in conjunction with the mechanism specified in
  [RFC4724].  The mechanism described in this document places no
  restrictions on the types of addresses (address families) that it can
  support.

  The mechanism described in this document is applicable to all LSRs,
  both those with the ability to preserve forwarding state during BGP
  restart and those without it (although the latter need to implement
  only a subset of this mechanism).  Supporting a subset of the
  mechanism described here by the LSRs that cannot preserve their MPLS
  forwarding state across the restart would not reduce the negative
  impact on MPLS traffic caused by their control plane restart.
  However, the impact would be minimized if their neighbor(s) are
  capable of preserving the forwarding state across the restart of
  their control plane, and if they implement the mechanism described
  here.  The subset includes all the procedures described in this
  document, except the procedures in Sections 4.1, 4.2, 4.3, and 5.




Rekhter & Aggarwal          Standards Track                     [Page 2]

RFC 4781           Graceful Restart Mechanism for BGP       January 2007


  For the sake of brevity, by "MPLS forwarding state" we mean one of
  the following mappings:
     <incoming label -> (outgoing label, next hop)>
     <Forwarding Equivalence Class (FEC) -> (outgoing label, next hop)>
     <incoming label -> label pop, next hop>
     <incoming label, label pop>

  In the context of this document, the forwarding state that is
  referred to in [RFC4724] means MPLS forwarding state, as defined
  above.  The term "next hop" refers to the next hop as advertised in
  BGP.

1.1.  Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.  General Requirements

  First of all, an LSR MUST implement the Graceful Restart Mechanism
  for BGP, as specified in [RFC4724].  Second, the LSR SHOULD be
  capable of preserving its MPLS forwarding state across the restart of
  its control plane (including the restart of BGP).  Third, for the
  <Forwarding Equivalence Class (FEC) -> label> bindings distributed
  via BGP, the LSR SHOULD be able either (a) to reconstruct the same
  bindings as the LSR had prior to the restart (see Section 4), or (b)
  to create new <FEC -> label> bindings after restart, while
  temporarily maintaining MPLS forwarding state corresponding to both
  the bindings prior to the restart, as well as to the newly created
  bindings (see Section 5).  Fourth, as long as the LSR retains the
  MPLS forwarding state that the LSR preserved across the restart, the
  labels from that state cannot be used to create new local label
  bindings (but could be used to reconstruct the existing bindings, as
  per procedures in Section 4).  Finally, for each next hop, if the
  next hop is reachable via a Label Switched Path (LSP), then the
  restarting LSR MUST be able to preserve the MPLS forwarding state
  associated with that LSP across the restart.

  In the scenario where label binding on an LSR is created/maintained
  not only by the BGP component of the control plane, but also by other
  protocol components (e.g., LDP, RSVP-TE), and where the LSR supports
  restart of the individual components of the control plane that
  create/maintain label binding (e.g., restart of BGP, but no restart
  of LDP), the LSR MUST be able to preserve across the restart the
  information about which protocol has assigned which labels.





Rekhter & Aggarwal          Standards Track                     [Page 3]

RFC 4781           Graceful Restart Mechanism for BGP       January 2007


  After the LSR restarts, it MUST follow the procedures as specified in
  [RFC4724].  In addition, if the LSR is able to preserve its MPLS
  forwarding state across the restart, the LSR SHOULD advertise this to
  its neighbors by appropriately setting the Flag for Address Family
  field in the Graceful Restart Capability for all applicable AFI/SAFI
  pairs.

3.  Capability Advertisement

  An LSR that supports the mechanism described in this document
  advertises this to its peer by using the Graceful Restart Capability,
  as specified in [RFC4724].  The Subsequent Address Family Identifier
  (SAFI) in the advertised capability MUST indicate that the Network
  Layer Reachability Information (NLRI) field carries not only
  addressing Information, but also labels (see [RFC3107] for an example
  of where NLRI carries labels).

4.  Procedures for the Restarting LSR

  Procedures in this section apply when a restarting LSR is able to
  reconstruct the same <FEC -> label> bindings as the LSR had prior to
  the restart.

  The procedures described in this section are conceptual and do not
  have to be implemented precisely as described, as long as the
  implementations support the described functionality and their
  externally visible behavior is the same.

  Once the LSR completes its route selection (as specified in Section
  4.1, "Procedures for the Restarting Speaker", of [RFC4724]), then in
  addition to the those procedures, the LSR performs one of the
  following:

4.1.  Case 1

  The following applies when (a) the best route selected by the LSR was
  received with a label, (b) that label is not an Implicit NULL, and
  (c) the LSR advertises this route with itself as the next hop.

  In this case, the LSR searches its MPLS forwarding state (the one
  preserved across the restart) for an entry with <outgoing label, next
  hop> equal to the one in the received route.  If such an entry is
  found, the LSR no longer marks the entry as stale.  In addition, if
  the entry is of type <incoming label, (outgoing label, next hop)>
  rather than <Forwarding Equivalence Class (FEC), (outgoing label,
  next hop)>, the LSR uses the incoming label from the entry when
  advertising the route to its neighbors.  If the found entry has no
  incoming label, or if no such entry is found, the LSR allocates a new



Rekhter & Aggarwal          Standards Track                     [Page 4]

RFC 4781           Graceful Restart Mechanism for BGP       January 2007


  label when advertising the route to its neighbors (assuming that
  there are neighbors to which the LSR has to advertise the route with
  a label).

4.2.  Case 2

  The following applies when (a) the best route selected by the LSR was
  received either without a label, with an Implicit NULL label, or the
  route is originated by the LSR; (b) the LSR advertises this route
  with itself as the next hop; and (c) the LSR has to generate a (non-
  Implicit NULL) label for the route.

  In this case, the LSR searches its MPLS forwarding state for an entry
  that indicates that the LSR has to perform label pop, and the next
  hop equal to the next hop of the route in consideration.  If such an
  entry is found, then the LSR uses the incoming label from the entry
  when advertising the route to its neighbors.  If no such entry is
  found, the LSR allocates a new label when advertising the route to
  its neighbors.

  The description in the above paragraph assumes that the LSR generates
  the same label for all the routes with the same next hop.  If this is
  not the case and the LSR generates a unique label per each such
  route, then the LSR needs to preserve across the restart not only
  <incoming label, (outgoing label, next hop)> mapping, but also the
  Forwarding Equivalence Class (FEC) associated with this mapping.  In
  such a case the LSR would search its MPLS forwarding state for an
  entry that (a) indicates label pop (means no outgoing label), (b)
  indicates that the next hop equal to the next hop of the route, and
  (c) has the same FEC as the route.  If such an entry is found, then
  the LSR uses the incoming label from the entry when advertising the
  route to its neighbors.  If no such entry is found, the LSR allocates
  a new label when advertising the route to its neighbors.

4.3.  Case 3

  The following applies when the LSR does not set BGP next hop to self.

  In this case, the LSR, when advertising its best route for a
  particular NLRI, just uses the label that was received with that
  route.  And if the route was received with no label, the LSR
  advertises the route with no label as well.  Either way, the LSR does
  not allocate a label for that route.








Rekhter & Aggarwal          Standards Track                     [Page 5]

RFC 4781           Graceful Restart Mechanism for BGP       January 2007


5.  Alternative Procedures for the Restarting LSR

  In this section, we describe an alternative to the procedures
  described in Section "Procedures for the restarting LSR".

  Procedures in this section apply when a restarting LSR does not
  reconstruct the same <FEC -> label> bindings as the LSR had prior to
  the restart, but instead creates new <FEC -> label> bindings after
  restart, while temporarily maintaining MPLS forwarding state
  corresponding to both the bindings prior to the restart, as well as
  to the newly created bindings.

  The procedures described in this section require that for the use by
  BGP graceful restart, the LSR SHOULD have (at least) as many
  unallocated labels as labels allocated for the <FEC -> label>
  bindings distributed by BGP.  The latter forms the MPLS forwarding
  state that the LSR managed to preserve across the restart.  The
  former is used for allocating labels after the restart.

  To create (new) local label bindings after the restart, the LSR uses
  unallocated labels (this is pretty much the normal procedure).

  The LSR SHOULD retain the MPLS forwarding state that the LSR
  preserved across the restart at least until the LSR sends an
  End-of-RIB marker to all of its neighbors (by that time the LSR
  already completed its route selection process, and also advertised
  its Adj-RIB-Out to its neighbors).  The LSR MAY retain the forwarding
  state even a bit longer (the amount of extra time MAY be controlled
  by configuration on the LSR), so as to allow the neighbors to receive
  and process the routes that have been advertised by the LSR.  After
  that, the LSR SHOULD delete the MPLS forwarding state that it
  preserved across the restart.

  Note that while an LSR is in the process of restarting, the LSR may
  have not one, but two local label bindings for a given BGP route --
  one that was retained from prior to restart, and another that was
  created after the restart.  Once the LSR completes its restart, the
  former will be deleted.  However, both of these bindings would have
  the same outgoing label (and the same next hop).

6.  Procedures for a Neighbor of a Restarting LSR

  The neighbor of a restarting LSR (the receiving router terminology
  used in [RFC4724]) follows the procedures specified in [RFC4724].  In
  addition, the neighbor treats the MPLS labels received from the
  restarting LSR the same way that it treats the routes received from
  the restarting LSR (both prior and after the restart).




Rekhter & Aggarwal          Standards Track                     [Page 6]

RFC 4781           Graceful Restart Mechanism for BGP       January 2007


  Replacing the stale routes by the routing updates received from the
  restarting LSR involves replacing/updating the appropriate MPLS
  labels.

  In addition, if the Flags in the Graceful Restart Capability received
  from the restarting LSR indicate that the LSR wasn't able to retain
  its MPLS state across the restart, the neighbor SHOULD immediately
  remove all the NLRI and the associated MPLS labels that it previously
  acquired via BGP from the restarting LSR.

  An LSR, once it creates a binding between a label and a Forwarding
  Equivalence Class (FEC), SHOULD keep the value of the label in this
  binding for as long as the LSR has a route to the FEC in the binding.
  If the route to the FEC disappears and then re-appears again later,
  then this may result in using a different label value, as when the
  route re-appears, the LSR would create a new <label, FEC> binding.

  To minimize the potential misrouting caused by the label change, when
  creating a new <label, FEC> binding, the LSR SHOULD pick up the least
  recently used label.  Once an LSR releases a label, the LSR SHALL NOT
  re-use this label for advertising a <label, FEC> binding to a
  neighbor that supports graceful restart for at least the Restart
  Time, as advertised by the neighbor to the LSR.  This rule SHALL
  apply to any label release at any time.

7.  Comparison between Alternative Procedures for the Restarting LSR

  Procedures described in Section 4 involve more computational overhead
  on the restarting router than do the procedures described in Section
  5.

  Procedures described in Section 5 require twice as many labels as
  those described in Section 4.

  Procedures described in Section 4 cause fewer changes to the MPLS
  forwarding state in the neighbors of the restarting router than the
  procedures described in Section 5.

  In principle, it is possible for an LSR to use procedures described
  in Section 4 for some AFI/SAFI(s) and procedures described in Section
  5 for other AFI/SAFI(s).










Rekhter & Aggarwal          Standards Track                     [Page 7]

RFC 4781           Graceful Restart Mechanism for BGP       January 2007


8.  Security Considerations

  The security considerations pertaining to the BGP protocol [RFC4271]
  remain relevant.

  In addition, the mechanism described here renders LSRs that implement
  it vulnerable to additional denial-of-service attacks as follows:

     An intruder may impersonate a BGP peer in order to force a failure
     and reconnection of the TCP connection, where the intruder sets
     the Forwarding State (F) bit (as defined in [RFC4724]) to 0 on
     reconnection.  This forces all labels received from the peer to be
     released.

     An intruder could intercept the traffic between BGP peers and
     override the setting of the Forwarding State (F) bit to be set to
     0.  This forces all labels received from the peer to be released.

  All of these attacks may be countered by use of an authentication
  scheme between BGP peers, such as the scheme outlined in [RFC2385].

  As with BGP carrying labels, a security issue may exist if a BGP
  implementation continues to use labels after expiration of the BGP
  session that first caused them to be used.  This may arise if the
  upstream LSR detects the session failure after the downstream LSR has
  released and re-used the label.  The problem is most obvious with the
  platform-wide label space and could result in misrouting of data to
  destinations other than those intended; and it is conceivable that
  these behaviors may be deliberately exploited, either to obtain
  services without authorization or to deny services to others.

  In this document, the validity of the BGP session may be extended by
  the Restart Time, and the session may be re-established in this
  period.  After the expiry of the Restart Time, the session must be
  considered to have failed, and the same security issue applies as
  described above.

  However, the downstream LSR may declare the session as failed before
  the expiration of its Restart Time.  This increases the period during
  which the downstream LSR might reallocate the label while the
  upstream LSR continues to transmit data using the old usage of the
  label.  To reduce this issue, this document requires that labels are
  not re-used until at least the Restart Time.








Rekhter & Aggarwal          Standards Track                     [Page 8]

RFC 4781           Graceful Restart Mechanism for BGP       January 2007


9.  Acknowledgments

  We would like to thank Chaitanya Kodeboyina and Loa Andersson for
  their review and comments.  The approach described in Section 5 is
  based on the idea suggested by Manoj Leelanivas.

10.  References

10.1.  Normative References

  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
            Signature Option", RFC 2385, August 1998.

  [RFC4271] Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
            Protocol 4 (BGP-4)", RFC 4271, January 2006.

  [RFC4724] Sangli, S., Chen, E., Fernando, R., Scudder, J., and Y.
            Rekhter, "Graceful Restart Mechanism for BGP", RFC 4724,
            January 2007.

10.2.  Informative References

  [RFC3107] Rekhter, Y. and E. Rosen, "Carrying Label Information in
            BGP-4", RFC 3107, May 2001.

Authors' Addresses

  Yakov Rekhter
  Juniper Networks
  1194 N.Mathilda Ave
  Sunnyvale, CA 94089

  EMail: [email protected]


  Rahul Aggarwal
  Juniper Networks
  1194 N.Mathilda Ave
  Sunnyvale, CA 94089

  EMail: [email protected]







Rekhter & Aggarwal          Standards Track                     [Page 9]

RFC 4781           Graceful Restart Mechanism for BGP       January 2007


Full Copyright Statement

  Copyright (C) The IETF Trust (2007).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Rekhter & Aggarwal          Standards Track                    [Page 10]