Network Working Group                                          D. McGrew
Request for Comments: 4543                           Cisco Systems, Inc.
Category: Standards Track                                       J. Viega
                                                           McAfee, Inc.
                                                               May 2006


       The Use of Galois Message Authentication Code (GMAC) in
                           IPsec ESP and AH

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This memo describes the use of the Advanced Encryption Standard (AES)
  Galois Message Authentication Code (GMAC) as a mechanism to provide
  data origin authentication, but not confidentiality, within the IPsec
  Encapsulating Security Payload (ESP) and Authentication Header (AH).
  GMAC is based on the Galois/Counter Mode (GCM) of operation, and can
  be efficiently implemented in hardware for speeds of 10 gigabits per
  second and above, and is also well-suited to software
  implementations.



















McGrew & Viega              Standards Track                     [Page 1]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


Table of Contents

  1. Introduction ....................................................2
     1.1. Conventions Used in This Document ..........................3
  2. AES-GMAC ........................................................3
  3. The Use of AES-GMAC in ESP ......................................3
     3.1. Initialization Vector ......................................4
     3.2. Nonce Format ...............................................4
     3.3. AAD Construction ...........................................5
     3.4. Integrity Check Value (ICV) ................................6
     3.5. Differences with AES-GCM-ESP ...............................6
     3.6. Packet Expansion ...........................................7
  4. The Use of AES-GMAC in AH .......................................7
  5. IKE Conventions .................................................8
     5.1. Phase 1 Identifier .........................................8
     5.2. Phase 2 Identifier .........................................8
     5.3. Key Length Attribute .......................................9
     5.4. Keying Material and Salt Values ............................9
  6. Test Vectors ....................................................9
  7. Security Considerations ........................................10
  8. Design Rationale ...............................................11
  9. IANA Considerations ............................................11
  10. Acknowledgements ..............................................11
  11. References ....................................................12
     11.1. Normative References .....................................12
     11.2. Informative References ...................................12
1.  Introduction

  This document describes the use of AES-GMAC mode (AES-GMAC) as a
  mechanism for data origin authentication in ESP [RFC4303] and AH
  [RFC4302].  We refer to these methods as ENCR_NULL_AUTH_AES_GMAC and
  AUTH_AES_GMAC, respectively.  ENCR_NULL_AUTH_AES_GMAC is a companion
  to the AES Galois/Counter Mode ESP [RFC4106], which provides
  authentication as well as confidentiality.  ENCR_NULL_AUTH_AES_GMAC
  is intended for cases in which confidentiality is not desired.  Like
  GCM, GMAC is efficient and secure, and is amenable to high-speed
  implementations in hardware.  ENCR_NULL_AUTH_AES_GMAC and
  AUTH_AES_GMAC are designed so that the incremental cost of
  implementation, given an implementation is AES-GCM-ESP, is small.

  This document does not cover implementation details of GCM or GMAC.
  Those details can be found in [GCM], along with test vectors.









McGrew & Viega              Standards Track                     [Page 2]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  AES-GMAC

  GMAC is a block cipher mode of operation providing data origin
  authentication.  It is defined in terms of the GCM authenticated
  encryption operation as follows.  The GCM authenticated encryption
  operation has four inputs: a secret key, an initialization vector
  (IV), a plaintext, and an input for additional authenticated data
  (AAD).  It has two outputs, a ciphertext whose length is identical to
  the plaintext and an authentication tag.  GMAC is the special case of
  GCM in which the plaintext has a length of zero.  The (zero-length)
  ciphertext output is ignored, of course, so that the only output of
  the function is the Authentication Tag.  In the following, we
  describe how the GMAC IV and AAD are formed from the ESP and AH
  fields, and how the ESP and AH packets are formed from the
  Authentication Tag.

  Below we refer to the AES-GMAC IV input as a nonce, in order to
  distinguish it from the IV fields in the packets.  The same nonce and
  key combination MUST NOT be used more than once, since reusing a
  nonce/key combination destroys the security guarantees of AES-GMAC.

  Because of this restriction, it can be difficult to use this mode
  securely when using statically configured keys.  For the sake of good
  security, implementations MUST use an automated key management
  system, such as the Internet Key Exchange (IKE) (either version two
  [RFC4306] or version one [RFC2409]), to ensure that this requirement
  is met.

3.  The Use of AES-GMAC in ESP

  The AES-GMAC algorithm for ESP is defined as an ESP "combined mode"
  algorithm (see Section 3.2.3 of [RFC4303]), rather than an ESP
  integrity algorithm.  It is called ENCR_NULL_AUTH_AES_GMAC to
  highlight the fact that it performs no encryption and provides no
  confidentiality.

     Rationale: ESP makes no provision for integrity transforms to
     place an initialization vector within the Payload field; only
     encryption transforms are expected to use IVs.  Defining GMAC as
     an encryption transform avoids this issue, and allows GMAC to
     benefit from the same pipelining as does GCM.




McGrew & Viega              Standards Track                     [Page 3]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


  Like all ESP combined modes, it is registered in IKEv2 as an
  encryption transform, or "Type 1" transform.  It MUST NOT be used in
  conjunction with any other ESP encryption transform (within a
  particular ESP encapsulation).  If confidentiality is desired, then
  GCM ESP [RFC4106] SHOULD be used instead.

3.1.  Initialization Vector

  With ENCR_NULL_AUTH_AES_GMAC, an explicit Initialization Vector (IV)
  is included in the ESP Payload, at the outset of that field.  The IV
  MUST be eight octets long.  For a given key, the IV MUST NOT repeat.
  The most natural way to meet this requirement is to set the IV using
  a counter, but implementations are free to set the IV field in any
  way that guarantees uniqueness, such as a linear feedback shift
  register (LFSR).  Note that the sender can use any IV generation
  method that meets the uniqueness requirement without coordinating
  with the receiver.

3.2.  Nonce Format

  The nonce passed to the AES-GMAC authentication algorithm has the
  following layout:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Salt                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Initialization Vector                     |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 1: Nonce Format

  The components of the nonce are as follows:

  Salt
     The salt field is a four-octet value that is assigned at the
     beginning of the security association, and then remains constant
     for the life of the security association.  The salt SHOULD be
     unpredictable (i.e., chosen at random) before it is selected, but
     need not be secret.  We describe how to set the salt for a
     Security Association established via the Internet Key Exchange in
     Section 5.4.

  Initialization Vector
     The IV field is described in Section 3.1.




McGrew & Viega              Standards Track                     [Page 4]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


3.3.  AAD Construction

  Data integrity and data origin authentication are provided for the
  SPI, (Extended) Sequence Number, Authenticated Payload, Padding, Pad
  Length, and Next Header fields.  This is done by including those
  fields in the AES-GMAC Additional Authenticated Data (AAD) field.
  Two formats of the AAD are defined: one for 32-bit sequence numbers,
  and one for 64-bit extended sequence numbers.  The format with 32-bit
  sequence numbers is shown in Figure 2, and the format with 64-bit
  extended sequence numbers is shown in Figure 3.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               SPI                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     32-bit Sequence Number                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                Authenticated Payload (variable)               ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Padding (0-255 bytes)                      |
  +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |  Pad Length   | Next Header   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 2: AAD Format with 32-bit Sequence Number

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               SPI                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 64-bit Extended Sequence Number               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                Authenticated Payload (variable)               ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Padding (0-255 bytes)                      |
  +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |  Pad Length   | Next Header   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 3: AAD Format with 64-bit Extended Sequence Number




McGrew & Viega              Standards Track                     [Page 5]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


  The use of 32-bit sequence numbers vs. 64-bit extended sequence
  numbers is determined by the security association (SA) management
  protocol that is used to create the SA.  For IKEv2 [RFC4306] this is
  negotiated via Transform Type 5, and the default for ESP is to use
  64-bit extended sequence numbers in the absence of negotiation (e.g.,
  see Section 2.2.1 of [RFC4303]).

3.4.  Integrity Check Value (ICV)

  The ICV consists solely of the AES-GMAC Authentication Tag.  The
  Authentication Tag MUST NOT be truncated, so the length of the ICV is
  16 octets.

3.5.  Differences with AES-GCM-ESP

  In this section, we highlight the differences between this
  specification and AES-GCM-ESP [RFC4106].  The essential difference is
  that in this document, the AAD consists of the SPI, Sequence Number,
  and ESP Payload, and the AES-GCM plaintext is zero-length, while in
  AES-GCM-ESP, the AAD consists only of the SPI and Sequence Number,
  and the AES-GCM plaintext consists of the ESP Payload.  These
  differences are illustrated in Figure 4.  This figure shows the case
  in which the Extended Sequence Number option is not used.  When that
  option is exercised, the Sequence Number field in the figure would be
  replaced with the Extended Sequence Number.

  Importantly, ENCR_NULL_AUTH_AES_GMAC is *not* equivalent to AES-GCM-
  ESP with encryption "turned off".  However, the ICV computations
  performed in both cases are similar because of the structure of the
  GHASH function [GCM].





















McGrew & Viega              Standards Track                     [Page 6]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


                    +-> +-----------------------+ <-+
     AES-GCM-ESP    |   |          SPI          |   |
         AAD -------+   +-----------------------+   |
                    |   |    Sequence Number    |   |
                    +-> +-----------------------+   |
                        |    Authentication     |   |
                        |          IV           |   |
                 +->+-> +-----------------------+   +
     AES-GCM-ESP |      |                       |   |
      Plaintext -+      ~       ESP Payload     ~   |
                 |      |                       |   |
                 |      +-----------+-----+-----+   |
                 |      | Padding   |  PL | NH  |   |
                 +----> +-----------+-----+-----+ <-+
                                                    |
                      ENCR_NULL_AUTH_AES_GMAC AAD --+

  Figure 4: Differences between ENCR_NULL_AUTH_AES_GMAC and AES-GCM-ESP

3.6.  Packet Expansion

  The IV adds an additional eight octets to the packet and the ICV adds
  an additional 16 octets.  These are the only sources of packet
  expansion, other than the 10-13 bytes taken up by the ESP SPI,
  Sequence Number, Padding, Pad Length, and Next Header fields (if the
  minimal amount of padding is used).

4.  The Use of AES-GMAC in AH

  In AUTH_AES_GMAC, the AH Authentication Data field consists of the IV
  and the Authentication Tag, as shown in Figure 5.  Unlike the usual
  AH case, the Authentication Data field contains both an input to the
  authentication algorithm (the IV) and the output of the
  authentication algorithm (the tag).  No padding is required in the
  Authentication Data field, because its length is a multiple of 64
  bits.















McGrew & Viega              Standards Track                     [Page 7]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Initialization Vector (IV)                 |
  |                            (8 octets)                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |             Integrity Check Value (ICV) (16 octets)           |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 5: The AUTH_AES_GMAC Authentication Data Format

  The IV is as described in Section 3.1.  The Integrity Check Value
  (ICV) is as described in Section 3.4.

  The GMAC Nonce input is formed as described in Section 3.2.  The GMAC
  AAD input consists of the authenticated data as defined in Section
  3.1 of [RFC4302].  These values are provided as to that algorithm,
  along with the secret key, and the resulting authentication tag given
  as output is used to form the ICV.

5.  IKE Conventions

  This section describes the conventions used to generate keying
  material and salt values for use with ENCR_NULL_AUTH_AES_GMAC and
  AUTH_AES_GMAC using the Internet Key Exchange (IKE) versions one
  [RFC2409] and two [RFC4306].

5.1.  Phase 1 Identifier

  This document does not specify the conventions for using AES-GMAC for
  IKE Phase 1 negotiations.  For AES-GMAC to be used in this manner, a
  separate specification would be needed, and an Encryption Algorithm
  Identifier would need to be assigned.  Implementations SHOULD use an
  IKE Phase 1 cipher that is at least as strong as AES-GMAC.  The use
  of AES-CBC [RFC3602] with the same AES key size as used by
  ENCR_NULL_AUTH_AES_GMAC or AUTH_AES_GMAC is RECOMMENDED.

5.2.  Phase 2 Identifier

  For IKE Phase 2 negotiations, IANA has assigned identifiers as
  described in Section 9.







McGrew & Viega              Standards Track                     [Page 8]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


5.3.  Key Length Attribute

  AES-GMAC can be used with any of the three AES key lengths.  The way
  that the key length is indicated is different for AH and ESP.

  For AH, each key length has its own separate integrity transform
  identifier and algorithm name (Section 9).  The IKE Key Length
  attribute MUST NOT be used with these identifiers.  This transform
  MUST NOT be used with ESP.

  For ESP, there is a single encryption transform identifier (which
  represents the combined transform) (Section 9).  The IKE Key Length
  attribute MUST be used with each use of this identifier to indicate
  the key length.  The Key Length attribute MUST have a value of 128,
  192, or 256.

5.4.  Keying Material and Salt Values

  IKE makes use of a pseudo-random function (PRF) to derive keying
  material.  The PRF is used iteratively to derive keying material of
  arbitrary size, called KEYMAT.  Keying material is extracted from the
  output string without regard to boundaries.

  The size of the KEYMAT for the ENCR_NULL_AUTH_AES_GMAC and
  AUTH_AES_GMAC MUST be four octets longer than is needed for the
  associated AES key.  The keying material is used as follows:

  ENCR_NULL_AUTH_AES_GMAC with a 128-bit key and AUTH_AES_128_GMAC
     The KEYMAT requested for each AES-GMAC key is 20 octets.  The
     first 16 octets are the 128-bit AES key, and the remaining four
     octets are used as the salt value in the nonce.

  ENCR_NULL_AUTH_AES_GMAC with a 192-bit key and AUTH_AES_192_GMAC
     The KEYMAT requested for each AES-GMAC key is 28 octets.  The
     first 24 octets are the 192-bit AES key, and the remaining four
     octets are used as the salt value in the nonce.

  ENCR_NULL_AUTH_AES_GMAC with a 256-bit key and AUTH_AES_256_GMAC
     The KEYMAT requested for each AES-GMAC key is 36 octets.  The
     first 32 octets are the 256-bit AES key, and the remaining four
     octets are used as the salt value in the nonce.

6.  Test Vectors

  Appendix B of [GCM] provides test vectors that will assist
  implementers with AES-GMAC.





McGrew & Viega              Standards Track                     [Page 9]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


7.  Security Considerations

  Since the authentication coverage is different between AES-GCM-ESP
  and this specification (see Figure 4), it is worth pointing out that
  both specifications are secure.  In ENCR_NULL_AUTH_AES_GMAC, the IV
  is not included in either the plaintext or the additional
  authenticated data.  This does not adversely affect security, because
  the IV field only provides an input to the GMAC IV, which is not
  required to be authenticated (see [GCM]).  In AUTH_AES_GMAC, the IV
  is included in the additional authenticated data.  This fact has no
  adverse effect on security; it follows from the property that GMAC is
  secure even against attacks in which the adversary can manipulate
  both the IV and the message.  Even an adversary with these powerful
  capabilities cannot forge an authentication tag for any message
  (other than one that was submitted to the chosen-message oracle).
  Since such an adversary could easily choose messages that contain the
  IVs with which they correspond, there are no security problems with
  the inclusion of the IV in the AAD.

  GMAC is provably secure against adversaries that can adaptively
  choose plaintexts, ICVs and the AAD field, under standard
  cryptographic assumptions (roughly, that the output of the underlying
  cipher under a randomly chosen key is indistinguishable from a
  randomly selected output).  Essentially, this means that, if used
  within its intended parameters, a break of GMAC implies a break of
  the underlying block cipher.  The proof of security is available in
  [GCMP].

  The most important security consideration is that the IV never
  repeats for a given key.  In part, this is handled by disallowing the
  use of AES-GMAC when using statically configured keys, as discussed
  in Section 2.

  When IKE is used to establish fresh keys between two peer entities,
  separate keys are established for the two traffic flows.  If a
  different mechanism is used to establish fresh keys, one that
  establishes only a single key to protect packets, then there is a
  high probability that the peers will select the same IV values for
  some packets.  Thus, to avoid counter block collisions, ESP or AH
  implementations that permit use of the same key for protecting
  packets with the same peer MUST ensure that the two peers assign
  different salt values to the security association (SA).

  The other consideration is that, as with any block cipher mode of
  operation, the security of all data protected under a given security
  association decreases slightly with each message.





McGrew & Viega              Standards Track                    [Page 10]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


  To protect against this problem, implementations MUST generate a
  fresh key before processing 2^64 blocks of data with a given key.
  Note that it is impossible to reach this limit when using 32-bit
  Sequence Numbers.

  Note that, for each message, GMAC calls the block cipher only once.

8.  Design Rationale

  This specification was designed to be as similar to AES-GCM-ESP
  [RFC4106] as possible.  We re-use the design and implementation
  experience from that specification.  We include all three AES key
  sizes since AES-GCM-ESP supports all of those sizes, and the larger
  key sizes provide future users with more high-security options.

9.  IANA Considerations

  IANA has assigned the following IKEv2 parameters.  For the use of AES
  GMAC in AH, the following integrity (type 3) transform identifiers
  have been assigned:

      "9" for AUTH_AES_128_GMAC

     "10" for AUTH_AES_192_GMAC

     "11" for AUTH_AES_256_GMAC

  For the use of AES-GMAC in ESP, the following encryption (type 1)
  transform identifier has been assigned:

     "21" for ENCR_NULL_AUTH_AES_GMAC

10.  Acknowledgements

  Our discussions with Fabio Maino and David Black significantly
  improved this specification, and Tero Kivinen provided us with useful
  comments.  Steve Kent provided guidance on ESP interactions.  This
  work is closely modeled after AES-GCM, which itself is closely
  modeled after Russ Housley's AES-CCM transform [RFC4309].
  Additionally, the GCM mode of operation was originally conceived as
  an improvement to the CWC mode [CWC] in which Doug Whiting and Yoshi
  Kohno participated.  We express our thanks to Fabio, David, Tero,
  Steve, Russ, Doug, and Yoshi.








McGrew & Viega              Standards Track                    [Page 11]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


11.  References

11.1.  Normative References

  [GCM]      McGrew, D. and J. Viega, "The Galois/Counter Mode of
             Operation (GCM)", Submission to NIST. http://
             csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/
             gcm-spec.pdf, January 2004.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3602]  Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher
             Algorithm and Its Use with IPsec", RFC 3602, September
             2003.

11.2.  Informative References

  [CWC]      Kohno, T., Viega, J., and D. Whiting, "CWC: A high-
             performance conventional authenticated encryption mode",
             Fast Software Encryption.
             http://eprint.iacr.org/2003/106.pdf, February 2004.

  [GCMP]     McGrew, D. and J. Viega, "The Security and Performance of
             the Galois/Counter Mode (GCM)", Proceedings of INDOCRYPT
             '04, http://eprint.iacr.org/2004/193, December 2004.

  [RFC2409]  Harkins, D. and D. Carrel, "The Internet Key Exchange
             (IKE)", RFC 2409, November 1998.

  [RFC4106]  Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
             (GCM) in IPsec Encapsulating Security Payload (ESP)", RFC
             4106, June 2005.

  [RFC4302]  Kent, S., "IP Authentication Header", RFC 4302, December
             2005.

  [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)", RFC
             4303, December 2005.

  [RFC4306]  Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC
             4306, December 2005.

  [RFC4309]  Housley, R., "Using Advanced Encryption Standard (AES) CCM
             Mode with IPsec Encapsulating Security Payload (ESP)", RFC
             4309, December 2005.





McGrew & Viega              Standards Track                    [Page 12]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


Authors' Addresses

  David A. McGrew
  Cisco Systems, Inc.
  510 McCarthy Blvd.
  Milpitas, CA  95035
  US

  Phone: (408) 525 8651
  EMail: [email protected]
  URI:   http://www.mindspring.com/~dmcgrew/dam.htm


  John Viega
  McAfee, Inc.
  1145 Herndon Parkway, Suite 500
  Herndon, VA 20170

  EMail: [email protected]
































McGrew & Viega              Standards Track                    [Page 13]

RFC 4543                GMAC in IPsec ESP and AH                May 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







McGrew & Viega              Standards Track                    [Page 14]