Network Working Group                                        S. Shalunov
Request for Comments: 4656                                 B. Teitelbaum
Category: Standards Track                                        A. Karp
                                                               J. Boote
                                                           M. Zekauskas
                                                              Internet2
                                                         September 2006


            A One-way Active Measurement Protocol (OWAMP)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  The One-Way Active Measurement Protocol (OWAMP) measures
  unidirectional characteristics such as one-way delay and one-way
  loss.  High-precision measurement of these one-way IP performance
  metrics became possible with wider availability of good time sources
  (such as GPS and CDMA).  OWAMP enables the interoperability of these
  measurements.

Table of Contents

  1. Introduction ....................................................2
     1.1. Relationship of Test and Control Protocols .................3
     1.2. Logical Model ..............................................4
  2. Protocol Overview ...............................................5
  3. OWAMP-Control ...................................................6
     3.1. Connection Setup ...........................................6
     3.2. Integrity Protection (HMAC) ...............................11
     3.3. Values of the Accept Field ................................11
     3.4. OWAMP-Control Commands ....................................12
     3.5. Creating Test Sessions ....................................13
     3.6. Send Schedules ............................................18
     3.7. Starting Test Sessions ....................................19
     3.8. Stop-Sessions .............................................20
     3.9. Fetch-Session .............................................24



Shalunov, et al.            Standards Track                     [Page 1]

RFC 4656          One-way Active Measurement Protocol     September 2006


  4. OWAMP-Test .....................................................27
     4.1. Sender Behavior ...........................................28
          4.1.1. Packet Timings .....................................28
          4.1.2. OWAMP-Test Packet Format and Content ...............29
     4.2. Receiver Behavior .........................................33
  5. Computing Exponentially Distributed Pseudo-Random Numbers ......35
     5.1. High-Level Description of the Algorithm ...................35
     5.2. Data Types, Representation, and Arithmetic ................36
     5.3. Uniform Random Quantities .................................37
  6. Security Considerations ........................................38
     6.1. Introduction ..............................................38
     6.2. Preventing Third-Party Denial of Service ..................38
     6.3. Covert Information Channels ...............................39
     6.4. Requirement to Include AES in Implementations .............39
     6.5. Resource Use Limitations ..................................39
     6.6. Use of Cryptographic Primitives in OWAMP ..................40
     6.7. Cryptographic Primitive Replacement .......................42
     6.8. Long-term Manually Managed Keys ...........................43
     6.9. (Not) Using Time as Salt ..................................44
     6.10. The Use of AES-CBC and HMAC ..............................44
  7. Acknowledgements ...............................................45
  8. IANA Considerations ............................................45
  9. Internationalization Considerations ............................46
  10. References ....................................................46
     10.1. Normative References .....................................46
     10.2. Informative References ...................................47
  Appendix A: Sample C Code for Exponential Deviates ................49
  Appendix B: Test Vectors for Exponential Deviates .................54

1.  Introduction

  The IETF IP Performance Metrics (IPPM) working group has defined
  metrics for one-way packet delay [RFC2679] and loss [RFC2680] across
  Internet paths.  Although there are now several measurement platforms
  that implement collection of these metrics [SURVEYOR] [SURVEYOR-INET]
  [RIPE] [BRIX], there is not currently a standard that would permit
  initiation of test streams or exchange of packets to collect
  singleton metrics in an interoperable manner.

  With the increasingly wide availability of affordable global
  positioning systems (GPS) and CDMA-based time sources, hosts
  increasingly have available to them very accurate time sources,
  either directly or through their proximity to Network Time Protocol
  (NTP) primary (stratum 1) time servers.  By standardizing a technique
  for collecting IPPM one-way active measurements, we hope to create an
  environment where IPPM metrics may be collected across a far broader
  mesh of Internet paths than is currently possible.  One particularly
  compelling vision is of widespread deployment of open OWAMP servers



Shalunov, et al.            Standards Track                     [Page 2]

RFC 4656          One-way Active Measurement Protocol     September 2006


  that would make measurement of one-way delay as commonplace as
  measurement of round-trip time using an ICMP-based tool like ping.

  Additional design goals of OWAMP include: being hard to detect and
  manipulate, security, logical separation of control and test
  functionality, and support for small test packets.  (Being hard to
  detect makes interference with measurements more difficult for
  intermediaries in the middle of the network.)

  OWAMP test traffic is hard to detect because it is simply a stream of
  UDP packets from and to negotiated port numbers, with potentially
  nothing static in the packets (size is negotiated, as well).  OWAMP
  also supports an encrypted mode that further obscures the traffic and
  makes it impossible to alter timestamps undetectably.

  Security features include optional authentication and/or encryption
  of control and test messages.  These features may be useful to
  prevent unauthorized access to results or man-in-the-middle attacks
  that attempt to provide special treatment to OWAMP test streams or
  that attempt to modify sender-generated timestamps to falsify test
  results.

  In this document, the key words "MUST", "REQUIRED", "SHOULD",
  "RECOMMENDED", and "MAY" are to be interpreted as described in
  [RFC2119].

1.1.  Relationship of Test and Control Protocols

  OWAMP actually consists of two inter-related protocols: OWAMP-Control
  and OWAMP-Test.  OWAMP-Control is used to initiate, start, and stop
  test sessions and to fetch their results, whereas OWAMP-Test is used
  to exchange test packets between two measurement nodes.

  Although OWAMP-Test may be used in conjunction with a control
  protocol other than OWAMP-Control, the authors have deliberately
  chosen to include both protocols in the same RFC to encourage the
  implementation and deployment of OWAMP-Control as a common
  denominator control protocol for one-way active measurements.  Having
  a complete and open one-way active measurement solution that is
  simple to implement and deploy is crucial to ensuring a future in
  which inter-domain one-way active measurement could become as
  commonplace as ping.  We neither anticipate nor recommend that
  OWAMP-Control form the foundation of a general-purpose extensible
  measurement and monitoring control protocol.

  OWAMP-Control is designed to support the negotiation of one-way
  active measurement sessions and results retrieval in a
  straightforward manner.  At session initiation, there is a



Shalunov, et al.            Standards Track                     [Page 3]

RFC 4656          One-way Active Measurement Protocol     September 2006


  negotiation of sender and receiver addresses and port numbers,
  session start time, session length, test packet size, the mean
  Poisson sampling interval for the test stream, and some attributes of
  the very general [RFC 2330] notion of packet type, including packet
  size and per-hop behavior (PHB) [RFC2474], which could be used to
  support the measurement of one-way network characteristics across
  differentiated services networks.  Additionally, OWAMP-Control
  supports per-session encryption and authentication for both test and
  control traffic, measurement servers that can act as proxies for test
  stream endpoints, and the exchange of a seed value for the pseudo-
  random Poisson process that describes the test stream generated by
  the sender.

  We believe that OWAMP-Control can effectively support one-way active
  measurement in a variety of environments, from publicly accessible
  measurement beacons running on arbitrary hosts to network monitoring
  deployments within private corporate networks.  If integration with
  Simple Network Management Protocol (SNMP) or proprietary network
  management protocols is required, gateways may be created.

1.2.  Logical Model

  Several roles are logically separated to allow for broad flexibility
  in use.  Specifically, we define the following:

  Session-Sender      The sending endpoint of an OWAMP-Test session;

  Session-Receiver    The receiving endpoint of an OWAMP-Test session;

  Server              An end system that manages one or more OWAMP-Test
                      sessions, is capable of configuring per-session
                      state in session endpoints, and is capable of
                      returning the results of a test session;

  Control-Client      An end system that initiates requests for
                      OWAMP-Test sessions, triggers the start of a set
                      of sessions, and may trigger their termination;
                      and

  Fetch-Client        An end system that initiates requests to fetch
                      the results of completed OWAMP-Test sessions.










Shalunov, et al.            Standards Track                     [Page 4]

RFC 4656          One-way Active Measurement Protocol     September 2006


  One possible scenario of relationships between these roles is shown
  below.

      +----------------+               +------------------+
      | Session-Sender |--OWAMP-Test-->| Session-Receiver |
      +----------------+               +------------------+
        ^                                     ^
        |                                     |
        |                                     |
        |                                     |
        |  +----------------+<----------------+
        |  |     Server     |<-------+
        |  +----------------+        |
        |    ^                       |
        |    |                       |
        | OWAMP-Control         OWAMP-Control
        |    |                       |
        v    v                       v
      +----------------+     +-----------------+
      | Control-Client |     |   Fetch-Client  |
      +----------------+     +-----------------+

  (Unlabeled links in the figure are unspecified by this document and
  may be proprietary protocols.)

  Different logical roles can be played by the same host.  For example,
  in the figure above, there could actually be only two hosts: one
  playing the roles of Control-Client, Fetch-Client, and Session-
  Sender, and the other playing the roles of Server and Session-
  Receiver.  This is shown below.

      +-----------------+                   +------------------+
      | Control-Client  |<--OWAMP-Control-->| Server           |
      | Fetch-Client    |                   |                  |
      | Session-Sender  |---OWAMP-Test----->| Session-Receiver |
      +-----------------+                   +------------------+

  Finally, because many Internet paths include segments that transport
  IP over ATM, delay and loss measurements can include the effects of
  ATM segmentation and reassembly (SAR).  Consequently, OWAMP has been
  designed to allow for small test packets that would fit inside the
  payload of a single ATM cell (this is only achieved in
  unauthenticated mode).








Shalunov, et al.            Standards Track                     [Page 5]

RFC 4656          One-way Active Measurement Protocol     September 2006


2.  Protocol Overview

  As described above, OWAMP consists of two inter-related protocols:
  OWAMP-Control and OWAMP-Test.  The former is layered over TCP and is
  used to initiate and control measurement sessions and to fetch their
  results.  The latter protocol is layered over UDP and is used to send
  singleton measurement packets along the Internet path under test.

  The initiator of the measurement session establishes a TCP connection
  to a well-known port, 861, on the target point and this connection
  remains open for the duration of the OWAMP-Test sessions.  An OWAMP
  server SHOULD listen to this well-known port.

  OWAMP-Control messages are transmitted only before OWAMP-Test
  sessions are actually started and after they are completed (with the
  possible exception of an early Stop-Sessions message).

  The OWAMP-Control and OWAMP-Test protocols support three modes of
  operation: unauthenticated, authenticated, and encrypted.  The
  authenticated or encrypted modes require that endpoints possess a
  shared secret.

  All multi-octet quantities defined in this document are represented
  as unsigned integers in network byte order unless specified
  otherwise.

3.  OWAMP-Control

  The type of each OWAMP-Control message can be found after reading the
  first 16 octets.  The length of each OWAMP-Control message can be
  computed upon reading its fixed-size part.  No message is shorter
  than 16 octets.

  An implementation SHOULD expunge unused state to prevent denial-of-
  service attacks, or unbounded memory usage, on the server.  For
  example, if the full control message is not received within some
  number of minutes after it is expected, the TCP connection associated
  with the OWAMP-Control session SHOULD be dropped.  In absence of
  other considerations, 30 minutes seems like a reasonable upper bound.

3.1.  Connection Setup

  Before either a Control-Client or a Fetch-Client can issue commands
  to a Server, it has to establish a connection to the server.

  First, a client opens a TCP connection to the server on a well-known
  port 861.  The server responds with a server greeting:




Shalunov, et al.            Standards Track                     [Page 6]

RFC 4656          One-way Active Measurement Protocol     September 2006


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                      Unused (12 octets)                       |
    |                                                               |
    |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                            Modes                              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                     Challenge (16 octets)                     |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                        Salt (16 octets)                       |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Count (4 octets)                       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                        MBZ (12 octets)                        |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The following Mode values are meaningful: 1 for unauthenticated, 2
  for authenticated, and 4 for encrypted.  The value of the Modes field
  sent by the server is the bit-wise OR of the mode values that it is
  willing to support during this session.  Thus, the last three bits of
  the Modes 32-bit value are used.  The first 29 bits MUST be zero.  A
  client MUST ignore the values in the first 29 bits of the Modes
  value.  (This way, the bits are available for future protocol
  extensions.  This is the only intended extension mechanism.)

  Challenge is a random sequence of octets generated by the server; it
  is used subsequently by the client to prove possession of a shared
  secret in a manner prescribed below.

  Salt and Count are parameters used in deriving a key from a shared
  secret as described below.

  Salt MUST be generated pseudo-randomly (independently of anything
  else in this document).

  Count MUST be a power of 2.  Count MUST be at least 1024.  Count
  SHOULD be increased as more computing power becomes common.




Shalunov, et al.            Standards Track                     [Page 7]

RFC 4656          One-way Active Measurement Protocol     September 2006


  If the Modes value is zero, the server does not wish to communicate
  with the client and MAY close the connection immediately.  The client
  SHOULD close the connection if it receives a greeting with Modes
  equal to zero.  The client MAY close the connection if the client's
  desired mode is unavailable.

  Otherwise, the client MUST respond with the following Set-Up-Response
  message:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                             Mode                              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    .                                                               .
    .                       KeyID (80 octets)                       .
    .                                                               .
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    .                                                               .
    .                       Token (64 octets)                       .
    .                                                               .
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    .                                                               .
    .                     Client-IV (16 octets)                     .
    .                                                               .
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Here Mode is the mode that the client chooses to use during this
  OWAMP-Control session.  It will also be used for all OWAMP-Test
  sessions started under control of this OWAMP-Control session.  In
  Mode, one or zero bits MUST be set within last three bits.  If it is
  one bit that is set within the last three bits, this bit MUST
  indicate a mode that the server agreed to use (i.e., the same bit
  MUST have been set by the server in the server greeting).  The first
  29 bits of Mode MUST be zero.  A server MUST ignore the values of the
  first 29 bits.  If zero Mode bits are set by the client, the client
  indicates that it will not continue with the session; in this case,
  the client and the server SHOULD close the TCP connection associated
  with the OWAMP-Control session.






Shalunov, et al.            Standards Track                     [Page 8]

RFC 4656          One-way Active Measurement Protocol     September 2006


  In unauthenticated mode, KeyID, Token, and Client-IV are unused.
  Otherwise, KeyID is a UTF-8 string, up to 80 octets in length (if the
  string is shorter, it is padded with zero octets), that tells the
  server which shared secret the client wishes to use to authenticate
  or encrypt, while Token is the concatenation of a 16-octet challenge,
  a 16-octet AES Session-key used for encryption, and a 32-octet HMAC-
  SHA1 Session-key used for authentication.  The token itself is
  encrypted using the AES (Advanced Encryption Standard) [AES] in
  Cipher Block Chaining (CBC). Encryption MUST be performed using an
  Initialization Vector (IV) of zero and a key derived from the shared
  secret associated with KeyID.  (Both the server and the client use
  the same mappings from KeyIDs to shared secrets.  The server, being
  prepared to conduct sessions with more than one client, uses KeyIDs
  to choose the appropriate secret key; a client would typically have
  different secret keys for different servers.  The situation is
  analogous to that with passwords.)

  The shared secret is a passphrase; it MUST not contain newlines.  The
  secret key is derived from the passphrase using a password-based key
  derivation function PBKDF2 (PKCS #5) [RFC2898].  The PBKDF2 function
  requires several parameters: the PRF is HMAC-SHA1 [RFC2104]; the salt
  and count are as transmitted by the server.

  AES Session-key, HMAC Session-key and Client-IV are generated
  randomly by the client.  AES Session-key and HMAC Session-key MUST be
  generated with sufficient entropy not to reduce the security of the
  underlying cipher [RFC4086].  Client-IV merely needs to be unique
  (i.e., it MUST never be repeated for different sessions using the
  same secret key; a simple way to achieve that without the use of
  cumbersome state is to generate the Client-IV values using a
  cryptographically secure pseudo-random number source:  if this is
  done, the first repetition is unlikely to occur before 2^64 sessions
  with the same secret key are conducted).


















Shalunov, et al.            Standards Track                     [Page 9]

RFC 4656          One-way Active Measurement Protocol     September 2006


  The server MUST respond with the following Server-Start message:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                         MBZ (15 octets)                       |
    |                                                               |
    |                                               +-+-+-+-+-+-+-+-+
    |                                               |   Accept      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                     Server-IV (16 octets)                     |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Start-Time (Timestamp)                    |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         MBZ (8 octets)                        |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The MBZ parts MUST be zero.  The client MUST ignore their value.  MBZ
  (MUST be zero) fields here and after have the same semantics: the
  party that sends the message MUST set the field so that all bits are
  equal to zero; the party that interprets the message MUST ignore the
  value.  (This way, the field could be used for future extensions.)

  Server-IV is generated randomly by the server.  In unauthenticated
  mode, Server-IV is unused.

  The Accept field indicates the server's willingness to continue
  communication.  A zero value in the Accept field means that the
  server accepts the authentication and is willing to conduct further
  transactions.  Non-zero values indicate that the server does not
  accept the authentication or, for some other reason, is not willing
  to conduct further transactions in this OWAMP-Control session.  The
  full list of available Accept values is described in Section 3.3,
  "Values of the Accept Field".

  If a negative (non-zero) response is sent, the server MAY (and the
  client SHOULD) close the connection after this message.

  Start-Time is a timestamp representing the time when the current
  instantiation of the server started operating.  (For example, in a
  multi-user general purpose operating system, it could be the time
  when the server process was started.)  If Accept is non-zero, Start-



Shalunov, et al.            Standards Track                    [Page 10]

RFC 4656          One-way Active Measurement Protocol     September 2006


  Time SHOULD be set so that all of its bits are zeros.  In
  authenticated and encrypted modes, Start-Time is encrypted as
  described in Section 3.4, "OWAMP-Control Commands", unless Accept is
  non-zero.  (Authenticated and encrypted mode cannot be entered unless
  the control connection can be initialized.)

  Timestamp format is described in Section 4.1.2.  The same
  instantiation of the server SHOULD report the same exact Start-Time
  value to each client in each session.

  The previous transactions constitute connection setup.

3.2.  Integrity Protection (HMAC)

  Authentication of each message (also referred to as a command in this
  document) in OWAMP-Control is accomplished by adding an HMAC to it.
  The HMAC that OWAMP uses is HMAC-SHA1 truncated to 128 bits.  Thus,
  all HMAC fields are 16 octets.  An HMAC needs a key.  The HMAC
  Session-key is communicated along with the AES Session-key during
  OWAMP-Control connection setup.  The HMAC Session-key SHOULD be
  derived independently of the AES Session-key (an implementation, of
  course, MAY use the same mechanism to generate the random bits for
  both keys).  Each HMAC sent covers everything sent in a given
  direction between the previous HMAC (but not including it) and up to
  the beginning of the new HMAC.  This way, once encryption is set up,
  each bit of the OWAMP-Control connection is authenticated by an HMAC
  exactly once.

  When encrypting, authentication happens before encryption, so HMAC
  blocks are encrypted along with the rest of the stream.  When
  decrypting, the order, of course, is reversed: first one decrypts,
  then one checks the HMAC, then one proceeds to use the data.

  The HMAC MUST be checked as early as possible to avoid using and
  propagating corrupt data.

  In open mode, the HMAC fields are unused and have the same semantics
  as MBZ fields.

3.3.  Values of the Accept Field

  Accept values are used throughout the OWAMP-Control protocol to
  communicate the server response to client requests.  The full set of
  valid Accept field values are as follows:

    0    OK.

    1    Failure, reason unspecified (catch-all).



Shalunov, et al.            Standards Track                    [Page 11]

RFC 4656          One-way Active Measurement Protocol     September 2006


    2    Internal error.

    3    Some aspect of request is not supported.

    4    Cannot perform request due to permanent resource limitations.

    5    Cannot perform request due to temporary resource limitations.

  All other values are reserved.  The sender of the message MAY use the
  value of 1 for all non-zero Accept values.  A message sender SHOULD
  use the correct Accept value if it is going to use other values.  The
  message receiver MUST interpret all values of Accept other than these
  reserved values as 1.  This way, other values are available for
  future extensions.

3.4.  OWAMP-Control Commands

  In authenticated or encrypted mode (which are identical as far as
  OWAMP-Control is concerned, and only differ in OWAMP-Test), all
  further communications are encrypted with the AES Session-key (using
  CBC mode) and authenticated with HMAC Session-key.  The client
  encrypts everything it sends through the just-established OWAMP-
  Control connection using stream encryption with Client-IV as the IV.
  Correspondingly, the server encrypts its side of the connection using
  Server-IV as the IV.

  The IVs themselves are transmitted in cleartext.  Encryption starts
  with the block immediately following the block containing the IV.
  The two streams (one going from the client to the server and one
  going back) are encrypted independently, each with its own IV, but
  using the same key (the AES Session-key).

  The following commands are available for the client: Request-Session,
  Start-Sessions, Stop-Sessions, and Fetch-Session.  The command Stop-
  Sessions is available to both the client and the server.  (The server
  can also send other messages in response to commands it receives.)

  After the client sends the Start-Sessions command and until it both
  sends and receives (in an unspecified order) the Stop-Sessions
  command, it is said to be conducting active measurements.  Similarly,
  the server is said to be conducting active measurements after it
  receives the Start-Sessions command and until it both sends and
  receives (in an unspecified order) the Stop-Sessions command.

  While conducting active measurements, the only command available is
  Stop-Sessions.

  These commands are described in detail below.



Shalunov, et al.            Standards Track                    [Page 12]

RFC 4656          One-way Active Measurement Protocol     September 2006


3.5.  Creating Test Sessions

  Individual one-way active measurement sessions are established using
  a simple request/response protocol.  An OWAMP client MAY issue zero
  or more Request-Session messages to an OWAMP server, which MUST
  respond to each with an Accept-Session message.  An Accept-Session
  message MAY refuse a request.












































Shalunov, et al.            Standards Track                    [Page 13]

RFC 4656          One-way Active Measurement Protocol     September 2006


  The format of Request-Session message is as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |      1        |  MBZ  | IPVN  |  Conf-Sender  | Conf-Receiver |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                  Number of Schedule Slots                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      Number of Packets                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Sender Port          |         Receiver Port         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sender Address                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |           Sender Address (cont.) or MBZ (12 octets)           |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Receiver Address                       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |           Receiver Address (cont.) or MBZ (12 octets)         |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                        SID (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         Padding Length                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Start Time                          |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       Timeout, (8 octets)                     |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       Type-P Descriptor                       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         MBZ (8 octets)                        |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                       HMAC (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Shalunov, et al.            Standards Track                    [Page 14]

RFC 4656          One-way Active Measurement Protocol     September 2006


  This is immediately followed by one or more schedule slot
  descriptions (the number of schedule slots is specified in the
  "Number of Schedule Slots" field above):

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Slot Type  |                                               |
    +-+-+-+-+-+-+-+-+         MBZ (7 octets)                        |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Slot Parameter (Timestamp)                    |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  These are immediately followed by HMAC:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                       HMAC (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  All these messages constitute one logical message: the Request-
  Session command.

  Above, the first octet (1) indicates that this is the Request-Session
  command.

  IPVN is the IP version numbers for Sender and Receiver.  When the IP
  version number is 4, 12 octets follow the 4-octet IPv4 address stored
  in Sender Address and Receiver Address.  These octets MUST be set to
  zero by the client and MUST be ignored by the server.  Currently
  meaningful IPVN values are 4 and 6.

  Conf-Sender and Conf-Receiver MUST be set to 0 or 1 by the client.
  The server MUST interpret any non-zero value as 1.  If the value is
  1, the server is being asked to configure the corresponding agent
  (sender or receiver).  In this case, the corresponding Port value
  SHOULD be disregarded by the server.  At least one of Conf-Sender and
  Conf-Receiver MUST be 1.  (Both can be set, in which case the server
  is being asked to perform a session between two hosts it can
  configure.)





Shalunov, et al.            Standards Track                    [Page 15]

RFC 4656          One-way Active Measurement Protocol     September 2006


  Number of Schedule Slots, as mentioned before, specifies the number
  of slot records that go between the two blocks of HMAC.  It is used
  by the sender to determine when to send test packets (see next
  section).

  Number of Packets is the number of active measurement packets to be
  sent during this OWAMP-Test session (note that either the server or
  the client can abort the session early).

  If Conf-Sender is not set, Sender Port is the UDP port from which
  OWAMP-Test packets will be sent.  If Conf-Receiver is not set,
  Receiver Port is the UDP port OWAMP-Test to which packets are
  requested to be sent.

  The Sender Address and Receiver Address fields contain, respectively,
  the sender and receiver addresses of the end points of the Internet
  path over which an OWAMP test session is requested.

  SID is the session identifier.  It can be used in later sessions as
  an argument for the Fetch-Session command.  It is meaningful only if
  Conf-Receiver is 0.  This way, the SID is always generated by the
  receiving side.  See the end of the section for information on how
  the SID is generated.

  Padding length is the number of octets to be appended to the normal
  OWAMP-Test packet (see more on padding in discussion of OWAMP-Test).

  Start Time is the time when the session is to be started (but not
  before Start-Sessions command is issued).  This timestamp is in the
  same format as OWAMP-Test timestamps.

  Timeout (or a loss threshold) is an interval of time (expressed as a
  timestamp).  A packet belonging to the test session that is being set
  up by the current Request-Session command will be considered lost if
  it is not received during Timeout seconds after it is sent.

  Type-P Descriptor covers only a subset of (very large) Type-P space.
  If the first two bits of the Type-P Descriptor are 00, then the
  subsequent six bits specify the requested Differentiated Services
  Codepoint (DSCP) value of sent OWAMP-Test packets, as defined in
  [RFC2474].  If the first two bits of Type-P descriptor are 01, then
  the subsequent 16 bits specify the requested PHB Identification Code
  (PHB ID), as defined in [RFC2836].

  Therefore, the value of all zeros specifies the default best-effort
  service.





Shalunov, et al.            Standards Track                    [Page 16]

RFC 4656          One-way Active Measurement Protocol     September 2006


  If Conf-Sender is set, the Type-P Descriptor is to be used to
  configure the sender to send packets according to its value.  If
  Conf-Sender is not set, the Type-P Descriptor is a declaration of how
  the sender will be configured.

  If Conf-Sender is set and the server does not recognize the Type-P
  Descriptor, or it cannot or does not wish to set the corresponding
  attributes on OWAMP-Test packets, it SHOULD reject the session
  request.  If Conf-Sender is not set, the server SHOULD accept or
  reject the session, paying no attention to the value of the Type-P
  Descriptor.

  To each Request-Session message, an OWAMP server MUST respond with an
  Accept-Session message:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Accept     |  MBZ          |            Port               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
    |                                                               |
    |                        SID (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                        MBZ (12 octets)                        |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                       HMAC (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  In this message, zero in the Accept field means that the server is
  willing to conduct the session.  A non-zero value indicates rejection
  of the request.  The full list of available Accept values is
  described in Section 3.3, "Values of the Accept Field".

  If the server rejects a Request-Session message, it SHOULD not close
  the TCP connection.  The client MAY close it if it receives a
  negative response to the Request-Session message.

  The meaning of Port in the response depends on the values of Conf-
  Sender and Conf-Receiver in the query that solicited the response.
  If both were set, the Port field is unused.  If only Conf-Sender was
  set, Port is the port from which to expect OWAMP-Test packets.  If



Shalunov, et al.            Standards Track                    [Page 17]

RFC 4656          One-way Active Measurement Protocol     September 2006


  only Conf-Receiver was set, Port is the port to which OWAMP-Test
  packets are sent.

  If only Conf-Sender was set, the SID field in the response is unused.
  Otherwise, SID is a unique server-generated session identifier.  It
  can be used later as handle to fetch the results of a session.

  SIDs SHOULD be constructed by concatenation of the 4-octet IPv4 IP
  number belonging to the generating machine, an 8-octet timestamp, and
  a 4-octet random value.  To reduce the probability of collisions, if
  the generating machine has any IPv4 addresses (with the exception of
  loopback), one of them SHOULD be used for SID generation, even if all
  communication is IPv6-based.  If it has no IPv4 addresses at all, the
  last four octets of an IPv6 address MAY be used instead.  Note that
  SID is always chosen by the receiver.  If truly random values are not
  available, it is important that the SID be made unpredictable, as
  knowledge of the SID might be used for access control.

3.6.  Send Schedules

  The sender and the receiver both need to know the same send schedule.
  This way, when packets are lost, the receiver knows when they were
  supposed to be sent.  It is desirable to compress common schedules
  and still to be able to use an arbitrary one for the test sessions.
  In many cases, the schedule will consist of repeated sequences of
  packets: this way, the sequence performs some test, and the test is
  repeated a number of times to gather statistics.

  To implement this, we have a schedule with a given number of slots.
  Each slot has a type and a parameter.  Two types are supported:
  exponentially distributed pseudo-random quantity (denoted by a code
  of 0) and a fixed quantity (denoted by a code of 1).  The parameter
  is expressed as a timestamp and specifies a time interval.  For a
  type 0 slot (exponentially distributed pseudo-random quantity), this
  interval is the mean value (or 1/lambda if the distribution density
  function is expressed as lambda*exp(-lambda*x) for positive values of
  x).  For a type 1 (fixed quantity) slot, the parameter is the delay
  itself.  The sender starts with the beginning of the schedule and
  executes the instructions in the slots: for a slot of type 0, wait an
  exponentially distributed time with a mean of the specified parameter
  and then send a test packet (and proceed to the next slot); for a
  slot of type 1, wait the specified time and send a test packet (and
  proceed to the next slot).  The schedule is circular: when there are
  no more slots, the sender returns to the first slot.

  The sender and the receiver need to be able to reproducibly execute
  the entire schedule (so, if a packet is lost, the receiver can still
  attach a send timestamp to it).  Slots of type 1 are trivial to



Shalunov, et al.            Standards Track                    [Page 18]

RFC 4656          One-way Active Measurement Protocol     September 2006


  reproducibly execute.  To reproducibly execute slots of type 0, we
  need to be able to generate pseudo-random exponentially distributed
  quantities in a reproducible manner.  The way this is accomplished is
  discussed later in Section 5, "Computing Exponentially Distributed
  Pseudo-Random Numbers".

  Using this mechanism, one can easily specify common testing
  scenarios.  The following are some examples:

  +  Poisson stream: a single slot of type 0.

  +  Periodic stream: a single slot of type 1.

  +  Poisson stream of back-to-back packet pairs: two slots, type 0
     with a non-zero parameter and type 1 with a zero parameter.

  Further, a completely arbitrary schedule can be specified (albeit
  inefficiently) by making the number of test packets equal to the
  number of schedule slots.  In this case, the complete schedule is
  transmitted in advance of an OWAMP-Test session.

3.7.  Starting Test Sessions

  Having requested one or more test sessions and received affirmative
  Accept-Session responses, an OWAMP client MAY start the execution of
  the requested test sessions by sending a Start-Sessions message to
  the server.

  The format of this message is as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |      2        |                                               |
    +-+-+-+-+-+-+-+-+                                               |
    |                        MBZ (15 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                       HMAC (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The server MUST respond with an Start-Ack message (which SHOULD be
  sent as quickly as possible).  Start-Ack messages have the following
  format:



Shalunov, et al.            Standards Track                    [Page 19]

RFC 4656          One-way Active Measurement Protocol     September 2006


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Accept    |                                               |
    +-+-+-+-+-+-+-+-+                                               |
    |                        MBZ (15 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                       HMAC (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  If Accept is non-zero, the Start-Sessions request was rejected; zero
  means that the command was accepted.  The full list of available
  Accept values is described in Section 3.3, "Values of the Accept
  Field".  The server MAY, and the client SHOULD, close the connection
  in the case of a rejection.

  The server SHOULD start all OWAMP-Test streams immediately after it
  sends the response or immediately after their specified start times,
  whichever is later.  If the client represents a Sender, the client
  SHOULD start its OWAMP-Test streams immediately after it sees the
  Start-Ack response from the Server (if the Start-Sessions command was
  accepted) or immediately after their specified start times, whichever
  is later.  See more on OWAMP-Test sender behavior in a separate
  section below.

3.8.  Stop-Sessions

  The Stop-Sessions message may be issued by either the Control-Client
  or the Server.  The format of this command is as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |      3        |    Accept     |              MBZ              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      Number of Sessions                       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (8 octets)                         |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  This is immediately followed by zero or more session description
  records (the number of session description records is specified in



Shalunov, et al.            Standards Track                    [Page 20]

RFC 4656          One-way Active Measurement Protocol     September 2006


  the "Number of Sessions" field above).  The session description
  record is used to indicate which packets were actually sent by the
  sender process (rather than skipped).  The header of the session
  description record is as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
    |                                                               |
    |                        SID (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Next Seqno                          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Number of Skip Ranges                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  This is immediately followed by zero or more Skip Range descriptions
  as specified by the "Number of Skip Ranges" field above.  Skip Ranges
  are simply two sequence numbers that, together, indicate a range of
  packets that were not sent:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
    |                      First Seqno Skipped                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       Last Seqno Skipped                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Skip Ranges MUST be in order.  The last (possibly full, possibly
  incomplete) block (16 octets) of data MUST be padded with zeros, if
  necessary.  This ensures that the next session description record
  starts on a block boundary.

  Finally, a single block (16 octets) of HMAC is concatenated on the
  end to complete the Stop-Sessions message.

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                       HMAC (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  All these records comprise one logical message: the Stop-Sessions
  command.



Shalunov, et al.            Standards Track                    [Page 21]

RFC 4656          One-way Active Measurement Protocol     September 2006


  Above, the first octet (3) indicates that this is the Stop-Sessions
  command.

  Non-zero Accept values indicate a failure of some sort.  Zero values
  indicate normal (but possibly premature) completion.  The full list
  of available Accept values is described in Section 3.3, "Values of
  the Accept Field".

  If Accept had a non-zero value (from either party), results of all
  OWAMP-Test sessions spawned by this OWAMP-Control session SHOULD be
  considered invalid, even if a Fetch-Session with SID from this
  session works for a different OWAMP-Control session.  If Accept was
  not transmitted at all (for whatever reason, including the TCP
  connection used for OWAMP-Control breaking), the results of all
  OWAMP-Test sessions spawned by this OWAMP-control session MAY be
  considered invalid.

  Number of Sessions indicates the number of session description
  records that immediately follow the Stop-Sessions header.

  Number of Sessions MUST contain the number of send sessions started
  by the local side of the control connection that have not been
  previously terminated by a Stop-Sessions command (i.e., the Control-
  Client MUST account for each accepted Request-Session where Conf-
  Receiver was set; the Control-Server MUST account for each accepted
  Request-Session where Conf-Sender was set).  If the Stop-Sessions
  message does not account for exactly the send sessions controlled by
  that side, then it is to be considered invalid and the connection
  SHOULD be closed and any results obtained considered invalid.

  Each session description record represents one OWAMP-Test session.

  SID is the session identifier (SID) used to indicate which send
  session is being described.

  Next Seqno indicates the next sequence number that would have been
  sent from this send session.  For completed sessions, this will equal
  NumPackets from the Request-Session.

  Number of Skip Ranges indicates the number of holes that actually
  occurred in the sending process.  This is a range of packets that
  were never actually sent by the sending process.  For example, if a
  send session is started too late for the first 10 packets to be sent
  and this is the only hole in the schedule, then "Number of Skip
  Ranges" would be 1.  The single Skip Range description will have
  First Seqno Skipped equal to 0 and Last Seqno Skipped equal to 9.
  This is described further in the "Sender Behavior" section.




Shalunov, et al.            Standards Track                    [Page 22]

RFC 4656          One-way Active Measurement Protocol     September 2006


  If the OWAMP-Control connection breaks when the Stop-Sessions command
  is sent, the receiver MAY not completely invalidate the session
  results.  It MUST discard all record of packets that follow (in other
  words, that have greater sequence number than) the last packet that
  was actually received before any lost packet records.  This will help
  differentiate between packet losses that occurred in the network and
  packets the sending process may have never sent.

  If a receiver of an OWAMP-Test session learns, through an OWAMP-
  Control Stop-Sessions message, that the OWAMP-Test sender's last
  sequence number is lower than any sequence number actually received,
  the results of the complete OWAMP-Test session MUST be invalidated.

  A receiver of an OWAMP-Test session, upon receipt of an OWAMP-Control
  Stop-Sessions command, MUST discard any packet records -- including
  lost packet records -- with a (computed) send time that falls between
  the current time minus Timeout and the current time.  This ensures
  statistical consistency for the measurement of loss and duplicates in
  the event that the Timeout is greater than the time it takes for the
  Stop-Sessions command to take place.

  To effect complete sessions, each side of the control connection
  SHOULD wait until all sessions are complete before sending the Stop-
  Sessions message.  The completed time of each session is determined
  as Timeout after the scheduled time for the last sequence number.
  Endpoints MAY add a small increment to the computed completed time
  for send endpoints to ensure that the Stop-Sessions message reaches
  the receiver endpoint after Timeout.

  To effect a premature stop of sessions, the party that initiates this
  command MUST stop its OWAMP-Test send streams to send the Session
  Packets Sent values before sending this command.  That party SHOULD
  wait until receiving the response Stop-Sessions message before
  stopping the receiver streams so that it can use the values from the
  received Stop-Sessions message to validate the data.
















Shalunov, et al.            Standards Track                    [Page 23]

RFC 4656          One-way Active Measurement Protocol     September 2006


3.9.  Fetch-Session

  The format of this client command is as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |      4        |                                               |
    +-+-+-+-+-+-+-+-+                                               |
    |                        MBZ (7 octets)                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         Begin Seq                             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                          End Seq                              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                        SID (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                       HMAC (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Begin Seq is the sequence number of the first requested packet.  End
  Seq is the sequence number of the last requested packet.  If Begin
  Seq is all zeros and End Seq is all ones, complete session is said to
  be requested.

  If a complete session is requested and the session is still in
  progress or has terminated in any way other than normally, the
  request to fetch session results MUST be denied.  If an incomplete
  session is requested, all packets received so far that fall into the
  requested range SHOULD be returned.  Note that, since no commands can
  be issued between Start-Sessions and Stop-Sessions, incomplete
  requests can only happen on a different OWAMP-Control connection
  (from the same or different host as Control-Client).












Shalunov, et al.            Standards Track                    [Page 24]

RFC 4656          One-way Active Measurement Protocol     September 2006


  The server MUST respond with a Fetch-Ack message.  The format of this
  server response is as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Accept    | Finished      |          MBZ (2 octets)       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Next Seqno                          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                    Number of Skip Ranges                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       Number of Records                       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                       HMAC (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Again, non-zero in the Accept field means a rejection of command.
  The server MUST specify zero for all remaining fields if Accept is
  non-zero.  The client MUST ignore all remaining fields (except for
  the HMAC) if Accept is non-zero.  The full list of available Accept
  values is described in Section 3.3, "Values of the Accept Field".

  Finished is non-zero if the OWAMP-Test session has terminated.

  Next Seqno indicates the next sequence number that would have been
  sent from this send session.  For completed sessions, this will equal
  NumPackets from the Request-Session.  This information is only
  available if the session has terminated.  If Finished is zero, then
  Next Seqno MUST be set to zero by the server.

  Number of Skip Ranges indicates the number of holes that actually
  occurred in the sending process.  This information is only available
  if the session has terminated.  If Finished is zero, then Skip Ranges
  MUST be set to zero by the server.

  Number of Records is the number of packet records that fall within
  the requested range.  This number might be less than the Number of
  Packets in the reproduction of the Request-Session command because of
  a session that ended prematurely, or it might be greater because of
  duplicates.

  If Accept was non-zero, this concludes the response to the Fetch-
  Session message.  If Accept was 0, the server then MUST immediately
  send the OWAMP-Test session data in question.



Shalunov, et al.            Standards Track                    [Page 25]

RFC 4656          One-way Active Measurement Protocol     September 2006


  The OWAMP-Test session data consists of the following (concatenated):

  +  A reproduction of the Request-Session command that was used to
     start the session; it is modified so that actual sender and
     receiver port numbers that were used by the OWAMP-Test session
     always appear in the reproduction.

  +  Zero or more (as specified) Skip Range descriptions.  The last
     (possibly full, possibly incomplete) block (16 octets) of Skip
     Range descriptions is padded with zeros, if necessary.

  +  16 octets of HMAC.

  +  Zero or more (as specified) packet records.  The last (possibly
     full, possibly incomplete) block (16 octets) of data is padded
     with zeros, if necessary.

  +  16 octets of HMAC.

  Skip Range descriptions are simply two sequence numbers that,
  together, indicate a range of packets that were not sent:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
    |                      First Seqno Skipped                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       Last Seqno Skipped                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Skip Range descriptions should be sent out in order, as sorted by
  First Seqno.  If any Skip Ranges overlap or are out of order, the
  session data is to be considered invalid and the connection SHOULD be
  closed and any results obtained considered invalid.

  Each packet record is 25 octets and includes 4 octets of sequence
  number, 8 octets of send timestamp, 2 octets of send timestamp error
  estimate, 8 octets of receive timestamp, 2 octets of receive
  timestamp error estimate, and 1 octet of Time To Live (TTL), or Hop
  Limit in IPv6:











Shalunov, et al.            Standards Track                    [Page 26]

RFC 4656          One-way Active Measurement Protocol     September 2006


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    00|                          Seq Number                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    04|      Send Error Estimate      |    Receive Error Estimate     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    08|                         Send Timestamp                        |
    12|                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    16|                       Receive Timestamp                       |
    20|                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    24|    TTL        |
      +-+-+-+-+-+-+-+-+

  Packet records are sent out in the same order the actual packets were
  received.  Therefore, the data is in arrival order.

  Note that lost packets (if any losses were detected during the
  OWAMP-Test session) MUST appear in the sequence of packets.  They can
  appear either at the point when the loss was detected or at any later
  point.  Lost packet records are distinguished as follows:

  +  A send timestamp filled with the presumed send time (as computed
     by the send schedule).

  +  A send error estimate filled with Multiplier=1, Scale=64, and S=0
     (see the OWAMP-Test description for definition of these quantities
     and explanation of timestamp format and error estimate format).

  +  A normal receive error estimate as determined by the error of the
     clock being used to declare the packet lost.  (It is declared lost
     if it is not received by the Timeout after the presumed send time,
     as determined by the receiver's clock.)

  +  A receive timestamp consisting of all zero bits.

  +  A TTL value of 255.

4.  OWAMP-Test

  This section describes OWAMP-Test protocol.  It runs over UDP, using
  sender and receiver IP and port numbers negotiated during the
  Request-Session exchange.






Shalunov, et al.            Standards Track                    [Page 27]

RFC 4656          One-way Active Measurement Protocol     September 2006


  As with OWAMP-Control, OWAMP-Test has three modes: unauthenticated,
  authenticated, and encrypted.  All OWAMP-Test sessions that are
  spawned by an OWAMP-Control session inherit its mode.

  OWAMP-Control client, OWAMP-Control server, OWAMP-Test sender, and
  OWAMP-Test receiver can potentially all be different machines.  (In a
  typical case, we expect that there will be only two machines.)

4.1.  Sender Behavior

4.1.1.  Packet Timings

  Send schedules based on slots, described previously, in conjunction
  with scheduled session start time, enable the sender and the receiver
  to compute the same exact packet sending schedule independently of
  each other.  These sending schedules are independent for different
  OWAMP-Test sessions, even if they are governed by the same OWAMP-
  Control session.

  Consider any OWAMP-Test session.  Once Start-Sessions exchange is
  complete, the sender is ready to start sending packets.  Under normal
  OWAMP use circumstances, the time to send the first packet is in the
  near future (perhaps a fraction of a second away).  The sender SHOULD
  send packets as close as possible to their scheduled time, with the
  following exception: if the scheduled time to send is in the past,
  and is separated from the present by more than Timeout time, the
  sender MUST NOT send the packet.  (Indeed, such a packet would be
  considered lost by the receiver anyway.)  The sender MUST keep track
  of which packets it does not send.  It will use this to tell the
  receiver what packets were not sent by setting Skip Ranges in the
  Stop-Sessions message from the sender to the receiver upon completion
  of the test.  The Skip Ranges are also sent to a Fetch-Client as part
  of the session data results.  These holes in the sending schedule can
  happen if a time in the past was specified in the Request-Session
  command, or if the Start-Sessions exchange took unexpectedly long, or
  if the sender could not start serving the OWAMP-Test session on time
  due to internal scheduling problems of the OS.  Packets that are in
  the past but are separated from the present by less than Timeout
  value SHOULD be sent as quickly as possible.  With normal test rates
  and timeout values, the number of packets in such a burst is limited.
  Nevertheless, hosts SHOULD NOT intentionally schedule sessions so
  that such bursts of packets occur.

  Regardless of any scheduling delays, each packet that is actually
  sent MUST have the best possible approximation of its real time of
  departure as its timestamp (in the packet).





Shalunov, et al.            Standards Track                    [Page 28]

RFC 4656          One-way Active Measurement Protocol     September 2006


4.1.2.  OWAMP-Test Packet Format and Content

  The sender sends the receiver a stream of packets with the schedule
  specified in the Request-Session command.  The sender SHOULD set the
  TTL in IPv4 (or Hop Limit in IPv6) in the UDP packet to 255.  The
  format of the body of a UDP packet in the stream depends on the mode
  being used.

  For unauthenticated mode:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                          Timestamp                            |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |        Error Estimate         |                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
    |                                                               |
    .                                                               .
    .                         Packet Padding                        .
    .                                                               .
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

























Shalunov, et al.            Standards Track                    [Page 29]

RFC 4656          One-way Active Measurement Protocol     September 2006


  For authenticated and encrypted modes:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                        MBZ (12 octets)                        |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                          Timestamp                            |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |        Error Estimate         |                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
    |                         MBZ (6 octets)                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                       HMAC (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    .                                                               .
    .                        Packet Padding                         .
    .                                                               .
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The format of the timestamp is the same as in [RFC1305] and is as
  follows: the first 32 bits represent the unsigned integer number of
  seconds elapsed since 0h on 1 January 1900; the next 32 bits
  represent the fractional part of a second that has elapsed since
  then.

  So, Timestamp is represented as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   Integer part of seconds                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Fractional part of seconds                    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Shalunov, et al.            Standards Track                    [Page 30]

RFC 4656          One-way Active Measurement Protocol     September 2006


  The Error Estimate specifies the estimate of the error and
  synchronization.  It has the following format:

        0                   1
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |S|Z|   Scale   |   Multiplier  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The first bit, S, SHOULD be set if the party generating the timestamp
  has a clock that is synchronized to UTC using an external source
  (e.g., the bit should be set if GPS hardware is used and it indicates
  that it has acquired current position and time or if NTP is used and
  it indicates that it has synchronized to an external source, which
  includes stratum 0 source, etc.).  If there is no notion of external
  synchronization for the time source, the bit SHOULD NOT be set.  The
  next bit has the same semantics as MBZ fields elsewhere: it MUST be
  set to zero by the sender and ignored by everyone else.  The next six
  bits, Scale, form an unsigned integer; Multiplier is an unsigned
  integer as well.  They are interpreted as follows: the error estimate
  is equal to Multiplier*2^(-32)*2^Scale (in seconds).  (Notation
  clarification: 2^Scale is two to the power of Scale.)  Multiplier
  MUST NOT be set to zero.  If Multiplier is zero, the packet SHOULD be
  considered corrupt and discarded.

  Sequence numbers start with zero and are incremented by one for each
  subsequent packet.

  The minimum data segment length is, therefore, 14 octets in
  unauthenticated mode, and 48 octets in both authenticated mode and
  encrypted modes.

  The OWAMP-Test packet layout is the same in authenticated and
  encrypted modes.  The encryption and authentication operations are,
  however, different.  The difference is that in encrypted mode both
  the sequence number and the timestamp are protected to provide
  maximum data confidentiality and integrity protection, whereas in
  authenticated mode the sequence number is protected while the
  timestamp is sent in clear text.  Sending the timestamp in clear text
  in authenticated mode allows one to reduce the time between when a
  timestamp is obtained by a sender and when the packet is shipped out.
  In encrypted mode, the sender has to fetch the timestamp, encrypt it,
  and send it; in authenticated mode, the middle step is removed,
  potentially improving accuracy (the sequence number can be encrypted
  and authenticated before the timestamp is fetched).

  In authenticated mode, the first block (16 octets) of each packet is
  encrypted using AES Electronic Cookbook (ECB) mode.



Shalunov, et al.            Standards Track                    [Page 31]

RFC 4656          One-way Active Measurement Protocol     September 2006


  Similarly to each OWAMP-Control session, each OWAMP-Test session has
  two keys: an AES Session-key and an HMAC Session-key.  However, there
  is a difference in how the keys are obtained: in the case of OWAMP-
  Control, the keys are generated by the client and communicated (as
  part of the Token) during connection setup as part of Set-Up-Response
  message; in the case of OWAMP-Test, described here, the keys are
  derived from the OWAMP-Control keys and the SID.

  The OWAMP-Test AES Session-key is obtained as follows: the OWAMP-
  Control AES Session-key (the same AES Session-key as is used for the
  corresponding OWAMP-Control session, where it is used in a different
  chaining mode) is encrypted, using AES, with the 16-octet session
  identifier (SID) as the key; this is a single-block ECB encryption;
  its result is the OWAMP-Test AES Session-key to use in encrypting
  (and decrypting) the packets of the particular OWAMP-Test session.
  Note that all of OWAMP-Test AES Session-key, OWAMP-Control AES
  Session-key, and the SID are comprised of 16 octets.

  The OWAMP-Test HMAC Session-key is obtained as follows: the OWAMP-
  Control HMAC Session-key (the same HMAC Session-key as is used for
  the corresponding OWAMP-Control session) is encrypted, using AES,
  with the 16-octet session identifier (SID) as the key; this is a
  two-block CBC encryption, always performed with IV=0; its result is
  the OWAMP-Test HMAC Session-key to use in authenticating the packets
  of the particular OWAMP-Test session.  Note that all of OWAMP-Test
  HMAC Session-key and OWAMP-Control HMAC Session-key are comprised of
  32 octets, while the SID is 16 octets.

  ECB mode used for encrypting the first block of OWAMP-Test packets in
  authenticated mode does not involve any actual chaining; this way,
  lost, duplicated, or reordered packets do not cause problems with
  deciphering any packet in an OWAMP-Test session.

  In encrypted mode, the first two blocks (32 octets) are encrypted
  using AES CBC mode.  The AES Session-key to use is obtained in the
  same way as the key for authenticated mode.  Each OWAMP-Test packet
  is encrypted as a separate stream, with just one chaining operation;
  chaining does not span multiple packets so that lost, duplicated, or
  reordered packets do not cause problems.  The initialization vector
  for the CBC encryption is a value with all bits equal to zero.

  Implementation note: Naturally, the key schedule for each OWAMP-Test
  session MAY be set up only once per session, not once per packet.








Shalunov, et al.            Standards Track                    [Page 32]

RFC 4656          One-way Active Measurement Protocol     September 2006


  HMAC in OWAMP-Test only covers the part of the packet that is also
  encrypted.  So, in authenticated mode, HMAC covers the first block
  (16 octets); in encrypted mode, HMAC covers two first blocks (32
  octets).  In OWAMP-Test HMAC is not encrypted (note that this is
  different from OWAMP-Control, where encryption in stream mode is
  used, so everything including the HMAC blocks ends up being
  encrypted).

  In unauthenticated mode, no encryption or authentication is applied.

  Packet Padding in OWAMP-Test SHOULD be pseudo-random (it MUST be
  generated independently of any other pseudo-random numbers mentioned
  in this document).  However, implementations MUST provide a
  configuration parameter, an option, or a different means of making
  Packet Padding consist of all zeros.

  The time elapsed between packets is computed according to the slot
  schedule as mentioned in Request-Session command description.  At
  that point, we skipped over the issue of computing exponentially
  distributed pseudo-random numbers in a reproducible fashion.  It is
  discussed later in a separate section.

4.2.  Receiver Behavior

  The receiver knows when the sender will send packets.  The following
  parameter is defined: Timeout (from Request-Session).  Packets that
  are delayed by more than Timeout are considered lost (or "as good as
  lost").  Note that there is never an actual assurance of loss by the
  network: a "lost" packet might still be delivered at any time.  The
  original specification for IPv4 required that packets be delivered
  within TTL seconds or never (with TTL having a maximum value of 255).
  To the best of the authors' knowledge, this requirement was never
  actually implemented (and, of course, only a complete and universal
  implementation would ensure that packets do not travel for longer
  than TTL seconds).  In fact, in IPv6, the name of this field has
  actually been changed to Hop Limit.  Further, IPv4 specification
  makes no claims about the time it takes the packet to traverse the
  last link of the path.

  The choice of a reasonable value of Timeout is a problem faced by a
  user of OWAMP protocol, not by an implementor.  A value such as two
  minutes is very safe.  Note that certain applications (such as
  interactive "one-way ping" might wish to obtain the data faster than
  that.

  As packets are received,

  +  timestamp the received packet;



Shalunov, et al.            Standards Track                    [Page 33]

RFC 4656          One-way Active Measurement Protocol     September 2006


  +  in authenticated or encrypted mode, decrypt and authenticate as
     necessary (packets for which authentication fails MUST be
     discarded); and

  +  store the packet sequence number, send time, receive time, and the
     TTL for IPv4 (or Hop Limit for IPv6) from the packet IP header for
     the results to be transferred.

  Packets not received within the Timeout are considered lost.  They
  are recorded with their true sequence number, presumed send time,
  receive time value with all bits being zero, and a TTL (or Hop Limit)
  of 255.

  Implementations SHOULD fetch the TTL/Hop Limit value from the IP
  header of the packet.  If an implementation does not fetch the actual
  TTL value (the only good reason not to do so is an inability to
  access the TTL field of arriving packets), it MUST record the TTL
  value as 255.

  Packets that are actually received are recorded in the order of
  arrival.  Lost packet records serve as indications of the send times
  of lost packets.  They SHOULD be placed either at the point where the
  receiver learns about the loss or at any later point; in particular,
  one MAY place all the records that correspond to lost packets at the
  very end.

  Packets that have send time in the future MUST be recorded normally,
  without changing their send timestamp, unless they have to be
  discarded.  (Send timestamps in the future would normally indicate
  clocks that differ by more than the delay.  Some data -- such as
  jitter -- can be extracted even without knowledge of time difference.
  For other kinds of data, the adjustment is best handled by the data
  consumer on the basis of the complete information in a measurement
  session, as well as, possibly, external data.)

  Packets with a sequence number that was already observed (duplicate
  packets) MUST be recorded normally.  (Duplicate packets are sometimes
  introduced by IP networks.  The protocol has to be able to measure
  duplication.)

  If any of the following is true, the packet MUST be discarded:

  +  Send timestamp is more than Timeout in the past or in the future.

  +  Send timestamp differs by more than Timeout from the time when the
     packet should have been sent according to its sequence number.

  +  In authenticated or encrypted mode, HMAC verification fails.



Shalunov, et al.            Standards Track                    [Page 34]

RFC 4656          One-way Active Measurement Protocol     September 2006


5.  Computing Exponentially Distributed Pseudo-Random Numbers

  Here we describe the way exponential random quantities used in the
  protocol are generated.  While there is a fair number of algorithms
  for generating exponential random variables, most of them rely on
  having logarithmic function as a primitive, resulting in potentially
  different values, depending on the particular implementation of the
  math library.  We use algorithm 3.4.1.S from [KNUTH], which is free
  of the above-mentioned problem, and which guarantees the same output
  on any implementation.  The algorithm belongs to the ziggurat family
  developed in the 1970s by G. Marsaglia, M. Sibuya, and J. H. Ahrens
  [ZIGG].  It replaces the use of logarithmic function by clever bit
  manipulation, still producing the exponential variates on output.

5.1.  High-Level Description of the Algorithm

  For ease of exposition, the algorithm is first described with all
  arithmetic operations being interpreted in their natural sense.
  Later, exact details on data types, arithmetic, and generation of the
  uniform random variates used by the algorithm are given.  It is an
  almost verbatim quotation from [KNUTH], p.133.

  Algorithm S: Given a real positive number "mu", produce an
  exponential random variate with mean "mu".

  First, the constants

  Q[k] = (ln2)/(1!) + (ln2)^2/(2!) + ... + (ln2)^k/(k!),  1 <= k <= 11

  are computed in advance.  The exact values which MUST be used by all
  implementations are given in the next section.  This is necessary to
  ensure that exactly the same pseudo-random sequences are produced by
  all implementations.

  S1. [Get U and shift.] Generate a 32-bit uniform random binary
  fraction

            U = (.b0 b1 b2 ... b31)    [note the binary point]

  Locate the first zero bit b_j and shift off the leading (j+1) bits,
  setting U <- (.b_{j+1} ... b31)

  Note: In the rare case that the zero has not been found, it is
  prescribed that the algorithm return (mu*32*ln2).

  S2. [Immediate acceptance?] If U < ln2, set X <- mu*(j*ln2 + U) and
  terminate the algorithm. (Note that Q[1] = ln2.)




Shalunov, et al.            Standards Track                    [Page 35]

RFC 4656          One-way Active Measurement Protocol     September 2006


  S3. [Minimize.] Find the least k >= 2 such that U < Q[k]. Generate k
  new uniform random binary fractions U1,...,Uk and set V <-
  min(U1,...,Uk).

  S4. [Deliver the answer.] Set X <- mu*(j + V)*ln2.

5.2.  Data Types, Representation, and Arithmetic

  The high-level algorithm operates on real numbers, typically
  represented as floating point numbers.  This specification prescribes
  that unsigned 64-bit integers be used instead.

  u_int64_t integers are interpreted as real numbers by placing the
  decimal point after the first 32 bits.  In other words, conceptually,
  the interpretation is given by the following map:

         u_int64_t u;

         u  |--> (double)u / (2**32)

  The algorithm produces a sequence of such u_int64_t integers that,
  for any given value of SID, is guaranteed to be the same on any
  implementation.

  We specify that the u_int64_t representations of the first 11 values
  of the Q array in the high-level algorithm MUST be as follows:

  #1      0xB17217F8,
  #2      0xEEF193F7,
  #3      0xFD271862,
  #4      0xFF9D6DD0,
  #5      0xFFF4CFD0,
  #6      0xFFFEE819,
  #7      0xFFFFE7FF,
  #8      0xFFFFFE2B,
  #9      0xFFFFFFE0,
  #10     0xFFFFFFFE,
  #11     0xFFFFFFFF

  For example, Q[1] = ln2 is indeed approximated by 0xB17217F8/(2**32)
  = 0.693147180601954; for j > 11, Q[j] is 0xFFFFFFFF.

  Small integer j in the high-level algorithm is represented as
  u_int64_t value j * (2**32).

  Operation of addition is done as usual on u_int64_t numbers; however,
  the operation of multiplication in the high-level algorithm should be
  replaced by



Shalunov, et al.            Standards Track                    [Page 36]

RFC 4656          One-way Active Measurement Protocol     September 2006


     (u, v) |---> (u * v) >> 32.

  Implementations MUST compute the product (u * v) exactly.  For
  example, a fragment of unsigned 128-bit arithmetic can be implemented
  for this purpose (see the sample implementation in Appendix A).

5.3.  Uniform Random Quantities

  The procedure for obtaining a sequence of 32-bit random numbers (such
  as U in algorithm S) relies on using AES encryption in counter mode.
  To describe the exact working of the algorithm, we introduce two
  primitives from Rijndael.  Their prototypes and specification are
  given below, and they are assumed to be provided by the supporting
  Rijndael implementation, such as [RIJN].

  +  A function that initializes a Rijndael key with bytes from seed
     (the SID will be used as the seed):

     void KeyInit(unsigned char seed[16]);

  +  A function that encrypts the 16-octet block inblock with the
     specified key, returning a 16-octet encrypted block.  Here,
     keyInstance is an opaque type used to represent Rijndael keys:

     void BlockEncrypt(keyInstance key, unsigned char inblock[16]);

  Algorithm Unif: given a 16-octet quantity seed, produce a sequence of
  unsigned 32-bit pseudo-random uniformly distributed integers.  In
  OWAMP, the SID (session ID) from Control protocol plays the role of
  seed.

  U1. [Initialize Rijndael key] key <- KeyInit(seed) [Initialize an
  unsigned 16-octet (network byte order) counter] c <- 0

  U2. [Need more random bytes?]  Set i <- c mod 4.  If (i == 0) set s
  <- BlockEncrypt(key, c)

  U3. [Increment the counter as unsigned 16-octet quantity] c <- c + 1

  U4. [Do output] Output the i_th quartet of octets from s starting
  from high-order octets, converted to native byte order and
  represented as OWPNum64 value (as in 3.b).

  U5. [Loop] Go to step U2.







Shalunov, et al.            Standards Track                    [Page 37]

RFC 4656          One-way Active Measurement Protocol     September 2006


6.  Security Considerations

6.1.  Introduction

  The goal of authenticated mode is to let one passphrase-protect the
  service provided by a particular OWAMP-Control server.  One can
  imagine a variety of circumstances where this could be useful.
  Authenticated mode is designed to prohibit theft of service.

  An additional design objective of the authenticated mode was to make
  it impossible for an attacker who cannot read traffic between OWAMP-
  Test sender and receiver to tamper with test results in a fashion
  that affects the measurements, but not other traffic.

  The goal of encrypted mode is quite different: to make it hard for a
  party in the middle of the network to make results look "better" than
  they should be.  This is especially true if one of client and server
  does not coincide with either sender or receiver.

  Encryption of OWAMP-Control using AES CBC mode with blocks of HMAC
  after each message aims to achieve two goals: (i) to provide secrecy
  of exchange, and (ii) to provide authentication of each message.

6.2.  Preventing Third-Party Denial of Service

  OWAMP-Test sessions directed at an unsuspecting party could be used
  for denial of service (DoS) attacks.  In unauthenticated mode,
  servers SHOULD limit receivers to hosts they control or to the OWAMP-
  Control client.

  Unless otherwise configured, the default behavior of servers MUST be
  to decline requests where the Receiver Address field is not equal to
  the address that the control connection was initiated from or an
  address of the server (or an address of a host it controls).  Given
  the TCP handshake procedure and sequence numbers in the control
  connection, this ensures that the hosts that make such requests are
  actually those hosts themselves, or at least on the path towards
  them.  If either this test or the handshake procedure were omitted,
  it would become possible for attackers anywhere in the Internet to
  request that large amounts of test packets be directed against victim
  nodes somewhere else.

  In any case, OWAMP-Test packets with a given source address MUST only
  be sent from the node that has been assigned that address (i.e.,
  address spoofing is not permitted).






Shalunov, et al.            Standards Track                    [Page 38]

RFC 4656          One-way Active Measurement Protocol     September 2006


6.3.  Covert Information Channels

  OWAMP-Test sessions could be used as covert channels of information.
  Environments that are worried about covert channels should take this
  into consideration.

6.4.  Requirement to Include AES in Implementations

  Notice that AES, in counter mode, is used for pseudo-random number
  generation, so implementation of AES MUST be included even in a
  server that only supports unauthenticated mode.

6.5.  Resource Use Limitations

  An OWAMP server can consume resources of various kinds.  The two most
  important kinds of resources are network capacity and memory (primary
  or secondary) for storing test results.

  Any implementation of OWAMP server MUST include technical mechanisms
  to limit the use of network capacity and memory.  Mechanisms for
  managing the resources consumed by unauthenticated users and users
  authenticated with a KeyID and passphrase SHOULD be separate.  The
  default configuration of an implementation MUST enable these
  mechanisms and set the resource use limits to conservatively low
  values.

  One way to design the resource limitation mechanisms is as follows:
  assign each session to a user class.  User classes are partially
  ordered with "includes" relation, with one class ("all users") that
  is always present and that includes any other class.  The assignment
  of a session to a user class can be based on the presence of
  authentication of the session, the KeyID, IP address range, time of
  day, and, perhaps, other factors.  Each user class would have a limit
  for usage of network capacity (specified in units of bit/second) and
  memory for storing test results (specified in units of octets).
  Along with the limits for resource use, current use would be tracked
  by the server.  When a session is requested by a user in a specific
  user class, the resources needed for this session are computed: the
  average network capacity use (based on the sending schedule) and the
  maximum memory use (based on the number of packets and number of
  octets each packet would need to be stored internally -- note that
  outgoing sessions would not require any memory use).  These resource
  use numbers are added to the current resource use numbers for the
  given user class; if such addition would take the resource use
  outside of the limits for the given user class, the session is
  rejected.  When resources are reclaimed, corresponding measures are
  subtracted from the current use.  Network capacity is reclaimed as
  soon as the session ends.  Memory is reclaimed when the data is



Shalunov, et al.            Standards Track                    [Page 39]

RFC 4656          One-way Active Measurement Protocol     September 2006


  deleted.  For unauthenticated sessions, memory consumed by an OWAMP-
  Test session SHOULD be reclaimed after the OWAMP-Control connection
  that initiated the session is closed (gracefully or otherwise).  For
  authenticated sessions, the administrator who configures the service
  should be able to decide the exact policy, but useful policy
  mechanisms that MAY be implemented are the ability to automatically
  reclaim memory when the data is retrieved and the ability to reclaim
  memory after a certain configurable (based on user class) period of
  time passes after the OWAMP-Test session terminates.

6.6.  Use of Cryptographic Primitives in OWAMP

  At an early stage in designing the protocol, we considered using
  Transport Layer Security (TLS) [RFC2246, RFC3546] and IPsec [RFC2401]
  as cryptographic security mechanisms for OWAMP; later, we also
  considered DTLS.  The disadvantages of those are as follows (not an
  exhaustive list):

  Regarding TLS:

  +  TLS could be used to secure TCP-based OWAMP-Control, but it would
     be difficult to use it to secure UDP-based OWAMP-Test: OWAMP-Test
     packets, if lost, are not resent, so packets have to be
     (optionally) encrypted and authenticated while retaining
     individual usability.  Stream-based TLS cannot be easily used for
     this.

  +  Dealing with streams, TLS does not authenticate individual
     messages (even in OWAMP-Control).  The easiest way out would be to
     add some known-format padding to each message and to verify that
     the format of the padding is intact before using the message.  The
     solution would thus lose some of its appeal ("just use TLS").  It
     would also be much more difficult to evaluate the security of this
     scheme with the various modes and options of TLS; it would almost
     certainly not be secure with all.  The capacity of an attacker to
     replace parts of messages (namely, the end) with random garbage
     could have serious security implications and would need to be
     analyzed carefully.  Suppose, for example, that a parameter that
     is used in some form to control the rate were replaced by random
     garbage; chances are that the result (an unsigned integer) would
     be quite large.

  +  Dependent on the mode of use, one can end up with a requirement
     for certificates for all users and a PKI.  Even if one is to
     accept that PKI is desirable, there just isn't a usable one today.






Shalunov, et al.            Standards Track                    [Page 40]

RFC 4656          One-way Active Measurement Protocol     September 2006


  +  TLS requires a fairly large implementation.  OpenSSL, for example,
     is larger than our implementation of OWAMP as a whole.  This can
     matter for embedded implementations.

  Regarding DTLS:

  +  Duplication and, similarly, reordering are network phenomena that
     OWAMP needs to be able to measure; yet anti-replay measures and
     reordering protection of DTLS would prevent the duplicated and
     reordered packets from reaching the relevant part of the OWAMP
     code.  One could, of course, modify DTLS so that these protections
     are weakened or even specify examining the messages in a carefully
     crafted sequence somewhere in between DTLS checks; but then, of
     course, the advantage of using an existing protocol would not be
     realized.

  +  In authenticated mode, the timestamp is in the clear and is not
     protected cryptographically in any way, while the rest of the
     message has the same protection as in encrypted mode.  This mode
     allows one to trade off cryptographic protection against accuracy
     of timestamps.  For example, the APAN hardware implementation of
     OWAMP [APAN] is capable of supporting authenticated mode.  The
     accuracy of these measurements is in the sub-microsecond range.
     The errors in OWAMP measurements of Abilene [Abilene] (done using
     a software implementation, in its encrypted mode) exceed 10us.
     Users in different environments have different concerns, and some
     might very well care about every last microsecond of accuracy.  At
     the same time, users in these same environments might care about
     access control to the service.  Authenticated mode permits them to
     control access to the server yet to use unprotected timestamps,
     perhaps generated by a hardware device.

  Regarding IPsec:

  +  What we now call authenticated mode would not be possible (in
     IPsec you can't authenticate part of a packet).

  +  The deployment paths of IPsec and OWAMP could be separate if OWAMP
     does not depend on IPsec.  After nine years of IPsec, only 0.05%
     of traffic on an advanced backbone network, such as Abilene, uses
     IPsec (for comparison purposes with encryption above layer 4, SSH
     use is at 2-4% and HTTPS use is at 0.2-0.6%).  It is desirable to
     be able to deploy OWAMP on as large a number of different
     platforms as possible.







Shalunov, et al.            Standards Track                    [Page 41]

RFC 4656          One-way Active Measurement Protocol     September 2006


  +  The deployment problems of a protocol dependent on IPsec would be
     especially acute in the case of lightweight embedded devices.
     Ethernet switches, DSL "modems", and other such devices mostly do
     not support IPsec.

  +  The API for manipulating IPsec from an application is currently
     poorly understood.  Writing a program that needs to encrypt some
     packets, to authenticate some packets, and to leave some open --
     for the same destination -- would become more of an exercise in
     IPsec than in IP measurement.

  For the enumerated reasons, we decided to use a simple cryptographic
  protocol (based on a block cipher in CBC mode) that is different from
  TLS and IPsec.

6.7.  Cryptographic Primitive Replacement

  It might become necessary in the future to replace AES, or the way it
  is used in OWAMP, with a new cryptographic primitive, or to make
  other security-related changes to the protocol.  OWAMP provides a
  well-defined point of extensibility: the Modes word in the server
  greeting and the Mode response in the Set-Up-Response message.  For
  example, if a simple replacement of AES with a different block cipher
  with a 128-bit block is needed, this could be accomplished as
  follows: take two bits from the reserved (MBZ) part of the Modes word
  of the server greeting; use one of these bits to indicate encrypted
  mode with the new cipher and another one to indicate authenticated
  mode with the new cipher.  (Bit consumption could, in fact, be
  reduced from two to one, if the client is allowed to return a mode
  selection with more than a single bit set: one could designate a
  single bit to mean that the new cipher is supported (in the case of
  the server) or selected (in the case of the client) and continue to
  use already allocated bits for authenticated and encrypted modes;
  this optimization is unimportant conceptually, but it could be useful
  in practice to make the best use of bits.)  Then, if the new cipher
  is negotiated, all subsequent operations simply use it instead of
  AES.  Note that the normal transition sequence would be used in such
  a case: implementations would probably first start supporting and
  preferring the new cipher, and then drop support for the old cipher
  (presumably no longer considered secure).











Shalunov, et al.            Standards Track                    [Page 42]

RFC 4656          One-way Active Measurement Protocol     September 2006


  If the need arises to make more extensive changes (perhaps to replace
  AES with a 256-bit-block cipher), this would be more difficult and
  would require changing the layout of the messages.  However, the
  change can still be conducted within the framework of OWAMP
  extensibility using the Modes/Mode words.  The semantics of the new
  bits (or single bit, if the optimization described above is used)
  would include the change to message layout as well as the change in
  the cryptographic primitive.

  Each of the bits in the Modes word can be used for an independent
  extension.  The extensions signaled by various bits are orthogonal;
  for example, one bit might be allocated to change from AES-128 to
  some other cipher, another bit might be allocated to add a protocol
  feature (such as, e.g., support for measuring over multicast), yet
  another might be allocated to change a key derivation function, etc.
  The progression of versions is not a linear order, but rather a
  partial order.  An implementation can implement any subset of these
  features (of course, features can be made mandatory to implement,
  e.g., new more secure ciphers if they are needed).

  Should a cipher with a different key size (say, a 256-bit key) become
  needed, a new key derivation function for OWAMP-Test keys would also
  be needed.  The semantics of change in the cipher SHOULD then in the
  future be tied to the semantics of change in the key derivation
  function (KDF).  One KDF that might be considered for the purpose
  might be a pseudo-random function (PRF) with appropriately sized
  output, such as 256 bits (perhaps HMAC-SHA256, if it is then still
  considered a secure PRF), which could then be used to derive the
  OWAMP-Test session keys from the OWAMP-Control session key by using
  the OWAMP-Control session key as the HMAC key and the SID as HMAC
  message.

  Note that the replacement scheme outlined above is trivially
  susceptible to downgrade attacks: a malicious party in the middle can
  flip modes bits as the mode is negotiated so that the oldest and
  weakest mode supported by the two parties is used.  If this is deemed
  problematic at the time of cryptographic primitive replacement, the
  scheme might be augmented with a measure to prevent such an attack
  (by perhaps exchanging the modes again once a secure communications
  channel is established, comparing the two sets of mode words, and
  dropping the connection should they not match).

6.8.  Long-term Manually Managed Keys

  OWAMP-Control uses long-term keys with manual management.  These keys
  are used to automatically negotiate session keys for each OWAMP-
  Control session running in authenticated or encrypted mode.  The
  number of these keys managed by a server scales linearly with (and,



Shalunov, et al.            Standards Track                    [Page 43]

RFC 4656          One-way Active Measurement Protocol     September 2006


  in fact, is equal to) the number of administratively different users
  (perhaps particular humans, roles, or robots representing sites) that
  need to connect to this server.  Similarly, the number of different
  manual keys managed by each client is the number of different servers
  that the client needs to connect to.  This use of manual long-term
  keys is compliant with [BCP107].

6.9.  (Not) Using Time as Salt

  A natural idea is to use the current time as salt when deriving
  session keys.  Unfortunately, this appears to be too limiting.

  Although OWAMP is often run on hosts with well-synchronized clocks,
  it is also possible to run it on hosts with clocks completely
  untrained.  The delays obtained thus are, of course, not directly
  usable; however, some metrics, such as unidirectional loss,
  reordering, measures of congestion such as the median delay minus
  minimum, and many others are usable directly and immediately (and
  improve upon the information that would have been provided by a
  round-trip measurement).  Further, even delay information can be
  useful with appropriate post-processing.  Indeed, one can even argue
  that running the clocks free and post-processing the results of a
  mesh of measurements will result in better accuracy, as more
  information is available a posteriori and correlation of data from
  different hosts is possible in post-processing, but not with online
  clock training.

  Given this, time is not used as salt in key derivation.

6.10.  The Use of AES-CBC and HMAC

  OWAMP relies on AES-CBC for confidentiality and on HMAC-SHA1
  truncated to 128 bits for message authentication.  Random IV choice
  is important for prevention of a codebook attack on the first block
  (it should also be noted that, with its 128-bit block size, AES is
  more resistant to codebook attacks than are ciphers with shorter
  blocks; we use random IV anyway).

  HMAC MUST verify.  It is crucial to check for this before using the
  message; otherwise, existential forgery becomes possible.  The
  complete message for which HMAC verification fails MUST be discarded
  (both for short messages consisting of a few blocks and potentially
  for long messages, such as a response to the Fetch-Session command).
  If such a message is part of OWAMP-Control, the connection MUST be
  dropped.

  Since OWAMP messages can have different numbers of blocks, the
  existential forgery attack described in example 9.62 of [MENEZES]



Shalunov, et al.            Standards Track                    [Page 44]

RFC 4656          One-way Active Measurement Protocol     September 2006


  becomes a concern.  To prevent it (and to simplify implementation),
  the length of any message becomes known after decrypting its first
  block.

  A special case is the first (fixed-length) message sent by the
  client.  There, the token is a concatenation of the 128-bit challenge
  (transmitted by the server in the clear), a 128-bit AES Session-key
  (generated randomly by the client, encrypted with AES-CBC with IV=0),
  and a 256-bit HMAC-SHA1 Session-key used for authentication.  Since
  IV=0, the challenge (a single cipher block) is simply encrypted with
  the secret key.  Therefore, we rely on resistance of AES to chosen
  plaintext attacks (as the challenge could be substituted by an
  attacker).  It should be noted that the number of blocks of chosen
  plaintext an attacker can have encrypted with the secret key is
  limited by the number of sessions the client wants to initiate.  An
  attacker who knows the encryption of a server's challenge can produce
  an existential forgery of the session key and thus disrupt the
  session; however, any attacker can disrupt a session by corrupting
  the protocol messages in an arbitrary fashion.  Therefore, no new
  threat is created here; nevertheless, we require that the server
  never issues the same challenge twice.  (If challenges are generated
  randomly, a repetition would occur, on average, after 2^64 sessions;
  we deem this satisfactory as this is enough even for an implausibly
  busy server that participates in 1,000,000 sessions per second to go
  without repetitions for more than 500 centuries.)  With respect to
  the second part of the token, an attacker can produce an existential
  forgery of the session key by modifying the second half of the
  client's token while leaving the first part intact.  This forgery,
  however, would be immediately discovered by the client when the HMAC
  on the server's next message (acceptance or rejection of the
  connection) does not verify.

7.  Acknowledgements

  We would like to thank Guy Almes, Mark Allman, Jari Arkko, Hamid
  Asgari, Steven Van den Berghe, Eric Boyd, Robert Cole, Joan
  Cucchiara, Stephen Donnelly, Susan Evett, Sam Hartman, Kaynam
  Hedayat, Petri Helenius, Scott Hollenbeck, Russ Housley, Kitamura
  Yasuichi, Daniel H. T. R. Lawson, Will E. Leland, Bruce A. Mah,
  Allison Mankin, Al Morton, Attila Pasztor, Randy Presuhn, Matthew
  Roughan, Andy Scherrer, Henk Uijterwaal, and Sam Weiler for their
  comments, suggestions, reviews, helpful discussion and proof-reading.

8.  IANA Considerations

  IANA has allocated a well-known TCP port number (861) for the OWAMP-
  Control part of the OWAMP protocol.




Shalunov, et al.            Standards Track                    [Page 45]

RFC 4656          One-way Active Measurement Protocol     September 2006


9.  Internationalization Considerations

  The protocol does not carry any information in a natural language,
  with the possible exception of the KeyID in OWAMP-Control, which is
  encoded in UTF-8.

10.  References

10.1.  Normative References

  [AES]           Advanced Encryption Standard (AES),
                  http://csrc.nist.gov/encryption/aes/

  [BCP107]        Bellovin, S. and R. Housley, "Guidelines for
                  Cryptographic Key Management", BCP 107, RFC 4107,
                  June 2005.

  [RFC2104]       Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
                  Keyed-Hashing for Message Authentication", RFC 2104,
                  February 1997.

  [RFC2119]       Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2330]       Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
                  "Framework for IP Performance Metrics", RFC 2330, May
                  1998.

  [RFC2474]       Nichols, K., Blake, S., Baker, F., and D. Black,
                  "Definition of the Differentiated Services Field (DS
                  Field) in the IPv4 and IPv6 Headers", RFC 2474,
                  December 1998.

  [RFC2679]       Almes, G., Kalidindi, S., and M. Zekauskas, "A One-
                  way Delay Metric for IPPM", RFC 2679, September 1999.

  [RFC2680]       Almes, G., Kalidindi, S., and M. Zekauskas, "A One-
                  way Packet Loss Metric for IPPM", RFC 2680, September
                  1999.

  [RFC2836]       Brim, S., Carpenter, B., and F. Le Faucheur, "Per Hop
                  Behavior Identification Codes", RFC 2836, May 2000.

  [RFC2898]       Kaliski, B., "PKCS #5: Password-Based Cryptography
                  Specification Version 2.0", RFC 2898, September 2000.






Shalunov, et al.            Standards Track                    [Page 46]

RFC 4656          One-way Active Measurement Protocol     September 2006


10.2.  Informative References

  [APAN]          Z. Shu and K. Kobayashi, "HOTS: An OWAMP-Compliant
                  Hardware Packet Timestamper", In Proceedings of PAM
                  2005, http://www.springerlink.com/index/
                  W4GBD39YWC11GQTN.pdf

  [BRIX]          Brix Networks, http://www.brixnet.com/

  [ZIGG]          J. H. Ahrens, U. Dieter, "Computer methods for
                  sampling from the exponential and normal
                  distributions", Communications of ACM, volume 15,
                  issue 10, 873-882, 1972.
                  http://doi.acm.org/10.1145/355604.361593

  [MENEZES]       A. J. Menezes, P. C. van Oorschot, and S. A.
                  Vanstone, Handbook of Applied Cryptography, CRC
                  Press, revised reprint with updates, 1997.

  [KNUTH]         D. Knuth, The Art of Computer Programming, vol.2, 3rd
                  edition, 1998.

  [Abilene]       One-way Latency Measurement (OWAMP),
                  http://e2epi.internet2.edu/owamp/

  [RIJN]          Reference ANSI C Implementation of Rijndael,
                  http://www.esat.kuleuven.ac.be/~rijmen/
                  rijndael/rijndaelref.zip

  [RIPE]          RIPE NCC Test-Traffic Measurements home,
                  http://www.ripe.net/test-traffic/.

  [SURVEYOR]      Surveyor Home Page,
                  http://www.advanced.org/surveyor/.

  [SURVEYOR-INET] S. Kalidindi and M. Zekauskas, "Surveyor: An
                  Infrastructure for Network Performance Measurements",
                  Proceedings of INET'99, June 1999.
                  http://www.isoc.org/inet99/proceedings/4h/4h_2.htm

  [RFC1305]       Mills, D., "Network Time Protocol (Version 3)
                  Specification, Implementation and Analysis", RFC
                  1305, March 1992.

  [RFC2246]       Dierks, T. and C. Allen, "The TLS Protocol Version
                  1.0", RFC 2246, January 1999.





Shalunov, et al.            Standards Track                    [Page 47]

RFC 4656          One-way Active Measurement Protocol     September 2006


  [RFC2401]       Kent, S. and R. Atkinson, "Security Architecture for
                  the Internet Protocol", RFC 2401, November 1998.

  [RFC3546]       Blake-Wilson, S., Nystrom, M., Hopwood, D.,
                  Mikkelsen, J., and T. Wright, "Transport Layer
                  Security (TLS) Extensions", RFC 3546, June 2003.

  [RFC4086]       Eastlake, D., 3rd, Schiller, J., and S. Crocker,
                  "Randomness Requirements for Security", BCP 106, RFC
                  4086, June 2005.









































Shalunov, et al.            Standards Track                    [Page 48]

RFC 4656          One-way Active Measurement Protocol     September 2006


Appendix A: Sample C Code for Exponential Deviates

  The values in array Q[] are the exact values that MUST be used by all
  implementations (see Sections 5.1 and 5.2).  This appendix only
  serves for illustrative purposes.

  /*
  ** Example usage: generate a stream of exponential (mean 1)
  ** random quantities (ignoring error checking during initialization).
  ** If a variate with some mean mu other than 1 is desired, the output
  ** of this algorithm can be multiplied by mu according to the rules
  ** of arithmetic we described.

  ** Assume that a 16-octet 'seed' has been initialized
  ** (as the shared secret in OWAMP, for example)
  ** unsigned char seed[16];

  ** OWPrand_context next;

  ** (initialize state)
  ** OWPrand_context_init(&next, seed);

  ** (generate a sequence of exponential variates)
  ** while (1) {
  **    u_int64_t num = OWPexp_rand64(&next);
        <do something with num here>
                   ...
  ** }
  */

  #include <stdlib.h>

  typedef u_int64_t u_int64_t;

  /* (K - 1) is the first k such that Q[k] > 1 - 1/(2^32). */
  #define K 12

  #define BIT31   0x80000000UL    /* See if first bit in the lower
                                     32 bits is zero. */
  #define MASK32(n)       ((n) & 0xFFFFFFFFUL)

  #define EXP2POW32       0x100000000ULL

  typedef struct OWPrand_context {
          unsigned char counter[16];/* Counter (network byte order).*/
          keyInstance key;          /* Key to encrypt the counter.*/
          unsigned char out[16];    /* The encrypted block.*/




Shalunov, et al.            Standards Track                    [Page 49]

RFC 4656          One-way Active Measurement Protocol     September 2006


  } OWPrand_context;

  /*
  ** The array has been computed according to the formula:
  **
  **       Q[k] = (ln2)/(1!) + (ln2)^2/(2!) + ... + (ln2)^k/(k!)
  **
  ** as described in algorithm S. (The values below have been
  ** multiplied by 2^32 and rounded to the nearest integer.)
  ** These exact values MUST be used so that different implementation
  ** produce the same sequences.
  */
  static u_int64_t Q[K] = {
          0,        /* Placeholder - so array indices start from 1. */
          0xB17217F8,
          0xEEF193F7,
          0xFD271862,
          0xFF9D6DD0,
          0xFFF4CFD0,
          0xFFFEE819,
          0xFFFFE7FF,
          0xFFFFFE2B,
          0xFFFFFFE0,
          0xFFFFFFFE,
          0xFFFFFFFF
  };

  /* this element represents ln2 */
  #define LN2 Q[1]

  /*
  ** Convert an unsigned 32-bit integer into a u_int64_t number.
  */
  u_int64_t
  OWPulong2num64(u_int32_t a)
  {
          return ((u_int64_t)1 << 32) * a;
  }

  /*
  ** Arithmetic functions on u_int64_t numbers.
  */

  /*
  ** Addition.
  */
  u_int64_t
  OWPnum64_add(u_int64_t x, u_int64_t y)



Shalunov, et al.            Standards Track                    [Page 50]

RFC 4656          One-way Active Measurement Protocol     September 2006


  {
          return x + y;
  }

  /*
  ** Multiplication.  Allows overflow.  Straightforward implementation
  ** of Algorithm 4.3.1.M (p.268) from [KNUTH].
  */
  u_int64_t
  OWPnum64_mul(u_int64_t x, u_int64_t y)
  {
          unsigned long w[4];
          u_int64_t xdec[2];
          u_int64_t ydec[2];

          int i, j;
          u_int64_t k, t, ret;

          xdec[0] = MASK32(x);
          xdec[1] = MASK32(x>>32);
          ydec[0] = MASK32(y);
          ydec[1] = MASK32(y>>32);

          for (j = 0; j < 4; j++)
                  w[j] = 0;

          for (j = 0; j < 2; j++) {
                  k = 0;
                  for (i = 0; ; ) {
                          t = k + (xdec[i]*ydec[j]) + w[i + j];
                          w[i + j] = t%EXP2POW32;
                          k = t/EXP2POW32;
                          if (++i < 2)
                                  continue;
                          else {
                                  w[j + 2] = k;
                                  break;
                          }
                  }
          }

          ret = w[2];
          ret <<= 32;
          return w[1] + ret;
  }


  /*



Shalunov, et al.            Standards Track                    [Page 51]

RFC 4656          One-way Active Measurement Protocol     September 2006


  ** Seed the random number generator using a 16-byte quantity 'seed'
  ** (== the session ID in OWAMP). This function implements step U1
  ** of algorithm Unif.
  */

  void
  OWPrand_context_init(OWPrand_context *next, unsigned char *seed)
  {
          int i;

          /* Initialize the key */
          rijndaelKeyInit(next->key, seed);

          /* Initialize the counter with zeros */
          memset(next->out, 0, 16);
          for (i = 0; i < 16; i++)
                  next->counter[i] = 0UL;
  }


  /*
  ** Random number generating functions.
  */

  /*
  ** Generate and return a 32-bit uniform random value (saved in the
  **less significant half of the u_int64_t).  This function implements
  **steps U2-U4 of the algorithm Unif.
  */
  u_int64_t
  OWPunif_rand64(OWPrand_context *next)
  {
          int j;
          u_int8_t  *buf;
          u_int64_t  ret = 0;

          /* step U2 */
          u_int8_t i = next->counter[15] & (u_int8_t)3;
          if (!i)
                  rijndaelEncrypt(next->key, next->counter, next->out);

          /* Step U3.  Increment next.counter as a 16-octet single
             quantity in network byte order for AES counter mode. */
          for (j = 15; j >= 0; j--)
                  if (++next->counter[j])
                          break;

          /* Step U4.  Do output.  The last 4 bytes of ret now contain



Shalunov, et al.            Standards Track                    [Page 52]

RFC 4656          One-way Active Measurement Protocol     September 2006


             the random integer in network byte order */
          buf = &next->out[4*i];
          for (j=0; j<4; j++) {
                  ret <<= 8;
                  ret += *buf++;
          }
          return ret;
  }

  /*
  ** Generate an exponential deviate with mean 1.
  */
  u_int64_t
  OWPexp_rand64(OWPrand_context *next)
  {
          unsigned long i, k;
          u_int32_t j = 0;
          u_int64_t U, V, J, tmp;

          /* Step S1. Get U and shift */
          U = OWPunif_rand64(next);

          while ((U & BIT31) && (j < 32)) { /* Shift until first 0. */
                  U <<= 1;
                  j++;
          }
          /* Remove the 0 itself. */
          U <<= 1;

          U = MASK32(U);  /* Keep only the fractional part. */
          J = OWPulong2num64(j);

          /* Step S2.  Immediate acceptance? */
          if (U < LN2)       /* return  (j*ln2 + U) */
                  return OWPnum64_add(OWPnum64_mul(J, LN2), U);

          /* Step S3.  Minimize. */
          for (k = 2; k < K; k++)
                  if (U < Q[k])
                          break;
          V = OWPunif_rand64(next);
          for (i = 2; i <= k; i++) {
                  tmp = OWPunif_rand64(next);
                  if (tmp < V)
                          V = tmp;
          }

          /* Step S4.  Return (j+V)*ln2 */



Shalunov, et al.            Standards Track                    [Page 53]

RFC 4656          One-way Active Measurement Protocol     September 2006


          return OWPnum64_mul(OWPnum64_add(J, V), LN2);
  }

Appendix B: Test Vectors for Exponential Deviates

  It is important that the test schedules generated by different
  implementations from identical inputs be identical.  The non-trivial
  part is the generation of pseudo-random exponentially distributed
  deviates.  To aid implementors in verifying interoperability, several
  test vectors are provided.  For each of the four given 128-bit values
  of SID represented as hexadecimal numbers, 1,000,000 exponentially
  distributed 64-bit deviates are generated as described above.  As
  they are generated, they are all added to each other.  The sum of all
  1,000,000 deviates is given as a hexadecimal number for each SID.  An
  implementation MUST produce exactly these hexadecimal numbers.  To
  aid in the verification of the conversion of these numbers to values
  of delay in seconds, approximate values are given (assuming
  lambda=1).  An implementation SHOULD produce delay values in seconds
  that are close to the ones given below.

      SID = 0x2872979303ab47eeac028dab3829dab2
      SUM[1000000] = 0x000f4479bd317381 (1000569.739036 seconds)

      SID = 0x0102030405060708090a0b0c0d0e0f00
      SUM[1000000] = 0x000f433686466a62 (1000246.524512 seconds)

      SID = 0xdeadbeefdeadbeefdeadbeefdeadbeef
      SUM[1000000] = 0x000f416c8884d2d3 (999788.533277 seconds)

      SID = 0xfeed0feed1feed2feed3feed4feed5ab
      SUM[1000000] = 0x000f3f0b4b416ec8 (999179.293967 seconds)




















Shalunov, et al.            Standards Track                    [Page 54]

RFC 4656          One-way Active Measurement Protocol     September 2006


Authors' Addresses

  Stanislav Shalunov
  Internet2
  1000 Oakbrook Drive, Suite 300
  Ann Arbor, MI 48104

  EMail: [email protected]
  WWW: http://www.internet2.edu/~shalunov/


  Benjamin Teitelbaum
  Internet2
  1000 Oakbrook Drive, Suite 300
  Ann Arbor, MI 48104

  EMail: [email protected]
  WWW: http://people.internet2.edu/~ben/


  Anatoly Karp
  Computer Sciences Department
  University of Wisconsin-Madison
  Madison, WI 53706

  EMail: [email protected]


  Jeff W. Boote
  Internet2
  1000 Oakbrook Drive, Suite 300
  Ann Arbor, MI 48104

  EMail: [email protected]


  Matthew J. Zekauskas
  Internet2
  1000 Oakbrook Drive, Suite 300
  Ann Arbor, MI 48104

  EMail: [email protected]









Shalunov, et al.            Standards Track                    [Page 55]

RFC 4656          One-way Active Measurement Protocol     September 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Shalunov, et al.            Standards Track                    [Page 56]