Network Working Group                                           M. Stapp
Request for Comments: 4701                           Cisco Systems, Inc.
Category: Standards Track                                       T. Lemon
                                                          Nominum, Inc.
                                                          A. Gustafsson
                                         Araneus Information Systems Oy
                                                           October 2006


               A DNS Resource Record (RR) for Encoding
  Dynamic Host Configuration Protocol (DHCP) Information (DHCID RR)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  It is possible for Dynamic Host Configuration Protocol (DHCP) clients
  to attempt to update the same DNS Fully Qualified Domain Name (FQDN)
  or to update a DNS FQDN that has been added to the DNS for another
  purpose as they obtain DHCP leases.  Whether the DHCP server or the
  clients themselves perform the DNS updates, conflicts can arise.  To
  resolve such conflicts, RFC 4703 proposes storing client identifiers
  in the DNS to unambiguously associate domain names with the DHCP
  clients to which they refer.  This memo defines a distinct Resource
  Record (RR) type for this purpose for use by DHCP clients and
  servers:  the "DHCID" RR.















Stapp, et al.               Standards Track                     [Page 1]

RFC 4701                      The DHCID RR                  October 2006


Table of Contents

  1. Introduction ....................................................3
  2. Terminology .....................................................3
  3. The DHCID RR ....................................................3
     3.1. DHCID RDATA Format .........................................3
     3.2. DHCID Presentation Format ..................................4
     3.3. The DHCID RR Identifier Type Codes .........................4
     3.4. The DHCID RR Digest Type Code ..............................4
     3.5. Computation of the RDATA ...................................5
          3.5.1. Using the Client's DUID .............................5
          3.5.2. Using the Client Identifier Option ..................6
          3.5.3. Using the Client's htype and chaddr .................6
     3.6. Examples ...................................................6
          3.6.1. Example 1 ...........................................6
          3.6.2. Example 2 ...........................................7
          3.6.3. Example 3 ...........................................7
  4. Use of the DHCID RR .............................................8
  5. Updater Behavior ................................................8
  6. Security Considerations .........................................8
  7. IANA Considerations .............................................9
  8. Acknowledgements ................................................9
  9. References ......................................................9
     9.1. Normative References .......................................9
     9.2. Informative References ....................................10


























Stapp, et al.               Standards Track                     [Page 2]

RFC 4701                      The DHCID RR                  October 2006


1.  Introduction

  A set of procedures to allow DHCP [7] [11] clients and servers to
  automatically update the DNS ([3], [4]) is proposed in [1].

  Conflicts can arise if multiple DHCP clients wish to use the same DNS
  name or a DHCP client attempts to use a name added for another
  purpose.  To resolve such conflicts, [1] proposes storing client
  identifiers in the DNS to unambiguously associate domain names with
  the DHCP clients using them.  In the interest of clarity, it is
  preferable for this DHCP information to use a distinct RR type.  This
  memo defines a distinct RR for this purpose for use by DHCP clients
  or servers: the "DHCID" RR.

  In order to obscure potentially sensitive client identifying
  information, the data stored is the result of a one-way SHA-256 hash
  computation.  The hash includes information from the DHCP client's
  message as well as the domain name itself, so that the data stored in
  the DHCID RR will be dependent on both the client identification used
  in the DHCP protocol interaction and the domain name.  This means
  that the DHCID RDATA will vary if a single client is associated over
  time with more than one name.  This makes it difficult to 'track' a
  client as it is associated with various domain names.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [2].

3.  The DHCID RR

  The DHCID RR is defined with mnemonic DHCID and type code 49.  The
  DHCID RR is only defined in the IN class.  DHCID RRs cause no
  additional section processing.

3.1.  DHCID RDATA Format

  The RDATA section of a DHCID RR in transmission contains RDLENGTH
  octets of binary data.  The format of this data and its
  interpretation by DHCP servers and clients are described below.

  DNS software should consider the RDATA section to be opaque.  DHCP
  clients or servers use the DHCID RR to associate a DHCP client's
  identity with a DNS name, so that multiple DHCP clients and servers
  may deterministically perform dynamic DNS updates to the same zone.
  From the updater's perspective, the DHCID resource record RDATA
  consists of a 2-octet identifier type, in network byte order,



Stapp, et al.               Standards Track                     [Page 3]

RFC 4701                      The DHCID RR                  October 2006


  followed by a 1-octet digest type, followed by one or more octets
  representing the actual identifier:

          < 2 octets >    Identifier type code
          < 1 octet >     Digest type code
          < n octets >    Digest (length depends on digest type)

3.2.  DHCID Presentation Format

  In DNS master files, the RDATA is represented as a single block in
  base-64 encoding identical to that used for representing binary data
  in [8], Section 3.  The data may be divided up into any number of
  white-space-separated substrings, down to single base-64 digits,
  which are concatenated to form the complete RDATA.  These substrings
  can span lines using the standard parentheses.

3.3.  The DHCID RR Identifier Type Codes

  The DHCID RR Identifier Type Code specifies what data from the DHCP
  client's request was used as input into the hash function.  The
  identifier type codes are defined in a registry maintained by IANA,
  as specified in Section 7.  The initial list of assigned values for
  the identifier type code and that type's identifier is:


  +------------------+------------------------------------------------+
  |  Identifier Type | Identifier                                     |
  |       Code       |                                                |
  +------------------+------------------------------------------------+
  |      0x0000      | The 1-octet 'htype' followed by 'hlen' octets  |
  |                  | of 'chaddr' from a DHCPv4 client's DHCPREQUEST |
  |                  | [7].                                           |
  |      0x0001      | The data octets (i.e., the Type and            |
  |                  | Client-Identifier fields) from a DHCPv4        |
  |                  | client's Client Identifier option [10].        |
  |      0x0002      | The client's DUID (i.e., the data octets of a  |
  |                  | DHCPv6 client's Client Identifier option [11]  |
  |                  | or the DUID field from a DHCPv4 client's       |
  |                  | Client Identifier option [6]).                 |
  |  0x0003 - 0xfffe | Undefined; available to be assigned by IANA.   |
  |      0xffff      | Undefined; RESERVED.                           |
  +------------------+------------------------------------------------+

3.4.  The DHCID RR Digest Type Code

  The DHCID RR Digest Type Code is an identifier for the digest
  algorithm used.  The digest is calculated over an identifier and the
  canonical FQDN as described in the next section.



Stapp, et al.               Standards Track                     [Page 4]

RFC 4701                      The DHCID RR                  October 2006


  The digest type codes are defined in a registry maintained by IANA,
  as specified in Section 7.  The initial list of assigned values for
  the digest type codes is: value 0 is reserved, and value 1 is
  SHA-256.  Reserving other types requires IETF standards action.
  Defining new values will also require IETF standards action to
  document how DNS updaters are to deal with multiple digest types.

3.5.  Computation of the RDATA

  The DHCID RDATA is formed by concatenating the 2-octet identifier
  type code with variable-length data.

  The RDATA for all type codes other than 0xffff, which is reserved for
  future expansion, is formed by concatenating the 2-octet identifier
  type code, the 1-octet digest type code, and the digest value (32
  octets for SHA-256).

      < identifier-type > < digest-type > < digest >

  The input to the digest hash function is defined to be:

      digest = SHA-256(< identifier > < FQDN >)

  The FQDN is represented in the buffer in the canonical wire format as
  described in [9], Section 6.2.  The identifier type code and the
  identifier are related as specified in Section 3.3: the identifier
  type code describes the source of the identifier.

  A DHCPv4 updater uses the 0x0002 type code if a Client Identifier
  option is present in the DHCPv4 messages and it is encoded as
  specified in [6].  Otherwise, the updater uses 0x0001 if a Client
  Identifier option is present, and 0x0000 if not.

  A DHCPv6 updater always uses the 0x0002 type code.

3.5.1.  Using the Client's DUID

  When the updater is using the Client's DUID (either from a DHCPv6
  Client Identifier option or from a portion of the DHCPv4 Client
  Identifier option encoded as specified in [6]), the first two octets
  of the DHCID RR MUST be 0x0002, in network byte order.  The third
  octet is the digest type code (1 for SHA-256).  The rest of the DHCID
  RR MUST contain the results of computing the SHA-256 hash across the
  octets of the DUID followed by the FQDN.







Stapp, et al.               Standards Track                     [Page 5]

RFC 4701                      The DHCID RR                  October 2006


3.5.2.  Using the Client Identifier Option

  When the updater is using the DHCPv4 Client Identifier option sent by
  the client in its DHCPREQUEST message, the first two octets of the
  DHCID RR MUST be 0x0001, in network byte order.  The third octet is
  the digest type code (1 for SHA-256).  The rest of the DHCID RR MUST
  contain the results of computing the SHA-256 hash across the data
  octets (i.e., the Type and Client-Identifier fields) of the option,
  followed by the FQDN.

3.5.3.  Using the Client's htype and chaddr

  When the updater is using the client's link-layer address as the
  identifier, the first two octets of the DHCID RDATA MUST be zero.
  The third octet is the digest type code (1 for SHA-256).  To generate
  the rest of the resource record, the updater computes a one-way hash
  using the SHA-256 algorithm across a buffer containing the client's
  network hardware type, link-layer address, and the FQDN data.
  Specifically, the first octet of the buffer contains the network
  hardware type as it appeared in the DHCP 'htype' field of the
  client's DHCPREQUEST message.  All of the significant octets of the
  'chaddr' field in the client's DHCPREQUEST message follow, in the
  same order in which the octets appear in the DHCPREQUEST message.
  The number of significant octets in the 'chaddr' field is specified
  in the 'hlen' field of the DHCPREQUEST message.  The FQDN data, as
  specified above, follows.

3.6.  Examples

3.6.1.  Example 1

  A DHCP server allocates the IPv6 address 2001:DB8::1234:5678 to a
  client that included the DHCPv6 client-identifier option data 00:01:
  00:06:41:2d:f1:66:01:02:03:04:05:06 in its DHCPv6 request.  The
  server updates the name "chi6.example.com" on the client's behalf and
  uses the DHCP client identifier option data as input in forming a
  DHCID RR.  The DHCID RDATA is formed by setting the two type octets
  to the value 0x0002, the 1-octet digest type to 1 for SHA-256, and
  performing a SHA-256 hash computation across a buffer containing the
  14 octets from the client-id option and the FQDN (represented as
  specified in Section 3.5).

    chi6.example.com.     AAAA    2001:DB8::1234:5678
    chi6.example.com.     DHCID   ( AAIBY2/AuCccgoJbsaxcQc9TUapptP69l
                                    OjxfNuVAA2kjEA= )

  If the DHCID RR type is not supported, the RDATA would be encoded
  [13] as:



Stapp, et al.               Standards Track                     [Page 6]

RFC 4701                      The DHCID RR                  October 2006


    \# 35 ( 000201636fc0b8271c82825bb1ac5c41cf5351aa69b4febd94e8f17cd
            b95000da48c40 )

3.6.2.  Example 2

  A DHCP server allocates the IPv4 address 192.0.2.2 to a client that
  included the DHCP client-identifier option data 01:07:08:09:0a:0b:0c
  in its DHCP request.  The server updates the name "chi.example.com"
  on the client's behalf and uses the DHCP client identifier option
  data as input in forming a DHCID RR.  The DHCID RDATA is formed by
  setting the two type octets to the value 0x0001, the 1-octet digest
  type to 1 for SHA-256, and performing a SHA-256 hash computation
  across a buffer containing the seven octets from the client-id option
  and the FQDN (represented as specified in Section 3.5).

    chi.example.com.      A       192.0.2.2
    chi.example.com.      DHCID   ( AAEBOSD+XR3Os/0LozeXVqcNc7FwCfQdW
                                    L3b/NaiUDlW2No= )

  If the DHCID RR type is not supported, the RDATA would be encoded
  [13] as:

    \# 35 ( 0001013920fe5d1dceb3fd0ba3379756a70d73b17009f41d58bddbfcd
            6a2503956d8da )

3.6.3.  Example 3

  A DHCP server allocating the IPv4 address 192.0.2.3 to a client with
  the Ethernet MAC address 01:02:03:04:05:06 using domain name
  "client.example.com" uses the client's link-layer address to identify
  the client.  The DHCID RDATA is composed by setting the two type
  octets to zero, the 1-octet digest type to 1 for SHA-256, and
  performing an SHA-256 hash computation across a buffer containing the
  1-octet 'htype' value for Ethernet, 0x01, followed by the six octets
  of the Ethernet MAC address, and the domain name (represented as
  specified in Section 3.5).

    client.example.com.   A       192.0.2.3
    client.example.com.   DHCID   ( AAABxLmlskllE0MVjd57zHcWmEH3pCQ6V
                                    ytcKD//7es/deY= )

  If the DHCID RR type is not supported, the RDATA would be encoded
  [13] as:

    \# 35 ( 000001c4b9a5b249651343158dde7bcc77169841f7a4243a572b5c283
            fffedeb3f75e6 )





Stapp, et al.               Standards Track                     [Page 7]

RFC 4701                      The DHCID RR                  October 2006


4.  Use of the DHCID RR

  This RR MUST NOT be used for any purpose other than that detailed in
  [1].  Although this RR contains data that is opaque to DNS servers,
  the data must be consistent across all entities that update and
  interpret this record.  Therefore, new data formats may only be
  defined through actions of the DHC Working Group, as a result of
  revising [1].

5.  Updater Behavior

  The data in the DHCID RR allows updaters to determine whether more
  than one DHCP client desires to use a particular FQDN.  This allows
  site administrators to establish policy about DNS updates.  The DHCID
  RR does not establish any policy itself.

  Updaters use data from a DHCP client's request and the domain name
  that the client desires to use to compute a client identity hash, and
  then compare that hash to the data in any DHCID RRs on the name that
  they wish to associate with the client's IP address.  If an updater
  discovers DHCID RRs whose RDATA does not match the client identity
  that they have computed, the updater SHOULD conclude that a different
  client is currently associated with the name in question.  The
  updater SHOULD then proceed according to the site's administrative
  policy.  That policy might dictate that a different name be selected,
  or it might permit the updater to continue.

6.  Security Considerations

  The DHCID record as such does not introduce any new security problems
  into the DNS.  In order to obscure the client's identity information,
  a one-way hash is used.  Further, in order to make it difficult to
  'track' a client by examining the names associated with a particular
  hash value, the FQDN is included in the hash computation.  Thus, the
  RDATA is dependent on both the DHCP client identification data and on
  each FQDN associated with the client.

  However, it should be noted that an attacker that has some knowledge,
  such as of MAC addresses commonly used in DHCP client identification
  data, may be able to discover the client's DHCP identify by using a
  brute-force attack.  Even without any additional knowledge, the
  number of unknown bits used in computing the hash is typically only
  48 to 80.

  Administrators should be wary of permitting unsecured DNS updates to
  zones, whether or not they are exposed to the global Internet.  Both
  DHCP clients and servers SHOULD use some form of update
  authentication (e.g., [12]) when performing DNS updates.



Stapp, et al.               Standards Track                     [Page 8]

RFC 4701                      The DHCID RR                  October 2006


7.  IANA Considerations

  IANA has allocated a DNS RR type number for the DHCID record type.

  This specification defines a new number-space for the 2-octet
  identifier type codes associated with the DHCID RR.  IANA has
  established a registry of the values for this number-space.  Three
  initial values are assigned in Section 3.3, and the value 0xFFFF is
  reserved for future use.  New DHCID RR identifier type codes are
  assigned through Standards Action, as defined in [5].

  This specification defines a new number-space for the 1-octet digest
  type codes associated with the DHCID RR.  IANA has established a
  registry of the values for this number-space.  Two initial values are
  assigned in Section 3.4.  New DHCID RR digest type codes are assigned
  through Standards Action, as defined in [5].

8.  Acknowledgements

  Many thanks to Harald Alvestrand, Ralph Droms, Olafur Gudmundsson,
  Sam Hartman, Josh Littlefield, Pekka Savola, and especially Bernie
  Volz for their review and suggestions.

9.  References

9.1.  Normative References

  [1]  Stapp, M. and B. Volz, "Resolution of Fully Qualified Domain
       Name (FQDN) Conflicts among Dynamic Host Configuration Protocol
       (DHCP) Clients", RFC 4703, October 2006.

  [2]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [3]  Mockapetris, P., "Domain names - concepts and facilities",
       STD 13, RFC 1034, November 1987.

  [4]  Mockapetris, P., "Domain names - implementation and
       specification", STD 13, RFC 1035, November 1987.

  [5]  Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
       Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

  [6]  Lemon, T. and B. Sommerfeld, "Node-specific Client Identifiers
       for Dynamic Host Configuration Protocol Version Four (DHCPv4)",
       RFC 4361, February 2006.





Stapp, et al.               Standards Track                     [Page 9]

RFC 4701                      The DHCID RR                  October 2006


9.2.  Informative References

  [7]   Droms, R., "Dynamic Host Configuration Protocol", RFC 2131,
        March 1997.

  [8]   Josefsson, S., "The Base16, Base32, and Base64 Data Encodings",
        RFC 3548, July 2003.

  [9]   Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose,
        "Resource Records for the DNS Security Extensions", RFC 4034,
        March 2005.

  [10]  Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
        Extensions", RFC 2132, March 1997.

  [11]  Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., and M.
        Carney, "Dynamic Host Configuration Protocol for IPv6
        (DHCPv6)", RFC 3315, July 2003.

  [12]  Vixie, P., Gudmundsson, O., Eastlake, D., and B. Wellington,
        "Secret Key Transaction Authentication for DNS (TSIG)",
        RFC 2845, May 2000.

  [13]  Gustafsson, A., "Handling of Unknown DNS Resource Record (RR)
        Types", RFC 3597, September 2003.


























Stapp, et al.               Standards Track                    [Page 10]

RFC 4701                      The DHCID RR                  October 2006


Authors' Addresses

  Mark Stapp
  Cisco Systems, Inc.
  1414 Massachusetts Ave.
  Boxborough, MA  01719
  USA

  Phone: 978.936.1535
  EMail: [email protected]


  Ted Lemon
  Nominum, Inc.
  950 Charter St.
  Redwood City, CA  94063
  USA

  EMail: [email protected]


  Andreas Gustafsson
  Araneus Information Systems Oy
  Ulappakatu 1
  02320 Espoo
  Finland

  EMail: [email protected]























Stapp, et al.               Standards Track                    [Page 11]

RFC 4701                      The DHCID RR                  October 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Stapp, et al.               Standards Track                    [Page 12]