Network Working Group                                          P. Eronen
Request for Comments: 4739                                         Nokia
Category: Experimental                                       J. Korhonen
                                                            TeliaSonera
                                                          November 2006


                  Multiple Authentication Exchanges
            in the Internet Key Exchange (IKEv2) Protocol

Status of This Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The IETF Trust (2006).

Abstract

  The Internet Key Exchange (IKEv2) protocol supports several
  mechanisms for authenticating the parties, including signatures with
  public-key certificates, shared secrets, and Extensible
  Authentication Protocol (EAP) methods.  Currently, each endpoint uses
  only one of these mechanisms to authenticate itself.  This document
  specifies an extension to IKEv2 that allows the use of multiple
  authentication exchanges, using either different mechanisms or the
  same mechanism.  This extension allows, for instance, performing
  certificate-based authentication of the client host followed by an
  EAP authentication of the user.  When backend authentication servers
  are used, they can belong to different administrative domains, such
  as the network access provider and the service provider.
















Eronen & Korhonen             Experimental                      [Page 1]

RFC 4739           Multiple Auth. Exchanges in IKEv2       November 2006


Table of Contents

  1. Introduction ....................................................3
     1.1. Usage Scenarios ............................................4
     1.2. Terminology ................................................5
  2. Solution ........................................................5
     2.1. Solution Overview ..........................................5
     2.2. Example 1: Multiple EAP Authentications ....................6
     2.3. Example 2: Mixed EAP and Certificate Authentications .......7
     2.4. Example 3: Multiple Initiator Certificates .................8
     2.5. Example 4: Multiple Responder Certificates .................8
  3. Payload Formats .................................................9
     3.1. MULTIPLE_AUTH_SUPPORTED Notify Payload .....................9
     3.2. ANOTHER_AUTH_FOLLOWS Notify Payload ........................9
  4. IANA Considerations .............................................9
  5. Security Considerations .........................................9
  6. Acknowledgments ................................................10
  7. References .....................................................10
     7.1. Normative References ......................................10
     7.2. Informative References ....................................10































Eronen & Korhonen             Experimental                      [Page 2]

RFC 4739           Multiple Auth. Exchanges in IKEv2       November 2006


1.  Introduction

  IKEv2 [IKEv2] supports several mechanisms for parties involved in the
  IKE_SA (IKE security association).  These include signatures with
  public-key certificates, shared secrets, and Extensible
  Authentication Protocol (EAP) methods.

  Currently, each endpoint uses only one of these mechanisms to
  authenticate itself.  However, there are scenarios where making the
  authorization decision in IKEv2 (whether to allow access or not)
  requires using several of these methods.

  For instance, it may be necessary to authenticate both the host
  (machine) requesting access, and the user currently using the host.
  These two authentications would use two separate sets of credentials
  (such as certificates and associated private keys) and might even use
  different authentication mechanisms.

  To take another example, when an operator is hosting a Virtual
  Private Network (VPN) gateway service for a third party, it may be
  necessary to authenticate the client to both the operator (for
  billing purposes) and the third party's Authentication,
  Authorization, and Accounting (AAA) server (for authorizing access to
  the third party's internal network).

  This document specifies an extension to IKEv2 that allows the use of
  multiple authentication exchanges, using either different mechanisms
  or the same mechanism.  This extension allows, for instance,
  performing certificate-based authentication of the client host
  followed by an EAP authentication of the user.

  Each authentication exchange requiring communication with backend AAA
  servers may be directed to different backend AAA servers, located
  even in different administrative domains.  However, details of the
  communication between the IKEv2 gateway and the backend
  authentication servers are beyond the scope of this document.  In
  particular, this document does not specify any changes to existing
  AAA protocols, and it does not require the use of any particular AAA
  protocol.

  In case of several EAP authentications, it is important to notice
  that they are not a "sequence" (as described in Section 2.1 of
  [EAP]), but separate independent EAP conversations, which are usually
  also terminated in different EAP servers.  Multiple authentication
  methods within a single EAP conversation are still prohibited as
  described in Section 2.1 of [EAP].  Using multiple independent EAP
  conversations is similar to the separate Network Access Provider
  (NAP) and Internet Service Provider (ISP) authentication exchanges



Eronen & Korhonen             Experimental                      [Page 3]

RFC 4739           Multiple Auth. Exchanges in IKEv2       November 2006


  planned for [PANA].  The discovery of the appropriate EAP server for
  each EAP authentication conversation is based on AAA routing.

1.1.  Usage Scenarios

  Figure 1 shows an example architecture of an operator-hosted VPN
  scenario that could benefit from a two-phase authentication within
  the IKEv2 exchange.  First, the client authenticates towards the
  Network Access Provider (NAP) and gets access to the NAP-hosted VPN
  gateway.  The first-phase authentication involves the backend AAA
  server of the NAP.  After the first authentication, the client
  initiates the second authentication round that also involves the
  Third Party's backend AAA server.  If both authentications succeed,
  the required IPsec tunnels are set up and the client can access
  protected networks behind the Third Party.


      Client                         *Network Access Provider*
    +---------+                    +---------+              +-----+
    |         |                    |  NAP's  |              | NAP |
    |Protected|     IPsec SAs      | Tunnel  | AAA Protocol | AAA |
    |Endpoint |<------------------>|Endpoint |<------------>|Serv/|
    |         |                    |         |              |Proxy|
    +---------+                    +---------+              +-----+
                                      ^                        ^
                           IPsec or  /                  AAA    |
                       Leased Line  /                 Protocol |
                                   /                           |
                                  v                            |
                          +---------+    *Third Party*         v
                          |3rd Party|                       +-----+
           Protected      | Tunnel  |                       | 3rd |
              Subnet <----|Endpoint |                       |Party|
                          |         |                       | AAA |
                          +---------+                       +-----+

         Figure 1: Two-phase authentication used to gain access to
         the Third Party network via Network Access Provider.  AAA
         traffic goes through NAP's AAA server.

  The NAP's AAA server can be used to proxy the AAA traffic to the
  Third Party's backend AAA server.  Alternatively, the AAA traffic
  from the NAP's tunnel endpoint could go directly to the Third Party's
  backend AAA servers.  However, this is more or less an AAA routing
  issue.






Eronen & Korhonen             Experimental                      [Page 4]

RFC 4739           Multiple Auth. Exchanges in IKEv2       November 2006


1.2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [KEYWORDS].

  The terms and abbreviations "authenticator", "backend authentication
  server", "EAP server", and "peer" in this document are to be
  interpreted as described in [EAP].

  When messages containing IKEv2 payloads are described, optional
  payloads are shown in brackets (for instance, "[FOO]"), and a plus
  sign indicates that a payload can be repeated one or more times (for
  instance, "FOO+").

2.  Solution

2.1.  Solution Overview

  The peers announce support for this IKEv2 extension by including a
  MULTIPLE_AUTH_SUPPORTED notification in the IKE_SA_INIT response
  (responder) and the first IKE_AUTH request (initiator).

  If both peers support this extension, either of them can announce
  that it wishes to have a second authentication by including an
  ANOTHER_AUTH_FOLLOWS notification in any IKE_AUTH message that
  contains an AUTH payload.  This indicates that the peer sending the
  ANOTHER_AUTH_FOLLOWS wishes to authenticate another set of
  credentials to the other peer.  The next IKE_AUTH message sent by
  this peer will contain a second identity payload (IDi or IDr) and
  starts another authentication exchange.  The IKE_AUTH phase is
  considered successful only if all the individual authentication
  exchanges complete successfully.

  It is assumed that both peers know what credentials they want to
  present; there is no negotiation about, for instance, what type of
  authentication is to be done.  As in IKEv2, EAP-based authentication
  is always requested by the initiator (by omitting the AUTH payload).

  The AUTH payloads are calculated as specified in [IKEv2] Sections
  2.15 and 2.16, where IDi' refers to the latest IDi payload sent by
  the initiator, and IDr' refers to the latest IDr payload sent by the
  responder.  If EAP methods that do not generate shared keys are used,
  it is possible that several AUTH payloads with identical contents are
  sent.  When such EAP methods are used, the purpose of the AUTH
  payload is simply to delimit the authentication exchanges, and ensure
  that the IKE_SA_INIT request/response messages were not modified.




Eronen & Korhonen             Experimental                      [Page 5]

RFC 4739           Multiple Auth. Exchanges in IKEv2       November 2006


2.2.  Example 1: Multiple EAP Authentications

  This example shows certificate-based authentication of the responder
  followed by an EAP authentication exchange (messages 1-10).  When the
  first EAP exchange is ending (the initiator is sending its AUTH
  payload), the initiator announces that it wishes to have a second
  authentication exchange by including an ANOTHER_AUTH_FOLLOWS
  notification (message 9).

  After this, a second authentication exchange begins.  The initiator
  sends a new IDi payload but no AUTH payload (message 11), indicating
  that EAP will be used.  After that, another EAP authentication
  exchange follows (messages 12-18).

     Initiator                   Responder
    -----------                 -----------
     1. HDR, SA, KE, Ni -->
                            <--  2. HDR, SA, KE, Nr, [CERTREQ],
                                         N(MULTIPLE_AUTH_SUPPORTED)
     3. HDR, SK { IDi, [CERTREQ+], [IDr],
                  SA, TSi, TSr, N(MULTIPLE_AUTH_SUPPORTED) }  -->
                            <--  4. HDR, SK { IDr, [CERT+], AUTH,
                                              EAP(Request) }
     5. HDR, SK { EAP(Response) }  -->
                            <--  6. HDR, SK { EAP(Request) }
     7. HDR, SK { EAP(Response) }  -->
                            <--  8. HDR, SK { EAP(Success) }
     9. HDR, SK { AUTH,
                  N(ANOTHER_AUTH_FOLLOWS) }  -->
                            <--  10. HDR, SK { AUTH }
     11. HDR, SK { IDi }  -->
                            <--  12. HDR, SK { EAP(Request) }
     13. HDR, SK { EAP(Response) }  -->
                            <--  14. HDR, SK { EAP(Request) }
     15. HDR, SK { EAP(Response) }  -->
                            <--  16. HDR, SK { EAP(Success) }
     17. HDR, SK { AUTH }  -->
                            <--  18. HDR, SK { AUTH, SA, TSi, TSr }

         Example 1: Certificate-based authentication of the
         responder, followed by two EAP authentication exchanges.










Eronen & Korhonen             Experimental                      [Page 6]

RFC 4739           Multiple Auth. Exchanges in IKEv2       November 2006


2.3.  Example 2: Mixed EAP and Certificate Authentications

  Another example is shown below: here both the initiator and the
  responder are first authenticated using certificates (or shared
  secrets); this is followed by an EAP authentication exchange.

     Initiator                   Responder
    -----------                 -----------
     1. HDR, SA, KE, Ni -->
                            <--  2. HDR, SA, KE, Nr, [CERTREQ],
                                         N(MULTIPLE_AUTH_SUPPORTED)
     3. HDR, SK { IDi, [CERT+], [CERTREQ+], [IDr], AUTH,
                  SA, TSi, TSr, N(MULTIPLE_AUTH_SUPPORTED),
                  N(ANOTHER_AUTH_FOLLOWS) }  -->
                            <--  4. HDR, SK { IDr, [CERT+], AUTH }
     5. HDR, SK { IDi }  -->
                            <--  6. HDR, SK { EAP(Request) }
     7. HDR, SK { EAP(Response) }  -->
                            <--  8. HDR, SK { EAP(Request) }
     9. HDR, SK { EAP(Response) }  -->
                            <--  10. HDR, SK { EAP(Success) }
     11. HDR, SK { AUTH }  -->
                            <--  12. HDR, SK { AUTH, SA, TSi, TSr }

            Example 2: Certificate-based (or shared-secret-based)
            authentication of the initiator and the responder,
            followed by an EAP authentication exchange.
























Eronen & Korhonen             Experimental                      [Page 7]

RFC 4739           Multiple Auth. Exchanges in IKEv2       November 2006


2.4.  Example 3: Multiple Initiator Certificates

  This example shows yet another possibility: the initiator has two
  different certificates (and associated private keys), and
  authenticates both of them to the responder.

     Initiator                   Responder
    -----------                 -----------
     1. HDR, SA, KE, Ni -->
                            <--  2. HDR, SA, KE, Nr, [CERTREQ],
                                         N(MULTIPLE_AUTH_SUPPORTED)
     3. HDR, SK { IDi, [CERT+], [CERTREQ+], [IDr], AUTH,
                  SA, TSi, TSr, N(MULTIPLE_AUTH_SUPPORTED),
                  N(ANOTHER_AUTH_FOLLOWS) }  -->
                            <--  4. HDR, SK { IDr, [CERT+], AUTH }
     5. HDR, SK { IDi, [CERT+], AUTH }  -->
                            <--  6. HDR, SK { SA, TSi, TSr }

         Example 3: Two certificate-based authentications of the
         initiator, and one certificate-based authentication
         of the responder.

2.5.  Example 4: Multiple Responder Certificates

  This example shows yet another possibility: the responder has two
  different certificates (and associated private keys), and
  authenticates both of them to the initiator.

     Initiator                   Responder
    -----------                 -----------
     1. HDR, SA, KE, Ni -->
                            <--  2. HDR, SA, KE, Nr, [CERTREQ],
                                         N(MULTIPLE_AUTH_SUPPORTED)
     3. HDR, SK { IDi, [CERT+], [CERTREQ+], [IDr], AUTH,
                  SA, TSi, TSr, N(MULTIPLE_AUTH_SUPPORTED) }  -->
                            <--  4. HDR, SK { IDr, [CERT+], AUTH,
                                              N(ANOTHER_AUTH_FOLLOWS) }
     5. HDR, SK { }  -->
                            <--  6. HDR, SK { IDr, [CERT+], AUTH,
                                              SA, TSi, TSr }

         Example 4: Two certificate-based authentications of the
         responder, and one certificate-based authentication
         of the initiator.







Eronen & Korhonen             Experimental                      [Page 8]

RFC 4739           Multiple Auth. Exchanges in IKEv2       November 2006


3.  Payload Formats

3.1.  MULTIPLE_AUTH_SUPPORTED Notify Payload

  The MULTIPLE_AUTH_SUPPORTED notification is included in the
  IKE_SA_INIT response or the first IKE_AUTH request to indicate that
  the peer supports this specification.  The Notify Message Type is
  MULTIPLE_AUTH_SUPPORTED (16404).  The Protocol ID and SPI Size fields
  MUST be set to zero, and there is no data associated with this Notify
  type.

3.2.  ANOTHER_AUTH_FOLLOWS Notify Payload

  The ANOTHER_AUTH_FOLLOWS notification payload is included in an
  IKE_AUTH message containing an AUTH payload to indicate that the peer
  wants to continue with another authentication exchange.  The Notify
  Message Type is ANOTHER_AUTH_FOLLOWS (16405).  The Protocol ID and
  SPI Size fields MUST be set to zero, and there is no data associated
  with this Notify type.

4.  IANA Considerations

  This document defines two new IKEv2 notifications,
  MULTIPLE_AUTH_SUPPORTED and ANOTHER_AUTH_FOLLOWS, whose values are
  allocated from the "IKEv2 Notify Message Types" namespace defined in
  [IKEv2].

  This document does not define any new namespaces to be managed by
  IANA.

5.  Security Considerations

  Security considerations for IKEv2 are discussed in [IKEv2].  The
  reader is encouraged to pay special attention to considerations
  relating to the use of EAP methods that do not generate shared keys.
  However, the use of multiple authentication exchanges results in at
  least one new security consideration.

  In normal IKEv2, the responder authenticates the initiator before
  revealing its identity (except when EAP is used).  When multiple
  authentication exchanges are used to authenticate the initiator, the
  responder has to reveal its identity before all of the initiator
  authentication exchanges have been completed.








Eronen & Korhonen             Experimental                      [Page 9]

RFC 4739           Multiple Auth. Exchanges in IKEv2       November 2006


6.  Acknowledgments

  The authors would like to thank Bernard Aboba, Jari Arkko, Spencer
  Dawkins, Lakshminath Dondeti, Henry Haverinen, Russ Housley, Mika
  Joutsenvirta, Charlie Kaufman, Tero Kivinen, Yoav Nir, Magnus
  Nystrom, Mohan Parthasarathy, and Juha Savolainen for their valuable
  comments.

7.  References

7.1.  Normative References

  [IKEv2]     Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
              RFC 4306, December 2005.

  [KEYWORDS]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", RFC 2119, March 1997.

7.2.  Informative References

  [EAP]       Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
              Levkowetz, "Extensible Authentication Protocol (EAP)",
              RFC 3748, June 2004.

  [PANA]      Yegin, A., Ohba, Y., Penno, R., Tsirtsis, G., and C.
              Wang, "Protocol for Carrying Authentication for Network
              Access (PANA) Requirements", RFC 4058, May 2005.

Authors' Addresses

  Pasi Eronen
  Nokia Research Center
  P.O. Box 407
  FIN-00045 Nokia Group
  Finland

  EMail: [email protected]


  Jouni Korhonen
  TeliaSonera
  P.O. Box 970
  FIN-00051 Sonera
  Finland

  EMail: [email protected]





Eronen & Korhonen             Experimental                     [Page 10]

RFC 4739           Multiple Auth. Exchanges in IKEv2       November 2006


Full Copyright Statement

  Copyright (C) The IETF Trust (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
  AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
  THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
  IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
  PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.






Eronen & Korhonen             Experimental                     [Page 11]