Network Working Group                                         L. Martini
Request for Comments: 4618                                      E. Rosen
Category: Standards Track                            Cisco Systems, Inc.
                                                               G. Heron
                                                               A. Malis
                                                                Tellabs
                                                         September 2006


               Encapsulation Methods for Transport of
      PPP/High-Level Data Link Control (HDLC) over MPLS Networks

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  A pseudowire (PW) can be used to carry Point to Point Protocol (PPP)
  or High-Level Data Link Control (HDLC) Protocol Data Units over a
  Multiprotocol Label Switching (MPLS) network without terminating the
  PPP/HDLC protocol.  This enables service providers to offer
  "emulated" HDLC, or PPP link services over existing MPLS networks.
  This document specifies the encapsulation of PPP/HDLC Packet Data
  Units (PDUs) within a pseudowire.


















Martini, et al.             Standards Track                     [Page 1]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


Table of Contents

  1. Introduction ....................................................2
  2. Specification of Requirements ...................................2
  3. Applicability Statement .........................................5
  4. General Encapsulation Method ....................................6
     4.1. The Control Word ...........................................6
     4.2. MTU Requirements ...........................................8
  5. Protocol-Specific Details .......................................9
     5.1. HDLC .......................................................9
     5.2. Frame Relay Port Mode ......................................9
     5.3. PPP .......................................................10
  6. Using an MPLS Label as the Demultiplexer Field .................11
     6.1. MPLS Shim EXP Bit Values ..................................11
     6.2. MPLS Shim S Bit Value .....................................11
  7. Congestion Control .............................................12
  8. IANA Considerations ............................................12
  9. Security Considerations ........................................12
  10. Normative References ..........................................13
  11. Informative References ........................................13

1.  Introduction

  A PPP/HDLC pseudowire (PW) allows PPP/HDLC Protocol Data Units (PDUs)
  to be carried over an MPLS network.  In addressing the issues
  associated with carrying a PPP/HDLC PDU over an MPLS network, this
  document assumes that a PW has been set up by some means outside the
  scope of this document.  This may be via manual configuration, or
  using a signaling protocol such as that defined in [RFC4447].

  The following figure describes the reference models that are derived
  from [RFC3985] to support the HDLC/PPP PW emulated services.  The
  reader is also assumed to be familiar with the content of the
  [RFC3985] document.

2.  Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].











Martini, et al.             Standards Track                     [Page 2]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


         |<-------------- Emulated Service ---------------->|
         |                                                  |
         |          |<------- Pseudowire ------->|          |
         |          |                            |          |
         |          |    |<-- PSN Tunnel -->|    |          |
         |          V    V                  V    V          |
         V   AC     +----+                  +----+    AC    V
   +-----+    |     | PE1|==================| PE2|     |    +-----+
   |     |----------|............PW1.............|----------|     |
   | CE1 |    |     |    |                  |    |     |    | CE2 |
   |     |----------|............PW2.............|----------|     |
   +-----+  ^ |     |    |==================|    |     | ^  +-----+
         ^  |       +----+                  +----+     | |  ^
         |  |   Provider Edge 1         Provider Edge 2  |  |
         |  |                                            |  |
   Customer |                                            | Customer
   Edge 1   |                                            | Edge 2
            |                                            |
            |                                            |
      native HDLC/PPP service                   native HDLC/PPP service

      Figure 1.  PWE3 HDLC/PPP interface reference configuration

  This document specifies the emulated PW encapsulation for PPP and
  HDLC; however, quality of service related issues are not discussed in
  this document.  For the purpose of the discussion in this document,
  PE1 will be defined as the ingress router and PE2 as the egress
  router.  A layer 2 PDU will be received at PE1, encapsulated at PE1,
  transported across the network, decapsulated at PE2, and transmitted
  out on an attachment circuit at PE2.





















Martini, et al.             Standards Track                     [Page 3]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


  The following reference model describes the termination point of each
  end of the PW within the PE:

               +-----------------------------------+
               |                PE                 |
       +---+   +-+  +-----+  +------+  +------+  +-+
       |   |   |P|  |     |  |PW ter|  | PSN  |  |P|
       |   |<==|h|<=| NSP |<=|minati|<=|Tunnel|<=|h|<== From PSN
       |   |   |y|  |     |  |on    |  |      |  |y|
       | C |   +-+  +-----+  +------+  +------+  +-+
       | E |   |                                   |
       |   |   +-+  +-----+  +------+  +------+  +-+
       |   |   |P|  |     |  |PW ter|  | PSN  |  |P|
       |   |==>|h|=>| NSP |=>|minati|=>|Tunnel|=>|h|==> To PSN
       |   |   |y|  |     |  |on    |  |      |  |y|
       +---+   +-+  +-----+  +------+  +------+  +-+
               |                                   |
               +-----------------------------------+
                       ^        ^          ^
                       |        |          |
                       A        B          C

                      Figure 2.  PW reference diagram

  The PW terminates at a logical port within the PE, defined at point B
  in the above diagram.  This port provides an HDLC Native Service
  Processing function that will deliver each PPP/HDLC packet that is
  received at point A, unaltered, to the point A in the corresponding
  PE at the other end of the PW.

  The Native Service Processing (NSP) function includes packet
  processing that is required for the PPP/HDLC packets that are
  forwarded to the PW termination point.  Such functions may include
  bit stuffing, PW-PW bridging, L2 encapsulation, shaping, and
  policing.  These functions are specific to the native packet
  technology and may not be required for the PW emulation service.

  The points to the left of B, including the physical layer between the
  CE and PE, and any adaptation (NSP) functions between it and the PW
  terminations, are outside of the scope of PWE3 and are not defined
  here.

  "PW Termination", between A and B, represents the operations for
  setting up and maintaining the PW, and for encapsulating and
  decapsulating the PPP/HDLC packets as necessary to transmit them
  across the MPLS network.





Martini, et al.             Standards Track                     [Page 4]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


3.  Applicability Statement

  PPP/HDLC transport over PW service is not intended to emulate the
  traditional PPP or HDLC service perfectly, but it can be used for
  some applications that require PPP or HDLC transport service.

  The applicability statements in [RFC4619] also apply to the Frame
  Relay port mode PW described in this document.

  The following are notable differences between traditional PPP/HDLC
  service, and the protocol described in this document:

  - Packet ordering can be preserved using the OPTIONAL sequence field
    in the control word; however, implementations are not required to
    support this feature.

  - The Quality of Service model for traditional PPP/HDLC links can be
    emulated, however this is outside the scope of this document.

  - A Frame Relay Port mode PW, or HDLC PW, does not process any frame
    relay status messages or alarms as described in [Q922] [Q933].

  - The HDLC Flags are processed locally in the PE connected to the
    attachment circuit.

  The HDLC mode is suitable for port-to-port transport of Frame Relay
  User Network Interface (UNI) or Network Node Interface (NNI) traffic.
  Since all packets are passed in a largely transparent manner over the
  HDLC PW, any protocol that has HDLC-like framing may use the HDLC PW
  mode, including PPP, Frame-Relay, and X.25.  Exceptions include cases
  where direct access to the HDLC interface is required, or modes that
  operate on the flags, Frame Check Sequence (FCS), or bit/byte
  unstuffing that is performed before sending the HDLC PDU over the PW.
  An example of this is PPP Asynchronous-Control-Character-Map (ACCM)
  negotiation.

  For PPP, since media-specific framing is not carried, the following
  options will not operate correctly if the PPP peers attempt to
  negotiate them:

  - Frame Check Sequence (FCS) Alternatives

  - Address-and-Control-Field-Compression (ACFC)

  - Asynchronous-Control-Character-Map (ACCM)

  Note, also, that PW LSP Interface MTU negotiation, as specified in
  [RFC4447], is not affected by PPP Maximum Receive Unit (MRU)



Martini, et al.             Standards Track                     [Page 5]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


  advertisement.  Thus, if a PPP peer sends a PDU with a length in
  excess of that negotiated for the PW tunnel, that PDU will be
  discarded by the ingress router.

4.  General Encapsulation Method

  This section describes the general encapsulation format for PPP and
  HDLC packets over MPLS pseudowires.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               PSN Transport Header (As Required)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Pseudowire Header                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Control Word                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     PPP/HDLC Service Payload                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 3.  General format for PPP/HDLC encapsulation over PSNs

  The PSN Transport Header depends on the particular tunneling
  technology in use.  This header is used to transport the encapsulated
  PPP/HDLC information through the packet-switched core.

  The Pseudowire Header identifies a particular PPP/HDLC service on a
  tunnel.  In case the of MPLS, the Pseudowire Header is the MPLS label
  at the bottom of the MPLS label stack.

  The Control Word is inserted before the PPP/HDLC service payload.  It
  may contain a length and sequence number.

4.1.  The Control Word

  There are four requirements that may need to be satisfied when
  transporting layer 2 protocols over an MPLS PSN:

  i.    Sequentiality may need to be preserved.

  ii.   Small packets may need to be padded in order to be transmitted
        on a medium where the minimum transport unit is larger than the
        actual packet size.

  iii.  Control bits carried in the header of the layer 2 packet may
        need to be transported.




Martini, et al.             Standards Track                     [Page 6]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


  iv.   Creating an in-band associated channel for operation and
        maintenance communications.

  The Control Word defined in this section is based on the Generic PW
  MPLS Control Word, as defined in [RFC4385].  It provides the ability
  to sequence individual packets on the PW and avoidance of equal-cost
  multiple-path load-balancing (ECMP) [RFC2992] and enables Operations
  and Management (OAM) mechanisms, including [VCCV].

  [RFC4385] states, "If a PW is sensitive to packet mis-ordering and is
  being carried over an MPLS PSN that uses the contents of the MPLS
  payload to select the ECMP path, it MUST employ a mechanism which
  prevents packet mis-ordering."  This is necessary because ECMP
  implementations may examine the first nibble after the MPLS label
  stack to determine whether the content of the labeled packet is IP.
  Thus, if the PPP protocol number of a PPP packet carried over the PW
  without a control word present begins with 0x4 or 0x6, it could be
  mistaken for an IPv4 or IPv6 packet.  This could, depending on the
  configuration and topology of the MPLS network, lead to a situation
  where all packets for a given PW do not follow the same path.  This
  may increase out-of-order packets on a given PW or cause OAM packets
  to follow a different path from that of actual traffic.

  The features that the control word provides may not be needed for a
  given PPP/HDLC PW.  For example, ECMP may not be present or active on
  a given MPLS network, and strict packet sequencing may not be
  required.  If this is the case, the control word provides little
  value and is therefore optional.  Early PPP/HDLC PW implementations
  have been deployed that do not include a control word or the ability
  to process one if present.  To aid in backwards compatibility, future
  implementations MUST be able to send and receive packets without the
  control word.

  In all cases, the egress PE MUST be aware of whether the ingress PE
  will send a control word over a specific PW.  This may be achieved by
  configuration of the PEs, or by signaling, as defined in [RFC4447].

  The control word is defined as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0 0 0 0|0 0 0 0|FRG|   Length  |     Sequence Number           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 4.  MPLS PWE3 control word





Martini, et al.             Standards Track                     [Page 7]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


  In the above diagram, the first 4 bits are set to 0 in indicate a CW
  [RFC4385].

  The next 4 bits provide space for carrying protocol-specific flags.
  These are not used for HDLC/PPP, and they MUST be set to 0 for
  transmitting and MUST be ignored upon receipt.

  The next 2 bits are defined in [RFC4623].

  The next 6 bits provide a length field, which is used as follows: If
  the packet's length (defined as the length of the layer 2 payload
  plus the length of the control word) is less than 64 bytes, the
  length field MUST be set to the packet's length.  Otherwise, the
  length field MUST be set to zero.  The value of the length field, if
  not zero, is used to remove any padding that may have been added by
  the MPLS network.  If the control word is used and padding was added
  to the packet in transit on the MPLS network, then when the packet
  reaches the egress PE the padding MUST be removed before forwarding
  the packet.

  The next 16 bits provide a sequence number that can be used to
  guarantee ordered packet delivery.  The processing of the sequence
  number field is OPTIONAL.[RFC4385]

  The sequence number space is a 16-bit, unsigned circular space.  The
  sequence number value 0 is used to indicate an unsequenced
  packet.[RFC4385]

  The procedures described in Section 4 of [RFC4385] MUST be followed
  to process the sequence number field.

4.2.  MTU Requirements

  The network MUST be configured with an MTU that is sufficient to
  transport the largest encapsulation packets.  When MPLS is used as
  the tunneling protocol, for example, this is likely to be 12 or more
  bytes greater than the largest packet size.  The methodology
  described in [RFC4623] MAY be used to fragment encapsulated packets
  that exceed the PSN MTU.  However, if [RFC4623] is not used, then if
  the ingress router determines that an encapsulated layer 2 PDU
  exceeds the MTU of the PSN tunnel through which it must be sent, the
  PDU MUST be dropped.

  If a packet is received on the attachment circuit that exceeds the
  interface MTU subTLV value [RFC4447], it MUST be dropped.  It is also
  RECOMMENDED that PPP devices be configured to not negotiate PPP MRUs
  larger than that of the AC MTU.




Martini, et al.             Standards Track                     [Page 8]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


5.  Protocol-Specific Details

5.1.  HDLC

  HDLC mode provides port-to-port transport of HDLC-encapsulated
  traffic.  The HDLC PDU is transported in its entirety, including the
  HDLC address and control fields, but excluding HDLC flags and the
  FCS.  Bit/Byte stuffing is undone.  If the OPTIONAL control word is
  used, then the flag bits in the control word are not used and MUST be
  set to 0 for transmitting and MUST be ignored upon receipt.

  When the PE detects a status change in the attachment circuit status,
  such as an attachment circuit physical link failure, or if the AC is
  administratively disabled, the PE MUST send the appropriate PW status
  notification message that corresponds to the HDLC AC status.  In a
  similar manner, the local PW status MUST also be reflected in a
  respective PW status notification message, as described in [RFC4447].

  The PW of type 0x0006 "HDLC" will be used to transport HDLC packets.
  The IANA allocation registry of "Pseudowire Type" is defined in the
  IANA allocation document for PWs [RFC4446] along with initial
  allocated values.

5.2.  Frame Relay Port Mode

  Figure 5 illustrates the concept of frame relay port mode or many-
  to-one mapping, which is an OPTIONAL capability.

  Figure 5a shows two frame relay devices physically connected with a
  frame relay UNI or NNI.  Between their two ports, P1 and P2, n frame
  relay Virtual Circuits (VCs) are configured.

  Figure 5b shows the replacement of the physical frame relay interface
  with a pair of PEs and a PW between them.  The interface between a
  Frame Relay (FR) device and a PE is either an FR UNI or an NNI.  All
  FR VCs carried over the interface are mapped into one HDLC PW.  The
  standard frame relay Link Management Interface (LMI) procedures
  happen directly between the CEs.  Thus with port mode, we have many-
  to-one mapping between FR VCs and a PW.












Martini, et al.             Standards Track                     [Page 9]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


             +------+                          +-------+
             | FR   |                          |   FR  |
             |device|         FR UNI/NNI       | device|
             |    [P1]------------------------[P2]     |
             |      |      carrying n FR VCs   |       |
             +------+                          +-------+

                [Pn]: A port

                 Figure 5a.  FR interface between two FR devices


                   |<---------------------------->|
                   |                              |
                    +----+                  +----+
  +------+          |    |     One PW       |    |         +------+
  |      |          |    |==================|    |         |      |
  |  FR  |    FR    | PE1| carrying n FR VCs| PE2|    FR   |  FR  |
  |device|----------|    |                  |    |---------|device|
  | CE1  | UNI/NNI  |    |                  |    | UNI/NNI | CE2  |
  +------+          +----+                  +----+         +------+
         |                                                 |
         |<----------------------------------------------->|
                                 n FR VCs

          Figure 5b.  Pseudowires replacing the FR interface

  FR VCs are not visible individually to a PE; there is no
  configuration of individual FR VC in a PE.  A PE processes the set of
  FR VCs assigned to a port as an aggregate.

  FR port mode provides transport between two PEs of a complete FR
  frame using the same encapsulation as described above for HDLC mode.

  Although frame relay port mode shares the same encapsulation as HDLC
  mode, a different PW type is allocated in [RFC4446]: 0x000F Frame-
  Relay Port mode.

  All other aspects of this PW type are identical to the HDLC PW
  encapsulation described above.

5.3.  PPP

  PPP mode provides point-to-point transport of PPP-encapsulated
  traffic, as specified in [RFC1661].  The PPP PDU is transported in
  its entirety, including the protocol field (whether compressed using
  Protocol Field Compression or not), but excluding any media-specific
  framing information, such as HDLC address and control fields or FCS.



Martini, et al.             Standards Track                    [Page 10]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


  If the OPTIONAL control word is used, then the flag bits in the
  control word are not used and MUST be set to 0 for transmitting and
  MUST be ignored upon receipt.

  When the PE detects a status change in the attachment circuit (AC)
  status, such as an attachment circuit physical link failure, or if
  the AC is administratively disabled, the PE MUST send the appropriate
  PW status notification message that corresponds to the PPP AC status.
  Note that PPP negotiation status is transparent to the PW and MUST
  NOT be communicated to the remote MPLS PE.  In a similar manner, the
  local PW status MUST also be reflected in a respective PW status
  notification message, as described in [RFC4447].

  A PW of type 0x0007 "PPP" will be used to transport PPP packets.

  The IANA allocation registry of "Pseudowire Type" is defined in the
  IANA allocation document for PWs [RFC4446] along with initial
  allocated values.

6.  Using an MPLS Label as the Demultiplexer Field

  To use an MPLS label as the demultiplexer field, a 32-bit label stack
  entry [RFC3032] is simply prepended to the emulated PW encapsulation
  and thus appears as the bottom label of an MPLS label stack.  This
  label may be called the "PW label".  The particular emulated PW
  identified by a particular label value must be agreed by the ingress
  and egress LSRs, either by signaling (e.g., via the methods of
  [RFC4447]) or by configuration.  Other fields of the label stack
  entry are set as described below.

6.1.  MPLS Shim EXP Bit Values

  If it is desired to carry Quality of Service information, the Quality
  of Service information SHOULD be represented in the EXP field of the
  PW label.  If more than one MPLS label is imposed by the ingress LSR,
  the EXP field of any labels higher in the stack MUST also carry the
  same value.

6.2.  MPLS Shim S Bit Value

  The ingress LSR, PE1, MUST set the S bit of the PW label to a value
  of 1 to denote that the PW label is at the bottom of the stack.









Martini, et al.             Standards Track                    [Page 11]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


7.  Congestion Control

  As explained in [RFC3985], the PSN carrying the PW may be subject to
  congestion, the characteristics of which are dependent upon PSN type,
  network architecture, configuration, and loading.  During congestion,
  the PSN may exhibit packet loss that will impact the service carried
  by the PPP/HLDC PW.  In addition, since PPP/HDLC PWs carry an
  unspecified type of services across the PSN, they cannot behave in a
  TCP-friendly manner prescribed by [RFC2914].  In the presence of
  services that reduce transmission rate, PPP/HDLC PWs will thus
  consume more than their fair share and SHOULD be halted.

  Whenever possible, PPP/HDLC PWs should be run over traffic-engineered
  PSNs providing bandwidth allocation and admission control mechanisms.
  IntServ-enabled domains providing the Guaranteed Service (GS) or
  DiffServ-enabled domains using EF (expedited forwarding) are examples
  of traffic-engineered PSNs.  Such PSNs will minimize loss and delay
  while providing some degree of isolation of the PPP/HDLC PW's effects
  from neighboring streams.

  The PEs SHOULD monitor for congestion (by using explicit congestion
  notification, [VCCV], or by measuring packet loss) in order to ensure
  that the service using the PPP/HDLC PW may be maintained.  When
  significant congestion is detected, the PPP/HDLC PW SHOULD be
  administratively disabled.  If the PW has been set up using the
  protocol defined in [RFC4447], then procedures specified in [RFC4447]
  for status notification can be used to disable packet transmission on
  the ingress PE from the egress PE.  The PW may be restarted by manual
  intervention, or by automatic means after an appropriate waiting
  time.

8.  IANA Considerations

  This document has no new IANA Actions.  All necessary IANA actions
  have already been included in [RFC4446].

9.  Security Considerations

  The PPP and HDLC pseudowire type is subject to all the general
  security considerations discussed in [RFC3985][RFC4447].  This
  document specifies only encapsulations, and not the protocols that
  may be used to carry the encapsulated packets across the MPLS
  network.  Each such protocol may have its own set of security issues,
  but those issues are not affected by the encapsulations specified
  herein.






Martini, et al.             Standards Track                    [Page 12]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


10.  Normative References

  [RFC1661]    Simpson, W., "The Point-to-Point Protocol (PPP)", STD
               51, RFC 1661, July 1994.

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3032]    Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
               Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
               Encoding", RFC 3032, January 2001.

  [RFC4385]    Bryant, S., Swallow, G., Martini, L., and D. McPherson,
               "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word
               for Use over an MPLS PSN", RFC 4385, February 2006.

  [RFC4446]    Martini, L., "IANA Allocations for Pseudowire Edge to
               Edge Emulation (PWE3)", BCP 116, RFC 4446, April 2006.

  [RFC4447]    Martini, L., Rosen, E., El-Aawar, N., Smith, T., and G.
               Heron, "Pseudowire Setup and Maintenance Using the Label
               Distribution Protocol (LDP)", RFC 4447, April 2006.

  [RFC4619]    Martini, L., Ed., Kawa, C., Ed., and A. Malis, Ed.,
               "Encapsulation Methods for Transport of Frame Relay over
               Multiprotocol Label Switching (MPLS) Networks", RFC
               4619, September 2006.

  [RFC4623]    Malis, A. and M. Townsley, "Pseudowire Emulation Edge-
               to-Edge (PWE3) Fragmentation and Reassembly", RFC 4623,
               August 2006.

11.  Informative References

  [Q922]       ITU-T Recommendation Q.922 Specification for Frame Mode
               Basic call control, ITU Geneva 1995.

  [Q933]       ITU-T Recommendation Q.933 Specification for Frame Mode
               Basic call control, ITU Geneva 2003.

  [RFC2914]    Floyd, S., "Congestion Control Principles", BCP 41, RFC
               2914, September 2000.

  [RFC2992]    Hopps, C., "Analysis of an Equal-Cost Multi-Path
               Algorithm", RFC 2992, November 2000.

  [RFC3985]    Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation
               Edge-to-Edge (PWE3) Architecture", RFC 3985, March 2005.



Martini, et al.             Standards Track                    [Page 13]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


  [VCCV]       Nadeau, T., et al., "Pseudo Wire Virtual Circuit
               Connection Verification (VCCV)", Work in Progress,
               October 2005.

Contributing Author Information

  Yeongil Seo
  463-1 KT Technology Lab
  Jeonmin-dong Yusung-gu
  Daegeon, Korea

  EMail: [email protected]


  Toby Smith
  Laurel Networks, Inc.
  Omega Corporate Center
  1300 Omega Drive
  Pittsburgh, PA 15205

  EMail: [email protected]






























Martini, et al.             Standards Track                    [Page 14]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


Authors' Addresses

  Luca Martini
  Cisco Systems, Inc.
  9155 East Nichols Avenue, Suite 400
  Englewood, CO, 80112

  EMail: [email protected]


  Giles Heron
  Tellabs
  Abbey Place
  24-28 Easton Street
  High Wycombe
  Bucks
  HP11 1NT
  UK

  EMail: [email protected]


  Eric C. Rosen
  Cisco Systems, Inc.
  1414 Massachusetts Avenue
  Boxborough, MA 01719

  EMail: [email protected]


  Andrew G. Malis
  Tellabs
  1415 West Diehl Road
  Naperville, IL  60563

  EMail: [email protected]















Martini, et al.             Standards Track                    [Page 15]

RFC 4618            Transport of PPP/HDLC over MPLS       September 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Martini, et al.             Standards Track                    [Page 16]