Network Working Group                                         J. Salowey
Request for Comments: 4507                                       H. Zhou
Category: Standards Track                                  Cisco Systems
                                                              P. Eronen
                                                                  Nokia
                                                          H. Tschofenig
                                                                Siemens
                                                               May 2006


                Transport Layer Security (TLS) Session
                 Resumption without Server-Side State

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This document describes a mechanism that enables the Transport Layer
  Security (TLS) server to resume sessions and avoid keeping per-client
  session state.  The TLS server encapsulates the session state into a
  ticket and forwards it to the client.  The client can subsequently
  resume a session using the obtained ticket.



















Salowey, et al.             Standards Track                     [Page 1]

RFC 4507            Stateless TLS Session Resumption            May 2006


Table of Contents

  1. Introduction ....................................................3
  2. Terminology .....................................................3
  3. Protocol ........................................................3
     3.1. Overview ...................................................4
     3.2. SessionTicket TLS Extension ................................6
     3.3. NewSessionTicket Handshake Message .........................7
     3.4. Interaction with TLS Session ID ............................8
  4. Recommended Ticket Construction .................................9
  5. Security Considerations ........................................10
     5.1. Invalidating Sessions .....................................11
     5.2. Stolen Tickets ............................................11
     5.3. Forged Tickets ............................................11
     5.4. Denial of Service Attacks .................................11
     5.5. Ticket Protection Key Management ..........................12
     5.6. Ticket Lifetime ...........................................12
     5.7. Alternate Ticket Formats and Distribution Schemes .........12
     5.8. Identity Privacy, Anonymity, and Unlinkability ............12
  6. Acknowledgements ...............................................13
  7. IANA Considerations ............................................13
  8. References .....................................................14
     8.1. Normative References ......................................14
     8.2. Informative References ....................................14



























Salowey, et al.             Standards Track                     [Page 2]

RFC 4507            Stateless TLS Session Resumption            May 2006


1.  Introduction

  This document defines a way to resume a Transport Layer Security
  (TLS) session without requiring session-specific state at the TLS
  server.  This mechanism may be used with any TLS ciphersuite.  This
  document applies to both TLS 1.0 defined in [RFC2246] and TLS 1.1
  defined in [RFC4346].  The mechanism makes use of TLS extensions
  defined in [RFC4366] and defines a new TLS message type.

  This mechanism is useful in the following situations:

  1.  servers that handle a large number of transactions from different
      users
  2.  servers that desire to cache sessions for a long time
  3.  ability to load balance requests across servers
  4.  embedded servers with little memory

2.  Terminology

  Within this document, the term 'ticket' refers to a cryptographically
  protected data structure that is created by the server and consumed
  by the server to rebuild session-specific state.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Protocol

  This specification describes a mechanism to distribute encrypted
  session-state information in the form of a ticket.  The ticket is
  created by a TLS server and sent to a TLS client.  The TLS client
  presents the ticket to the TLS server to resume a session.
  Implementations of this specification are expected to support both
  mechanisms.  Other specifications can take advantage of the session
  tickets, perhaps specifying alternative means for distribution or
  selection.  For example, a separate specification may describe an
  alternate way to distribute a ticket and use the TLS extension in
  this document to resume the session.  This behavior is beyond the
  scope of the document and would need to be described in a separate
  specification.










Salowey, et al.             Standards Track                     [Page 3]

RFC 4507            Stateless TLS Session Resumption            May 2006


3.1.  Overview

  The client indicates that it supports this mechanism by including a
  SessionTicket TLS extension in the ClientHello message.  The
  extension will be empty if the client does not already possess a
  ticket for the server.  The extension is described in Section 3.2.

  If the server wants to use this mechanism, it stores its session
  state (such as ciphersuite and master secret) to a ticket that is
  encrypted and integrity-protected by a key known only to the server.
  The ticket is distributed to the client using the NewSessionTicket
  TLS handshake message described in Section 3.3.  This message is sent
  during the TLS handshake before the ChangeCipherSpec message, after
  the server has successfully verified the client's Finished message.

     Client                                               Server

     ClientHello
     (empty SessionTicket extension)------->
                                                     ServerHello
                                 (empty SessionTicket extension)
                                                    Certificate*
                                              ServerKeyExchange*
                                             CertificateRequest*
                                  <--------      ServerHelloDone
     Certificate*
     ClientKeyExchange
     CertificateVerify*
     [ChangeCipherSpec]
     Finished                     -------->
                                                NewSessionTicket
                                              [ChangeCipherSpec]
                                  <--------             Finished
     Application Data             <------->     Application Data

  Figure 1: Message flow for full handshake issuing new session ticket

  The client caches this ticket along with the master secret and other
  parameters associated with the current session.  When the client
  wishes to resume the session, it includes the ticket in the
  SessionTicket extension within the ClientHello message.  The server
  then decrypts the received ticket, verifies the ticket's validity,
  retrieves the session state from the contents of the ticket, and uses
  this state to resume the session.  The interaction with the TLS
  Session ID is described in Section 3.4.  If the server successfully
  verifies the client's ticket, then it may renew the ticket by
  including a NewSessionTicket handshake message after the ServerHello.




Salowey, et al.             Standards Track                     [Page 4]

RFC 4507            Stateless TLS Session Resumption            May 2006


     Client                                                Server

     ClientHello
     (SessionTicket extension)      -------->
                                                      ServerHello
                                  (empty SessionTicket extension)
                                                 NewSessionTicket
                                               [ChangeCipherSpec]
                                   <--------             Finished
     [ChangeCipherSpec]
     Finished                      -------->
     Application Data              <------->     Application Data

       Figure 2: Message flow for abbreviated handshake using new
                             session ticket

  A recommended ticket format is given in Section 4.

  If the server cannot or does not want to honor the ticket, then it
  can initiate a full handshake with the client.

  In the case that the server does not wish to issue a new ticket at
  this time, it just completes the handshake without including a
  SessionTicket extension or NewSessionTicket handshake message.  This
  is shown below (this flow is identical to Figure 1 in RFC 2246,
  except for the session ticket extension in the first message):

     Client                                               Server

     ClientHello
     (SessionTicket extension)    -------->
                                                     ServerHello
                                                    Certificate*
                                              ServerKeyExchange*
                                             CertificateRequest*
                                  <--------      ServerHelloDone
     Certificate*
     ClientKeyExchange
     CertificateVerify*
     [ChangeCipherSpec]
     Finished                     -------->
                                              [ChangeCipherSpec]
                                  <--------             Finished
     Application Data             <------->     Application Data

      Figure 3: Message flow for server completing full handshake
                   without issuing new session ticket




Salowey, et al.             Standards Track                     [Page 5]

RFC 4507            Stateless TLS Session Resumption            May 2006


  If the server rejects the ticket, it may still wish to issue a new
  ticket after performing the full handshake as shown below (this flow
  is identical to Figure 1, except the SessionTicket extension in the
  Client Hello is not empty):

     Client                                               Server

     ClientHello
     (SessionTicket extension) -------->
                                                     ServerHello
                                 (empty SessionTicket extension)
                                                    Certificate*
                                              ServerKeyExchange*
                                             CertificateRequest*
                              <--------          ServerHelloDone
     Certificate*
     ClientKeyExchange
     CertificateVerify*
     [ChangeCipherSpec]
     Finished                 -------->
                                                NewSessionTicket
                                              [ChangeCipherSpec]
                              <--------                 Finished
     Application Data         <------->         Application Data

  Figure 4: Message flow for server rejecting ticket, performing full
                handshake and issuing new session ticket

3.2.  SessionTicket TLS Extension

  The SessionTicket TLS extension is based on [RFC4366].  The format of
  the ticket is an opaque structure used to carry session-specific
  state information.  This extension may be sent in the ClientHello and
  ServerHello.

  If the client possesses a ticket that it wants to use to resume a
  session, then it includes the ticket in the SessionTicket extension
  in the ClientHello.  If the client does not have a ticket and is
  prepared to receive one in the NewSessionTicket handshake message,
  then it MUST include a zero-length ticket in the SessionTicket
  extension.  If the client is not prepared to receive a ticket in the
  NewSessionTicket handshake message then it MUST NOT include a
  SessionTicket extension unless it is sending a non-empty ticket it
  received through some other means from the server.

  The server uses an zero length SessionTicket extension to indicate to
  the client that it will send a new session ticket using the
  NewSessionTicket handshake message described in Section 3.3.  The



Salowey, et al.             Standards Track                     [Page 6]

RFC 4507            Stateless TLS Session Resumption            May 2006


  server MUST send this extension in the ServerHello if it wishes to
  issue a new ticket to the client using the NewSessionTicket handshake
  message.  The server MUST NOT send this extension if it does not
  receive one in the ClientHello.

  If the server fails to verify the ticket, then it falls back to
  performing a full handshake.  If the ticket is accepted by the server
  but the handshake fails, the client SHOULD delete the ticket.

  The SessionTicket extension has been assigned the number 35.  The
  format of the SessionTicket extension is given at the end of this
  section.

     struct {
         opaque ticket<0..2^16-1>;
     } SessionTicket;

3.3.  NewSessionTicket Handshake Message

  This message is sent by the server during the TLS handshake before
  the ChangeCipherSpec message.  This message MUST be sent if the
  server included a SessionTicket extension in the ServerHello.  This
  message MUST NOT be sent if the server did not include a
  SessionTicket extension in the ServerHello.  In the case of a full
  handshake, the server MUST verify the client's Finished message
  before sending the ticket.  The client MUST NOT treat the ticket as
  valid until it has verified the server's Finished message.  If the
  server determines that it does not want to include a ticket after it
  has included the SessionTicket extension in the ServerHello, then it
  sends a zero-length ticket in the NewSessionTicket handshake message.

  If the server successfully verifies the client's ticket, then it MAY
  renew the ticket by including a NewSessionTicket handshake message
  after the ServerHello in the abbreviated handshake.  The client
  should start using the new ticket as soon as possible after it
  verifies the server's Finished message for new connections.  Note
  that since the updated ticket is issued before the handshake
  completes, it is possible that the client may not put the new ticket
  into use before it initiates new connections.  The server MUST NOT
  assume that the client actually received the updated ticket until it
  successfully verifies the client's Finished message.

  The NewSessionTicket handshake message has been assigned the number 4
  and its definition is given at the end of this section.  The
  ticket_lifetime_hint field contains a hint from the server about how
  long the ticket should be stored.  The value indicates the lifetime
  in seconds as a 32-bit unsigned integer in network byte order.  A
  value of zero is reserved to indicate that the lifetime of the ticket



Salowey, et al.             Standards Track                     [Page 7]

RFC 4507            Stateless TLS Session Resumption            May 2006


  is unspecified.  A client SHOULD delete the ticket and associated
  state when the time expires.  It MAY delete the ticket earlier based
  on local policy.  A server MAY treat a ticket as valid for a shorter
  or longer period of time than what is stated in the
  ticket_lifetime_hint.

     struct {
         HandshakeType msg_type;
         uint24 length;
         select (HandshakeType) {
             case hello_request:       HelloRequest;
             case client_hello:        ClientHello;
             case server_hello:        ServerHello;
             case certificate:         Certificate;
             case server_key_exchange: ServerKeyExchange;
             case certificate_request: CertificateRequest;
             case server_hello_done:   ServerHelloDone;
             case certificate_verify:  CertificateVerify;
             case client_key_exchange: ClientKeyExchange;
             case finished:            Finished;
             case session_ticket:      NewSessionTicket; /* NEW */
         } body;
     } Handshake;


     struct {
         uint32 ticket_lifetime_hint;
         opaque ticket<0..2^16-1>;
     } NewSessionTicket;

3.4.  Interaction with TLS Session ID

  If a server is planning on issuing a SessionTicket to a client that
  does not present one, it SHOULD include an empty Session ID in the
  ServerHello.  If the server includes a non-empty session ID, then it
  is indicating intent to use stateful session resume.  If the client
  receives a SessionTicket from the server, then it discards any
  Session ID that was sent in the ServerHello.

  When presenting a ticket, the client MAY generate and include a
  Session ID in the TLS ClientHello.  If the server accepts the ticket
  and the Session ID is not empty, then it MUST respond with the same
  Session ID present in the ClientHello.  This allows the client to
  easily differentiate when the server is resuming a session from when
  it is falling back to a full handshake.  Since the client generates a
  Session ID, the server MUST NOT rely upon the Session ID having a
  particular value when validating the ticket.  If a ticket is
  presented by the client, the server MUST NOT attempt to use the



Salowey, et al.             Standards Track                     [Page 8]

RFC 4507            Stateless TLS Session Resumption            May 2006


  Session ID in the ClientHello for stateful session resume.
  Alternatively, the client MAY include an empty Session ID in the
  ClientHello.  In this case, the client ignores the Session ID sent in
  the ServerHello and determines if the server is resuming a session by
  the subsequent handshake messages.

4.  Recommended Ticket Construction

  This section describes a recommended format and protection for the
  ticket.  Note that the ticket is opaque to the client, so the
  structure is not subject to interoperability concerns, and
  implementations may diverge from this format.  If implementations do
  diverge from this format, they must take security concerns seriously.
  Clients MUST NOT examine the ticket under the assumption that it
  complies with this document.

  The server uses two different keys: one 128-bit key for AES [AES] in
  CBC mode [CBC] encryption and one 128-bit key for HMAC-SHA1 [RFC2104]
  [SHA1].

  The ticket is structured as follows:

     struct {
         opaque key_name[16];
         opaque iv[16];
         opaque encrypted_state<0..2^16-1>;
         opaque mac[20];
     } ticket;

  Here, key_name serves to identify a particular set of keys used to
  protect the ticket.  It enables the server to easily recognize
  tickets it has issued.  The key_name should be randomly generated to
  avoid collisions between servers.  One possibility is to generate new
  random keys and key_name every time the server is started.

  The actual state information in encrypted_state is encrypted using
  128-bit AES in CBC mode with the given IV.  The MAC is calculated
  using HMAC-SHA1 over key_name (16 octets)and IV (16 octets), followed
  by the length of the encrypted_state field (2 octets) and its
  contents (variable length).











Salowey, et al.             Standards Track                     [Page 9]

RFC 4507            Stateless TLS Session Resumption            May 2006


     struct {
         ProtocolVersion protocol_version;
         CipherSuite cipher_suite;
         CompressionMethod compression_method;
         opaque master_secret[48];
         ClientIdentity client_identity;
         uint32 timestamp;
     } StatePlaintext;

     enum {
        anonymous(0),
        certificate_based(1),
        psk(2)
    } ClientAuthenticationType;

     struct {
         ClientAuthenticationType client_authentication_type;
         select (ClientAuthenticationType) {
             case anonymous: struct {};
             case certificate_based:
                 ASN.1Cert certificate_list<0..2^24-1>;
             case psk:
                 opaque psk_identity<0..2^16-1>; /* from [RFC4279] */

         }
      } ClientIdentity;

  The structure StatePlaintext stores the TLS session state including
  the master_secret.  The timestamp within this structure allows the
  TLS server to expire tickets.  To cover the authentication and key
  exchange protocols provided by TLS, the ClientIdentity structure
  contains the authentication type of the client used in the initial
  exchange (see ClientAuthenticationType).  To offer the TLS server
  with the same capabilities for authentication and authorization, a
  certificate list is included in case of public-key-based
  authentication.  The TLS server is therefore able to inspect a number
  of different attributes within these certificates.  A specific
  implementation might choose to store a subset of this information or
  additional information.  Other authentication mechanisms, such as
  Kerberos [RFC2712], would require different client identity data.

5.  Security Considerations

  This section addresses security issues related to the usage of a
  ticket.  Tickets must be authenticated and encrypted to prevent
  modification or eavesdropping by an attacker.  Several attacks
  described below will be possible if this is not carefully done.




Salowey, et al.             Standards Track                    [Page 10]

RFC 4507            Stateless TLS Session Resumption            May 2006


  Implementations should take care to ensure that the processing of
  tickets does not increase the chance of denial of service as
  described below.

5.1.  Invalidating Sessions

  The TLS specification requires that TLS sessions be invalidated when
  errors occur.  [CSSC] discusses the security implications of this in
  detail.  In the analysis in this paper, failure to invalidate
  sessions does not pose a security risk.  This is because the TLS
  handshake uses a non-reversible function to derive keys for a session
  so information about one session does not provide an advantage to
  attack the master secret or a different session.  If a session
  invalidation scheme is used, the implementation should verify the
  integrity of the ticket before using the contents to invalidate a
  session to ensure that an attacker cannot invalidate a chosen
  session.

5.2.  Stolen Tickets

  An eavesdropper or man-in-the-middle may obtain the ticket and
  attempt to use the ticket to establish a session with the server;
  however, since the ticket is encrypted and the attacker does not know
  the secret key, a stolen ticket does not help an attacker resume a
  session.  A TLS server MUST use strong encryption and integrity
  protection for the ticket to prevent an attacker from using a brute
  force mechanism to obtain the ticket's contents.

5.3.  Forged Tickets

  A malicious user could forge or alter a ticket in order to resume a
  session, to extend its lifetime, to impersonate as another user, or
  to gain additional privileges.  This attack is not possible if the
  ticket is protected using a strong integrity protection algorithm
  such as a keyed HMAC-SHA1.

5.4.  Denial of Service Attacks

  The key_name field defined in the recommended ticket format helps the
  server efficiently reject tickets that it did not issue.  However, an
  adversary could store or generate a large number of tickets to send
  to the TLS server for verification.  To minimize the possibility of a
  denial of service, the verification of the ticket should be
  lightweight (e.g., using efficient symmetric key cryptographic
  algorithms).






Salowey, et al.             Standards Track                    [Page 11]

RFC 4507            Stateless TLS Session Resumption            May 2006


5.5.  Ticket Protection Key Management

  A full description of the management of the keys used to protect the
  ticket is beyond the scope of this document.  A list of RECOMMENDED
  practices is given below.

  o  The keys should be generated securely following the randomness
     recommendations in [RFC4086].
  o  The keys and cryptographic protection algorithms should be at
     least 128 bits in strength.
  o  The keys should not be used for any other purpose than generating
     and verifying tickets.
  o  The keys should be changed regularly.
  o  The keys should be changed if the ticket format or cryptographic
     protection algorithms change.

5.6.  Ticket Lifetime

  The TLS server controls the lifetime of the ticket.  Servers
  determine the acceptable lifetime based on the operational and
  security requirements of the environments in which they are deployed.
  The ticket lifetime may be longer than the 24-hour lifetime
  recommended in [RFC2246].  TLS clients may be given a hint of the
  lifetime of the ticket.  Since the lifetime of a ticket may be
  unspecified, a client has its own local policy that determines when
  it discards tickets.

5.7.  Alternate Ticket Formats and Distribution Schemes

  If the ticket format or distribution scheme defined in this document
  is not used, then great care must be taken in analyzing the security
  of the solution.  In particular, if confidential information, such as
  a secret key, is transferred to the client, it MUST be done using
  secure communication so as to prevent attackers from obtaining or
  modifying the key.  Also, the ticket MUST have its integrity and
  confidentiality protected with strong cryptographic techniques to
  prevent a breach in the security of the system.

5.8.  Identity Privacy, Anonymity, and Unlinkability

  This document mandates that the content of the ticket is
  confidentiality protected in order to avoid leakage of its content,
  such as user-relevant information.  As such, it prevents disclosure
  of potentially sensitive information carried within the ticket.

  The initial handshake exchange, which was used to obtain the ticket,
  might not provide identity confidentiality of the client based on the
  properties of TLS.  Another relevant security threat is the ability



Salowey, et al.             Standards Track                    [Page 12]

RFC 4507            Stateless TLS Session Resumption            May 2006


  for an on-path adversary to observe multiple TLS handshakes where the
  same ticket is used and therefore to conclude that they belong to the
  same communication endpoints.  Application designers that use the
  ticket mechanism described in this document should consider that
  unlinkability [ANON] is not necessarily provided.

  While a full discussion of these topics is beyond the scope of this
  document, it should be noted that it is possible to issue a ticket
  using a TLS renegotiation handshake that occurs after a secure tunnel
  has been established by a previous handshake.  This may help address
  some privacy and unlinkability issues in some environments.

6.  Acknowledgements

  The authors would like to thank the following people for their help
  with preparing and reviewing this document: Eric Rescorla, Mohamad
  Badra, Tim Dierks, Nelson Bolyard, Nancy Cam-Winget, David McGrew,
  Rob Dugal, Russ Housley, Amir Herzberg, Bernard Aboba, and members of
  the TLS working group.

  [CSSC] describes a solution that is very similar to the one described
  in this document and gives a detailed analysis of the security
  considerations involved.  [RFC2712] describes a mechanism for using
  Kerberos [RFC4120] in TLS ciphersuites, which helped inspire the use
  of tickets to avoid server state.  [EAP-FAST] makes use of a similar
  mechanism to avoid maintaining server state for the cryptographic
  tunnel.  [SC97] also investigates the concept of stateless sessions.

7.  IANA Considerations

  IANA has assigned a TLS extension number of 35 to the SessionTicket
  TLS extension from the TLS registry of ExtensionType values defined
  in [RFC4366].

  IANA has assigned a TLS HandshakeType number 4 to the
  NewSessionTicket handshake type from the TLS registry of
  HandshakeType values defined in [RFC4346].














Salowey, et al.             Standards Track                    [Page 13]

RFC 4507            Stateless TLS Session Resumption            May 2006


8.  References

8.1.  Normative References

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2246]   Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
              RFC 2246, January 1999.

  [RFC4346]   Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.1", RFC 4346, April 2006.

  [RFC4366]   Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen,
              J., and T. Wright, "Transport Layer Security (TLS)
              Extensions", RFC 4366, April 2006.

8.2.  Informative References

  [AES]       National Institute of Standards and Technology, "Advanced
              Encryption Standard (AES)", Federal Information
              Processing Standards (FIPS) Publication 197,
              November 2001.

  [ANON]      Pfitzmann, A. and M. Hansen, "Anonymity, Unlinkability,
              Unobservability, Pseudonymity, and Identity Management -
              A Consolidated Proposal for Terminology",
              http://dud.inf.tu-dresden.de/literatur/
              Anon_Terminology_v0.26-1.pdf, Draft 0.26, December 2005.

  [CBC]       National Institute of Standards and Technology,
              "Recommendation for Block Cipher Modes of Operation -
              Methods and Techniques", NIST Special Publication 800-
              38A, December 2001.

  [CSSC]      Shacham, H., Boneh, D., and E. Rescorla, "Client-side
              caching for TLS", Transactions on Information and System
              Security (TISSEC) , Volume 7, Issue 4, November 2004.

  [EAP-FAST]  Cam-Winget, N., McGrew, D., Salowey, J., and H. Zhou,
              "EAP Flexible Authentication via Secure Tunneling (EAP-
              FAST)", Work in Progress, April 2005.

  [RFC2104]   Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
              Hashing for Message Authentication", RFC 2104,
              February 1997.





Salowey, et al.             Standards Track                    [Page 14]

RFC 4507            Stateless TLS Session Resumption            May 2006


  [RFC2712]   Medvinsky, A. and M. Hur, "Addition of Kerberos Cipher
              Suites to Transport Layer Security (TLS)", RFC 2712,
              October 1999.

  [RFC4086]   Eastlake, D., Schiller, J., and S. Crocker, "Randomness
              Requirements for Security", BCP 106, RFC 4086, June 2005.

  [RFC4120]   Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
              Kerberos Network Authentication Service (V5)", RFC 4120,
              July 2005.

  [RFC4279]   Eronen, P. and H. Tschofenig, "Pre-Shared Key
              Ciphersuites for Transport Layer Security (TLS)",
              RFC 4279, December 2005.

  [SC97]      Aura, T. and P. Nikander, "Stateless Connections",
              Proceedings of the First International Conference on
              Information and Communication Security (ICICS '97), 1997.

  [SHA1]      National Institute of Standards and Technology, "Secure
              Hash Standard (SHS)", Federal Information Processing
              Standards (FIPS) Publication 180-2, August 2002.





























Salowey, et al.             Standards Track                    [Page 15]

RFC 4507            Stateless TLS Session Resumption            May 2006


Authors' Addresses

  Joseph Salowey
  Cisco Systems
  2901 3rd Ave
  Seattle, WA  98121
  US

  EMail: [email protected]


  Hao Zhou
  Cisco Systems
  4125 Highlander Parkway
  Richfield, OH  44286
  US

  EMail: [email protected]


  Pasi Eronen
  Nokia Research Center
  P.O. Box 407
  FIN-00045 Nokia Group
  Finland

  EMail: [email protected]


  Hannes Tschofenig
  Siemens
  Otto-Hahn-Ring 6
  Munich, Bayern  81739
  Germany

  EMail: [email protected]















Salowey, et al.             Standards Track                    [Page 16]

RFC 4507            Stateless TLS Session Resumption            May 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Salowey, et al.             Standards Track                    [Page 17]