Network Working Group                                        A. Siddiqui
Request for Comments: 4712                                  D. Romascanu
Category: Standards Track                                          Avaya
                                                          E. Golovinsky
                                                            Alert Logic
                                                              M. Rahman
                                    Samsung Information Systems America
                                                                 Y. Kim
                                                               Broadcom
                                                           October 2006


   Transport Mappings for Real-time Application Quality-of-Service
             Monitoring (RAQMON) Protocol Data Unit (PDU)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This memo specifies two transport mappings of the Real-Time
  Application Quality-of-Service Monitoring (RAQMON) information model
  defined in RFC 4710 using TCP as a native transport and the Simple
  Network Management Protocol (SNMP) to carry the RAQMON information
  from a RAQMON Data Source (RDS) to a RAQMON Report Collector (RRC).

















Siddiqui, et al.            Standards Track                     [Page 1]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


Table of Contents

  1. Introduction ....................................................3
  2. Transporting RAQMON Protocol Data Units .........................3
     2.1. TCP as an RDS/RRC Network Transport Protocol ...............3
          2.1.1. The RAQMON PDU ......................................5
          2.1.2. The BASIC Part of the RAQMON Protocol Data Unit .....7
          2.1.3. APP Part of the RAQMON Protocol Data Unit ..........14
          2.1.4. Byte Order, Alignment, and Time Format of
                 RAQMON PDUs ........................................15
     2.2. Securing RAQMON Session ...................................15
          2.2.1. Sequencing of the Start TLS Operation ..............18
          2.2.2. Closing a TLS Connection ...........................21
     2.3. SNMP Notifications as an RDS/RRC Network Transport
          Protocol ..................................................22
  3. IANA Considerations ............................................38
  4. Congestion-Safe RAQMON Operation ...............................38
  5. Acknowledgements ...............................................39
  6. Security Considerations ........................................39
     6.1. Usage of TLS with RAQMON ..................................41
          6.1.1. Confidentiality & Message Integrity ................41
          6.1.2. TLS CipherSuites ...................................41
          6.1.3. RAQMON Authorization State .........................42
  7. References .....................................................43
     7.1. Normative References ......................................43
     7.2. Informative References ....................................44
  Appendix A. Pseudocode ............................................46
























Siddiqui, et al.            Standards Track                     [Page 2]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


1.  Introduction

  The Real-Time Application QoS Monitoring (RAQMON) Framework, as
  outlined by [RFC4710], extends the Remote Monitoring family of
  protocols (RMON) by defining entities such as RAQMON Data Sources
  RDS) and RAQMON Report Collectors (RRC) to perform various
  application monitoring in real time.  [RFC4710] defines the relevant
  metrics for RAQMON monitoring carried by the common protocol data
  unit (PDU) used between a RDS and RRC to report QoS statistics.  This
  memo contains a syntactical description of the RAQMON PDU structure.

  The following sections of this memo contain detailed specifications
  for the usage of TCP and SNMP to carry RAQMON information.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  Transporting RAQMON Protocol Data Units

  The RAQMON Protocol Data Unit (PDU) utilizes a common data format
  understood by the RDS and the RRC.  A RAQMON PDU does not transport
  application data but rather occupies the place of a payload
  specification at the application layer of the protocol stack.  As
  part of the specification, this memo also specifies the usage of TCP
  and SNMP as underlying transport protocols to carry RAQMON PDUs
  between RDSs and RRCs.  While two transport protocol choices have
  been provided as options to chose from for RDS implementers, RRCs
  MUST implement the TCP transport and MAY implement the SNMP
  transport.

2.1.  TCP as an RDS/RRC Network Transport Protocol

  A transport binding using TCP is included within the RAQMON
  specification to facilitate reporting from various types of embedded
  devices that run applications such as Voice over IP, Voice over
  Wi-Fi, Fax over IP, Video over IP, Instant Messaging (IM), E-mail,
  software download applications, e-business style transactions, web
  access from wired or wireless computing devices etc.  For many of
  these devices, PDUs and a TCP-based transport fit the deployment
  needs.

  The RAQMON transport requirements for end-to-end congestion control
  and reliability are inherently built into TCP as a transport protocol
  [RFC793].






Siddiqui, et al.            Standards Track                     [Page 3]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  To use TCP to transport RAQMON PDUs, it is sufficient to send the
  PDUs as TCP data.  As each PDU carries its length, the receiver can
  determine the PDU boundaries.

  The following section details the RAQMON PDU specifications.  Though
  transmitted as one Protocol Data Unit, a RAQMON PDU is functionally
  divided into two different parts: the BASIC part and application
  extensions required for vendor-specific extension [RFC4710].  Both
  functional parts follow a field carrying a SMI Network Management
  Private Enterprise code currently maintained by IANA
  http://www.iana.org/assignments/enterprise-numbers, which is used to
  identify the organization that defined the information carried in the
  PDU.

  A RAQMON PDU in the current version is marked as PDU Type (PDT) = 1.
  The parameters carried by RAQMON PDUs are shown in Figure 1 and are
  defined in section 5 of [RFC4710].

  Vendors MUST use the BASIC part of the PDU to report parameters pre-
  listed here in the specification for interoperability, as opposed to
  using the application-specific portion.  Vendors MAY also use
  application-specific extensions to convey application-, vendor-, or
  device-specific parameters not included in the BASIC part of the
  specification and explicitly publish such data externally to attain
  extended interoperability.


























Siddiqui, et al.            Standards Track                     [Page 4]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


2.1.1.  The RAQMON PDU

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PDT = 1  |B|  T  |P|S|R|  RC   |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            DSRC                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  SMI Enterprise Code = 0      |Report Type = 0|     RC_N      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |flag
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   Data Source Address {DA}                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Receiver's Address (RA)                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               NTP Timestamp, most significant word            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               NTP Timestamp, least significant word           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Length       |   Application Name (AN)  ...                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            ...                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Length       |   Data Source Name (DN)  ...                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            ...                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Length       |    Receiver's Name (RN)  ...                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            ...                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Length       |    Session State          ...                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            ...                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Session Duration                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Round-Trip End-to-End Network Delay              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              One-Way End-to-End Network Delay                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Cumulative Packet Loss                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Cumulative Application Packet Discard            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Total # Application Packets sent                 |



Siddiqui, et al.            Standards Track                     [Page 5]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             Total # Application Packets received              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               Total # Application Octets sent                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             Total # Application Octets received               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Data Source Device Port Used  |  Receiver Device Port Used    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    S_Layer2   |   S_Layer3    |   S_Layer2    |   S_Layer3    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Source Payload |Receiver       | CPU           | Memory        |
  |Type           |Payload Type   | Utilization   | Utilization   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Session Setup Delay        |     Application Delay         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | IP Packet Delay Variation     |   Inter arrival Jitter        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Packet Discrd |  Packet loss  |         Padding               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  SMI Enterprise Code = "xxx"                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Report Type = "yyy"       | Length of Application Part    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               application/vendor specific extension           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            ...............                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            ...............                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            ...............                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  SMI Enterprise Code = "abc"                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Report Type = "zzz"       | Length of Application Part    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               application/vendor specific extension           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            ...............                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 1: RAQMON Protocol Data Unit









Siddiqui, et al.            Standards Track                     [Page 6]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


2.1.2.  The BASIC Part of the RAQMON Protocol Data Unit

  A RAQMON PDU must contain the following BASIC part fields at all
  times:

  PDU type (PDT): 5 bits - This indicates the type of RAQMON PDU being
     sent.  PDT = 1 is used for the current RAQMON PDU version defined
     in this document.

  basic (B): 1 bit - While set to 1, the basic flag indicates that the
     PDU has BASIC part of the RAQMON PDU.  A value of zero is
     considered valid and indicates a RAQMON NULL PDU.

  trailer (T): 3 bits - Total number of Application-Specific Extensions
     that follow the BASIC part of RAQMON PDU.  A value of zero is
     considered valid as many times as there is no application-
     specific information to add to the basic information.

  padding (P): 1 bit - If the padding bit is set, the BASIC part of the
     RAQMON PDU contains some additional padding octets at the end of
     the BASIC part of the PDU that are not part of the monitoring
     information.  Padding may be needed in some cases, as reporting is
     based on the intent of a RDS to report certain parameters.  Also,
     some parameters may be reported only once at the beginning of the
     reporting session, e.g., Data Source Name, Receiver Name, payload
     type, etc.  Actual padding at the end of the BASIC part of the PDU
     is 0, 8, 16, or 24 bits to make the length of the BASIC part of
     the PDU a multiple of 32 bits

  Source IP version Flag (S): 1 bit - While set to 1, the source IP
     version flag indicates that the Source IP address contained in the
     PDU is an IPv6 address.

  Receiver IP version Flag (R): 1 bit - While set to 1, the receiver IP
     version flag indicates that the receiver IP address contained in
     the PDU is an IPv6 address.

  record count (RC): 4 bits - Total number of application records
     contained in the BASIC part of the PDU.  A value of zero is
     considered valid but useless, with the exception of the case of a
     NULL PDU indicating the end of a RDS reporting session.

  length: 16 bits (unsigned integer) - The length of the BASIC part of
     the RAQMON PDU in units of 32-bit words minus one; this count
     includes the header and any padding.






Siddiqui, et al.            Standards Track                     [Page 7]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  DSRC: 32 bits - Data Source identifier represents a unique RAQMON
     reporting session descriptor that points to a specific reporting
     session between RDS and RRC.  Uniqueness of DSRC is valid only
     within a reporting session.  DSRC values should be randomly
     generated using vendor-chosen algorithms for each communication
     session.  It is not sufficient to obtain a DSRC simply by calling
     random() without carefully initializing the state.  One could use
     an algorithm like the one defined in Appendix A.6 in [RFC3550] to
     create a DSRC.  Depending on the choice of algorithm, there is a
     finite probability that two DSRCs from two different RDSs may be
     the same.  To further reduce the probability that two RDSs pick
     the same DSRC for two different reporting sessions, it is
     recommended that an RRC use parameters like Data Source Address
     (DA), Data Source Name (DN), and layer 2 Media Access Control
     (MAC) Address in the PDU in conjunction with a DSRC value.  It is
     not mandatory for RDSs to send parameters like Data Source Address
     (DA), Data Source Name (DN), and MAC Address in every PDU sent to
     RRC, but occasionally sending these parameters will reduce the
     probability of DSRC collision drastically.  However, this will
     cause an additional overhead per PDU.

     A value of zero for basic (B) bit and trailer (T) bits constitutes
     a RAQMON NULL PDU (i.e., nothing to report).  RDSs MUST send a
     RAQMON NULL PDU to RRC to indicate the end of the RDS reporting
     session.  A NULL PDU ends with the DSRC field.

  SMI Enterprise Code: 16 bits.  A value of SMI Enterprise Code = 0 is
     used to indicate the RMON-WG-compliant BASIC part of the RAQMON
     PDU format.

  Report Type: 8 bits - These bits are reserved by the IETF RMON
     Working Group.  A value of 0 within SMI Enterprise Code = 0 is
     used for the version of the PDU defined by this document.

     The BASIC part of each RAQMON PDU consists of Record Count Number
     (RC_N) and RAQMON Parameter Presence Flags (RPPF) to indicate the
     presence of appropriate RAQMON parameters within a record, as
     defined in Table 1.

  RC_N: 8 bits - The Record Count number indicates a sub-session within
     a communication session.  A value of zero is a valid record
     number.  The maximum number of records that can be described in
     one RAQMON Packet is 256.

  RAQMON Parameter Presence Flags (RPPF): 32 bits

     Each of these flags, while set, represents that this RAQMON PDU
     contains corresponding parameters as specified in Table 1.



Siddiqui, et al.            Standards Track                     [Page 8]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  +----------------+--------------------------------------------------+
  |  Bit Sequence  |    Presence/Absence of corresponding Parameter   |
  |     Number     |              within this RAQMON PDU              |
  +----------------+--------------------------------------------------+
  |        0       |             Data Source Address (DA)             |
  |                |                                                  |
  |        1       |               Receiver Address (RA)              |
  |                |                                                  |
  |        2       |                   NTP Timestamp                  |
  |                |                                                  |
  |        3       |                 Application Name                 |
  |                |                                                  |
  |        4       |               Data Source Name (DN)              |
  |                |                                                  |
  |        5       |                Receiver Name (RN)                |
  |                |                                                  |
  |        6       |               Session Setup Status               |
  |                |                                                  |
  |        7       |                 Session Duration                 |
  |                |                                                  |
  |        8       |       Round-Trip End-to-End Net Delay (RTT)      |
  |                |                                                  |
  |        9       |      One-Way End-to-End Network Delay (OWD)      |
  |                |                                                  |
  |       10       |              Cumulative Packets Loss             |
  |                |                                                  |
  |       11       |            Cumulative Packets Discards           |
  |                |                                                  |
  |       12       |         Total number of App Packets sent         |
  |                |                                                  |
  |       13       |       Total number of App Packets received       |
  |                |                                                  |
  |       14       |          Total number of App Octets sent         |
  |                |                                                  |
  |       15       |        Total number of App Octets received       |
  |                |                                                  |
  |       16       |           Data Source Device Port Used           |
  |                |                                                  |
  |       17       |             Receiver Device Port Used            |
  |                |                                                  |
  |       18       |              Source Layer 2 Priority             |
  |                |                                                  |
  |       19       |              Source Layer 3 Priority             |
  |                |                                                  |
  |       20       |           Destination Layer 2 Priority           |
  |                |                                                  |
  |       21       |           Destination Layer 3 Priority           |
  |                |                                                  |



Siddiqui, et al.            Standards Track                     [Page 9]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  |       22       |                Source Payload Type               |
  |                |                                                  |
  |       23       |               Receiver Payload Type              |
  |                |                                                  |
  |       24       |                  CPU Utilization                 |
  |                |                                                  |
  |       25       |                Memory Utilization                |
  |                |                                                  |
  |       26       |                Session Setup Delay               |
  |                |                                                  |
  |       27       |                 Application Delay                |
  |                |                                                  |
  |       28       |             IP Packet Delay Variation            |
  |                |                                                  |
  |       29       |               Inter arrival Jitter               |
  |                |                                                  |
  |       30       |           Packet Discard (in fraction)           |
  |                |                                                  |
  |       31       |             Packet Loss (in fraction)            |
  +----------------+--------------------------------------------------+

            Table 1: RAQMON Parameters and Corresponding RPPF

  Data Source Address (DA): 32 bits or 160 bits in binary
     representation - This parameter is defined in section 5.1 of
     [RFC4710].  IPv6 addresses are incorporated in Data Source Address
     by setting the source IP version flag (S bit) of the RAQMON PDU
     header to 1.

  Receiver Address (RA): 32 bits or 160 bits - This parameter is
     defined in section 5.2 of [RFC4710].  It follows the exact same
     syntax as Data Source Address but is used to indicate a Receiver
     Address.  IPv6 addresses are incorporated in Receiver Address by
     setting the receiver IP version flag (R bit) of the RAQMON PDU
     header to 1.

  Session Setup Date/Time (NTP timestamp): 64 bits - This parameter is
     defined in section 5.7 of [RFC4710] and represented using the
     timestamp format of the Network Time Protocol (NTP), which is in
     seconds [RFC1305].  The full resolution NTP timestamp is a 64-bit
     unsigned fixed-point number with the integer part in the first 32
     bits and the fractional part in the last 32 bits.

  Application Name: This parameter is defined in section 5.32 of
     [RFC4710].  The Application Name field starts with an 8-bit octet
     count describing the length of the text followed by the text
     itself using UTF-8 encoding.  Application Name field is a multiple
     of 32 bits, and padding will be used if necessary.



Siddiqui, et al.            Standards Track                    [Page 10]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


     A Data Source that does not support NTP SHOULD set the appropriate
     RAQMON flag to 0 to avoid wasting 64 bits in the PDU.  Since the
     NTP time stamp is intended to provide the setup Date/Time of a
     session, it is RECOMMENDED that the NTP Timestamp be used only in
     the first RAQMON PDU after sub-session RC_N setup is completed, in
     order to use network resources efficiently.

  Data Source Name (DN): Defined in section 5.3 of [RFC4710].  The Data
     Source Name field starts with an 8-bit octet count describing the
     length of the text followed by the text itself.  Padding is used
     to ensure that the length and text encoding occupy a multiple of
     32 bits in the DN field of the PDU.  The text MUST NOT be longer
     than 255 octets.  The text is encoded according to the UTF-8
     encoding specified in [RFC3629].  Applications SHOULD instruct
     RDSs to send out the Data Source Name infrequently to ensure
     efficient usage of network resources as this parameter is expected
     to remain constant for the duration of the reporting session.

  Receiver Name (RN): This metric is defined in section 5.4 of
     [RFC4710].  Like Data Source Name, the Receiver Name field starts
     with an 8-bit octet count describing the length of the text,
     followed by the text itself.  The Receiver Name, including the
     length field encoding, is a multiple of 32 bits and follows the
     same padding rules as applied to the Data Source Name.  Since the
     Receiver Name is expected to remain constant during the entire
     reporting session, this information SHOULD be sent out
     occasionally over random time intervals to maximize success of
     reaching a RRC and also conserve network bandwidth.

  Session Setup Status: The Session (sub-session) Setup Status is
     defined in section 5.10 of [RFC4710].  This field starts with an
     8-bit length field followed by the text itself.  Session Setup
     Status is a multiple of 32 bits.

  Session Duration: 32 bits - The Session (sub-session) Duration metric
     is defined in section 5.9 of [RFC4710].  Session Duration is an
     unsigned integer expressed in seconds.

  Round-Trip End-to-End Network Delay: 32 bits - The Round-Trip End-
     to-End Network Delay is defined in section 5.11 of [RFC4710].
     This field represents the Round-Trip End-to-End Delay of sub-
     session RC_N, which is an unsigned integer expressed in
     milliseconds.

  One-Way End-to-End Network Delay: 32 bits - The One-Way End-to-End
     Network Delay is defined in section 5.12 of [RFC4710].  This field
     represents the One-Way End-to-End Delay of sub-session RC_N, which
     is an unsigned integer expressed in milliseconds.



Siddiqui, et al.            Standards Track                    [Page 11]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  Cumulative Application Packet Loss: 32 bits - This parameter is
     defined in section 5.20 of [RFC4710] as an unsigned integer,
     representing the total number of packets from sub-session RC_N
     that have been lost while this RAQMON PDU was generated.

  Cumulative Application Packet Discards: 32 bits - This parameter is
     defined in section 5.22 of [RFC4710] as an unsigned integer
     representing the total number of packets from sub-session RC_N
     that have been discarded while this RAQMON PDU was generated.

  Total number of Application Packets sent: 32 bits - This parameter is
     defined in section 5.17 of [RFC4710] as an unsigned integer,
     representing the total number of packets transmitted within sub-
     session RC_N by the sender.

  Total number of Application Packets received: 32 bits - This
     parameter is defined in section 5.16 of [RFC4710] and is
     represented as an unsigned integer representing the total number
     of packets transmitted within sub-session RC_N by the receiver.

  Total number of Application Octets sent: 32 bits - This parameter is
     defined in section 5.19 of [RFC4710] as an unsigned integer,
     representing the total number of payload octets (i.e., not
     including header or padding) transmitted in packets by the sender
     within sub-session RC_N.

  Total number of Application Octets received: 32 bits - This parameter
     is defined in section 5.18 of [RFC4710] as an unsigned integer
     representing the total number of payload octets (i.e., not
     including header or padding) transmitted in packets by the
     receiver within sub-session RC_N.

  Data Source Device Port Used: 16 bits - This parameter is defined in
     section 5.5 of [RFC4710] and describes the port number used by the
     Data Source as used by the application in RC_N session while this
     RAQMON PDU was generated.

  Receiver Device Port Used: 16 bits - This parameter is defined in
     section 5.6 of [RFC4710] and describes the receiver port used by
     the application to communicate to the receiver.  It follows same
     syntax as Source Device Port Used.

  S_Layer2: 8 bits - This parameter, defined in section 5.26 of
     [RFC4710], is associated to the source's IEEE 802.1D [IEEE802.1D]
     priority tagging of traffic in the communication sub-session RC_N.
     Since IEEE 802.1 priority tags are 3 bits long, the first 3 bits
     of this parameter represent the IEEE 802.1 tag value, and the last
     5 bits are padded to 0.



Siddiqui, et al.            Standards Track                    [Page 12]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  S_Layer3: 8 bits - This parameter, defined in section 5.27 of
     [RFC4710], represents the layer 3 QoS marking used to send packets
     to the receiver by this data source during sub-session RC_N.

  D_Layer2: 8 bits - This parameter, defined in section 5.28 of
     [RFC4710], represents layer 2 IEEE 802.1D priority tags used by
     the receiver to send packets to the data source during sub-session
     RC_N session if the Data Source can learn such information.  Since
     IEEE 802.1 priority tags are 3 bits long, the first 3 bits of this
     parameter represent the IEEE 802.1 priority tag value, and the
     last 5 bits are padded to 0.

  D_Layer3: 8 bits - This parameter is defined in section 5.29 of
     [RFC4710] and represents the layer 3 QoS marking used by the
     receiver to send packets to the data source during sub-session
     RC_N, if the Data Source can learn such information.

  Source Payload Type: 8 bits - This parameter is defined in section
     5.24 of [RFC4710] and specifies the payload type of the data
     source of the communication sub-session RC_N as defined in
     [RFC3551].

  Receiver Payload Type: 8 bits - This parameter is defined in section
     5.25 of [RFC4710] and specifies the receiver payload type of the
     communication sub-session RC_N as defined in [RFC3551].

  CPU Utilization: 8 bits - This parameter, defined in section 5.30 of
     [RFC4710], represents the percentage of CPU used during session
     RC_N from the last report until the time this RAQMON PDU was
     generated.  The CPU Utilization is expressed in percents in the
     range 0 to 100.  The value should indicate not only CPU
     utilization associated to a session RC_N but also actual CPU
     Utilization, to indicate a snapshot of the CPU utilization of the
     host running the RDS while session RC_N in progress.

  Memory Utilization: 8 bits - This parameter, defined in section 5.31
     of [RFC4710], represents the percentage of total memory used
     during session RC_N up until the time this RAQMON PDU was
     generated.  The memory utilization is expressed in percents 0 to
     100.  The Memory Utilization value should indicate not only the
     memory utilization associated to a session RC_N but the total
     memory utilization, to indicate a snapshot of end-device memory
     utilization while session RC_N is in progress.

  Session Setup Delay: 16 bits - The Session (sub-session) Setup Delay
     metric is defined in section 5.8 of [RFC4710] and expressed in
     milliseconds.




Siddiqui, et al.            Standards Track                    [Page 13]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  Application Delay: 16 bits - The Application Delay is defined in
     section 5.13 of [RFC4710] and is represented as an unsigned
     integer expressed in milliseconds.

  IP Packet Delay Variation: 16 bits - The IP Packet Delay Variation is
     defined in section 5.15 of [RFC4710] and is represented as an
     unsigned integer expressed in milliseconds.

  Inter-Arrival Jitter: 16 bits - The Inter-Arrival Jitter is defined
     in section 5.14 of [RFC4710] and is represented as an unsigned
     integer expressed in milliseconds.

  Packet Discard in Fraction: 8 bits - This parameter is defined in
     section 5.23 of [RFC4710] and is expressed as a fixed-point number
     with the binary point at the left edge of the field.  (That is
     equivalent to taking the integer part after multiplying the
     discard fraction by 256.)  This metric is defined to be the number
     of packets discarded, divided by the total number of packets.

  Packet Loss in Fraction: 8 bits - This parameter is defined in
     section 5.21 of [RFC4710] and is expressed as a fixed-point
     number, with the binary point at the left edge of the field.  The
     metric is defined to be the number of packets lost divided by the
     number of packets expected.  The value is calculated by dividing
     the total number of packets lost (after the effects of applying
     any error protection, such as Forward Error Correction (FEC)) by
     the total number of packets expected, multiplying the result of
     the division by 256, limiting the maximum value to 255 (to avoid
     overflow), and taking the integer part.

  padding: 0, 8, 16, or 24 bits - If the padding bit (P) is set, then
     this field may be present.  The actual padding at the end of the
     BASIC part of the PDU is 0, 8, 16, or 24 bits to make the length
     of the BASIC part of the PDU a multiple of 32 bits.

2.1.3.  APP Part of the RAQMON Protocol Data Unit

  The APP part of the RAQMON PDU is intended to accommodate extensions
  for new applications in a modular manner and without requiring a PDU
  type value registration.

  Vendors may design and publish application-specific extensions.  Any
  RAQMON-compliant RRC MUST be able to recognize vendors' SMI
  Enterprise Codes and MUST recognize the presence of application-
  specific extensions identified by using Report Type fields.  As
  represented in Figure 1, the Report Type and Application Length





Siddiqui, et al.            Standards Track                    [Page 14]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  fields are always located at a fixed offset relative to the start of
  the extension fields.  There is no need for the RRC to understand the
  semantics of the enterprise-specific parts of the PDU.

  SMI Enterprise Code: 32 bits - Vendors and application developers
     should fill in appropriate SMI Enterprise IDs available at
     http://www.iana.org/assignments/enterprise-numbers.  A non-zero
     SMI Enterprise Code indicates a vendor- or application-specific
     extension.

     RAQMON PDUs are capable of carrying multiple Application Parts
     within a PDU.

  Report Type: 16 bits - Vendors and application developers should fill
     in the appropriate report type within a specified SMI Enterprise
     Code.  It is RECOMMENDED that vendors publish application-specific
     extensions and maintain such report types for better
     interoperability.

  Length of the Application Part: 16 bits (unsigned integer) - The
     length of the Application Part of the RAQMON PDU in 32-bit words
     minus one, which includes the header of the Application Part.

  Application-dependent data: variable length - Application/
     vendor-dependent data is defined by the application developers.
     It is interpreted by the vendor-specific application and not by
     the RRC itself.  Its length must be a multiple of 32 bits and will
     be padded if necessary.

2.1.4.  Byte Order, Alignment, and Time Format of RAQMON PDUs

  All integer fields are carried in network byte order, that is, most
  significant byte (octet) first.  This byte order is commonly known as
  big-endian.  The transmission order is described in detail in
  [RFC791].  Unless otherwise noted, numeric constants are in decimal
  (base 10).

  All header data is aligned to its natural length, i.e., 16-bit fields
  are aligned on even offsets, 32-bit fields are aligned at offsets
  divisible by four, etc.  Octets designated as padding have the value
  zero.

2.2.  Securing RAQMON Session

  The RAQMON session, initiated over TCP transport, between an RDS and
  an RRC carries monitoring information from an RDS client to the RRC,
  the collector.  The RRC distinguishes between clients based on
  various identifiers used by the RDS to identify itself to the RRC



Siddiqui, et al.            Standards Track                    [Page 15]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  (Data Source Address and Data Source Name) and the RRC (Receiver's
  Address and Receiver's Name).

  In order to ensure integrity of the claimed identities of RDS and RRC
  to each other, authentication services are required.

  Subsequently, where protection from unauthorized modification and
  unauthorized disclosure of RAQMON data in transit from RDS to RRC is
  needed, data confidentiality and message integrity services will be
  required.  In order to prevent monitoring-misinformation due to
  session-recording and replay by unauthorized sources, replay
  protection services may be required.

  TLS provides, at the transport layer, the required authentication
  services through the handshake protocol and subsequent data
  confidentiality, message integrity, and replay protection of the
  application protocol using a ciphersuite negotiated during
  authentication.

  The RDS client authenticates the RRC in session.  The RRC optionally
  authenticates the RDS.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PDT = 1  |B|  T  |P|S|R|  RC   |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            DSRC                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  SMI Enterprise Code = 0      |Report Type =  |     RC_N      |
  |                               |        TLS_REQ|               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 2: RAQMON StartTLS Request - TLS_REQ

  The protection of a RAQMON session starts with the RDS client's
  StartTLS request upon successful establishment of the TCP session.
  The RDS sends the StartTLS request by transmitting the TLS_REQ PDU as
  in Figure 2.  This PDU is distinguished by TLS_REQ Report Type.

  Following this request, the client MUST NOT send any PDUs on this
  connection until it receives a StartTLS response.

  Other fields of the PDU are as specified in Figure 1.

  The flags field do not carry any significance and exist for
  compatibility with the generic RAQMON PDU.  The flags field in this
  version MUST be ignored.



Siddiqui, et al.            Standards Track                    [Page 16]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  When a StartTLS request is made, the target server, RRC, MUST return
  a RAQMON PDU containing a StartTLS response, TLS_RESP.  A RAQMON
  TLS_RESP is defined as follows:

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PDT = 1  |B|  T  |P|S|R|  RC   |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            DSRC                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  SMI Enterprise Code = 0      |Report Type =  |     Result    |
  |                               |       TLS_RESP|               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 3: RAQMON StartTLS Response - TLS_RESP

  The RRC responds to the StartTLS request by transmitting the TLS_RESP
  PDU as in Figure 3.  This PDU is distinguished by TLS_RESP Report
  Type.

  The Result field is an octet containing the result of the request.
  This field can carry one of the following values:

  +-------+------------------+----------------------------------------+
  | Value |     Mnemonic     |                 Result                 |
  +-------+------------------+----------------------------------------+
  |   0   |        OK        |   Success.  The server is willing and  |
  |       |                  |         able to negotiate TLS.         |
  |   1   |      OP_ERR      |   Sequencing Error (e.g., TLS already  |
  |       |                  |              established).             |
  |   2   |     PROTO_ERR    |   TLS not supported or incorrect PDU   |
  |       |                  |                 format.                |
  |   3   |      UNAVAIL     |    TLS service problem or RRC server   |
  |       |                  |               going down.              |
  |   4   |     CONF_REQD    |    Confidentiality Service Required.   |
  |       |                  |                                        |
  |   5   | STRONG_AUTH_REQD |      Strong Authentication Service     |
  |       |                  |                Required.               |
  |   6   |     REFERRAL     |   Referral to a RRC Server supporting  |
  |       |                  |                  TLS.                  |
  +-------+------------------+----------------------------------------+

                                 Table 2

  Other fields of the PDU are as specified in Figure 1.





Siddiqui, et al.            Standards Track                    [Page 17]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  The server MUST return OP_ERR if the client violates any of the
  StartTLS operation sequencing requirements described in the section
  below.

  If the server does not support TLS (whether by design or by current
  configuration), it MUST set the resultCode to PROTO_ERR or to
  REFERRAL.  The server MUST include an actual referral value in the
  RAQMON REFER field if it returns a resultCode of referral.  The
  client's current session is unaffected if the server does not support
  TLS.  The client MAY proceed with RAQMON session, or it MAY close the
  connection.

  The server MUST return UNAVAIL if it supports TLS but cannot
  establish a TLS connection for some reason, e.g., if the certificate
  server not responding, if it cannot contact its TLS implementation,
  or if the server is in process of shutting down.  The client MAY
  retry the StartTLS operation, MAY proceed with RAQMON session, or MAY
  close the connection.

2.2.1.  Sequencing of the Start TLS Operation

  This section describes the overall procedures clients and servers
  MUST follow for TLS establishment.  These procedures take into
  consideration various aspects of the overall security of the RAQMON
  connection including discovery of resulting security level.

2.2.1.1.  Requesting to Start TLS on a RAQMON Association

  The client MAY send the StartTLS request at any time after
  establishing an RAQMON (TCP) connection, except that in the following
  cases the client MUST NOT send a StartTLS request:

  o  if TLS is currently established on the connection, or

  o  if RAQMON traffic is in progress on the connection.

  The result of violating any of these requirements is a Result of
  OP_ERR, as described above in Table 2.

  If the client did not establish a TLS connection before sending any
  other requests, and the server requires the client to establish a TLS
  connection before performing a particular request, the server MUST
  reject that request with a CONF_REQD or STRONG_AUTH_REQD result.  The
  client MAY send a Start TLS extended request, or it MAY choose to
  close the connection.






Siddiqui, et al.            Standards Track                    [Page 18]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


2.2.1.2.  Starting TLS

  The server will return an extended response with the resultCode of
  success if it is willing and able to negotiate TLS.  It will return
  other resultCodes, documented above, if it is unable.

  In the successful case, the client, which has ceased to transfer
  RAQMON PDUs on the connection, MUST either begin a TLS negotiation or
  close the connection.  The client will send PDUs in the TLS Record
  Protocol directly over the underlying transport connection to the
  server to initiate TLS negotiation [TLS].

2.2.1.3.  TLS Version Negotiation

  Negotiating the version of TLS or SSL to be used is a part of the TLS
  Handshake Protocol, as documented in [TLS].  The reader is referred
  to that document for details.

2.2.1.4.  Discovery of Resultant Security Level

  After a TLS connection is established on a RAQMON connection, both
  parties MUST individually decide whether or not to continue based on
  the security assurance level achieved.  Ascertaining the TLS
  connection's assurance level is implementation dependent and is
  accomplished by communicating with one's respective local TLS
  implementation.

  If the client or server decides that the level of authentication or
  confidentiality is not high enough for it to continue, it SHOULD
  gracefully close the TLS connection immediately after the TLS
  negotiation has completed Section 2.2.2.1.

  The client MAY attempt to Start TLS again, MAY disconnect, or MAY
  proceed to send RAQMON session data, if RRC policy permits.

2.2.1.5.  Server Identity Check

  The client MUST check its understanding of the server's hostname
  against the server's identity as presented in the server's
  Certificate message, in order to prevent man-in-the-middle attacks.

  Matching is performed according to these rules:

  o  The client MUST use the server dnsNAME in the subjectAltName field
     to validate the server certificate presented.  The server dnsName
     MUST be part of subjectAltName of the server.

  o  Matching is case-insensitive.



Siddiqui, et al.            Standards Track                    [Page 19]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  o  The "*" wildcard character is allowed.  If present, it applies
     only to the left-most name component.

     For example, *.example.com would match a.example.com,
     b.example.com, etc., but not example.com.  If more than one
     identity of a given type is present in the certificate (e.g., more
     than one dNSName name), a match in any one of the set is
     considered acceptable.

  If the hostname does not match the dNSName-based identity in the
  certificate per the above check, automated clients SHOULD close the
  connection, returning and/or logging an error indicating that the
  server's identity is suspect.

  Beyond the server identity checks described in this section, clients
  SHOULD be prepared to do further checking to ensure that the server
  is authorized to provide the service it is observed to provide.  The
  client MAY need to make use of local policy information.

  We also refer readers to similar guidelines as applied for LDAP over
  TLS [RFC4513].

2.2.1.6.  Client Identity Check

  Anonymous TLS authentication helps establish a TLS RAQMON session
  that offers

  o  server-authentication in course of TLS establishment and

  o  confidentiality and replay protection of RAQMON traffic, but

  o  no protection against man-in-the-middle attacks during session
     establishment and

  o  no protection from spoofing attacks by unauthorized clients.

  The server MUST authenticate the RDS client when deployment is
  susceptible to the above threats.  This is done by requiring client
  authentication during TLS session establishment.

  In the TLS negotiation, the server MUST request a certificate.  The
  client will provide its certificate to the server and MUST perform a
  private-key-based encryption, proving it has the private key
  associated with the certificate.

  As deployments will require protection of sensitive data in transit,
  the client and server MUST negotiate a ciphersuite that contains a
  bulk encryption algorithm of appropriate strength.



Siddiqui, et al.            Standards Track                    [Page 20]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  The server MUST verify that the client's certificate is valid.  The
  server will normally check that the certificate is issued by a known
  CA, and that none of the certificates on the client's certificate
  chain are invalid or revoked.  There are several procedures by which
  the server can perform these checks.

  The server validates the certificate by the Distinguished Name of the
  RDS client entity in the Subject field of the certificate.

  A corresponding set of guidelines will apply to use of TLS-PSK modes
  [TLS-PSK] using pre-shared keys instead of client certificates.

2.2.1.7.  Refresh of Server Capabilities Information

  The client MUST refresh any cached server capabilities information
  upon TLS session establishment, such as prior RRC state related to a
  previous RAQMON session based on another DSRC.  This is necessary to
  protect against active-intermediary attacks, which may have altered
  any server capabilities information retrieved prior to TLS
  establishment.  The server MAY advertise different capabilities after
  TLS establishment.

2.2.2.  Closing a TLS Connection

2.2.2.1.  Graceful Closure

  Either the client or server MAY terminate the TLS connection on an
  RAQMON session by sending a TLS closure alert.  This will leave the
  RAQMON connection intact.

  Before closing a TLS connection, the client MUST wait for any
  outstanding RAQMON transmissions to complete.  This happens naturally
  when the RAQMON client is single-threaded and synchronous.

  After the initiator of a close has sent a closure alert, it MUST
  discard any TLS messages until it has received an alert from the
  other party.  It will cease to send TLS Record Protocol PDUs and,
  following the receipt of the alert, MAY send and receive RAQMON PDUs.

  The other party, if it receives a closure alert, MUST immediately
  transmit a TLS closure alert.  It will subsequently cease to send TLS
  Record Protocol PDUs and MAY send and receive RAQMON PDUs.









Siddiqui, et al.            Standards Track                    [Page 21]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


2.2.2.2.  Abrupt Closure

  Either the client or server MAY abruptly close the entire RAQMON
  session and any TLS connection established on it by dropping the
  underlying TCP connection.  It MAY be possible for RRC to send RDS a
  disconnection notification, which allows the client to know that the
  disconnection is not due to network failure.  However, this message
  is not defined in this version.

2.3.  SNMP Notifications as an RDS/RRC Network Transport Protocol

  It was an inherent objective of the RAQMON Framework to re-use
  existing application-level transport protocols to maximize the usage
  of existing installations as well as to avoid transport-protocol-
  level complexities in the design process.  Choice of SNMP as a means
  to transport RAQMON PDU was motivated by the intent of using existing
  installed devices implementing SNMP agents as RAQMON Data Sources
  (RDSs).

  There are some potential problems with the usage of SNMP as a
  transport mapping protocol:

  o  The potential of congestion is higher than with the TCP transport,
     because of the usage of UDP at the transport layer.

  o  The encoding of the information is less efficient, and this
     results in bigger message size, which again may negatively impact
     congestion conditions and memory size requirements in the devices.

  In order to avoid these potential problems, the following
  recommendations are made:

  o  Usage of the TCP transport is RECOMMENDED in deployment over the
     SNMP transport wherever available for a pair of RDS/RRC.

  o  The usage of Inform PDUs is RECOMMENDED.

  o  The usage of Traps PDU is NOT RECOMMENDED.

  o  It is RECOMMENDED that information carried by notifications be
     maintained within the limits of the MTU size in order to avoid
     fragmentation.

  If SNMP is chosen as a mechanism to transport RAQMON PDUs, the
  following specification applies to RAQMON-related usage of SNMP:






Siddiqui, et al.            Standards Track                    [Page 22]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  o  RDSs implement the capability of embedding RAQMON parameters in
     SNMP Notifications, re-using well-known SNMP mechanisms to report
     RAQMON Statistics.  The RAQMON RDS MIB module, as specified in
     2.1.1, MUST be used in order to map the RAQMON PDUs onto the SNMP
     Notifications transport.

  o  Since RDSs are not computationally rich, and in order to keep the
     RDS realization as lightweight as possible, RDSs MAY fail to
     respond to SNMP requests like GET, SET, etc., with the exception
     of the GET and SET commands required to implement the User-Based
     Security Model (USM) defined by [RFC3414].

  o  In order to meet congestion safety requirements, SNMP INFORM PDUs
     SHOULD be used.  In case INFORM PDUs are used, RDSs MUST process
     the SNMP INFORM responses from RRCs and MUST serialize the PDU
     transmission rate, i.e., limit the number of PDUS sent in a
     specific time interval.

  o  Standard UDP port 162 SHOULD be used for SNMP Notifications.

2.3.1.  Encoding RAQMON Using the RAQMON RDS MIB Module

  The RAQMON RDS MIB module is used to map RAQMON PDUs onto SNMP
  Notifications for transport purposes.  The MIB module defines the
  objects needed for mapping the BASIC part of RAQMON PDU, defined in
  [RFC4710], as well as the Notifications themselves.  In order to
  incorporate any application-specific extensions in the Application
  (APP) part of RAQMON PDU, as defined in [RFC4710], additional
  variable bindings MAY be included in RAQMON notifications as
  described in the MIB module.

  For a detailed overview of the documents that describe the current
  Internet-Standard Management Framework, please refer to section 7 of
  [RFC3410].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  MIB objects are generally
  accessed through the Simple Network Management Protocol (SNMP).
  Objects in the MIB are defined using the mechanisms defined in the
  Structure of Management Information (SMI).  This memo specifies a MIB
  module that is compliant to the SMIv2, which is described in STD 58,
  [RFC2578], STD 58, [RFC2579] and STD 58, [RFC2580].









Siddiqui, et al.            Standards Track                    [Page 23]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  The following MIB module IMPORTS definitions from the following:

           SNMPv2-SMI [RFC2578]
           SNMPv2-TC [RFC2579]
           SNMPv2-CONF [RFC2580]
           RMON-MIB [RFC2819]
           DIFFSERV-DSCP-TC [RFC3289]
           SNMP-FRAMEWORK-MIB [RFC3411]
           INET-ADDRESS-MIB [RFC4001]

  It also uses REFERENCE clauses to refer to [RFC4710].

  RAQMON-RDS-MIB DEFINITIONS ::= BEGIN

     IMPORTS
         MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
         Counter32, Unsigned32
             FROM SNMPv2-SMI

         DateAndTime
             FROM SNMPv2-TC

         rmon
             FROM RMON-MIB

         SnmpAdminString
             FROM SNMP-FRAMEWORK-MIB

         InetAddressType, InetAddress, InetPortNumber
             FROM INET-ADDRESS-MIB

         Dscp
             FROM DIFFSERV-DSCP-TC

         MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
             FROM SNMPv2-CONF;

     raqmonDsMIB MODULE-IDENTITY
         LAST-UPDATED "200610100000Z"      -- October 10, 2006
         ORGANIZATION "RMON Working Group"
         CONTACT-INFO
             "WG EMail: [email protected]
              Subscribe: [email protected]

              MIB Editor:
              Eugene Golovinsky
              Postal: BMC Software, Inc.
                      2101 CityWest Boulevard,



Siddiqui, et al.            Standards Track                    [Page 24]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


                      Houston, TX, 77094
                      USA
              Tel:    +713-918-1816
              Email:  [email protected]
             "
         DESCRIPTION
             "This is the RAQMON Data Source notification MIB Module.
              It provides a mapping of RAQMON PDUs to SNMP
              notifications.

              Ds stands for data source.

              Note that all of the object types defined in this module
              are accessible-for-notify and would consequently not be
              available to a browser using simple Get, GetNext, or
              GetBulk requests.

              Copyright (c) The Internet Society (2006).

              This version of this MIB module is part of RFC 4712;
              See the RFC itself for full legal notices."

         REVISION      "200610100000Z"     -- October 10, 2006
         DESCRIPTION
             "Initial version, published as RFC 4712."

                ::= { rmon 32 }

  -- This OID allocation conforms to [RFC3737]


     raqmonDsNotifications OBJECT IDENTIFIER ::= { raqmonDsMIB 0 }
     raqmonDsMIBObjects OBJECT IDENTIFIER ::= { raqmonDsMIB 1 }
     raqmonDsConformance OBJECT IDENTIFIER ::= { raqmonDsMIB 2 }

     raqmonDsNotificationTable OBJECT-TYPE
         SYNTAX SEQUENCE OF RaqmonDsNotificationEntry
         MAX-ACCESS not-accessible
         STATUS     current
         DESCRIPTION
             "This conceptual table provides the SNMP mapping of
              the RAQMON BASIC PDU.  It is indexed by the RAQMON
              Data Source, sub-session, and address of the peer
              entity.

              Note that there is no concern about the indexation of
              this table exceeding the limits defined by RFC 2578
              Section 3.5.  According to [RFC4710], Section 5.1,



Siddiqui, et al.            Standards Track                    [Page 25]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


              only IPv4 and IPv6 addresses can be reported as
              participant addresses."
         ::= { raqmonDsMIBObjects 1 }

     raqmonDsNotificationEntry OBJECT-TYPE
         SYNTAX     RaqmonDsNotificationEntry
         MAX-ACCESS not-accessible
         STATUS     current
         DESCRIPTION
             "The entry (row) is not retrievable and is not kept by
              RDSs.  It serves data organization purposes only."
         INDEX { raqmonDsDSRC, raqmonDsRCN, raqmonDsPeerAddrType,
                 raqmonDsPeerAddr }
         ::= { raqmonDsNotificationTable 1 }

     RaqmonDsNotificationEntry ::= SEQUENCE {
             raqmonDsDSRC                      Unsigned32,
             raqmonDsRCN                       Unsigned32,
             raqmonDsPeerAddrType              InetAddressType,
             raqmonDsPeerAddr                  InetAddress,
             raqmonDsAppName                   SnmpAdminString,
             raqmonDsDataSourceDevicePort      InetPortNumber,
             raqmonDsReceiverDevicePort        InetPortNumber,
             raqmonDsSessionSetupDateTime      DateAndTime,
             raqmonDsSessionSetupDelay         Unsigned32,
             raqmonDsSessionDuration           Unsigned32,
             raqmonDsSessionSetupStatus        SnmpAdminString,
             raqmonDsRoundTripEndToEndNetDelay Unsigned32,
             raqmonDsOneWayEndToEndNetDelay    Unsigned32,
             raqmonDsApplicationDelay          Unsigned32,
             raqmonDsInterArrivalJitter        Unsigned32,
             raqmonDsIPPacketDelayVariation    Unsigned32,
             raqmonDsTotalPacketsReceived      Counter32,
             raqmonDsTotalPacketsSent          Counter32,
             raqmonDsTotalOctetsReceived       Counter32,
             raqmonDsTotalOctetsSent           Counter32,
             raqmonDsCumulativePacketLoss      Counter32,
             raqmonDsPacketLossFraction        Unsigned32,
             raqmonDsCumulativeDiscards        Counter32,
             raqmonDsDiscardsFraction          Unsigned32,
             raqmonDsSourcePayloadType         Unsigned32,
             raqmonDsReceiverPayloadType       Unsigned32,
             raqmonDsSourceLayer2Priority      Unsigned32,
             raqmonDsSourceDscp                Dscp,
             raqmonDsDestinationLayer2Priority Unsigned32,
             raqmonDsDestinationDscp           Dscp,
             raqmonDsCpuUtilization            Unsigned32,
             raqmonDsMemoryUtilization         Unsigned32 }



Siddiqui, et al.            Standards Track                    [Page 26]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


     raqmonDsDSRC OBJECT-TYPE
         SYNTAX     Unsigned32
         MAX-ACCESS not-accessible
         STATUS     current
         DESCRIPTION
             "Data Source identifier represents a unique session
              descriptor that points to a specific session
              between communicating entities.  Identifiers unique for
              sessions conducted between two entities are
              generated by the communicating entities.  Zero is a
              valid value, with no special semantics."
         ::= { raqmonDsNotificationEntry 1 }

     raqmonDsRCN OBJECT-TYPE
          SYNTAX      Unsigned32 (0..15)
          MAX-ACCESS  not-accessible
          STATUS      current
          DESCRIPTION
              "The Record Count Number indicates a sub-session
               within a communication session.  A maximum number of 16
               sub-sessions are supported; this limitation is
               dictated by reasons of compatibility with other
               transport protocols."
          ::= { raqmonDsNotificationEntry 2 }

     raqmonDsPeerAddrType OBJECT-TYPE
         SYNTAX InetAddressType
         MAX-ACCESS not-accessible
         STATUS current
         DESCRIPTION
             "The type of the Internet address of the peer participant
              for this session."
         REFERENCE
             "Section 5.2 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 3 }

     raqmonDsPeerAddr OBJECT-TYPE
         SYNTAX InetAddress
         MAX-ACCESS not-accessible
         STATUS current
         DESCRIPTION
             "The Internet Address of the peer participant for this
              session."
         REFERENCE
             "Section 5.2 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 4 }

     raqmonDsAppName  OBJECT-TYPE



Siddiqui, et al.            Standards Track                    [Page 27]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


         SYNTAX     SnmpAdminString
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "This is a text string giving the name and possibly the
              version of the application associated with that session,
              e.g., 'XYZ VoIP Agent 1.2'."
         REFERENCE
             "Section 5.28 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 5 }

     raqmonDsDataSourceDevicePort OBJECT-TYPE
         SYNTAX     InetPortNumber
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The port number from which data for this session was sent
              by the Data Source device."
         REFERENCE
             "Section 5.5 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 6 }

     raqmonDsReceiverDevicePort OBJECT-TYPE
         SYNTAX     InetPortNumber
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The port number where the data for this session was
              received."
         REFERENCE
             "Section 5.6 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 7 }

     raqmonDsSessionSetupDateTime OBJECT-TYPE
         SYNTAX     DateAndTime
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The time when session was initiated."
         REFERENCE
             "Section 5.7 of [RFC4710]"
     ::= { raqmonDsNotificationEntry 8 }

     raqmonDsSessionSetupDelay OBJECT-TYPE
         SYNTAX     Unsigned32 (0..65535)
         UNITS      "milliseconds"
         MAX-ACCESS accessible-for-notify
         STATUS     current



Siddiqui, et al.            Standards Track                    [Page 28]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


         DESCRIPTION
             "Session setup time."
         REFERENCE
             "Section 5.8 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 9 }

     raqmonDsSessionDuration OBJECT-TYPE
         SYNTAX     Unsigned32
         UNITS      "seconds"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "Session duration, including setup time.  The SYNTAX of
              this object allows expression of the duration of sessions
              that do not exceed 4660 hours and 20 minutes."
         REFERENCE
             "Section 5.9 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 10 }

     raqmonDsSessionSetupStatus OBJECT-TYPE
         SYNTAX     SnmpAdminString
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "Describes appropriate communication session states, e.g.,
              Call Established successfully, RSVP reservation
              failed, etc."
         REFERENCE
             "Section 5.10 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 11 }

     raqmonDsRoundTripEndToEndNetDelay OBJECT-TYPE
         SYNTAX     Unsigned32
         UNITS      "milliseconds"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "Most recent available information about the
              round-trip end-to-end network delay."
         REFERENCE
             "Section 5.11 of [RFC4710]"
         ::= { raqmonDsNotificationEntry  12}

     raqmonDsOneWayEndToEndNetDelay OBJECT-TYPE
         SYNTAX     Unsigned32
         UNITS      "milliseconds"
         MAX-ACCESS accessible-for-notify
         STATUS     current



Siddiqui, et al.            Standards Track                    [Page 29]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


         DESCRIPTION
             "Most recent available information about the
              one-way end-to-end network delay."
         REFERENCE
             "Section 5.12 of [RFC4710]"
         ::= { raqmonDsNotificationEntry  13}

     raqmonDsApplicationDelay OBJECT-TYPE
         SYNTAX     Unsigned32  (0..65535)
         UNITS      "milliseconds"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "Most recent available information about the
              application delay."
         REFERENCE
             "Section 5.13 of [RFC4710"
         ::= { raqmonDsNotificationEntry  14}

     raqmonDsInterArrivalJitter OBJECT-TYPE
         SYNTAX     Unsigned32  (0..65535)
         UNITS      "milliseconds"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "An estimate of the inter-arrival jitter."
         REFERENCE
             "Section 5.14 of [RFC4710]"
         ::= { raqmonDsNotificationEntry  15}

     raqmonDsIPPacketDelayVariation OBJECT-TYPE
         SYNTAX     Unsigned32  (0..65535)
         UNITS      "milliseconds"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "An estimate of the inter-arrival delay variation."
         REFERENCE
             "Section 5.15 of [RFC4710]"
         ::= { raqmonDsNotificationEntry  16}

     raqmonDsTotalPacketsReceived OBJECT-TYPE
         SYNTAX     Counter32
         UNITS     "packets"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The number of packets transmitted within a communication



Siddiqui, et al.            Standards Track                    [Page 30]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


              session by the receiver since the start of the session."
         REFERENCE
             "Section 5.16 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 17 }

     raqmonDsTotalPacketsSent OBJECT-TYPE
         SYNTAX     Counter32
         UNITS     "packets"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The number of packets transmitted within a communication
              session by the sender since the start of the session."
         REFERENCE
             "Section 5.17 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 18 }

     raqmonDsTotalOctetsReceived OBJECT-TYPE
         SYNTAX     Counter32
         UNITS      "octets"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The total number of payload octets (i.e., not including
              header or padding octets) transmitted in packets by the
              receiver within a communication session since the start
              of the session."
         REFERENCE
             "Section 5.18 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 19 }

     raqmonDsTotalOctetsSent OBJECT-TYPE
         SYNTAX     Counter32
         UNITS      "octets"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The number of payload octets (i.e., not including headers
              or padding) transmitted in packets by the sender within
              a communication sub-session since the start of the
              session."
         REFERENCE
             "Section 5.19 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 20 }

     raqmonDsCumulativePacketLoss OBJECT-TYPE
         SYNTAX     Counter32
         UNITS      "packets"



Siddiqui, et al.            Standards Track                    [Page 31]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The number of packets from this session whose loss
              had been detected since the start of the session."
         REFERENCE
             "Section 5.20 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 21 }

     raqmonDsPacketLossFraction OBJECT-TYPE
         SYNTAX     Unsigned32 (0..100)
         UNITS      "percentage of packets sent"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The percentage of lost packets with respect to the
              overall packets sent.  This is defined to be 100 times
              the number of packets lost divided by the number of
              packets expected."
         REFERENCE
             "Section 5.21 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 22 }

     raqmonDsCumulativeDiscards OBJECT-TYPE
         SYNTAX     Counter32
         UNITS      "packets"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The number of packet discards detected since the
              start of the session."
         REFERENCE
             "Section 5.22 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 23 }

     raqmonDsDiscardsFraction OBJECT-TYPE
         SYNTAX     Unsigned32 (0..100)
         UNITS      "percentage of packets sent"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The percentage of discards with respect to the overall
              packets sent.  This is defined to be 100 times the number
              of discards divided by the number of packets expected."
         REFERENCE
             "Section 5.23 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 24 }




Siddiqui, et al.            Standards Track                    [Page 32]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


     raqmonDsSourcePayloadType OBJECT-TYPE
         SYNTAX     Unsigned32 (0..127)
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The payload type of the packet sent by this RDS."
         REFERENCE
             "RFC 1890, Section 5.24 of [RFC4710] "
         ::= { raqmonDsNotificationEntry 25 }

     raqmonDsReceiverPayloadType OBJECT-TYPE
         SYNTAX     Unsigned32 (0..127)
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "The payload type of the packet received by this RDS."
         REFERENCE
             "RFC 1890, Section 5.25 of [RFC4710] "
     ::= { raqmonDsNotificationEntry 26 }

     raqmonDsSourceLayer2Priority OBJECT-TYPE
         SYNTAX     Unsigned32 (0..7)
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "Source Layer 2 priority used by the data source to send
              packets to the receiver by this data source during this
              communication session."
         REFERENCE
             "Section 5.26 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 27 }

     raqmonDsSourceDscp OBJECT-TYPE
         SYNTAX     Dscp
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "Layer 3 TOS/DSCP values used by the Data Source to
              prioritize traffic sent."
         REFERENCE
             "Section 5.27 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 28 }

     raqmonDsDestinationLayer2Priority OBJECT-TYPE
         SYNTAX     Unsigned32 (0..7)
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION



Siddiqui, et al.            Standards Track                    [Page 33]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


             "Destination Layer 2 priority.  This is the priority used
              by the peer communicating entity to send packets to the
              data source."
         REFERENCE
             "Section 5.28 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 29 }

     raqmonDsDestinationDscp OBJECT-TYPE
         SYNTAX     Dscp
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "Layer 3 TOS/DSCP values used by the
              peer communicating entity to prioritize traffic
              sent to the source."
         REFERENCE
             "Section 5.29 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 30 }

     raqmonDsCpuUtilization OBJECT-TYPE
         SYNTAX     Unsigned32 (0..100)
         UNITS      "percent"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "Latest available information about the total CPU
              utilization."
         REFERENCE
             "Section 5.30 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 31 }

     raqmonDsMemoryUtilization OBJECT-TYPE
         SYNTAX     Unsigned32 (0..100)
         UNITS      "percent"
         MAX-ACCESS accessible-for-notify
         STATUS     current
         DESCRIPTION
             "Latest available information about the total memory
              utilization."
         REFERENCE
             "Section 5.31 of [RFC4710]"
         ::= { raqmonDsNotificationEntry 32 }

     -- definitions of the notifications
     --
     -- raqmonDsAppName is the only object that MUST be sent by an
     -- RDS every time the static notification is generated.




Siddiqui, et al.            Standards Track                    [Page 34]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


     -- raqmonDsTotalPacketsReceived is the only object that MUST be
     -- sent by an RD every time the dynamic notification is generated.

     -- Other objects from the raqmonDsNotificationTable may be
     -- included in the variable binding list.  Specifically, a raqmon
     -- notification will include MIB objects that provide information
     -- about metrics that characterize the application session

        raqmonDsStaticNotification NOTIFICATION-TYPE
         OBJECTS { raqmonDsAppName }
         STATUS current
         DESCRIPTION
             "This notification maps the static parameters in the
              BASIC RAQMON PDU onto an SNMP transport.
              This notification is expected to be sent once per
              session, or when a new sub-session is initiated.
              The following objects MAY be carried by the
              raqmonDsStaticNotification:

              raqmonDsDataSourceDevicePort,
              raqmonDsReceiverDevicePort,
              raqmonDsSessionSetupDateTime,
              raqmonDsSessionSetupDelay,
              raqmonDsSessionDuration,
              raqmonDsSourcePayloadType,
              raqmonDsReceiverPayloadType,
              raqmonDsSourceLayer2Priority,
              raqmonDsSourceDscp,
              raqmonDsDestinationLayer2Priority,
              raqmonDsDestinationDscp

              It is RECOMMENDED to keep the size of a notification
              within the MTU size limits in order to avoid
              fragmentation."
         ::= { raqmonDsNotifications  1 }

     raqmonDsDynamicNotification NOTIFICATION-TYPE
         OBJECTS { raqmonDsTotalPacketsReceived }
         STATUS current
         DESCRIPTION
             "This notification maps the dynamic parameters in the
              BASIC RAQMON PDU onto an SNMP transport.

              The following objects MAY be carried by the
              raqmonDsDynamicNotification:

              raqmonDsRoundTripEndToEndNetDelay,
              raqmonDsOneWayEndToEndNetDelay,



Siddiqui, et al.            Standards Track                    [Page 35]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


              raqmonDsApplicationDelay,
              raqmonDsInterArrivalJitter,
              raqmonDsIPPacketDelayVariation,
              raqmonDsTotalPacketsSent,
              raqmonDsTotalOctetsReceived,
              raqmonDsTotalOctetsSent,
              raqmonDsCumulativePacketLoss,
              raqmonDsPacketLossFraction,
              raqmonDsCumulativeDiscards,
              raqmonDsDiscardsFraction,
              raqmonDsCpuUtilization,
              raqmonDsMemoryUtilization

              It is RECOMMENDED to keep the size of a notification
              within the MTU size limits in order to avoid
              fragmentation."

         ::= { raqmonDsNotifications  2 }

     raqmonDsByeNotification NOTIFICATION-TYPE
         OBJECTS { raqmonDsAppName }
         STATUS current
         DESCRIPTION
             "The BYE Notification.  This Notification is the
              equivalent of the RAQMON NULL PDU, which signals the
              end of a RAQMON session."
         ::= { raqmonDsNotifications  3 }

     --
     -- conformance information
     raqmonDsCompliance OBJECT IDENTIFIER ::=
                                          { raqmonDsConformance 1 }
     raqmonDsGroups OBJECT IDENTIFIER ::= { raqmonDsConformance 2 }

  raqmonDsBasicCompliance MODULE-COMPLIANCE
          STATUS current
          DESCRIPTION
             "The compliance statement for SNMP entities that
              implement this MIB module.

              There are a number of INDEX objects that cannot be
              represented in the form of OBJECT clauses in SMIv2, but
              for which we have the following compliance requirements,
              expressed in OBJECT clause form in this description
              clause:

              -- OBJECT      raqmonDsPeerAddrType
              -- SYNTAX      InetAddressType { ipv4(1), ipv6(2) }



Siddiqui, et al.            Standards Track                    [Page 36]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


              -- DESCRIPTION
              --     This MIB requires support for only global IPv4
              --     and IPv6 address types.
              --
              -- OBJECT      raqmonDsPeerAddr
              -- SYNTAX      InetAddress (SIZE(4|16))
              -- DESCRIPTION
              --     This MIB requires support for only global IPv4
              --     and IPv6 address types.
              --
             "
          MODULE  -- this module
              MANDATORY-GROUPS { raqmonDsNotificationGroup,
                                 raqmonDsPayloadGroup }
          ::= { raqmonDsCompliance 1 }

     raqmonDsNotificationGroup NOTIFICATION-GROUP
         NOTIFICATIONS { raqmonDsStaticNotification,
                         raqmonDsDynamicNotification,
                         raqmonDsByeNotification }
         STATUS current
         DESCRIPTION
             "Standard RAQMON Data Source Notification group."
         ::= { raqmonDsGroups 1 }

     raqmonDsPayloadGroup OBJECT-GROUP
         OBJECTS { raqmonDsAppName,
                   raqmonDsDataSourceDevicePort,
                   raqmonDsReceiverDevicePort,
                   raqmonDsSessionSetupDateTime,
                   raqmonDsSessionSetupDelay,
                   raqmonDsSessionDuration,
                   raqmonDsSessionSetupStatus,
                   raqmonDsRoundTripEndToEndNetDelay,
                   raqmonDsOneWayEndToEndNetDelay,
                   raqmonDsApplicationDelay,
                   raqmonDsInterArrivalJitter,
                   raqmonDsIPPacketDelayVariation,
                   raqmonDsTotalPacketsReceived,
                   raqmonDsTotalPacketsSent,
                   raqmonDsTotalOctetsReceived,
                   raqmonDsTotalOctetsSent,
                   raqmonDsCumulativePacketLoss,
                   raqmonDsPacketLossFraction,
                   raqmonDsCumulativeDiscards,
                   raqmonDsDiscardsFraction,
                   raqmonDsSourcePayloadType,
                   raqmonDsReceiverPayloadType,



Siddiqui, et al.            Standards Track                    [Page 37]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


                   raqmonDsSourceLayer2Priority,
                   raqmonDsSourceDscp,
                   raqmonDsDestinationLayer2Priority,
                   raqmonDsDestinationDscp,
                   raqmonDsCpuUtilization,
                   raqmonDsMemoryUtilization }
         STATUS current
         DESCRIPTION
             "Standard RAQMON Data Source payload MIB objects group."
         ::= { raqmonDsGroups 2 }

     END

3.  IANA Considerations

  Applications using the RAQMON Framework require a single fixed port.
  Port number 7744 is registered with IANA for use as the default port
  for RAQMON PDUs over TCP.  Hosts that run multiple applications may
  use this port as an indication to have used RAQMON or provision a
  separate TCP port as part of provisioning RAQMON RDS and RAQMON
  Collector.

  The particular port number was chosen to lie in the range above 5000
  to accommodate port number allocation practice within the Unix
  operating system, where privileged processes can only use port
  numbers below 1024 and port numbers between 1024 and 5000 are
  automatically assigned by the operating systems.

  The OID assignment for the raqmonDsMIB MODULE-IDENTITY is made
  according to [RFC3737], and there is no need for any IANA action on
  this respect.

4.  Congestion-Safe RAQMON Operation

  As outlined in earlier sections, the TCP congestion control mechanism
  provides inherent congestion safety features when TCP is implemented
  as transport to carry RAQMON PDU.

  To ensure congestion safety, clearly the best thing to do is to use a
  congestion-safe transport protocol such as TCP.  If this is not
  feasible, it may be necessary to fall back to UDP since SNMP over UDP
  is a widely deployed transport protocol.

  When SNMP is chosen as RAQMON PDU Transport, implementers MUST follow
  section 3 of [RFC4710], which outlines measures that MUST be taken to
  use RAQMON in a congestion-safe manner.  Congestion safety





Siddiqui, et al.            Standards Track                    [Page 38]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  requirements in section 3 of [RFC4710] would ensure that a RAQMON
  implementation using SNMP over UDP does not lead to congestion under
  heavy network load.

5.  Acknowledgements

  The authors would like to thank Bill Walker and Joseph Mastroguilio
  from Avaya and Bin Hu from Motorola for their discussions.  The
  authors would also like to extend special thanks to Randy Presuhn,
  who reviewed this document for spelling and formatting purposes, and
  who provided a deep review of the technical content.  We also would
  like to thank Bert Wijnen for the permanent coaching during the
  evolution of this document and the detailed review of its final
  versions.  The Security Considerations section was reviewed by Sam
  Hartman and Kurt D. Zeilenga and almost completely re-written by
  Mahalingam Mani.

6.  Security Considerations

  [RFC4710] outlines a threat model associated with RAQMON and security
  considerations to be taken into account in the RAQMON specification
  to mitigate against those threats.  It is imperative that RAQMON PDU
  implementations be able to provide the following protection
  mechanisms in order to attain end-to-end security:

  1.  Authentication: The RRC SHOULD be able to verify that a RAQMON
      report was originated by the RDS claiming to have sent it.  At
      minimum, an RDS/RRC pair MUST use a digest-based authentication
      procedure to authenticate, like the one defined in [RFC1321].

  2.  Privacy: RAQMON information includes identification of the
      parties participating in a communication session.  RAQMON
      deployments SHOULD be able to provide protection from
      eavesdropping, and to prevent an unauthorized third party from
      gathering potentially sensitive information.  This can be
      achieved by using secure transport protocols supporting
      confidentiality based on encryption technologies such as DES
      (Data Encryption Standard), [3DES], and AES (Advanced Encryption
      Standard) [AES].

  3.  Protection from DoS attacks directed at the RRC: RDSs send RAQMON
      reports as a side effect of external events (for example, receipt
      of a phone call).  An attacker can try to overwhelm the RRC (or
      the network) by initiating a large number of events in order to
      swamp the RRC with excessive numbers of RAQMON PDUs.






Siddiqui, et al.            Standards Track                    [Page 39]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


      To prevent DoS attacks against the RRC, the RDS will send the
      first report for a session only after the session has been
      established, so that the session set-up process is not affected.

  4.  NAT and Firewall Friendly Design: The presence of IP addresses
      and TCP/UDP port information in RAQMON PDUs may be NAT-
      unfriendly.  Where NAT-friendliness is a requirement, the RDS MAY
      omit IP address information from the RAQMON PDU.  Another way to
      avoid this problem is by using NAT-Aware Application Layer
      Gateways (ALGs) to ensure that correct IP addresses appear in
      RAQMON PDUs.

  For the usage of TCP, TLS MUST be used to provide transport layer
  security.  Section 6.1 describes the usage of TLS with RAQMON.

  This memo also defines the RAQMON-RDS-MIB module with the purpose of
  mapping the RAQMON PDUs into SNMP Notifications.  To attain end-to-
  end security, the following measures have been taken in the RAQMON-
  RDS-MIB module design:

  There are no management objects defined in this MIB module that have
  a MAX-ACCESS clause of read-write and/or read-create.  Consequently,
  if this MIB module is implemented correctly, there is no risk that an
  intruder can alter or create any management objects of this MIB
  module via direct SNMP SET operations.

  Some of the readable objects in this MIB module (i.e., objects with a
  MAX-ACCESS other than not-accessible) may be considered sensitive or
  vulnerable in some network environments.  It is thus important to
  control even GET and/or NOTIFY access to these objects and possibly
  to even encrypt the values of these objects when sending them over
  the network via SNMP.  These are the tables and objects and their
  sensitivity/vulnerability:

  raqmonDsNotificationTable

  The objects in this table contain user session information, and their
  disclosure may be sensitive in some environments.

  SNMP versions prior to SNMPv3 did not include adequate security.
  Even if the network itself is secure (for example by using IPsec),
  even then, there is no control as to who on the secure network is
  allowed to access and GET/SET (read/change/create/delete) the objects
  in this MIB module.







Siddiqui, et al.            Standards Track                    [Page 40]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  It is RECOMMENDED that implementers consider the security features as
  provided by the SNMPv3 framework (see [RFC3410], section 8),
  including full support for the SNMPv3 cryptographic mechanisms (for
  authentication and confidentiality).

  It is a customer/operator responsibility to ensure that the SNMP
  entity giving access to an instance of this MIB module is properly
  configured to give access to the objects only to those principals
  (users) that have legitimate rights to indeed GET or SET
  (change/create/delete) them.

6.1.  Usage of TLS with RAQMON

6.1.1.  Confidentiality & Message Integrity

  The subsequently authorized RAQMON data flow itself is protected by
  the same TLS security association that protects the client-side
  exchange.  This standard TLS channel is now bound to the server
  through the above client-side authentication.  The session itself is
  identified by the tuple {RDS ip-address:RDS_port / RRC ip-address:
  RRC port}.

6.1.2.  TLS CipherSuites

  Several issues should be considered when selecting TLS ciphersuites
  that are appropriate for use in a given circumstance.  These issues
  include the following:

  The ciphersuite's ability to provide adequate confidentiality
  protection for passwords and other data sent over the transport
  connection.  Client and server implementers should recognize that
  some TLS ciphersuites provide no confidentiality protection, while
  other ciphersuites that do provide confidentiality protection may be
  vulnerable to being cracked using brute force methods, especially in
  light of ever-increasing CPU speeds that reduce the time needed to
  successfully mount such attacks.

  Client and server implementers should carefully consider the value of
  the password or data being protected versus the level of
  confidentiality protection provided by the ciphersuite to ensure that
  the level of protection afforded by the ciphersuite is appropriate.

  The ciphersuite's vulnerability (or lack thereof) to man-in-the-
  middle attacks.  Ciphersuites vulnerable to man-in-the-middle attacks
  SHOULD NOT be used to protect passwords or sensitive data, unless the
  network configuration is such that the danger of a man-in-the-middle
  attack is negligible.




Siddiqui, et al.            Standards Track                    [Page 41]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  After a TLS negotiation (either initial or subsequent) is completed,
  both protocol peers should independently verify that the security
  services provided by the negotiated ciphersuite are adequate for the
  intended use of the RAQMON session.  If not, the TLS layer should be
  closed.

  Spoofing Attacks: When anonymous TLS alone is negotiated without
  client authentication, the client's identity is never established.
  This easily allows any end-entity to establish a TLS-secured RAQMON
  connection to the RRC.  This not only offers an opportunity to spoof
  legitimate RDS clients and hence compromise the integrity of RRC
  monitoring data, but also opens the RRC up to unauthorized clients
  posing as genuine RDS entities to launch a DoS by flooding data.
  RAQMON deployment policy MUST consider requiring RDS client
  authentication during TLS session establishment, especially when RDS
  clients communicate across unprotected internet.

  Insider attacks: Even client-authenticated TLS connections are open
  to spoofing attacks by one trusted client on another.  Validation of
  RDS source address against RDS TLS-session source address SHOULD be
  performed to detect such attempts.

6.1.3.  RAQMON Authorization State

  Every RAQMON session (between RDS and RRC) has an associated
  authorization state.  This state is comprised of numerous factors
  such as what (if any) authorization state has been established, how
  it was established, and what security services are in place.  Some
  factors may be determined and/or affected by protocol events (e.g.,
  StartTLS, or TLS closure), and some factors may be determined by
  external events (e.g., time of day or server load).

  While it is often convenient to view authorization state in
  simplistic terms (as we often do in this technical specification)
  such as "an anonymous state", it is noted that authorization systems
  in RAQMON implementations commonly involve many factors that
  interrelate.

  Authorization in RAQMON is a local matter.  One of the key factors in
  making authorization decisions is authorization identity.  The
  initial session establishment defined in Section 2.2 allows
  information to be exchanged between the client and server to
  establish an authorization identity for the RAQMON session.  The RRC
  is not to allow any RDS-transactions-related traffic through for
  processing until the client authentication is complete, unless
  anonymous authentication mode is negotiated.





Siddiqui, et al.            Standards Track                    [Page 42]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  Upon initial establishment of the RAQMON session, the session has an
  anonymous authorization identity.  Among other things, this implies
  that the client need not send a TLSStartRequired in the first PDU of
  the RAQMON message.  The client may send any operation request prior
  to binding RDS to any authentication, and the RRC MUST treat it as if
  it had been performed after an anonymous RAQMON session start.

  The RDS automatically is placed in an unauthorized state upon RRC
  sending a TLSstart request to the RRC.

  It is noted that other events both internal and external to RAQMON
  may result in the authentication and authorization states being moved
  to an anonymous one.  For instance, the establishment, change, or
  closure of data security services may result in a move to an
  anonymous state, or the user's credential information (e.g.,
  certificate) may have expired.  The former is an example of an event
  internal to RAQMON, whereas the latter is an example of an event
  external to RAQMON.

7.  References

7.1.  Normative References

  [RFC2119]     Bradner, S., "Key words for use in RFCs to Indicate
                Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2578]     McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                J., Rose, M., and S. Waldbusser, "Structure of
                Management Information Version 2 (SMIv2)", STD 58,
                RFC 2578, April 1999.

  [RFC2579]     McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                J., Rose, M., and S. Waldbusser, "Textual Conventions
                for SMIv2", STD 58, RFC 2579, April 1999.

  [RFC2580]     McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                J., Rose, M., and S. Waldbusser, "Conformance
                Statements for SMIv2", STD 58, RFC 2580, April 1999.

  [RFC2819]     Waldbusser, S., "Remote Network Monitoring Management
                Information Base", STD 59, RFC 2819, May 2000.

  [RFC3289]     Baker, F., Chan, K., and A. Smith, "Management
                Information Base for the Differentiated Services
                Architecture", RFC 3289, May 2002.






Siddiqui, et al.            Standards Track                    [Page 43]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  [RFC3411]     Harrington, D., Preshun, R., and B. Wijnen, "An
                Architecture for Describing Simple Network Management
                Protocol (SNMP) Management Frameworks", STD 62,
                RFC 3411, December 2002.

  [RFC4001]     Daniele, M., Haberman, B., Routhier, S., and J.
                Schoenwalder, "Textual Conventions for Internet Network
                Addresses", RFC 4001, February 2005.

  [RFC791]      Postel, J., "Internet Protocol", STD 5, RFC 791,
                September 1981.

  [RFC793]      Postel, J., "Transmission Control Protocol", STD 7,
                RFC 793, September 1981.

  [RFC4710]     Siddiqui, A., Romascanu, D., and E. Golovinsky, "Real-
                time Application Quality-of-Service Monitoring
                (RAQMON)", RFC 4710, October 2006.

  [TLS]         Dierks, T. and E. Rescorla, "The Transport Layer
                Security (TLS) Protocol Version 1.1", RFC 4346, April
                2006.

7.2.  Informative References

  [3DES]        Americation National Standards Institute, "Triple Data
                Encryption Algorithm Modes of Operation", ANSI
                X9.52-1998.

  [AES]         Federal Information Processing Standard (FIPS),
                "Specifications for the ADVANCED ENCRYPTION
                STANDARD(AES)", Publication 197, November 2001.

  [IEEE802.1D]  "Information technology-Telecommunications and
                information exchange between systems--Local and
                metropolitan area networks-Common Specification
                a--Media access control (MAC) bridges:15802-3:
                1998(ISO/IEC)", [ANSI/IEEE Std 802.1D Edition], 1998.

  [RFC1305]     Mills, D., "Network Time Protocol Version 3", RFC 1305,
                March 1992.

  [RFC1321]     Rivest, R., "Message Digest Algorithm MD5", RFC 1321,
                April 1992.







Siddiqui, et al.            Standards Track                    [Page 44]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


  [RFC3410]     Case, J., Mundy, R., Partain, D., and B. Stewart,
                "Introduction and Applicability Statements for
                Internet-Standard Management Framework", RFC 3410,
                December 2002.

  [RFC3414]     Blumenthal, U. and B. Wijnen, "User-based Security
                Model (USM) for version 3 of the Simple Network
                Management Protocol (SNMPv3)", RFC 3414, December 2002.

  [RFC3550]     Schulzrinne, H., Casner, S., Frederick, R., and V.
                Jacobson, "RTP: A Transport Protocol for Real-Time
                Applications", RFC 3550, July 2003.

  [RFC3551]     Schulzrinne, H. and S. Casner, "RTP Profile for Audio
                and Video Conferences with Minimal Control", STD 65,
                RFC 3551, July 2003.

  [RFC3629]     Yergeau, F., "UTF-8, a transformation format of ISO
                10646", STD 63, RFC 3629, November 2003.

  [RFC3737]     Wijnen, B. and A. Bierman, "IANA Guidelines for the
                Registry of Remote Monitoring (RMON) MIB modules",
                RFC 3737, April 2004.

  [RFC4513]     Harrison, R., "Lightweight Directory Access Protocol
                (LDAP): Authentication Methods and Security
                Mechanisms", RFC 4513, June 2006.

  [TLS-PSK]     Eronen, P. and H. Tschofenig, "Pre-Shared Key
                Ciphersuites for Transport Layer Security (TLS)",
                RFC 4279, December 2005.




















Siddiqui, et al.            Standards Track                    [Page 45]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


Appendix A.  Pseudocode

  The implementation notes included in Appendix are for informational
  purposes only and are meant to clarify the RAQMON specification.

  Pseudocode for RDS & RRC

  We provide examples of pseudocode for aspects of RDS and RRC.  There
  may be other implementation methods that are faster in particular
  operating environments or have other advantages.

    RDS:
            when (session starts} {
              report.identifier = session.endpoints, session.starttime;
              report.timestamp = 0;
              while (session in progress) {
                wait interval;
                report.statistics = update statistics;
                report.curtimestamp += interval;
                if encryption required
                   report_data = encrypt(report, encrypt parameters);
                else
                   report_data = report;
                   raqmon_pdu = header, report_data;
                send raqmon-pdu;
              }
            }


    RRC:
            listen on raqmon port
            when ( raqmon_pdu received ) {
                decrypt raqmon_pdu.data if needed

                if report.identifier in database
                   if report.current_time_stamp > last update
                      update session statistics from report.statistics
                   else
                      discard report
             }











Siddiqui, et al.            Standards Track                    [Page 46]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


Authors' Addresses

  Anwar Siddiqui
  Avaya
  307 Middletown Lincroft Road
  Lincroft, NJ  80302
  USA

  Phone: +1 732 852-3200
  EMail: [email protected]


  Dan Romascanu
  Avaya
  Atidim Technology Park, Bldg #3
  Tel Aviv,   61131
  Israel

  Phone: +972-3-645-8414
  EMail: [email protected]


  Eugene Golovinsky
  Alert Logic

  Phone: +1 713 918-1816
  EMail: [email protected]


  Mahfuzur Rahman
  Samsung Information Systems America
  75 West Plumeria Drive
  San Jose, CA  95134
  USA

  Phone: +1 408 544-5559


  Yongbum Yong Kim
  Broadcom
  3151 Zanker Road
  San Jose, CA  95134
  USA

  Phone: +1 408 501-7800
  EMail: [email protected]





Siddiqui, et al.            Standards Track                    [Page 47]

RFC 4712           Transport Mappings for RAQMON PDU        October 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Siddiqui, et al.            Standards Track                    [Page 48]