Network Working Group                                    L. Martini, Ed.
Request for Comments: 4619                           Cisco Systems, Inc.
Category: Standards Track                                   C. Kawa, Ed.
                                                      Oz Communications
                                                          A. Malis, Ed.
                                                                Tellabs
                                                         September 2006


       Encapsulation Methods for Transport of Frame Relay over
            Multiprotocol Label Switching (MPLS) Networks

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  A frame relay pseudowire is a mechanism that exists between a
  provider's edge network nodes and that supports as faithfully as
  possible frame relay services over an MPLS packet switched network
  (PSN).  This document describes the detailed encapsulation necessary
  to transport frame relay packets over an MPLS network.




















Martini & Kawa              Standards Track                     [Page 1]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


Table of Contents

  1. Introduction ....................................................2
  2. Specification of Requirements ...................................4
  3. Co-authors ......................................................4
  4. Acronyms and Abbreviations ......................................5
  5. Applicability Statement .........................................5
  6. General Encapsulation Method ....................................6
  7. Frame Relay over MPLS PSN for the One-to-One Mode ...............7
     7.1. MPLS PSN Tunnel and PW .....................................7
     7.2. Packet Format over MPLS PSN ................................7
     7.3. The Control Word ...........................................8
     7.4. The Martini Legacy Mode Control Word .......................9
     7.5. PW Packet Processing .......................................9
          7.5.1. Encapsulation of Frame Relay Frames .................9
          7.5.2. Setting the Sequence Number ........................10
     7.6. Decapsulation of PW Packets ...............................11
          7.6.1. Processing the Sequence Number .....................11
          7.6.2. Processing of the Length Field by the Receiver .....11
     7.7. MPLS Shim EXP Bit Values ..................................12
     7.8. MPLS Shim S Bit Value .....................................12
     7.9. Control Plane Details for Frame Relay Service .............12
          7.9.1. Frame Relay Specific Interface Parameter Sub-TLV ...12
  8. Frame Relay Port Mode ..........................................13
  9. Congestion Control .............................................13
  10. Security Considerations .......................................14
  11. Normative References ..........................................14
  12. Informative References ........................................15

1.   Introduction

  In an MPLS or IP network, it is possible to use control protocols
  such as those specified in [RFC4447] to set up "pseudowires" (PWs)
  that carry the Protocol Data Units of layer 2 protocols across the
  network.  A number of these emulated PWs may be carried in a single
  tunnel.  The main functions required to support frame relay PW by a
  Provider Edge (PE) include:

  - encapsulation of frame relay specific information in a suitable
    pseudowire (PW) packet;

  - transfer of a PW packet across an MPLS network for delivery to a
    peer PE;

  - extraction of frame relay specific information from a PW packet by
    the remote peer PE;





Martini & Kawa              Standards Track                     [Page 2]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


  - regeneration of native frame relay frames for forwarding across an
    egress port of the remote peer PE; and

  - execution of any other operations as required to support frame
    relay service.

  This document specifies the encapsulation for the emulated frame
  relay VC over an MPLS PSN.  Although different layer 2 protocols
  require different information to be carried in this encapsulation, an
  attempt has been made to make the encapsulation as common as possible
  for all layer 2 protocols.  Other layer 2 protocols are described in
  separate documents.  [ATM] [RFC4448] [RFC4618]

  The following figure describes the reference models that are derived
  from [RFC3985] to support the frame relay PW emulated services.

        |<-------------- Emulated Service ---------------->|
        |                                                  |
        |          |<------- Pseudowire ------->|          |
        |          |                            |          |
        |          |    |<-- PSN Tunnel -->|    |          |
        | PW End   V    V                  V    V  PW End  |
        V Service  +----+                  +----+  Service V
  +-----+    |     | PE1|==================| PE2|     |    +-----+
  |     |----------|............PW1.............|----------|     |
  | CE1 |    |     |    |                  |    |     |    | CE2 |
  |     |----------|............PW2.............|----------|     |
  +-----+  ^ |     |    |==================|    |     | ^  +-----+
        ^  |       +----+                  +----+     | |  ^
        |  |   Provider Edge 1         Provider Edge 2  |  |
        |  |       (PE1)                    (PE2)       |  |
  Customer |                                            | Customer
  Edge 1   |                                            | Edge 2
           |                                            |
           |                                            |
   Attachment Circuit (AC)                    Attachment Circuit (AC)
  native frame relay service                 native frame relay service

  Figure 1.  PWE3 frame relay PVC interface reference configuration

  Two mapping modes can be defined between frame relay VCs and
  pseudowires: The first one is called "one-to-one" mapping, because
  there is a one-to-one correspondence between a frame relay VC and one
  pseudowire.  The second mapping is called "many-to-one" mapping or
  "port mode" because multiple frame relay VCs assigned to a port are
  mapped to one pseudowire.  The "port mode" encapsulation is identical
  to High-Level Data Link Control (HDLC) pseudowire encapsulation,
  which is described in [RFC4618].



Martini & Kawa              Standards Track                     [Page 3]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


2.  Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119.

  Below are the definitions for the terms used throughout the document.
  PWE3 definitions can be found in [RFC3916, RFC3985].  This section
  defines terms specific to frame relay.

  - Forward direction

    The forward direction is the direction taken by the frame being
    forwarded.

  - Backward direction

    In frame relay, it is the direction opposite to the direction taken
    by a frame being forwarded (see also forward direction).

3.  Co-authors

  The following are co-authors of this document:

  Nasser El-Aawar           Level 3 Communications, LLC
  Eric C. Rosen             Cisco Systems
  Daniel Tappan             Cisco Systems
  Thomas K. Johnson         Litchfield Communications
  Kireeti Kompella          Juniper Networks, Inc.
  Steve Vogelsang           Laurel Networks, Inc.
  Vinai Sirkay              Reliance Infocomm
  Ravi Bhat                 Nokia
  Nishit Vasavada           Nokia
  Giles Heron               Tellabs
  Dimitri Stratton Vlachos  Mazu Networks,Inc.
  Chris Liljenstolpe        Cable & Wireless
  Prayson Pate              Overture Networks, Inc














Martini & Kawa              Standards Track                     [Page 4]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


4.  Acronyms and Abbreviations

     BECN    Backward Explicit Congestion Notification
     CE      Customer Edge
     C/R     Command/Response
     DE      Discard Eligibility
     DLCI    Data Link Connection Identifier
     FCS     Frame Check Sequence
     FECN    Forward Explicit Congestion Notification
     FR      Frame Relay
     LSP     Label Switched Path
     LSR     Label Switching Router
     MPLS    Multiprotocol Label Switching
     MTU     Maximum Transfer Unit
     NNI     Network-Network Interface
     PE      Provider Edge
     PSN     Packet Switched Network
     PW      Pseudowire
     PWE3    Pseudowire Emulation Edge to Edge
     POS     Packet over SONET/SDH
     PVC     Permanent Virtual Circuit
     QoS     Quality of Service
     SVC     Switched Virtual Circuit
     UNI     User-Network Interface
     VC      Virtual Circuit

5.  Applicability Statement

  Frame relay over PW service is not intended to emulate the
  traditional frame relay service perfectly, but it can be used for
  applications that need frame relay transport service.

  The following are notable differences between traditional frame relay
  service and the protocol described in this document:

  - Frame ordering can be preserved using the OPTIONAL sequence field
    in the control word; however, implementations are not required to
    support this feature.

  - The Quality of Service model for traditional frame relay can be
    emulated; however, this is outside the scope of this document.

  - A Frame relay port mode PW does not process any frame relay status
    messages or alarms as described in [Q922] [Q933]

  - The frame relay BECN and FECN bit are transparent to the MPLS
    network and cannot reflect the status of the MPLS network.




Martini & Kawa              Standards Track                     [Page 5]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


  - Support for frame relay SVC and Switched Permanent Virtual Circuit
    (SPVC) is outside the scope of this document.

  - Frame relay Local Management Interface (LMI) is terminated locally
    in the PE connected to the frame relay attachment circuit.

  - The support of PVC link integrity check is outside the scope of
    this document.

6.  General Encapsulation Method

  The general frame relay pseudowire packet format for carrying frame
  relay information (user's payload and frame relay control
  information) between two PEs is shown in Figure 2.

             +-------------------------------+
             |                               |
             |    MPLS Transport header      |
             |       (As required)           |
             +-------------------------------+
             |   Pseudowire (PW) Header      |
             +-------------------------------+
             |        Control Word           |
             +-------------------------------+
             |          FR Service           |
             |           Payload             |
             +-------------------------------+

   Figure 2.  General format of frame relay encapsulation over PSN

  The PW packet consists of the following fields: Control word and
  Payload, preceded by the MPLS Transport and pseudowire header.  The
  meaning of the different fields is as follows:

  -i.    MPLS Transport header is specific to the MPLS network.  This
         header is used to switch the PW packet through the MPLS core.

  -ii.   PW header contains an identifier for multiplexing PWs within
         an MPLS tunnel.

  -iii.  Control Word contains protocol control information for
         providing a frame relay service.  Its structure is provided in
         the following sections.

  -iv.   The content of the frame relay service payload field depends
         on the mapping mode.  In general it contains the layer 2 frame
         relay frame.




Martini & Kawa              Standards Track                     [Page 6]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


7.  Frame Relay over MPLS PSN for the One-to-One Mode

7.1.  MPLS PSN Tunnel and PW

  MPLS label switched paths (LSPs) called "MPLS Tunnels" are used
  between PEs and are used within the MPLS core network to forward PW
  packets.  An MPLS tunnel corresponds to "PSN Tunnel" of Figure 1.

  Several PWs may be nested inside one MPLS tunnel.  Each PW carries
  the traffic of a single frame relay VC.  In this case, the PW header
  is an MPLS label called the PW label.

7.2.  Packet Format over MPLS PSN

  For the one-to-one mapping mode for frame relay over an MPLS network,
  the PW packet format is as shown in Figure 3.

   +-------------------------------+
   |      MPLS Tunnel label(s)     | n*4 octets (four octets per label)
   +-------------------------------+
   |      PW label                 |  4 octets
   +-------------------------------+
   |       Control Word            |
   |      (See Figure 4)           | 4 octets
   +-------------------------------+
   |            Payload            |
   |      (Frame relay frame       |
   |       information field)      | n octets
   |                               |
   +-------------------------------+

         Figure 3.  Frame Relay over MPLS PSN Packet for the
                    One-to-One Mapping

  The meaning of the different fields is as follows:

  - MPLS Tunnel label(s)

    The MPLS Tunnel label(s) corresponds to the MPLS transport header
    of Figure 2.  The label(s) is/are used by MPLS LSRs to forward a PW
    packet from one PE to the other.

  - PW Label

    The PW label identifies one PW (i.e., one LSP) assigned to a frame
    relay VC in one direction.  It corresponds to the PW header of
    Figure 2.  Together the MPLS Tunnel label(s) and PW label form an
    MPLS label stack [RFC3032].



Martini & Kawa              Standards Track                     [Page 7]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


  - Control Word

    The Control Word contains protocol control information.  Its
    structure is shown in Figure 4.

  - Payload

    The payload field corresponds to X.36/X.76 frame relay frame
    information field with the following components removed: bit/byte
    stuffing, frame relay header, and FCS.  It is RECOMMENDED to
    support a frame size of at least 1600 bytes.  The maximum length of
    the payload field MUST be agreed upon by the two PEs.  This can be
    achieved by using the MTU interface parameter when the PW is
    established.  [RFC4447]

7.3.  The Control Word

  The control word defined below is REQUIRED for frame relay one-to-one
  mode.  The control word carries certain frame relay specific
  information that is necessary to regenerate the frame relay frame on
  the egress PE.  Additionally, the control word also carries a
  sequence number that can be used to preserve sequentiality when
  carrying frame relay over an MPLS network.  Its structure is as
  follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0|F|B|D|C|FRG|  Length   | Sequence Number               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 4.  Control Word structure for the one-to-one mapping mode

  The meaning of the Control Word fields (Figure 4) is as follows (see
  also [X36 and X76] for frame relay bits):

  - Bits 0 to 3

     In the above diagram, the first 4 bits MUST be set to 0 to
     indicate PW data.

  - F (bit 4) FR FECN (Forward Explicit Congestion Notification) bit.

  - B (bit 5) FR BECN (Backward Explicit Congestion Notification) bit.

  - D (bit 6) FR DE bit (Discard Eligibility) bit.

  - C (bit 7) FR frame C/R (Command/Response) bit.



Martini & Kawa              Standards Track                     [Page 8]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


  - FRG (bits 8 and 9): These bits are defined by [RFC4623].

  - Length (bits 10 to 15)

     If the PW traverses a network link that requires a minimum frame
     size (a notable example is Ethernet), padding is required to reach
     its minimum frame size.  If the frame's length (defined as the
     length of the layer 2 payload plus the length of the control word)
     is less than 64 octets, the length field MUST be set to the PW
     payload length.  Otherwise, the length field MUST be set to zero.
     The value of the length field, if non-zero, is used to remove the
     padding characters by the egress PE.

  - Sequence number (Bit 16 to 31)

     Sequence numbers provide one possible mechanism to ensure the
     ordered delivery of PW packets.  The processing of the sequence
     number field is OPTIONAL.  The sequence number space is a 16-bit
     unsigned circular space.  The sequence number value 0 is used to
     indicate that the sequence number check algorithm is not used.

7.4.  The Martini Legacy Mode Control Word

  For backward compatibility to existing implementations, the following
  version of the control word is defined as the "martini mode CW" for
  frame relay.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0|B|F|D|C|FRG|  Length   | Sequence Number               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 5.  Control Word structure for the frame relay martini mode

  Note that the "B" and "F" bits are reversed.

  This control word format is used for PW type "Frame Relay DLCI (
  Martini Mode )"

7.5.  PW Packet Processing

7.5.1.  Encapsulation of Frame Relay Frames

  The encapsulation process of a frame relay frame is initiated when a
  PE receives a frame relay frame from one of its frame relay UNI or
  NNI [FRF1] [FRF2] interfaces.  The PE generates the following fields




Martini & Kawa              Standards Track                     [Page 9]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


  of the control word from the corresponding fields of the frame relay
  frame as follows:

  - Command/Response (C/R or C) bit: The C bit is copied unchanged in
    the PW Control Word.

  - The DE bit of the frame relay frame is copied into the D bit field.
    However, if the D bit is not already set, it MAY be set as a result
    of ingress frame policing.  If it is not already set by the copy
    operation, setting of this bit by a PE is OPTIONAL.  The PE MUST
    NOT clear this bit (set it to 0 if it was received with the value
    of 1).

  - The FECN bit of the frame relay frame is copied into the F bit
    field.  However, if the F bit is not already set, it MAY be set to
    reflect a congestion situation detected by the PE.  If it is not
    already set by the copy operation, setting of this bit by a PE is
    OPTIONAL.  The PE MUST NOT clear this bit (set it to 0 if it was
    received with the value of 1)

  - The BECN bit of the frame relay frame is copied into the B bit
    field.  However, if the B bit is not already set, it MAY be set to
    reflect a congestion situation detected by the PE.  If it is not
    already set by the copy operation, setting of this bit by a PE is
    OPTIONAL.  The PE MUST NOT clear this bit (set it to 0 if it was
    received with the value of 1).

  - If the PW packet length (defined as the length of the payload plus
    the length of the control word) is less than 64 octets, the length
    field MUST be set to the packet's length.  Otherwise, the length
    field MUST be set to zero.

  - The sequence number field is processed if the PW uses sequence
    numbers.  [RFC4385]

  - The payload of the PW packet is the contents of ITU-T
    Recommendations X.36/X.76 [X36] [X76] frame relay frame information
    field stripped from any bit or byte stuffing.

7.5.2.  Setting the Sequence Number

  For a given PW and a pair of routers PE1 and PE2, if PE1 supports
  packet sequencing, then the procedures in [RFC4385], Section 4.1,
  MUST be followed.







Martini & Kawa              Standards Track                    [Page 10]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


7.6.  Decapsulation of PW Packets

  When a PE receives a PW packet, it processes the different fields of
  the control word in order to decapsulate the frame relay frame for
  transmission to a CE on a frame relay UNI or NNI.  The PE performs
  the following actions (not necessarily in the order shown):

  - It generates the following frame relay frame header fields from the
    corresponding fields of the PW packet.

  - The C/R bit MUST be copied in the frame relay header.

  - The D bit MUST be copied into the frame relay header DE bit.

  - The F bit MUST be copied into the frame relay header FECN bit.  If
    the F bit is set to zero, the FECN bit may be set to one, depending
    on the congestion state of the PE device in the forward direction.
    Changing the state of this bit by a PE is OPTIONAL.

  - The B bit MUST be copied into the frame relay header BECN bit.  If
    the B bit is set to zero, the BECN bit may be set to one, depending
    on the congestion state of the PE device in the backward direction.
    Changing the state of this bit by a PE is OPTIONAL.

  - It processes the length and sequence field, the details of which
    are in the following sub-sections.

  - It copies the frame relay information field from the contents of
    the PW packet payload after removing any padding.

  Once the above fields of a FR frame have been processed, the standard
  HDLC operations are performed on the frame relay frame: the HDLC
  header is added, any bit or byte stuffing is added as required, and
  the FCS is also appended to the frame.  The FR frame is then queued
  for transmission on the selected frame relay UNI or NNI interface.

7.6.1.  Processing the Sequence Number

  If a router PE2 supports received sequence number processing, then
  the procedures in [RFC4385], Section 4.2, MUST be used.

7.6.2.  Processing of the Length Field by the Receiver

  Any padding octet, if present, in the payload field of a PW packet
  received MUST be removed before forwarding the data.

  - If the Length field is set to zero, then there are no padding
    octets following the payload field.



Martini & Kawa              Standards Track                    [Page 11]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


  - Otherwise, if the payload is longer, then the length specified in
    the control word padding characters are removed according to the
    length field.

7.7.  MPLS Shim EXP Bit Values

  If it is desired to carry Quality of Service information, the Quality
  of Service information SHOULD be represented in the Experimental Use
  Bits (EXP) field of the PW MPLS label [RFC3032].  If more than one
  MPLS label is imposed by the ingress LSR, the EXP field of any labels
  higher in the stack SHOULD also carry the same value.

7.8.  MPLS Shim S Bit Value

  The ingress LSR, PE1, MUST set the S bit of the PW label to a value
  of 1 to denote that the PW label is at the bottom of the stack.

7.9.  Control Plane Details for Frame Relay Service

  The PE MUST provide frame relay PVC status signaling to the frame
  relay network.  If the PE detects a service-affecting condition for a
  particular DLCI, as defined in [Q933] Q.933, Annex A.5, sited in IA
  FRF1.1, the PE MUST communicate to the remote PE the status of the PW
  that corresponds to the frame relay DLCI status.  The Egress PE
  SHOULD generate the corresponding errors and alarms as defined in
  [Q922] [Q933] on the egress Frame relay PVC.

  There are two frame relay flags to control word bit mappings
  described below.  The legacy bit ordering scheme will be used for a
  PW of type 0x0001, "Frame Relay DLCI (Martini Mode)", and the new bit
  ordering scheme will be used for a PW of type 0x0019, "Frame Relay
  DLCI".  The IANA allocation registry of "Pseudowire Type" is defined
  in [RFC4446] along with initial allocated values.

7.9.1.  Frame Relay Specific Interface Parameter Sub-TLV

  A separate document, [RFC4447], describes the PW control and
  maintenance protocol in detail, including generic interface parameter
  sub-TLVs.  The interface parameter information, when applicable, MUST
  be used to validate that the PEs and the ingress and egress ports at
  the edges of the circuit have the necessary capabilities to
  interoperate with each other.  The Interface parameter TLV is defined
  in [RFC4447], and the IANA registry with initial values for interface
  parameter sub-TLV types is defined in [RFC4446], but the frame relay
  specific interface parameter sub-TLV types are specified as follows:

  - 0x08 Frame Relay Header Length Sub-TLV




Martini & Kawa              Standards Track                    [Page 12]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


    An optional 16-bit value indicating the length of the FR Header,
    expressed in octets.  This OPTIONAL interface parameter Sub-TLV can
    have value of 2, 3, or 4, the default being 2.  If this Sub-TLV is
    not present, the default value of 2 is assumed.

8. Frame Relay Port Mode

  The frame relay port mode PW shares the same encapsulation as the
  HDLC PW and is described in the respective document.  [RFC4618]

9.  Congestion Control

  As explained in [RFC3985], the PSN carrying the PW may be subject to
  congestion, the characteristics of which depend on PSN type, network
  architecture, configuration, and loading.  During congestion, the PSN
  may exhibit packet loss that will impact the service carried by the
  frame relay PW.  In addition, since frame relay PWs carry a variety
  of services across the PSN, including but not restricted to TCP/IP,
  they may or may not behave in a TCP-friendly manner prescribed by
  [RFC2914].  In the presence of services that reduce transmission
  rate, frame relay PWs may thus consume more than their fair share and
  in that case SHOULD be halted.

  Whenever possible, frame relay PWs should be run over traffic-
  engineered PSNs providing bandwidth allocation and admission control
  mechanisms.  IntServ-enabled domains providing the Guaranteed Service
  (GS) or DiffServ-enabled domains using EF (expedited forwarding) are
  examples of traffic-engineered PSNs.  Such PSNs will minimize loss
  and delay while providing some degree of isolation of the frame relay
  PW's effects from neighboring streams.

  Note that when transporting frame relay, DiffServ-enabled domains may
  use AF (Assured Forwarding) and/or DF (Default Forwarding) instead of
  EF, in order to place less burden on the network and to gain
  additional statistical multiplexing advantage.  In particular, if the
  Committed Information Rate (CIR) of a frame relay VC is zero, then it
  is equivalent to a best-effort UDP over IP stream regarding
  congestion:  the network is free to drop frames as necessary.  In
  this case, the "DF" Per Hop Behavior (PHB) would be appropriate in a
  diff-serv-TE domain.  Alternatively, if the CIR of a frame relay VC
  is nonzero and the DE bit is zero in the FR header, then "AF31" would
  be appropriate to be used, and if the CIR of a frame relay VC is
  nonzero but the DE bit is on, then "AF32" would be appropriate
  [RFC3270].

  The PEs SHOULD monitor for congestion (by using explicit congestion
  notification, [VCCV], or by measuring packet loss) in order to ensure
  that the service using the frame relay PW may be maintained.  When a



Martini & Kawa              Standards Track                    [Page 13]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


  PE detects significant congestion while receiving the PW PDUs, the
  BECN bits of the frame relay frame transmitted on the same PW SHOULD
  be set to notify the remote PE and the remote frame relay switch of
  the congestion situation.  In addition, the FECN bits SHOULD be set
  in the FR frames sent out the attachment circuit, to give the FR DTE
  a chance to adjust its transport layer advertised window, if
  possible.

  If the PW has been set up using the protocol defined in [RFC4447],
  then procedures specified in [RFC4447] for status notification can be
  used to disable packet transmission on the ingress PE from the egress
  PE.  The PW may be restarted by manual intervention, or by automatic
  means after an appropriate waiting time.

10.  Security Considerations

  PWE3 provides no means of protecting the contents or delivery of the
  PW packets on behalf of the native service.  PWE3 may, however,
  leverage security mechanisms provided by the MPLS Tunnel Layer.  A
  more detailed discussion of PW security is given in [RFC3985,
  RFC4447, RFC3916].

11.  Normative References

  [RFC4447] Martini, L., Rosen, E., El-Aawar, N., Smith, T., and G.
            Heron, "Pseudowire Setup and Maintenance Using the Label
            Distribution Protocol (LDP)", RFC 4447, April 2006.

  [RFC4385] Bryant, S., Swallow, G., Martini, L., and D. McPherson,
            "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for
            Use over an MPLS PSN", RFC 4385, February 2006.

  [RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
            Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
            Encoding", RFC 3032, January 2001.

  [RFC4446] Martini, L., "IANA Allocations for Pseudowire Edge to Edge
            Emulation (PWE3)", BCP 116, RFC 4446, April 2006.

  [RFC4618] Martini, L., Rosen, E., Heron, G., and A. Malis,
            "Encapsulation Methods for Transport of Point to Point
            Protocol/High-Level Data Link Control (PPP/HDLC) over
            Multiprotocol Label Switching (MPLS) Networks", RFC 4618,
            September 2006.

  [RFC4623] Malis, A. and M. Townsley, "Pseudowire Emulation Edge-to-
            Edge (PWE3) Fragmentation and Reassembly", RFC 4623, August
            2006.



Martini & Kawa              Standards Track                    [Page 14]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


12.  Informative References

  [RFC3985] Bryant, S. and P. Pate, "Pseudo Wire Emulation Edge-to-Edge
            (PWE3) Architecture", RFC 3985, March 2005.

  [VCCV]    Nadeau, T., et al., "Pseudo Wire Virtual Circuit Connection
            Verification (VCCV)", Work in Progress, October 2005.

  [ATM]     Martini, L., et al., "Encapsulation Methods for Transport
            of ATM Over MPLS Networks", Work in Progress, April 2005.

  [RFC4448] Martini, L., Rosen, E., El-Aawar, N., and G. Heron,
            "Encapsulation Methods for Transport of Ethernet over MPLS
            Networks", RFC 4448, April 2006.

  [FRF1]    FRF.1.2, Frame relay PVC UNI Implementation Agreement,
            Frame Relay Forum, April 2000.

  [FRF2]    FRF.2.2, Frame relay PVC UNI Implementation Agreement,
            Frame Relay Forum, April 2002

  [RFC3916] Xiao, X., McPherson, D., and P. Pate, "Requirements for
            Pseudo-Wire Emulation Edge-to-Edge (PWE3)", RFC 3916,
            September 2004.

  [X36]     ITU-T Recommendation X.36, Interface between a DTE and DCE
            for public data networks providing frame relay, Geneva,
            2000.

  [X76]     ITU-T Recommendation X.76, Network-to-network interface
            between public data networks providing frame relay
            services, Geneva,2000

  [Q922]    ITU-T Recommendation Q.922 Specification for Frame Mode
            Basic call control, ITU Geneva 1995

  [Q933]    ITU-T Recommendation Q.933 Specification for Frame Mode
            Basic call control, ITU Geneva 2003

  [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41, RFC
            2914, September 2000.

  [RFC3270] Le Faucheur, F., Wu, L., Davie, B., Davari, S., Vaananen,
            P., Krishnan, R., Cheval, P., and J. Heinanen, "Multi-
            Protocol Label Switching (MPLS) Support of Differentiated
            Services", RFC 3270, May 2002.





Martini & Kawa              Standards Track                    [Page 15]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


Contributing Author Information

  Kireeti Kompella
  Juniper Networks
  1194 N. Mathilda Ave
  Sunnyvale, CA 94089

  EMail: [email protected]


  Giles Heron
  Tellabs
  Abbey Place
  24-28 Easton Street
  High Wycombe
  Bucks
  HP11 1NT
  UK

  EMail: [email protected]


  Rao Cherukuri
  Juniper Networks
  1194 N. Mathilda Ave
  Sunnyvale, CA 94089


  Dimitri Stratton Vlachos
  Mazu Networks, Inc.
  125 Cambridgepark Drive
  Cambridge, MA 02140

  EMail: [email protected]


  Chris Liljenstolpe
  Alcatel
  11600 Sallie Mae Dr.
  9th Floor
  Reston, VA 20193

  EMail: [email protected]








Martini & Kawa              Standards Track                    [Page 16]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


  Nasser El-Aawar
  Level 3 Communications, LLC.
  1025 Eldorado Blvd.
  Broomfield, CO, 80021

  EMail: [email protected]


  Eric C. Rosen
  Cisco Systems, Inc.
  1414 Massachusetts Avenue
  Boxborough, MA 01719

  EMail: [email protected]


  Dan Tappan
  Cisco Systems, Inc.
  1414 Massachusetts Avenue
  Boxborough, MA 01719

  EMail: [email protected]


  Prayson Pate
  Overture Networks, Inc.
  507 Airport Boulevard
  Morrisville, NC, USA 27560

  EMail: [email protected]


  David Sinicrope
  Ericsson IPI

  EMail: [email protected]


  Ravi Bhat
  Nokia

  EMail: [email protected]


  Nishit Vasavada
  Nokia

  EMail: [email protected]



Martini & Kawa              Standards Track                    [Page 17]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


  Steve Vogelsang
  ECI Telecom
  Omega Corporate Center
  1300 Omega Drive
  Pittsburgh, PA 15205

  EMail: [email protected]


  Vinai Sirkay
  Redback Networks
  300 Holger Way,
  San Jose, CA 95134

  EMail: [email protected]

Authors' Addresses

  Luca Martini
  Cisco Systems, Inc.
  9155 East Nichols Avenue, Suite 400
  Englewood, CO, 80112

  EMail: [email protected]


  Claude Kawa
  OZ Communications
  Windsor Station
  1100, de la Gauchetie`re St West
  Montreal QC Canada
  H3B 2S2

  EMail: [email protected]


  Andrew G. Malis
  Tellabs
  1415 West Diehl Road
  Naperville, IL  60563

  EMail: [email protected]









Martini & Kawa              Standards Track                    [Page 18]

RFC 4619       Encapsulation for Transport of Frame Relay September 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Martini & Kawa              Standards Track                    [Page 19]