Network Working Group                                          P. Arberg
Request for Comments: 4638                               D. Kourkouzelis
Category: Informational                                 Redback Networks
                                                             M. Duckett
                                                            T. Anschutz
                                                              BellSouth
                                                             J. Moisand
                                                       Juniper Networks
                                                         September 2006


 Accommodating a Maximum Transit Unit/Maximum Receive Unit (MTU/MRU)
                      Greater Than 1492 in the
            Point-to-Point Protocol over Ethernet (PPPoE)

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

IESG Note

  As of this writing, no current IEEE standard supports the use of
  "jumbo frames" (MTU greater than 1500).  Although this document
  contains recommended mechanisms to detect problems in the path,
  interoperability and reliability of non-standard extensions cannot be
  assured.  Both implementors and users of the protocol described here
  should exercise caution in its use.

Abstract

  The Point-to-Point Protocol over Ethernet (PPPoE), as described in
  RFC 2516, mandates a maximum negotiated Maximum Receive Unit (MRU) of
  1492.  This document outlines a solution that relaxes this
  restriction and allows a maximum negotiated MRU greater than 1492 to
  minimize fragmentation in next-generation broadband networks.










Arberg, et al.               Informational                      [Page 1]

RFC 4638                 PPPoE MRU/MTU Increase           September 2006


Table of Contents

  1. Introduction ....................................................2
  2. Terminology .....................................................4
  3. Proposed Solution ...............................................4
  4. PPPoE Discovery Stage ...........................................5
  5. LCP Considerations ..............................................5
     5.1. MRU Negotiations ...........................................5
     5.2. MRU Test and Troubleshooting ...............................6
  6. Security Considerations .........................................7
  7. IANA Considerations .............................................7
  8. Acknowledgements ................................................7
  9. Normative References ............................................7
  10. Informative References .........................................8

1.  Introduction

  As broadband network designs are changing from PC-initiated PPPoE [1]
  sessions in a combined Ethernet/Asynchronous Transfer Mode (ATM)
  setup, as shown in Figure 1, to more intelligent PPPoE-capable
  Residential Gateway (RG) and Gigabit Ethernet/ATM broadband network
  designs, as shown in Figures 2 and 3, the need to increase the
  maximum transmit and receive unit in the PPPoE protocol is becoming
  more important in order to reduce fragmentation in the network.

        <------------------ PPPoE session ------------------>

                                        +-----+           +-----+
      +--+              +---+           |     |           |     |
      |PC|--------------|CPE|-----------|DSLAM|-----------| BRAS|
      +--+  <Ethernet>  +---+   <ATM>   |     |   <ATM>   |     |
                                        +-----+           +-----+

       Figure 1.  Initial broadband network designs with PPPoE

  In the network design shown in Figure 1, fragmentation is typically
  not a problem, since the subscriber session is PPPoE end to end from
  the PC to the BRAS.  Therefore, a PPP-negotiated MRU of 1492 octets
  is fully acceptable, as it makes the largest PPPoE frame adhere to
  the standard Ethernet MTU of 1500 octets.











Arberg, et al.               Informational                      [Page 2]

RFC 4638                 PPPoE MRU/MTU Increase           September 2006


        <----- IPoE -----> <--------- PPPoE session --------->

                                        +-----+            +-----+
      +--+              +---+           |     |            |     |
      |PC|--------------| RG|-----------|DSLAM|------------| BRAS|
      +--+  <Ethernet>  +---+   <ATM>   |     |   <GigE>   |     |
                                        +-----+            +-----+

    Figure 2.  Next-generation broadband network designs with PPPoE

  In the network design shown in Figure 2, fragmentation becomes a
  major problem, since the subscriber session is a combination of IPoE
  and PPPoE.  The IPoE typically uses a Maximum Transit Unit (MTU) of
  1500 octets.  However, when the Residential Gateway and the Broadband
  Remote Access Server (BRAS) are the PPPoE session endpoints and
  therefore negotiate an MTU/MRU of 1492 octets, the result is a large
  number of fragmented packets in the network.

     <----- IPoE -----> <---- PPPoA ----> <- PPPoE session ->

                                       +-----+            +-----+
    +--+              +---+            |     |            |     |
    |PC|--------------| RG|------------|DSLAM|------------| BRAS|
    +--+  <Ethernet>  +---+    <ATM>   |     |   <GigE>   |     |
                                       +-----+            +-----+


      <-------------- PPPoA -------------> <- PPPoE session ->

                                       +-----+            +-----+
    +--+              +---+            |     |            |     |
    |PC|--------------|CPE|------------|DSLAM|------------| BRAS|
    +--+    <ATM>     +---+    <ATM>   |     |   <GigE>   |     |
                                       +-----+            +-----+

  Figure 3.  Broadband network designs with PPPoA-to-PPPoE conversion

  In the network design shown in Figure 3, which is studied by the
  DSL-Forum in the context of the migration to Ethernet for broadband
  aggregation networks, fragmentation is not the only problem when MRU
  differences exist in Point-to-Point Protocol over AAL5 (PPPoA) and
  PPPoE sessions.

  The subscriber session is a PPP session running over a combination of
  PPPoA and PPPoE.  The PPP/PPPoA host typically negotiates a 1500-
  octet MRU.  Widely deployed PPP/PPPoA hosts in Customer Premises
  Equipment (CPE) do not support a 1492-octet MRU, which creates an
  issue in turn for the BRAS (PPPoE server) if strict compliance to RFC



Arberg, et al.               Informational                      [Page 3]

RFC 4638                 PPPoE MRU/MTU Increase           September 2006


  2516 [1] is mandated.  For PPP/PPPoA hosts capable of negotiating a
  1492-octet MRU size, then we are back to a fragmentation issue.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [3].

     ATM   - Asynchronous Transfer Mode
     PPP   - Point-to-Point Protocol
     PPPoA - PPP over AAL5
     PPPoE - PPP over Ethernet
     MTU   - Maximum Transmit Unit
     MRU   - Maximum Receive Unit
     PC    - Personal Computer
     CPE   - Customer Premises Equipment
     RG    - Residential Gateway
     BRAS  - Broadband Remote Access Server
     DSLAM - Digital Subscriber Line Access Multiplexer
     PPPoE - client PC, RG, or CPE that initiates a PPPoE session
     PPPoE - server BRAS terminating PPPoE sessions initiated by client
     PADI  - PPPoE Active Discovery Initiation
     PADO  - PPPoE Active Discovery Offer
     PADR  - PPPoE Active Discovery Request
     PADS  - PPPoE Active Discovery Session-confirmation

3.  Proposed Solution

  The procedure described in this document does not strictly conform to
  IEEE standards for Ethernet packet size but relies on a widely
  deployed behavior of supporting frames with Ethernet packet format,
  but exceeding the maximum packet lengths defined by [4].

  Since next-generation broadband networks are built around Ethernet
  systems supporting baby-giants and jumbo frames with payload sizes
  larger than the normal Ethernet MTU of 1500 octets, a BRAS acting as
  a PPPoE server MUST support PPPoE MRU negotiations larger than 1492
  octets in order to limit the amount of fragmented packets in networks
  similar to those described in Section 1.

  By default, the Maximum-Receive-Unit (MRU) option MUST follow the
  rules set forward in RFC 1661 [2] but MUST NOT be negotiated to a
  size larger than 1492 to guarantee compatibility with Ethernet
  network segments limited to 1500-octet frames.  In such a case, as
  the PPPoE header is 6 octets and the PPP Protocol ID is 2 octets, the
  PPP MRU MUST NOT be greater than 1492.




Arberg, et al.               Informational                      [Page 4]

RFC 4638                 PPPoE MRU/MTU Increase           September 2006


  An optional PPPoE tag, "PPP-Max-Payload", allows a PPPoE client to
  override this default behavior by providing a maximum size for the
  PPP payload it can support in both the sending and receiving
  directions.  When such a tag is received by the PPPoE server, the
  server MAY allow the negotiation of an MRU larger than 1492 and the
  use of an MTU larger than 1492, subject to limitations of its local
  configuration and according to the rules set forward in RFC 1661 [2],
  within the limits of the maximum payload size indicated by the PPPoE
  client.

4.  PPPoE Discovery Stage

  If a PPPoE client wants to use an MTU/MRU higher than 1492 octets,
  then it MUST include an optional PPP-Max-Payload Tag in the PADI and
  PADR packets.  If the PPPoE server can support an MTU/MRU higher than
  1492 octets, it MUST respond with an echo of the clients tag in the
  PADO and PADS packets when the PPP-Max-Payload tag is received from
  the client.

  Tag-name:   PPP-Max-Payload
  Tag-value:  0x0120
  Tag-length: 2 octets
  Tag-value:  binary encoded value (max PPP payload in octets)

  Tag-description:
  This TAG indicates that the client and server are capable of
  supporting a given maximum PPP payload greater than 1492 octets for
  both the sending and receiving directions.  Note that this value
  represents the PPP payload; therefore it is directly comparable with
  the value used in the PPP MRU negotiation.

5.  LCP Considerations

5.1.  MRU Negotiations

  Since Ethernet (without jumbo frames) has a maximum payload size of
  1500 octets, the PPPoE header is 6 octets, and the PPP Protocol ID is
  2 octets, the Maximum-Receive-Unit (MRU) option MUST NOT be
  negotiated to a size larger than 1492, unless both the PPPoE client
  and server have indicated the ability to support a larger MRU in the
  PPPoE Discovery Stage.

  The initial MRU negotiation for the PPP/PPPoE server MUST follow a
  flow as shown below:







Arberg, et al.               Informational                      [Page 5]

RFC 4638                 PPPoE MRU/MTU Increase           September 2006


  If PPPoE {
  PPP_MRU_Max = 1492
  If (PPP-Max-Payload-Tag) AND (PPP-Max-Payload-Tag > 1492)
  Then PPP_MRU_Max = min (PPP-Max-Payload-Tag, Interface MTU-8)
  }
  "Normal" PPP_MRU_Negotiation (PPP_MRU_Max)

  If the PPP-Max-Payload tag is present and greater than 1492, it MUST
  be considered along with the server's interface MTU settings when the
  maximum value is selected for the normal RFC 1661 [2] MRU negotiation
  which decides the actual MRU to use.

  If the PPP-Max-Payload tag isn't present or is present but below
  1492, then the existing MRU constraint of 1492 octets MUST stay
  applicable, thus preserving backward compatibility.

  This, in summary, indicates the following behavior:

  1.  When a "PPP-Max-Payload" tag is received,

     a. the value in this tag will indicate the maximum MRU allowed to
        be accepted or suggested in an MRU negotiation; and

     b. if MRU is not negotiated, then RFC 1661 [2] will set the
        default MRU at 1500.  This will say that the "PPP-Max-Payload"
        tag can have a value greater than 1500, but in this case RFC
        1661 [2] sets the default MRU to 1500, and only if MRU is
        negotiated higher (up to maximum payload) will the "PPP-Max-
        Payload" tag value be used.

  2.  When a "PPP-Max-Payload" tag is not received by either end, then
      RFC 2516 [1] sets the rule.

5.2.  MRU Test and Troubleshooting

  If the MRU is negotiated to a value larger than 1492 octets, the
  sending side SHOULD have the option of sending one or more MRU-sized
  Echo-Request packets once the session is opened.  This allows it to
  test that the receiving side and any intermediate Ethernet segments
  and equipment can handle such a packet size.

  If no Echo-Replies are received, the sending side MAY choose to
  repeat the test with 1492 octets Echo-Request packets.  If these
  packets receive replies, the sending side MUST not send packets
  bigger than 1492 octets for this session.






Arberg, et al.               Informational                      [Page 6]

RFC 4638                 PPPoE MRU/MTU Increase           September 2006


  This capability SHOULD be enabled by default.  It SHOULD be
  configurable and MAY be disabled on networks where there is some
  prior knowledge indicating that the test is not necessary.

6.  Security Considerations

  This document does not introduce new security issues.  The security
  considerations pertaining to the original PPPoE protocol [1] remain
  relevant.

7.  IANA Considerations

  This document defines a new value in a space that currently has no
  IANA registry.  There is work in progress to define a registry [5]
  and that document already contains the value assigned here.  No IANA
  action is required for this document.

8.  Acknowledgements

  The authors would like to thank Prakash Jayaraman, Amit Cohen, Jim
  Ellis, David Thorne, John Reid, Oliver Thorp, Wojciech Dec, Jim
  Wilks, Mark Townsley, Bart Salaets, Tom Mistretta, Paul Howard, Dave
  Bernard, and Darren Nobel for their contributions and comments to
  this document.

9.  Normative References

  [1]  Mamakos, L., Lidl, K., Evarts, J., Carrel, D., Simone, D., and
       R. Wheeler, "A Method for Transmitting PPP Over Ethernet
       (PPPoE)", RFC 2516, February 1999.

  [2]  Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51, RFC
       1661, July 1994.

  [3]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [4]  Institute of Electrical and Electronic Engineers, IEEE Std
       802.3-2005, "IEEE Standard for Carrier Sense Multiple Access
       with Collision Detection (CSMA/CD) Access Method and Physical
       Layer Specifications - Draft amendment to - Information
       technology - Telecommunications and information exchange between
       systems - Local and metropolitan area networks - Specific
       requirements - Part 3:  Carrier sense multiple access with
       collision detection (CSMA/CD) access method and physical layer
       specifications - Media Access Control Parameters, Physical
       Layers and Management Parameters", December 2005.




Arberg, et al.               Informational                      [Page 7]

RFC 4638                 PPPoE MRU/MTU Increase           September 2006


10.  Informative References

  [5]  Arberg, P. and V. Mammoliti, "IANA Considerations for PPP over
       Ethernet (PPPoE), Work in Progress, June 2006.

Authors' Addresses

  Peter Arberg
  Redback Networks, Inc.
  300 Holger Way
  San Jose, CA 95134

  EMail: [email protected]


  Diamantis Kourkouzelis
  Redback Networks, Inc.
  300 Holger Way
  San Jose, CA 95134

  EMail: [email protected]


  Mike Duckett
  BellSouth Telecommunications, Inc.
  575 Morosgo Drive
  Atlanta, GA 30324

  EMail: [email protected]


  Tom Anschutz
  BellSouth Science and Technology
  725 W. Peachtree St.
  Atlanta, GA 30308

  EMail: [email protected]


  Jerome Moisand
  Juniper Networks, Inc.
  10 Technology Park Drive
  Westford, MA 01886

  EMail: [email protected]






Arberg, et al.               Informational                      [Page 8]

RFC 4638                 PPPoE MRU/MTU Increase           September 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Arberg, et al.               Informational                      [Page 9]