Network Working Group                                      K. Jaganathan
Request for Comments: 4757                                        L. Zhu
Category: Informational                                        J. Brezak
                                                  Microsoft Corporation
                                                          December 2006


   The RC4-HMAC Kerberos Encryption Types Used by Microsoft Windows

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2006).

IESG Note

  This document documents the RC4 Kerberos encryption types first
  introduced in Microsoft Windows 2000.  Since then, these encryption
  types have been implemented in a number of Kerberos implementations.
  The IETF Kerberos community supports publishing this specification as
  an informational document in order to describe this widely
  implemented technology.  However, while these encryption types
  provide the operations necessary to implement the base Kerberos
  specification [RFC4120], they do not provide all the required
  operations in the Kerberos cryptography framework [RFC3961].  As a
  result, it is not generally possible to implement potential
  extensions to Kerberos using these encryption types.  The Kerberos
  encryption type negotiation mechanism [RFC4537] provides one approach
  for using such extensions even when a Kerberos infrastructure uses
  long-term RC4 keys.  Because this specification does not implement
  operations required by RFC 3961 and because of security concerns with
  the use of RC4 and MD4 discussed in Section 8, this specification is
  not appropriate for publication on the standards track.













Jaganathan, et al.           Informational                      [Page 1]

RFC 4757                        RC4-HMAC                   December 2006


Abstract

  The Microsoft Windows 2000 implementation of Kerberos introduces a
  new encryption type based on the RC4 encryption algorithm and using
  an MD5 HMAC for checksum.  This is offered as an alternative to using
  the existing DES-based encryption types.

  The RC4-HMAC encryption types are used to ease upgrade of existing
  Windows NT environments, provide strong cryptography (128-bit key
  lengths), and provide exportable (meet United States government
  export restriction requirements) encryption.  This document describes
  the implementation of those encryption types.

Table of Contents

  1. Introduction ....................................................3
     1.1. Conventions Used in This Document ..........................3
  2. Key Generation ..................................................3
  3. Basic Operations ................................................4
  4. Checksum Types ..................................................5
  5. Encryption Types ................................................6
  6. Key Strength Negotiation ........................................8
  7. GSS-API Kerberos V5 Mechanism Type ..............................8
     7.1. Mechanism Specific Changes .................................8
     7.2. GSS-API MIC Semantics ......................................9
     7.3. GSS-API WRAP Semantics ....................................11
  8. Security Considerations ........................................15
  9. IANA Considerations ............................................15
  10. Acknowledgements ..............................................15
  11. References ....................................................16
     11.1. Normative References .....................................16
     11.2. Informative References ...................................16



















Jaganathan, et al.           Informational                      [Page 2]

RFC 4757                        RC4-HMAC                   December 2006


1.  Introduction

  The Microsoft Windows 2000 implementation of Kerberos contains new
  encryption and checksum types for two reasons.  First, for export
  reasons early in the development process, 56-bit DES encryption could
  not be exported, and, second, upon upgrade from Windows NT 4.0 to
  Windows 2000, accounts will not have the appropriate DES keying
  material to do the standard DES encryption.  Furthermore, 3DES was
  not available for export when Windows 2000 was released, and there
  was a desire to use a single flavor of encryption in the product for
  both US and international products.

  As a result, there are two new encryption types and one new checksum
  type introduced in Microsoft Windows 2000.

  Note that these cryptosystems aren't intended to be complete,
  general-purpose Kerberos encryption or checksum systems as defined in
  [RFC3961]: there is no one-one mapping between the operations in this
  documents and the primitives described in [RFC3961].

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to
  be interpreted as described in [RFC2119].

2.  Key Generation

  On upgrade from existing Windows NT domains, the user accounts would
  not have a DES-based key available to enable the use of DES base
  encryption types specified in [RFC4120] and [RFC3961].  The key used
  for RC4-HMAC is the same as the existing Windows NT key (NT Password
  Hash) for compatibility reasons.  Once the account password is
  changed, the DES-based keys are created and maintained.  Once the DES
  keys are available, DES-based encryption types can be used with
  Kerberos.

  The RC4-HMAC string to key function is defined as follows:

     String2Key(password)

          K = MD4(UNICODE(password))

  The RC4-HMAC keys are generated by using the Windows UNICODE version
  of the password.  Each Windows UNICODE character is encoded in
  little-endian format of 2 octets each.  Then an MD4 [RFC1320] hash
  operation is performed on just the UNICODE characters of the password
  (not including the terminating zero octets).



Jaganathan, et al.           Informational                      [Page 3]

RFC 4757                        RC4-HMAC                   December 2006


  For an account with a password of "foo", this String2Key("foo") will
  return:

          0xac, 0x8e, 0x65, 0x7f, 0x83, 0xdf, 0x82, 0xbe,
          0xea, 0x5d, 0x43, 0xbd, 0xaf, 0x78, 0x00, 0xcc

3.  Basic Operations

  The MD5 HMAC function is defined in [RFC2104].  It is used in this
  encryption type for checksum operations.  Refer to [RFC2104] for
  details on its operation.  In this document, this function is
  referred to as HMAC(Key, Data) returning the checksum using the
  specified key on the data.

  The basic MD5 hash operation is used in this encryption type and
  defined in [RFC1321].  In this document, this function is referred to
  as MD5(Data) returning the checksum of the data.

  RC4 is a stream cipher licensed by RSA Data Security.  In this
  document, the function is referred to as RC4(Key, Data) returning the
  encrypted data using the specified key on the data.

  These encryption types use key derivation.  With each message, the
  message type (T) is used as a component of the keying material.  The
  following table summarizes the different key derivation values used
  in the various operations.  Note that these differ from the key
  derivations used in other Kerberos encryption types.  T = the message
  type, encoded as a little-endian four-byte integer.

     1.  AS-REQ PA-ENC-TIMESTAMP padata timestamp, encrypted with the
         client key (T=1)
     2.  AS-REP Ticket and TGS-REP Ticket (includes TGS session key or
         application session key), encrypted with the service key (T=2)
     3.  AS-REP encrypted part (includes TGS session key or application
         session key), encrypted with the client key (T=8)
     4.  TGS-REQ KDC-REQ-BODY AuthorizationData, encrypted with the TGS
         session key (T=4)
     5.  TGS-REQ KDC-REQ-BODY AuthorizationData, encrypted with the TGS
         authenticator subkey (T=5)
     6.  TGS-REQ PA-TGS-REQ padata AP-REQ Authenticator cksum, keyed
         with the TGS session key (T=6)
     7.  TGS-REQ PA-TGS-REQ padata AP-REQ Authenticator (includes TGS
         authenticator subkey), encrypted with the TGS session key T=7)
     8.  TGS-REP encrypted part (includes application session key),
         encrypted with the TGS session key (T=8)
     9.  TGS-REP encrypted part (includes application session key),
         encrypted with the TGS authenticator subkey (T=8)




Jaganathan, et al.           Informational                      [Page 4]

RFC 4757                        RC4-HMAC                   December 2006


     10. AP-REQ Authenticator cksum, keyed with the application session
         key (T=10)
     11. AP-REQ Authenticator (includes application authenticator
         subkey), encrypted with the application session key (T=11)
     12. AP-REP encrypted part (includes application session subkey),
         encrypted with the application session key (T=12)
     13. KRB-PRIV encrypted part, encrypted with a key chosen by the
         application.  Also for data encrypted with GSS Wrap (T=13)
     14. KRB-CRED encrypted part, encrypted with a key chosen by the
         application (T=14)
     15. KRB-SAFE cksum, keyed with a key chosen by the application.
         Also for data signed in GSS MIC (T=15)

     Relative to RFC-1964 key uses:

     T = 0 in the generation of sequence number for the MIC token
     T = 0 in the generation of sequence number for the WRAP token
     T = 0 in the generation of encrypted data for the WRAPPED token

  All strings in this document are ASCII unless otherwise specified.
  The lengths of ASCII-encoded character strings include the trailing
  terminator character (0).  The concat(a,b,c,...) function will return
  the logical concatenation (left to right) of the values of the
  arguments.  The nonce(n) function returns a pseudo-random number of
  "n" octets.

4.  Checksum Types

  There is one checksum type used in this encryption type.  The
  Kerberos constant for this type is:

          #define KERB_CHECKSUM_HMAC_MD5 (-138)

     The function is defined as follows:

     K = the Key
     T = the message type, encoded as a little-endian four-byte integer

     CHKSUM(K, T, data)

          Ksign = HMAC(K, "signaturekey")  //includes zero octet at end
          tmp = MD5(concat(T, data))
          CHKSUM = HMAC(Ksign, tmp)








Jaganathan, et al.           Informational                      [Page 5]

RFC 4757                        RC4-HMAC                   December 2006


5.  Encryption Types

  There are two encryption types used in these encryption types.  The
  Kerberos constants for these types are:

          #define KERB_ETYPE_RC4_HMAC             23
          #define KERB_ETYPE_RC4_HMAC_EXP         24

  The basic encryption function is defined as follows:

    T = the message type, encoded as a little-endian four-byte integer.

          OCTET L40[14] = "fortybits";

     The header field on the encrypted data in KDC messages is:

          typedef struct _RC4_MDx_HEADER {
              OCTET Checksum[16];
              OCTET Confounder[8];
          } RC4_MDx_HEADER, *PRC4_MDx_HEADER;


          ENCRYPT (K, export, T, data)
          {
              struct EDATA {
                  struct HEADER {
                          OCTET Checksum[16];
                          OCTET Confounder[8];
                  } Header;
                  OCTET Data[0];
              } edata;

              if (export){
                  *((DWORD *)(L40+10)) = T;
                  K1 = HMAC(K, L40); // where the length of L40 in
                                     // octets is 14
              }
              else
              {
                  K1 = HMAC(K, &T); // where the length of T in octets
                                    // is 4
              }
              memcpy (K2, K1, 16);
              if (export) memset (K1+7, 0xAB, 9);

              nonce (edata.Confounder, 8);
              memcpy (edata.Data, data);




Jaganathan, et al.           Informational                      [Page 6]

RFC 4757                        RC4-HMAC                   December 2006


              edata.Checksum = HMAC (K2, edata);
              K3 = HMAC (K1, edata.Checksum);

              RC4 (K3, edata.Confounder);
              RC4 (K3, data.Data);
          }

          DECRYPT (K, export, T, edata)
          {
              // edata looks like
              struct EDATA {
                  struct HEADER {
                          OCTET Checksum[16];
                          OCTET Confounder[8];
                  } Header;
                  OCTET Data[0];
              } edata;

              if (export){
                  *((DWORD *)(L40+10)) = T;
                  HMAC (K, L40, 14, K1);
              }
              else
              {
                  HMAC (K, &T, 4, K1);
              }
              memcpy (K2, K1, 16);
              if (export) memset (K1+7, 0xAB, 9);

              K3 = HMAC (K1, edata.Checksum);
              RC4 (K3, edata.Confounder);
              RC4 (K3, edata.Data);


              // verify generated and received checksums
            checksum = HMAC (K2, concat(edata.Confounder, edata.Data));
              if (checksum != edata.Checksum)
                  printf("CHECKSUM ERROR  !!!!!!\n");
          }

  The KDC message is encrypted using the ENCRYPT function not including
  the Checksum in the RC4_MDx_HEADER.

  The character constant "fortybits" evolved from the time when a
  40-bit key length was all that was exportable from the United States.
  It is now used to recognize that the key length is of "exportable"
  length.  In this description, the key size is actually 56 bits.




Jaganathan, et al.           Informational                      [Page 7]

RFC 4757                        RC4-HMAC                   December 2006


  The pseudo-random operation [RFC3961] for both enctypes above is
  defined as follows:

          pseudo-random(K, S) = HMAC-SHA1(K, S)

  where K is the protocol key and S is the input octet string.
  HMAC-SHA1 is defined in [RFC2104] and the output of HMAC-SHA1 is the
  20-octet digest.

6.  Key Strength Negotiation

  A Kerberos client and server can negotiate over key length if they
  are using mutual authentication.  If the client is unable to perform
  full-strength encryption, it may propose a key in the "subkey" field
  of the authenticator, using a weaker encryption type.  The server
  must then either return the same key or suggest its own key in the
  subkey field of the AP reply message.  The key used to encrypt data
  is derived from the key returned by the server.  If the client is
  able to perform strong encryption but the server is not, it may
  propose a subkey in the AP reply without first being sent a subkey in
  the authenticator.

7.  GSS-API Kerberos V5 Mechanism Type

7.1.   Mechanism Specific Changes

  The Generic Security Service Application Program Interface (GSS-API)
  per-message tokens also require new checksum and encryption types.
  The GSS-API per-message tokens are adapted to support these new
  encryption types.  See [RFC1964] Section 1.2.2.

  The only support quality of protection is:

        #define GSS_KRB5_INTEG_C_QOP_DEFAULT    0x0

  When using this RC4-based encryption type, the sequence number is
  always sent in big-endian rather than little-endian order.

  The Windows 2000 implementation also defines new GSS-API flags in the
  initial token passed when initializing a security context.  These
  flags are passed in the checksum field of the authenticator.  See
  [RFC1964] Section 1.1.1.

  GSS_C_DCE_STYLE - This flag was added for use with Microsoft's
  implementation of Distributed Computing Environment Remote Procedure
  Call (DCE RPC), which initially expected three legs of
  authentication.  Setting this flag causes an extra AP reply to be
  sent from the client back to the server after receiving the server's



Jaganathan, et al.           Informational                      [Page 8]

RFC 4757                        RC4-HMAC                   December 2006


  AP reply.  In addition, the context negotiation tokens do not have
  GSS-API per-message tokens -- they are raw AP messages that do not
  include object identifiers.

          #define GSS_C_DCE_STYLE                 0x1000

  GSS_C_IDENTIFY_FLAG - This flag allows the client to indicate to the
  server that it should only allow the server application to identify
  the client by name and ID, but not to impersonate the client.

          #define GSS_C_IDENTIFY_FLAG             0x2000

  GSS_C_EXTENDED_ERROR_FLAG - Setting this flag indicates that the
  client wants to be informed of extended error information.  In
  particular, Windows 2000 status codes may be returned in the data
  field of a Kerberos error message.  This allows the client to
  understand a server failure more precisely.  In addition, the server
  may return errors to the client that are normally handled at the
  application layer in the server, in order to let the client try to
  recover.  After receiving an error message, the client may attempt to
  resubmit an AP request.

          #define GSS_C_EXTENDED_ERROR_FLAG       0x4000

  These flags are only used if a client is aware of these conventions
  when using the Security Support Provider Interface (SSPI) on the
  Windows platform; they are not generally used by default.

  When NetBIOS addresses are used in the GSS-API, they are identified
  by the GSS_C_AF_NETBIOS value.  This value is defined as:

          #define GSS_C_AF_NETBIOS                0x14

  NetBios addresses are 16-octet addresses typically composed of 1 to
  15 characters, trailing blank (ASCII char 20) filled, with a 16th
  octet of 0x0.

7.2.   GSS-API MIC Semantics

  The GSS-API checksum type and algorithm are defined in Section 5.
  Only the first 8 octets of the checksum are used.  The resulting
  checksum is stored in the SGN_CKSUM field.  See [RFC1964] Section 1.2
  for GSS_GetMIC() and GSS_Wrap(conf_flag=FALSE).








Jaganathan, et al.           Informational                      [Page 9]

RFC 4757                        RC4-HMAC                   December 2006


  The GSS_GetMIC token has the following format:

       Byte no         Name        Description
       0..1           TOK_ID     Identification field.
                                 Tokens emitted by GSS_GetMIC() contain
                                 the hex value 01 01 in this field.
       2..3           SGN_ALG    Integrity algorithm indicator.
                                 11 00 - HMAC
       4..7           Filler     Contains ff ff ff ff
       8..15          SND_SEQ    Sequence number field.
       16..23         SGN_CKSUM  Checksum of "to-be-signed data",
                                 calculated according to algorithm
                                 specified in SGN_ALG field.

  The MIC mechanism used for GSS-MIC-based messages is as follows:

          GetMIC(Kss, direction, export, seq_num, data)
          {
                  struct Token {
                         struct Header {
                                OCTET TOK_ID[2];
                                OCTET SGN_ALG[2];
                                OCTET Filler[4];
                           };
                         OCTET SND_SEQ[8];
                         OCTET SGN_CKSUM[8];
                  } Token;


                  Token.TOK_ID = 01 01;
                  Token.SGN_SLG = 11 00;
                  Token.Filler = ff ff ff ff;

                  // Create the sequence number

                  if (direction == sender_is_initiator)
                  {
                          memset(Token.SEND_SEQ+4, 0xff, 4)
                  }
                  else if (direction == sender_is_acceptor)
                  {
                          memset(Token.SEND_SEQ+4, 0, 4)
                  }
                  Token.SEND_SEQ[0] = (seq_num & 0xff000000) >> 24;
                  Token.SEND_SEQ[1] = (seq_num & 0x00ff0000) >> 16;
                  Token.SEND_SEQ[2] = (seq_num & 0x0000ff00) >> 8;
                  Token.SEND_SEQ[3] = (seq_num & 0x000000ff);




Jaganathan, et al.           Informational                     [Page 10]

RFC 4757                        RC4-HMAC                   December 2006


                  // Derive signing key from session key

                  Ksign = HMAC(Kss, "signaturekey");
                                    // length includes terminating null

                  // Generate checksum of message - SGN_CKSUM
                  //   Key derivation salt = 15

                  Sgn_Cksum = MD5((int32)15, Token.Header, data);

                  // Save first 8 octets of HMAC Sgn_Cksum

                  Sgn_Cksum = HMAC(Ksign, Sgn_Cksum);
                  memcpy(Token.SGN_CKSUM, Sgn_Cksum, 8);

                  // Encrypt the sequence number

                  // Derive encryption key for the sequence number
                  //   Key derivation salt = 0

                  if (exportable)
                  {
                          Kseq = HMAC(Kss, "fortybits", (int32)0);
                                       // len includes terminating null
                          memset(Kseq+7, 0xab, 7)
                  }
                  else
                  {
                           Kseq = HMAC(Kss, (int32)0);
                  }
                  Kseq = HMAC(Kseq, Token.SGN_CKSUM);

                  // Encrypt the sequence number

                  RC4(Kseq, Token.SND_SEQ);
          }

7.3.   GSS-API WRAP Semantics

  There are two encryption keys for GSS-API message tokens, one that is
  128 bits in strength and one that is 56 bits in strength as defined
  in Section 6.

  All padding is rounded up to 1 byte.  One byte is needed to say that
  there is 1 byte of padding.  The DES-based mechanism type uses 8-byte
  padding.  See [RFC1964] Section 1.2.2.3.





Jaganathan, et al.           Informational                     [Page 11]

RFC 4757                        RC4-HMAC                   December 2006


  The RC4-HMAC GSS_Wrap() token has the following format:


     Byte no          Name         Description
       0..1           TOK_ID       Identification field.
                                   Tokens emitted by GSS_Wrap() contain
                                   the hex value 02 01 in this field.
       2..3           SGN_ALG      Checksum algorithm indicator.
                                   11 00 - HMAC
       4..5           SEAL_ALG     ff ff - none
                                   00 00 - DES-CBC
                                   10 00 - RC4
       6..7           Filler       Contains ff ff
       8..15          SND_SEQ      Encrypted sequence number field.
       16..23         SGN_CKSUM    Checksum of plaintext padded data,
                                   calculated according to algorithm
                                   specified in SGN_ALG field.
       24..31         Confounder   Random confounder.
       32..last       Data         Encrypted or plaintext padded data.

  The encryption mechanism used for GSS-wrap-based messages is as
  follows:


          WRAP(Kss, encrypt, direction, export, seq_num, data)
          {
                  struct Token {          // 32 octets
                         struct Header {
                                OCTET TOK_ID[2];
                                OCTET SGN_ALG[2];
                                OCTET SEAL_ALG[2];
                                OCTET Filler[2];
                         };
                         OCTET SND_SEQ[8];
                         OCTET SGN_CKSUM[8];
                           OCTET Confounder[8];
                  } Token;


                  Token.TOK_ID = 02 01;
                  Token.SGN_SLG = 11 00;
                  Token.SEAL_ALG = (no_encrypt)? ff ff : 10 00;
                  Token.Filler = ff ff;

                  // Create the sequence number

                  if (direction == sender_is_initiator)
                  {



Jaganathan, et al.           Informational                     [Page 12]

RFC 4757                        RC4-HMAC                   December 2006


                          memset(&Token.SEND_SEQ[4], 0xff, 4)
                  }
                  else if (direction == sender_is_acceptor)
                  {
                          memset(&Token.SEND_SEQ[4], 0, 4)
                  }
                  Token.SEND_SEQ[0] = (seq_num & 0xff000000) >> 24;
                  Token.SEND_SEQ[1] = (seq_num & 0x00ff0000) >> 16;
                  Token.SEND_SEQ[2] = (seq_num & 0x0000ff00) >> 8;
                  Token.SEND_SEQ[3] = (seq_num & 0x000000ff);

                  // Generate random confounder

                  nonce(&Token.Confounder, 8);

                  // Derive signing key from session key

                  Ksign = HMAC(Kss, "signaturekey");

                  // Generate checksum of message -
                  //  SGN_CKSUM + Token.Confounder
                  //   Key derivation salt = 15

                  Sgn_Cksum = MD5((int32)15, Token.Header,
                                  Token.Confounder);

                  // Derive encryption key for data
                  //   Key derivation salt = 0

                  for (i = 0; i < 16; i++) Klocal[i] = Kss[i] ^ 0xF0;
                                                           // XOR
                  if (exportable)
                  {
                          Kcrypt = HMAC(Klocal, "fortybits", (int32)0);
                                      // len includes terminating null
                          memset(Kcrypt+7, 0xab, 7);
                  }
                  else
                  {
                          Kcrypt = HMAC(Klocal, (int32)0);
                    }

                  // new encryption key salted with seq

                  Kcrypt = HMAC(Kcrypt, (int32)seq);






Jaganathan, et al.           Informational                     [Page 13]

RFC 4757                        RC4-HMAC                   December 2006


                  // Encrypt confounder (if encrypting)

                  if (encrypt)
                          RC4(Kcrypt, Token.Confounder);

                  // Sum the data buffer

                  Sgn_Cksum += MD5(data);         // Append to checksum

                  // Encrypt the data (if encrypting)

                  if (encrypt)
                          RC4(Kcrypt, data);

                  // Save first 8 octets of HMAC Sgn_Cksum

                  Sgn_Cksum = HMAC(Ksign, Sgn_Cksum);
                  memcpy(Token.SGN_CKSUM, Sgn_Cksum, 8);

                  // Derive encryption key for the sequence number
                  //   Key derivation salt = 0

                  if (exportable)
                  {
                          Kseq = HMAC(Kss, "fortybits", (int32)0);
                                      // len includes terminating null
                          memset(Kseq+7, 0xab, 7)
                  }
                  else
                  {
                          Kseq = HMAC(Kss, (int32)0);
                  }
                  Kseq = HMAC(Kseq, Token.SGN_CKSUM);

                  // Encrypt the sequence number

                  RC4(Kseq, Token.SND_SEQ);

                  // Encrypted message = Token + Data
          }

  The character constant "fortybits" evolved from the time when a
  40-bit key length was all that was exportable from the United States.
  It is now used to recognize that the key length is of "exportable"
  length.  In this description, the key size is actually 56 bits.






Jaganathan, et al.           Informational                     [Page 14]

RFC 4757                        RC4-HMAC                   December 2006


8.  Security Considerations

  Care must be taken in implementing these encryption types because
  they use a stream cipher.  If a different IV is not used in each
  direction when using a session key, the encryption is weak.  By using
  the sequence number as an IV, this is avoided.

  There are two classes of attack on RC4 described in [MIRONOV].
  Strong distinguishers distinguish an RC4 keystream from randomness at
  the start of the stream.  Weak distinguishers can operate on any part
  of the keystream, and the best ones, described in [FMcG] and
  [MANTIN05], can exploit data from multiple, different keystreams.  A
  consequence of these is that encrypting the same data (for instance,
  a password) sufficiently many times in separate RC4 keystreams can be
  sufficient to leak information to an adversary.  The encryption types
  defined in this document defend against these by constructing a new
  keystream for every message.  However, it is RECOMMENDED not to use
  the RC4 encryption types defined in this document for high-volume
  connections.

  Weaknesses in MD4 [BOER91] were demonstrated by den Boer and
  Bosselaers in 1991.  In August 2004, Xiaoyun Wang, et al., reported
  MD4 collisions generated using hand calculation [WANG04].
  Implementations based on Wang's algorithm can find collisions in real
  time.  However, the intended usage of MD4 described in this document
  does not rely on the collision-resistant property of MD4.
  Furthermore, MD4 is always used in the context of a keyed hash in
  this document.  Although no evidence has suggested keyed MD4 hashes
  are vulnerable to collision-based attacks, no study has directly
  proved that the HMAC-MD4 is secure: the existing study simply assumed
  that the hash function used in HMAC is collision proof.  It is thus
  RECOMMENDED not to use the RC4 encryption types defined in this
  document if alternative stronger encryption types, such as
  aes256-cts-hmac-sha1-96 [RFC3962], are available.

9.  IANA Considerations

  Section 5 of this document defines two Kerberos encryption types
  rc4-hmac (23) and rc4-hmac-exp (24).  The Kerberos parameters
  registration page at <http://www.iana.org/assignments/kerberos-
  parameters> has been updated to reference this document for these two
  encryption types.

10.  Acknowledgements

  The authors wish to thank Sam Hartman, Ken Raeburn, and Qunli Li for
  their insightful comments.




Jaganathan, et al.           Informational                     [Page 15]

RFC 4757                        RC4-HMAC                   December 2006


11.  References

11.1.  Normative References

  [RFC1320]  Rivest, R., "The MD4 Message-Digest Algorithm", RFC 1320,
             April 1992.

  [RFC1321]  Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
             April 1992.

  [RFC1964]  Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
             RFC 1964, June 1996.

  [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
             Hashing for Message Authentication", RFC 2104,
             February 1997.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3961]  Raeburn, K., "Encryption and Checksum Specifications for
             Kerberos 5", RFC 3961, February 2005.

  [RFC3962]  Raeburn, K., "Advanced Encryption Standard (AES)
             Encryption for Kerberos 5", RFC 3962, February 2005.

  [RFC4120]  Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
             Kerberos Network Authentication Service (V5)", RFC 4120,
             July 2005.

  [RFC4537]  Zhu, L., Leach, P., and K. Jaganathan, "Kerberos
             Cryptosystem Negotiation Extension", RFC 4537, June 2006.

11.2.  Informative References

  [BOER91]   den Boer, B. and A. Bosselaers, "An Attack on the Last Two
             Rounds of MD4", Proceedings of the 11th Annual
             International Cryptology Conference on Advances in
             Cryptology, pages: 194 - 203, 1991.

  [FMcG]     Fluhrer, S. and D. McGrew, "Statistical Analysis of the
             Alleged RC4 Keystream Generator", Fast Software
             Encryption:  7th International Workshop, FSE 2000, April
             2000, <http://www.mindspring.com/~dmcgrew/rc4-03.pdf>.







Jaganathan, et al.           Informational                     [Page 16]

RFC 4757                        RC4-HMAC                   December 2006


  [MANTIN05] Mantin, I., "Predicting and Distinguishing Attacks on RC4
             Keystream Generator", Advances in Cryptology -- EUROCRYPT
             2005: 24th Annual International Conference on the Theory
             and Applications of Cryptographic Techniques, May 2005.

  [MIRONOV]  Mironov, I., "(Not So) Random Shuffles of RC4", Advances
             in Cryptology -- CRYPTO 2002: 22nd Annual International
             Cryptology Conference, August 2002,
             <http://eprint.iacr.org/2002/067.pdf>.

  [WANG04]   Wang, X., Lai, X., Feng, D., Chen, H., and X. Yu,
             "Cryptanalysis of Hash functions MD4 and RIPEMD", August
             2004, <http://www.infosec.sdu.edu.cn/paper/md4-ripemd-
             attck.pdf>.

Authors' Addresses

  Karthik Jaganathan
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA  98052
  US

  EMail: [email protected]


  Larry Zhu
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA  98052
  US

  EMail: [email protected]


  John Brezak
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA  98052
  US

  EMail: [email protected]









Jaganathan, et al.           Informational                     [Page 17]

RFC 4757                        RC4-HMAC                   December 2006


Full Copyright Statement

  Copyright (C) The IETF Trust (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
  AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
  THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
  IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
  PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.






Jaganathan, et al.           Informational                     [Page 18]