Network Working Group                                             W. Luo
Request for Comments: 4667                           Cisco Systems, Inc.
Category: Standards Track                                 September 2006


         Layer 2 Virtual Private Network (L2VPN) Extensions
                for Layer 2 Tunneling Protocol (L2TP)


Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  The Layer 2 Tunneling Protocol (L2TP) provides a standard method for
  setting up and managing L2TP sessions to tunnel a variety of L2
  protocols.  One of the reference models supported by L2TP describes
  the use of an L2TP session to connect two Layer 2 circuits attached
  to a pair of peering L2TP Access Concentrators (LACs), which is a
  basic form of Layer 2 Virtual Private Network (L2VPN).  This document
  defines the protocol extensions for L2TP to set up different types of
  L2VPNs in a unified fashion.

Table of Contents

  1. Introduction ....................................................2
     1.1. Specification of Requirements ..............................2
  2. Network Reference Model .........................................2
  3. Forwarder Identifier ............................................3
  4. Protocol Components .............................................4
     4.1. Control Messages ...........................................4
     4.2. Existing AVPs for L2VPN ....................................4
     4.3. New AVPs for L2VPN .........................................5
     4.4. AVP Interoperability .......................................7
  5. Signaling Procedures ............................................7
     5.1. Overview ...................................................7
     5.2. Pseudowire Tie Detection ...................................8
     5.3. Generic Algorithm ..........................................9
  6. IANA Considerations ............................................12



Luo                         Standards Track                     [Page 1]

RFC 4667               L2VPN Extensions for L2TP          September 2006


  7. Security Considerations ........................................12
  8. Acknowledgement ................................................13
  9. References .....................................................13
     9.1. Normative References ......................................13
     9.2. Informative References ....................................13

1.  Introduction

  [RFC3931] defines a dynamic tunneling mechanism to carry multiple
  Layer 2 protocols besides Point-to-Point Protocol (PPP), the only
  protocol supported in [RFC2661], over a packet-based network.  The
  baseline protocol supports various types of applications, which have
  been highlighted in the different Layer 2 Tunneling Protocol (L2TP)
  reference models in [RFC3931].  An L2TP Access Concentrator (LAC) is
  an L2TP Control Connection Endpoint (LCCE) that cross-connects
  attachment circuits and L2TP sessions.  Layer 2 Virtual Private
  Network (L2VPN) applications are typically in the scope of the LAC-
  LAC reference model.

  This document discusses the commonalities and differences among L2VPN
  applications with respect to using L2TPv3 as the signaling protocol.
  In this document, the acronym "L2TP" refers to L2TPv3 or L2TP in
  general.

1.1.  Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  Network Reference Model

  In the LAC-LAC reference model, a LAC serves as a cross-connect
  between attachment circuits and L2TP sessions.  Each L2TP session
  acts as an emulated circuit, also known as pseudowire.  A pseudowire
  is used to bind two "forwarders" together.  For different L2VPN
  applications, different types of forwarders are defined.

  In the L2VPN framework [L2VPNFW], a LAC is a Provider Edge (PE)
  device.  LAC and PE are interchangeable terms in the context of this
  document.  Remote systems in the LAC-LAC reference model are Customer
  Edge (CE) devices.









Luo                         Standards Track                     [Page 2]

RFC 4667               L2VPN Extensions for L2TP          September 2006


  +----+  L2  +----+                      +----+  L2  +----+
  | CE |------| PE |....[core network]....| PE |------| CE |
  +----+      +----+                      +----+      +----+

                   |<- emulated service ->|
        |<----------------- L2 service -------------->|

                 L2VPN Network Reference Model

  In a simple cross-connect application, an attachment circuit is a
  forwarder directly bound to a pseudowire.  It is a one-to-one
  mapping.  Traffic received from the attachment circuit on a local PE
  is forwarded to the remote PE through the pseudowire.  When the
  remote PE receives traffic from the pseudowire, it forwards the
  traffic to the corresponding attachment circuit on its end.  The
  forwarding decision is based on the attachment circuit or pseudowire
  demultiplexing identifier.

  With Virtual Private LAN Service (VPLS), a Virtual Switching Instance
  (VSI) is a forwarder connected to one or more attachment circuits and
  pseudowires.  A single pseudowire is used to connect a pair of VSIs
  on two peering PEs.  Traffic received from an attachment circuit or a
  pseudowire is first forwarded to the corresponding VSI based on the
  attachment circuit or pseudowire demultiplexing identifier.  The VSI
  performs additional lookup to determine where to further forward the
  traffic.

  With Virtual Private Wire Service (VPWS), attachment circuits are
  grouped into "colored pools".  Each pool is a forwarder and is
  connected through a network of point-to-point cross-connects.  The
  data forwarding perspective is identical to the cross-connect
  application.  However, constructing colored pools involves more
  complicated signaling procedures.

3.  Forwarder Identifier

  A forwarder identifier is assigned to each forwarder on a given PE
  and is unique in the context of the PE.  It is defined as the
  concatenation of an Attachment Group Identifier (AGI) and an
  Attachment Individual Identifier (AII), denoted as <AGI, AII>.  The
  AGI is used to group a set of forwarders together for signaling
  purposes.  An AII is used to distinguish forwarders within a group.
  AII can be unique on a per-platform or per-group basis.

  As far as the signaling procedures are concerned, a forwarder
  identifier is an arbitrary string of bytes.  It is up to
  implementations to decide the values for AGI and AII.




Luo                         Standards Track                     [Page 3]

RFC 4667               L2VPN Extensions for L2TP          September 2006


  When connecting two forwarders together, both MUST have the same AGI
  as part of their forwarder identifiers.  The AII of the source
  forwarder is known as the Source AII (SAII), and the AII of the
  target forwarder is known as the Target AII (TAII).  Therefore, the
  source forwarder and target forwarder can be denoted as <AGI, SAII>
  and <AGI, TAII>, respectively.

4.  Protocol Components

4.1.  Control Messages

  L2TP defines two sets of session management procedures: incoming call
  and outgoing call.  Even though it is entirely possible to use the
  outgoing call procedures for signaling L2VPNs, the incoming call
  procedures have some advantages in terms of the relevance of the
  semantics.  [PWE3L2TP] gives more details on why the incoming call
  procedures are more appropriate for setting up pseudowires.

  The signaling procedures for L2VPNs described in the following
  sections are based on the Control Connection Management and the
  Incoming Call procedures, defined in Sections 3.3 and 3.4.1 of
  [RFC3931], respectively.  L2TP control message types are defined in
  Section 3.1 of [RFC3931].  This document references the following
  L2TP control messages:

    Start-Control-Connection-Request (SCCRQ)
    Start-Control-Connection-Reply   (SCCRP)
    Incoming-Call-Request            (ICRQ)
    Incoming-Call-Reply              (ICRP)
    Incoming-Call-Connected          (ICCN)
    Set-Link-Info                    (SLI)

4.2.  Existing AVPs for L2VPN

  The following Attribute Value Pairs (AVPs), defined in Sections
  5.4.3, 5.4.4, and 5.4.5 of [RFC3931], are used for signaling L2VPNs.

  Router ID

     The Router ID sent in SCCRQ and SCCRP during control connection
     setup establishes the unique identity of each PE.

  Pseudowire Capabilities List

     The Pseudowire Capabilities List sent in the SCCRQ and SCCRP
     indicates the pseudowire types supported by the sending PE.  It
     merely serves as an advertisement to the receiving PE.  Its
     content should not affect the control connection setup.



Luo                         Standards Track                     [Page 4]

RFC 4667               L2VPN Extensions for L2TP          September 2006


     Before a local PE initiates a session of a particular pseudowire
     type to a remote PE, it MUST examine whether the remote PE has
     advertised this pseudowire type in this AVP and SHOULD NOT attempt
     to initiate the session if the intended pseudowire type is not
     supported by the remote PE.

  Pseudowire Type

     The Pseudowire Type sent in ICRQ signals the intended pseudowire
     type to the receiving PE.  The receiving PE checks it against its
     local pseudowire capabilities list.  If it finds a match, it
     responds with an ICRP without a Pseudowire Type AVP, which
     implicitly acknowledges its acceptance of the intended pseudowire.
     If it does not find a match, it MUST respond with a Call-
     Disconnect-Notify (CDN), with an "unsupported pseudowire type"
     result code.

  L2-Specific Sublayer

     The L2-Specific Sublayer can be sent in ICRQ, ICRP, and ICCN.  If
     the receiving PE supports the specified L2-Specific Sublayer, it
     MUST include the identified L2-Specific Sublayer in its data
     packets sent to the sending PE.  Otherwise, it MUST reject the
     connection by sending a CDN to the sending PE.

  Circuit Status

     The Circuit Status is sent in both ICRQ and ICRP to inform the
     receiving PE about the circuit status on the sending PE.  It can
     also be sent in ICCN and SLI to update the status.

  Remote End Identifier

     The TAII value is encoded in the Remote End ID AVP and sent in
     ICRQ along with the optional AGI to instruct the receiving PE to
     bind the proposed pseudowire to the forwarder that matches the
     specified forwarder identifier.

4.3.  New AVPs for L2VPN

  Attachment Group Identifier

     The AGI AVP, Attribute Type 89, is an identifier used to associate
     a forwarder to a logical group.  The AGI AVP is used in
     conjunction with the Local End ID AVP and Remote End ID AVP, which
     encode the SAII and TAII, respectively, to identify a specific
     forwarder.  When the AGI AVP is omitted in the control messages or
     contains a zero-length value, the forwarders are considered to use



Luo                         Standards Track                     [Page 5]

RFC 4667               L2VPN Extensions for L2TP          September 2006


     the default AGI.  Note that there is only one designated default
     AGI value for all forwarders.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |M|H|0|0|0|0|    Length         |              0                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |               89              |      AGI (variable length)    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The AGI field is a variable-length field.  This AVP MAY be present
     in ICRQ.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The hiding of
     AVP attribute values is defined in Section 5.3 of [RFC3931].  The
     M bit for this AVP SHOULD be set to 0.  The Length (before hiding)
     of this AVP is 6 octets plus the length of the AGI field.

  Local End ID

     The Local End ID AVP, Attribute Type 90, encodes the SAII value.
     The SAII may also be used in conjunction with the TAII to detect
     pseudowire ties.  When it is omitted in the control messages, it
     is assumed that it has the same value as the TAII.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |M|H|0|0|0|0|    Length         |              0                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |               90              |       SAII (variable length)  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The SAII field is a variable-length field.  This AVP MAY be
     present in ICRQ.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 0.  The Length (before hiding) of this
     AVP is 6 octets plus the length of the SAII field.

  Interface Maximum Transmission Unit

     The Interface Maximum Transmission Unit (MTU) AVP, Attribute Type



Luo                         Standards Track                     [Page 6]

RFC 4667               L2VPN Extensions for L2TP          September 2006


     91, indicates the MTU in octets of a packet that can be sent out
     from the CE-facing interface.  The MTU values of a given
     pseudowire, if advertised in both directions, MUST be identical.
     If they do not match, the pseudowire SHOULD NOT be established.
     When this AVP is omitted in the control messages in either
     direction, it is assumed that the remote PE has the same interface
     MTU as the local PE for the pseudowire being signaled.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |M|H|0|0|0|0|    Length         |              0                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |               91              |          Interface MTU        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Interface MTU field is a 2-octet integer value.  This AVP MAY
     be present in ICRQ and ICRP.  When a PE receives an Interface MTU
     AVP with an MTU value different from its own, it MAY respond with
     a CDN with a new result code indicating the disconnect cause.

       23 - Mismatching interface MTU

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 0.  The Length (before hiding) of this
     AVP is 8 octets.

4.4.  AVP Interoperability

  To ensure interoperability, the mandatory (M) bit settings of the
  existing AVPs used in L2VPN applications should be the same as those
  specified in [RFC3931].  The generic M-bit processing is described in
  Section 5.2 of [RFC3931].  Setting the M-bit of the new AVPs to 1
  will impair interoperability.

5. Signaling Procedures

5.1.  Overview

  Assume that a PE assigns a forwarder identifier to one of its local
  forwarders and that it knows it needs to set up a pseudowire to a
  remote forwarder on a remote PE that has a certain Forwarder ID.
  This knowledge can be obtained either through manual configuration or
  some auto-discovery procedure.

  Before establishing the intended pseudowire, each pair of peering PEs



Luo                         Standards Track                     [Page 7]

RFC 4667               L2VPN Extensions for L2TP          September 2006


  exchanges control connection messages to establish a control
  connection.  Each advertises its supported pseudowire types, as
  defined in [PWE3IANA], in the Pseudowire Capabilities List AVP.

  After the control connection is established, the local PE examines
  whether the remote PE supports the pseudowire type it intends to set
  up.  Only if the remote PE supports the intended pseudowire type
  should it initiate a pseudowire connection request.

  When the local PE receives an ICRQ for a pseudowire connection, it
  examines the forwarder identifiers encoded in the AGI, SAII, and TAII
  in order to determine the following:

    - Whether it has a local forwarder with the forwarder identifier
      value specified in the ICRQ.

    - Whether the remote forwarder with the forwarder identifier
      specified in the ICRQ is allowed to connect with this local
      forwarder.

  If both conditions are met, it sends an ICRP to the remote PE to
  accept the connection request.  If either of the two conditions
  fails, it sends a CDN to the remote PE to reject the connection
  request.

  The local PE can optionally include a result code in the CDN to
  indicate the disconnect cause.  The possible result codes are

    24 - Attempt to connect to non-existent forwarder
    25 - Attempt to connect to unauthorized forwarder

5.2.  Pseudowire Tie Detection

  Conceivably in the network reference models, as either PE may
  initiate a pseudowire to another PE at any time, the PEs could end up
  initiating a pseudowire to each other simultaneously.  In order to
  avoid setting up duplicated pseudowires between two forwarders, each
  PE must be able to independently detect such a pseudowire tie.  The
  following procedures need to be followed to detect a tie:

  If both TAII and SAII are present in the ICRQ, the receiving PE
  compares the TAII and SAII against the SAII and TAII previously sent
  to the sending PE.  If the received TAII matches the sent SAII and
  the received SAII matches the sent TAII, a tie is detected.

  If only the TAII is present in the ICRQ, the SAII is assumed to have
  the same value as the TAII.  The receiving PE compares the received
  TAII with the SAII that it previously sent to the sending PE.  If the



Luo                         Standards Track                     [Page 8]

RFC 4667               L2VPN Extensions for L2TP          September 2006


  SAII in that ICRQ is also omitted, then the value encoded in the sent
  TAII is used for comparison.  If they match, a tie is detected.

  If the AGI is present, it is first prepended to the TAII and SAII
  values before the tie detection occurs.

  Once a tie is discovered, the PE uses the standard L2TP tie breaking
  procedure, as described in Section 5.4.4 of [RFC3931], to disconnect
  the duplicated pseudowire.

5.3.  Generic Algorithm

  The following uses a generic algorithm to illustrate the protocol
  interactions when constructing an L2VPN using L2TP signaling.

  Each PE first forms a list, SOURCE_FORWARDERS, consisting of all
  local forwarders of a given VPN.  Then it puts all local forwarders
  that need to be interconnected and all remote forwarders of the same
  VPN into another list, TARGET_FORWARDERS.  The formation of the
  network topology depends on the content in the SOURCE_FORWARDERS and
  TARGET_FORWARDERS lists.  These two lists can be constructed by
  manual configuration or some auto-discovery procedure.

  The algorithm is used to set up a full mesh of interconnections
  between SOURCE_FORWARDERS and TARGET_FORWARDERS.  An L2VPN is formed
  when the algorithm is finished in every participating PE of this
  L2VPN.

    1.  Pick the next forwarder, from SOURCE_FORWARDERS.  If no
        forwarder is available for processing, the processing is
        complete.

    2.  Pick the next forwarder, from TARGET_FORWARDERS.  If no
        forwarder is available for processing, go back to step 1.

    3.  If the two forwarders are associated with different Router
        IDs, a pseudowire must be established between them.  Proceed
        to step 6.

    4.  Compare the <AGI, AII> values of the two forwarders.  If
        they match, the source and target forwarders are the same,
        so no more action is necessary.  Go back to step 2.

    5.  As the source and target forwarders both reside on the local
        PE, no pseudowire is needed.  The PE simply creates a local
        cross-connect between the two forwarders.  Go back to step 2.

    6.  As the source and target forwarders reside on different PEs,



Luo                         Standards Track                     [Page 9]

RFC 4667               L2VPN Extensions for L2TP          September 2006


        a pseudowire must be established between them.  The PE first
        examines whether the source forwarder has already established a
        pseudowire to the target forwarder.  If so, go back to step 2.

    7.  If no pseudowire is already established between the source and
        target forwarders, the local PE obtains the address of the
        remote PE and establishes a control connection to the remote
        PE if one does not already exist.

    8.  The local PE sends an ICRQ to the remote PE.  The AGI, TAII,
        and SAII values are encoded in the AGI AVP, the Remote End ID
        AVP, and the Local End ID AVP, respectively.

    9.  If the local PE receives a response corresponding to the
        ICRQ it just sent, proceed to step 10.  Otherwise, if the
        local PE receives an ICRQ from the same remote PE, proceed
        to step 11.

    10. The local PE receives a response from the remote PE.  If
        it is a CDN, go back to step 2.  If it's an ICRP, the local
        PE binds the source forwarder to the pseudowire and sends
        an ICCN to the remote PE.  Go back to step 2.

    11. If the local PE receives an ICRQ from the same remote PE,
        it needs to perform session tie detection, as described in
        Section 5.2.  If a session tie is detected, the PE performs
        tie breaking.

    12. If the local PE loses the tie breaker, it sends a CDN with
        the result code that indicates that the disconnection is due to
        losing the tie breaker.  Proceed to step 14.

    13. If the local PE wins the tie breaker, it ignores the remote
        PE's ICRQ, but acknowledges receipt of the control message
        and continues waiting for the response from the remote PE.
        Go to step 10.

    14. The local PE determines whether it should accept the
        connection request, as described in Section 5.1.
        If it accepts the ICRQ, it sends an ICRP to the remote PE.

    15. The local PE receives a response from the remote PE.  If
        it is a CDN, go back to step 2.  If it is an ICCN, the local
        PE binds the source forwarder to the pseudowire, go back
        to step 2.

  The following diagram illustrates the above procedure:




Luo                         Standards Track                    [Page 10]

RFC 4667               L2VPN Extensions for L2TP          September 2006


         --------->     Pick Next
         |           Source Forwarder
         |                 |
         |                 |
         |                 v                  N
         |        Found Source Forwarder? ----------> End
         |                 |
         |              Y  |
         |                 v
         |              Pick Next     <--------------------------------
         |           Target Forwarder                                 |
         |                 |                                          |
         |                 |                                          |
         |  N              v                                          |
         -------- Found Target Forwarder?                             |
                           |                                          |
                        Y  |                                          |
                           v             Y                        Y   |
                     Same Router ID? ------> Same Forwarder ID? ------|
                           |                         |                |
                        N  |                      N  |                |
                           |                         v                |
                           |                      Create Local -------|
                           v                      Cross-connect       |
                   Pseudowire Already    Y                            |
                   Established Between -------------------------------|
                   Source and Target?                                 |
                           |                                          |
                        N  |                                          |
                           v                                          |
                Local Initiates Pseudowire                            |
              Connection Request to Remote                            |
                           |                                          |
                           |                                          |
                           v                                          |
     ------->    Local Wait for Message                               |
     |           ----- from Remote   --------------                   |
     |           |                                |                   |
     |           |                                |                   |
     |           v                                v                   |
     |   Local Receives Pseudowire      Local Receives Pseudowire     |
     |     Connection Request             Connection Response         |
     |       from Remote                     from Remote              |
     |           |                                |                   |
     |           |                                |                   |
     |           v                                v             N     |
     |   Perform Pseudowire              Connection Accepted? --------|
     |   Tie Detection                            |                   |



Luo                         Standards Track                    [Page 11]

RFC 4667               L2VPN Extensions for L2TP          September 2006


     |           |                             Y  |                   |
     |           |                                v                   |
     |           |                        Local Binds Source ---------|
     |           |                      Forwarder to Pseudowire       |
     |           |                                                    |
     |           v             N                  N                   |
     |       Tie Detected?  -----> Accept Remote ----->  Reject ------|
     |           |             Connection Request?    Remote Request  |
     |        Y  |                        ^   |                       |
     |           v                        |   |   Y                   |
     |   Perform Tie Breaking             |   ------>  Local Binds ----
     |           |                        |         Source Forwarder
     |           |                        |           to Pseudowire
     |           v             N          |
     |   Won Tie Breaking?  ------>   Disconnect
     |           |                  Local Connection
     |        Y  |
     |           v
     ------ Ignore Remote
           Connection Request

6.  IANA Considerations

  The IANA registry procedure in this document follows that in Section
  10 of [RFC3931].  The IANA has assigned the following new values for
  existing registries managed by IANA.

  This document defines three new L2TP control message Attribute Value
  Pairs (AVPs) that have been assigned by the IANA.  These are
  described in Section 4.3 and are summarized below:

    89 - Attachment Group Identifier
    90 - Local End Identifier
    91 - Interface Maximum Transmission Unit

  Sections 4.3 and 5.1 define three new result codes for the CDN
  message that have been assigned by the IANA:

    23 - Mismatching interface MTU
    24 - Attempt to connect to non-existent forwarder
    25 - Attempt to connect to unauthorized forwarder

7.  Security Considerations

  This specification does not introduce any additional security
  considerations beyond those discussed in [RFC3931] and [L2VPNFW].





Luo                         Standards Track                    [Page 12]

RFC 4667               L2VPN Extensions for L2TP          September 2006


8.  Acknowledgement

  The author would like to thank Mark Townsley and Carlos Pignataro for
  their valuable input.

9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3931]  Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling
             Protocol - Version 3 (L2TPv3)", RFC 3931, March 2005.

9.2.  Informative References

  [PWE3IANA] Martini, L., "IANA Allocations for Pseudowire Edge to Edge
             Emulation (PWE3)", BCP 116, RFC 4446, April 2006.

  [L2VPNFW]  Andersson L., Ed. and E. Rosen, Ed., "Framework for Layer
             2 Virtual Private Networks (L2VPNs)", RFC 4664, September
             2006.

  [PWE3L2TP] W. Townsley, "Pseudowires and L2TPv3", Work in Progress.

  [RFC2661]  Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
             G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",
             RFC 2661, August 1999.

Author's Address

  Wei Luo
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA 95134

  EMail: [email protected]













Luo                         Standards Track                    [Page 13]

RFC 4667               L2VPN Extensions for L2TP          September 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Luo                         Standards Track                    [Page 14]