Network Working Group                                       S. Josefsson
Request for Comments: 4648                                           SJD
Obsoletes: 3548                                             October 2006
Category: Standards Track


            The Base16, Base32, and Base64 Data Encodings

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This document describes the commonly used base 64, base 32, and base
  16 encoding schemes.  It also discusses the use of line-feeds in
  encoded data, use of padding in encoded data, use of non-alphabet
  characters in encoded data, use of different encoding alphabets, and
  canonical encodings.
























Josefsson                   Standards Track                     [Page 1]

RFC 4648                    Base-N Encodings                October 2006


Table of Contents

  1. Introduction ....................................................3
  2. Conventions Used in This Document ...............................3
  3. Implementation Discrepancies ....................................3
     3.1. Line Feeds in Encoded Data .................................3
     3.2. Padding of Encoded Data ....................................4
     3.3. Interpretation of Non-Alphabet Characters in Encoded Data ..4
     3.4. Choosing the Alphabet ......................................4
     3.5. Canonical Encoding .........................................5
  4. Base 64 Encoding ................................................5
  5. Base 64 Encoding with URL and Filename Safe Alphabet ............7
  6. Base 32 Encoding ................................................8
  7. Base 32 Encoding with Extended Hex Alphabet ....................10
  8. Base 16 Encoding ...............................................10
  9. Illustrations and Examples .....................................11
  10. Test Vectors ..................................................12
  11. ISO C99 Implementation of Base64 ..............................14
  12. Security Considerations .......................................14
  13. Changes Since RFC 3548 ........................................15
  14. Acknowledgements ..............................................15
  15. Copying Conditions ............................................15
  16. References ....................................................16
     16.1. Normative References .....................................16
     16.2. Informative References ...................................16


























Josefsson                   Standards Track                     [Page 2]

RFC 4648                    Base-N Encodings                October 2006


1.  Introduction

  Base encoding of data is used in many situations to store or transfer
  data in environments that, perhaps for legacy reasons, are restricted
  to US-ASCII [1] data.  Base encoding can also be used in new
  applications that do not have legacy restrictions, simply because it
  makes it possible to manipulate objects with text editors.

  In the past, different applications have had different requirements
  and thus sometimes implemented base encodings in slightly different
  ways.  Today, protocol specifications sometimes use base encodings in
  general, and "base64" in particular, without a precise description or
  reference.  Multipurpose Internet Mail Extensions (MIME) [4] is often
  used as a reference for base64 without considering the consequences
  for line-wrapping or non-alphabet characters.  The purpose of this
  specification is to establish common alphabet and encoding
  considerations.  This will hopefully reduce ambiguity in other
  documents, leading to better interoperability.

2.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [2].

3.  Implementation Discrepancies

  Here we discuss the discrepancies between base encoding
  implementations in the past and, where appropriate, mandate a
  specific recommended behavior for the future.

3.1.  Line Feeds in Encoded Data

  MIME [4] is often used as a reference for base 64 encoding.  However,
  MIME does not define "base 64" per se, but rather a "base 64 Content-
  Transfer-Encoding" for use within MIME.  As such, MIME enforces a
  limit on line length of base 64-encoded data to 76 characters.  MIME
  inherits the encoding from Privacy Enhanced Mail (PEM) [3], stating
  that it is "virtually identical"; however, PEM uses a line length of
  64 characters.  The MIME and PEM limits are both due to limits within
  SMTP.

  Implementations MUST NOT add line feeds to base-encoded data unless
  the specification referring to this document explicitly directs base
  encoders to add line feeds after a specific number of characters.






Josefsson                   Standards Track                     [Page 3]

RFC 4648                    Base-N Encodings                October 2006


3.2.  Padding of Encoded Data

  In some circumstances, the use of padding ("=") in base-encoded data
  is not required or used.  In the general case, when assumptions about
  the size of transported data cannot be made, padding is required to
  yield correct decoded data.

  Implementations MUST include appropriate pad characters at the end of
  encoded data unless the specification referring to this document
  explicitly states otherwise.

  The base64 and base32 alphabets use padding, as described below in
  sections 4 and 6, but the base16 alphabet does not need it; see
  section 8.

3.3.  Interpretation of Non-Alphabet Characters in Encoded Data

  Base encodings use a specific, reduced alphabet to encode binary
  data.  Non-alphabet characters could exist within base-encoded data,
  caused by data corruption or by design.  Non-alphabet characters may
  be exploited as a "covert channel", where non-protocol data can be
  sent for nefarious purposes.  Non-alphabet characters might also be
  sent in order to exploit implementation errors leading to, e.g.,
  buffer overflow attacks.

  Implementations MUST reject the encoded data if it contains
  characters outside the base alphabet when interpreting base-encoded
  data, unless the specification referring to this document explicitly
  states otherwise.  Such specifications may instead state, as MIME
  does, that characters outside the base encoding alphabet should
  simply be ignored when interpreting data ("be liberal in what you
  accept").  Note that this means that any adjacent carriage return/
  line feed (CRLF) characters constitute "non-alphabet characters" and
  are ignored.  Furthermore, such specifications MAY ignore the pad
  character, "=", treating it as non-alphabet data, if it is present
  before the end of the encoded data.  If more than the allowed number
  of pad characters is found at the end of the string (e.g., a base 64
  string terminated with "==="), the excess pad characters MAY also be
  ignored.

3.4.  Choosing the Alphabet

  Different applications have different requirements on the characters
  in the alphabet.  Here are a few requirements that determine which
  alphabet should be used:






Josefsson                   Standards Track                     [Page 4]

RFC 4648                    Base-N Encodings                October 2006


  o  Handled by humans.  The characters "0" and "O" are easily
     confused, as are "1", "l", and "I".  In the base32 alphabet below,
     where 0 (zero) and 1 (one) are not present, a decoder may
     interpret 0 as O, and 1 as I or L depending on case.  (However, by
     default it should not; see previous section.)

  o  Encoded into structures that mandate other requirements.  For base
     16 and base 32, this determines the use of upper- or lowercase
     alphabets.  For base 64, the non-alphanumeric characters (in
     particular, "/") may be problematic in file names and URLs.

  o  Used as identifiers.  Certain characters, notably "+" and "/" in
     the base 64 alphabet, are treated as word-breaks by legacy text
     search/index tools.

  There is no universally accepted alphabet that fulfills all the
  requirements.  For an example of a highly specialized variant, see
  IMAP [8].  In this document, we document and name some currently used
  alphabets.

3.5.  Canonical Encoding

  The padding step in base 64 and base 32 encoding can, if improperly
  implemented, lead to non-significant alterations of the encoded data.
  For example, if the input is only one octet for a base 64 encoding,
  then all six bits of the first symbol are used, but only the first
  two bits of the next symbol are used.  These pad bits MUST be set to
  zero by conforming encoders, which is described in the descriptions
  on padding below.  If this property do not hold, there is no
  canonical representation of base-encoded data, and multiple base-
  encoded strings can be decoded to the same binary data.  If this
  property (and others discussed in this document) holds, a canonical
  encoding is guaranteed.

  In some environments, the alteration is critical and therefore
  decoders MAY chose to reject an encoding if the pad bits have not
  been set to zero.  The specification referring to this may mandate a
  specific behaviour.

4.  Base 64 Encoding

  The following description of base 64 is derived from [3], [4], [5],
  and [6].  This encoding may be referred to as "base64".

  The Base 64 encoding is designed to represent arbitrary sequences of
  octets in a form that allows the use of both upper- and lowercase
  letters but that need not be human readable.




Josefsson                   Standards Track                     [Page 5]

RFC 4648                    Base-N Encodings                October 2006


  A 65-character subset of US-ASCII is used, enabling 6 bits to be
  represented per printable character.  (The extra 65th character, "=",
  is used to signify a special processing function.)

  The encoding process represents 24-bit groups of input bits as output
  strings of 4 encoded characters.  Proceeding from left to right, a
  24-bit input group is formed by concatenating 3 8-bit input groups.
  These 24 bits are then treated as 4 concatenated 6-bit groups, each
  of which is translated into a single character in the base 64
  alphabet.

  Each 6-bit group is used as an index into an array of 64 printable
  characters.  The character referenced by the index is placed in the
  output string.

                     Table 1: The Base 64 Alphabet

    Value Encoding  Value Encoding  Value Encoding  Value Encoding
        0 A            17 R            34 i            51 z
        1 B            18 S            35 j            52 0
        2 C            19 T            36 k            53 1
        3 D            20 U            37 l            54 2
        4 E            21 V            38 m            55 3
        5 F            22 W            39 n            56 4
        6 G            23 X            40 o            57 5
        7 H            24 Y            41 p            58 6
        8 I            25 Z            42 q            59 7
        9 J            26 a            43 r            60 8
       10 K            27 b            44 s            61 9
       11 L            28 c            45 t            62 +
       12 M            29 d            46 u            63 /
       13 N            30 e            47 v
       14 O            31 f            48 w         (pad) =
       15 P            32 g            49 x
       16 Q            33 h            50 y

  Special processing is performed if fewer than 24 bits are available
  at the end of the data being encoded.  A full encoding quantum is
  always completed at the end of a quantity.  When fewer than 24 input
  bits are available in an input group, bits with value zero are added
  (on the right) to form an integral number of 6-bit groups.  Padding
  at the end of the data is performed using the '=' character.  Since
  all base 64 input is an integral number of octets, only the following
  cases can arise:

  (1) The final quantum of encoding input is an integral multiple of 24
      bits; here, the final unit of encoded output will be an integral
      multiple of 4 characters with no "=" padding.



Josefsson                   Standards Track                     [Page 6]

RFC 4648                    Base-N Encodings                October 2006


  (2) The final quantum of encoding input is exactly 8 bits; here, the
      final unit of encoded output will be two characters followed by
      two "=" padding characters.

  (3) The final quantum of encoding input is exactly 16 bits; here, the
      final unit of encoded output will be three characters followed by
      one "=" padding character.

5.  Base 64 Encoding with URL and Filename Safe Alphabet

  The Base 64 encoding with an URL and filename safe alphabet has been
  used in [12].

  An alternative alphabet has been suggested that would use "~" as the
  63rd character.  Since the "~" character has special meaning in some
  file system environments, the encoding described in this section is
  recommended instead.  The remaining unreserved URI character is ".",
  but some file system environments do not permit multiple "." in a
  filename, thus making the "." character unattractive as well.

  The pad character "=" is typically percent-encoded when used in an
  URI [9], but if the data length is known implicitly, this can be
  avoided by skipping the padding; see section 3.2.

  This encoding may be referred to as "base64url".  This encoding
  should not be regarded as the same as the "base64" encoding and
  should not be referred to as only "base64".  Unless clarified
  otherwise, "base64" refers to the base 64 in the previous section.

  This encoding is technically identical to the previous one, except
  for the 62:nd and 63:rd alphabet character, as indicated in Table 2.




















Josefsson                   Standards Track                     [Page 7]

RFC 4648                    Base-N Encodings                October 2006


        Table 2: The "URL and Filename safe" Base 64 Alphabet

    Value Encoding  Value Encoding  Value Encoding  Value Encoding
        0 A            17 R            34 i            51 z
        1 B            18 S            35 j            52 0
        2 C            19 T            36 k            53 1
        3 D            20 U            37 l            54 2
        4 E            21 V            38 m            55 3
        5 F            22 W            39 n            56 4
        6 G            23 X            40 o            57 5
        7 H            24 Y            41 p            58 6
        8 I            25 Z            42 q            59 7
        9 J            26 a            43 r            60 8
       10 K            27 b            44 s            61 9
       11 L            28 c            45 t            62 - (minus)
       12 M            29 d            46 u            63 _
       13 N            30 e            47 v           (underline)
       14 O            31 f            48 w
       15 P            32 g            49 x
       16 Q            33 h            50 y         (pad) =

6.  Base 32 Encoding

  The following description of base 32 is derived from [11] (with
  corrections).  This encoding may be referred to as "base32".

  The Base 32 encoding is designed to represent arbitrary sequences of
  octets in a form that needs to be case insensitive but that need not
  be human readable.

  A 33-character subset of US-ASCII is used, enabling 5 bits to be
  represented per printable character.  (The extra 33rd character, "=",
  is used to signify a special processing function.)

  The encoding process represents 40-bit groups of input bits as output
  strings of 8 encoded characters.  Proceeding from left to right, a
  40-bit input group is formed by concatenating 5 8bit input groups.
  These 40 bits are then treated as 8 concatenated 5-bit groups, each
  of which is translated into a single character in the base 32
  alphabet.  When a bit stream is encoded via the base 32 encoding, the
  bit stream must be presumed to be ordered with the most-significant-
  bit first.  That is, the first bit in the stream will be the high-
  order bit in the first 8bit byte, the eighth bit will be the low-
  order bit in the first 8bit byte, and so on.







Josefsson                   Standards Track                     [Page 8]

RFC 4648                    Base-N Encodings                October 2006


  Each 5-bit group is used as an index into an array of 32 printable
  characters.  The character referenced by the index is placed in the
  output string.  These characters, identified in Table 3, below, are
  selected from US-ASCII digits and uppercase letters.

                    Table 3: The Base 32 Alphabet

    Value Encoding  Value Encoding  Value Encoding  Value Encoding
        0 A             9 J            18 S            27 3
        1 B            10 K            19 T            28 4
        2 C            11 L            20 U            29 5
        3 D            12 M            21 V            30 6
        4 E            13 N            22 W            31 7
        5 F            14 O            23 X
        6 G            15 P            24 Y         (pad) =
        7 H            16 Q            25 Z
        8 I            17 R            26 2

  Special processing is performed if fewer than 40 bits are available
  at the end of the data being encoded.  A full encoding quantum is
  always completed at the end of a body.  When fewer than 40 input bits
  are available in an input group, bits with value zero are added (on
  the right) to form an integral number of 5-bit groups.  Padding at
  the end of the data is performed using the "=" character.  Since all
  base 32 input is an integral number of octets, only the following
  cases can arise:

  (1) The final quantum of encoding input is an integral multiple of 40
      bits; here, the final unit of encoded output will be an integral
      multiple of 8 characters with no "=" padding.

  (2) The final quantum of encoding input is exactly 8 bits; here, the
      final unit of encoded output will be two characters followed by
      six "=" padding characters.

  (3) The final quantum of encoding input is exactly 16 bits; here, the
      final unit of encoded output will be four characters followed by
      four "=" padding characters.

  (4) The final quantum of encoding input is exactly 24 bits; here, the
      final unit of encoded output will be five characters followed by
      three "=" padding characters.

  (5) The final quantum of encoding input is exactly 32 bits; here, the
      final unit of encoded output will be seven characters followed by
      one "=" padding character.





Josefsson                   Standards Track                     [Page 9]

RFC 4648                    Base-N Encodings                October 2006


7.  Base 32 Encoding with Extended Hex Alphabet

  The following description of base 32 is derived from [7].  This
  encoding may be referred to as "base32hex".  This encoding should not
  be regarded as the same as the "base32" encoding and should not be
  referred to as only "base32".  This encoding is used by, e.g.,
  NextSECure3 (NSEC3) [10].

  One property with this alphabet, which the base64 and base32
  alphabets lack, is that encoded data maintains its sort order when
  the encoded data is compared bit-wise.

  This encoding is identical to the previous one, except for the
  alphabet.  The new alphabet is found in Table 4.

                Table 4: The "Extended Hex" Base 32 Alphabet

        Value Encoding  Value Encoding  Value Encoding  Value Encoding
            0 0             9 9            18 I            27 R
            1 1            10 A            19 J            28 S
            2 2            11 B            20 K            29 T
            3 3            12 C            21 L            30 U
            4 4            13 D            22 M            31 V
            5 5            14 E            23 N
            6 6            15 F            24 O         (pad) =
            7 7            16 G            25 P
            8 8            17 H            26 Q

8.  Base 16 Encoding

  The following description is original but analogous to previous
  descriptions.  Essentially, Base 16 encoding is the standard case-
  insensitive hex encoding and may be referred to as "base16" or "hex".

  A 16-character subset of US-ASCII is used, enabling 4 bits to be
  represented per printable character.

  The encoding process represents 8-bit groups (octets) of input bits
  as output strings of 2 encoded characters.  Proceeding from left to
  right, an 8-bit input is taken from the input data.  These 8 bits are
  then treated as 2 concatenated 4-bit groups, each of which is
  translated into a single character in the base 16 alphabet.

  Each 4-bit group is used as an index into an array of 16 printable
  characters.  The character referenced by the index is placed in the
  output string.





Josefsson                   Standards Track                    [Page 10]

RFC 4648                    Base-N Encodings                October 2006


                        Table 5: The Base 16 Alphabet

        Value Encoding  Value Encoding  Value Encoding  Value Encoding
            0 0             4 4             8 8            12 C
            1 1             5 5             9 9            13 D
            2 2             6 6            10 A            14 E
            3 3             7 7            11 B            15 F

  Unlike base 32 and base 64, no special padding is necessary since a
  full code word is always available.

9.  Illustrations and Examples

  To translate between binary and a base encoding, the input is stored
  in a structure, and the output is extracted.  The case for base 64 is
  displayed in the following figure, borrowed from [5].

           +--first octet--+-second octet--+--third octet--+
           |7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|
           +-----------+---+-------+-------+---+-----------+
           |5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|
           +--1.index--+--2.index--+--3.index--+--4.index--+

  The case for base 32 is shown in the following figure, borrowed from
  [7].  Each successive character in a base-32 value represents 5
  successive bits of the underlying octet sequence.  Thus, each group
  of 8 characters represents a sequence of 5 octets (40 bits).

                       1          2          3
            01234567 89012345 67890123 45678901 23456789
           +--------+--------+--------+--------+--------+
           |< 1 >< 2| >< 3 ><|.4 >< 5.|>< 6 ><.|7 >< 8 >|
           +--------+--------+--------+--------+--------+
                                                   <===> 8th character
                                             <====> 7th character
                                        <===> 6th character
                                  <====> 5th character
                            <====> 4th character
                       <===> 3rd character
                 <====> 2nd character
            <===> 1st character










Josefsson                   Standards Track                    [Page 11]

RFC 4648                    Base-N Encodings                October 2006


  The following example of Base64 data is from [5], with corrections.

     Input data:  0x14fb9c03d97e
     Hex:     1   4    f   b    9   c     | 0   3    d   9    7   e
     8-bit:   00010100 11111011 10011100  | 00000011 11011001 01111110
     6-bit:   000101 001111 101110 011100 | 000000 111101 100101 111110
     Decimal: 5      15     46     28       0      61     37     62
     Output:  F      P      u      c        A      9      l      +

     Input data:  0x14fb9c03d9
     Hex:     1   4    f   b    9   c     | 0   3    d   9
     8-bit:   00010100 11111011 10011100  | 00000011 11011001
                                                     pad with 00
     6-bit:   000101 001111 101110 011100 | 000000 111101 100100
     Decimal: 5      15     46     28       0      61     36
                                                        pad with =
     Output:  F      P      u      c        A      9      k      =

     Input data:  0x14fb9c03
     Hex:     1   4    f   b    9   c     | 0   3
     8-bit:   00010100 11111011 10011100  | 00000011
                                            pad with 0000
     6-bit:   000101 001111 101110 011100 | 000000 110000
     Decimal: 5      15     46     28       0      48
                                                 pad with =      =
     Output:  F      P      u      c        A      w      =      =

10.  Test Vectors

  BASE64("") = ""

  BASE64("f") = "Zg=="

  BASE64("fo") = "Zm8="

  BASE64("foo") = "Zm9v"

  BASE64("foob") = "Zm9vYg=="

  BASE64("fooba") = "Zm9vYmE="

  BASE64("foobar") = "Zm9vYmFy"

  BASE32("") = ""

  BASE32("f") = "MY======"

  BASE32("fo") = "MZXQ===="



Josefsson                   Standards Track                    [Page 12]

RFC 4648                    Base-N Encodings                October 2006


  BASE32("foo") = "MZXW6==="

  BASE32("foob") = "MZXW6YQ="

  BASE32("fooba") = "MZXW6YTB"

  BASE32("foobar") = "MZXW6YTBOI======"

  BASE32-HEX("") = ""

  BASE32-HEX("f") = "CO======"

  BASE32-HEX("fo") = "CPNG===="

  BASE32-HEX("foo") = "CPNMU==="

  BASE32-HEX("foob") = "CPNMUOG="

  BASE32-HEX("fooba") = "CPNMUOJ1"

  BASE32-HEX("foobar") = "CPNMUOJ1E8======"

  BASE16("") = ""

  BASE16("f") = "66"

  BASE16("fo") = "666F"

  BASE16("foo") = "666F6F"

  BASE16("foob") = "666F6F62"

  BASE16("fooba") = "666F6F6261"

  BASE16("foobar") = "666F6F626172"
















Josefsson                   Standards Track                    [Page 13]

RFC 4648                    Base-N Encodings                October 2006


11.  ISO C99 Implementation of Base64

  An ISO C99 implementation of Base64 encoding and decoding that is
  believed to follow all recommendations in this RFC is available from:

     http://josefsson.org/base-encoding/

  This code is not normative.

  The code could not be included in this RFC for procedural reasons
  (RFC 3978 section 5.4).

12.  Security Considerations

  When base encoding and decoding is implemented, care should be taken
  not to introduce vulnerabilities to buffer overflow attacks, or other
  attacks on the implementation.  A decoder should not break on invalid
  input including, e.g., embedded NUL characters (ASCII 0).

  If non-alphabet characters are ignored, instead of causing rejection
  of the entire encoding (as recommended), a covert channel that can be
  used to "leak" information is made possible.  The ignored characters
  could also be used for other nefarious purposes, such as to avoid a
  string equality comparison or to trigger implementation bugs.  The
  implications of ignoring non-alphabet characters should be understood
  in applications that do not follow the recommended practice.
  Similarly, when the base 16 and base 32 alphabets are handled case
  insensitively, alteration of case can be used to leak information or
  make string equality comparisons fail.

  When padding is used, there are some non-significant bits that
  warrant security concerns, as they may be abused to leak information
  or used to bypass string equality comparisons or to trigger
  implementation problems.

  Base encoding visually hides otherwise easily recognized information,
  such as passwords, but does not provide any computational
  confidentiality.  This has been known to cause security incidents
  when, e.g., a user reports details of a network protocol exchange
  (perhaps to illustrate some other problem) and accidentally reveals
  the password because she is unaware that the base encoding does not
  protect the password.

  Base encoding adds no entropy to the plaintext, but it does increase
  the amount of plaintext available and provide a signature for
  cryptanalysis in the form of a characteristic probability
  distribution.




Josefsson                   Standards Track                    [Page 14]

RFC 4648                    Base-N Encodings                October 2006


13.  Changes Since RFC 3548

  Added the "base32 extended hex alphabet", needed to preserve sort
  order of encoded data.

  Referenced IMAP for the special Base64 encoding used there.

  Fixed the example copied from RFC 2440.

  Added security consideration about providing a signature for
  cryptoanalysis.

  Added test vectors.

  Fixed typos.

14.  Acknowledgements

  Several people offered comments and/or suggestions, including John E.
  Hadstate, Tony Hansen, Gordon Mohr, John Myers, Chris Newman, and
  Andrew Sieber.  Text used in this document are based on earlier RFCs
  describing specific uses of various base encodings.  The author
  acknowledges the RSA Laboratories for supporting the work that led to
  this document.

  This revised version is based in parts on comments and/or suggestions
  made by Roy Arends, Eric Blake, Brian E Carpenter, Elwyn Davies, Bill
  Fenner, Sam Hartman, Ted Hardie, Per Hygum, Jelte Jansen, Clement
  Kent, Tero Kivinen, Paul Kwiatkowski, and Ben Laurie.

15.  Copying Conditions

  Copyright (c) 2000-2006 Simon Josefsson

  Regarding the abstract and sections 1, 3, 8, 10, 12, 13, and 14 of
  this document, that were written by Simon Josefsson ("the author",
  for the remainder of this section), the author makes no guarantees
  and is not responsible for any damage resulting from its use.  The
  author grants irrevocable permission to anyone to use, modify, and
  distribute it in any way that does not diminish the rights of anyone
  else to use, modify, and distribute it, provided that redistributed
  derivative works do not contain misleading author or version
  information and do not falsely purport to be IETF RFC documents.
  Derivative works need not be licensed under similar terms.







Josefsson                   Standards Track                    [Page 15]

RFC 4648                    Base-N Encodings                October 2006


16.  References

16.1.  Normative References

  [1]   Cerf, V., "ASCII format for network interchange", RFC 20,
        October 1969.

  [2]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

16.2.  Informative References

  [3]   Linn, J., "Privacy Enhancement for Internet Electronic Mail:
        Part I: Message Encryption and Authentication Procedures", RFC
        1421, February 1993.

  [4]   Freed, N. and N. Borenstein, "Multipurpose Internet Mail
        Extensions (MIME) Part One: Format of Internet Message Bodies",
        RFC 2045, November 1996.

  [5]   Callas, J., Donnerhacke, L., Finney, H., and R. Thayer,
        "OpenPGP Message Format", RFC 2440, November 1998.

  [6]   Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose,
        "DNS Security Introduction and Requirements", RFC 4033, March
        2005.

  [7]   Klyne, G. and L. Masinter, "Identifying Composite Media
        Features", RFC 2938, September 2000.

  [8]   Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
        4rev1", RFC 3501, March 2003.

  [9]   Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
        Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
        January 2005.

  [10]  Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNSSEC Hash
        Authenticated Denial of Existence", Work in Progress, June
        2006.

  [11]  Myers, J., "SASL GSSAPI mechanisms", Work in Progress, May
        2000.

  [12]  Wilcox-O'Hearn, B., "Post to P2P-hackers mailing list",
        http://zgp.org/pipermail/p2p-hackers/2001-September/
        000315.html, September 2001.




Josefsson                   Standards Track                    [Page 16]

RFC 4648                    Base-N Encodings                October 2006


Author's Address

  Simon Josefsson
  SJD
  EMail: [email protected]














































Josefsson                   Standards Track                    [Page 17]

RFC 4648                    Base-N Encodings                October 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Josefsson                   Standards Track                    [Page 18]