Network Working Group                                    S. Blake-Wilson
Request for Comments: 4492                                       SafeNet
Category: Informational                                       N. Bolyard
                                                       Sun Microsystems
                                                               V. Gupta
                                                               Sun Labs
                                                                C. Hawk
                                                              Corriente
                                                             B. Moeller
                                                        Ruhr-Uni Bochum
                                                               May 2006


           Elliptic Curve Cryptography (ECC) Cipher Suites
                  for Transport Layer Security (TLS)

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This document describes new key exchange algorithms based on Elliptic
  Curve Cryptography (ECC) for the Transport Layer Security (TLS)
  protocol.  In particular, it specifies the use of Elliptic Curve
  Diffie-Hellman (ECDH) key agreement in a TLS handshake and the use of
  Elliptic Curve Digital Signature Algorithm (ECDSA) as a new
  authentication mechanism.

















Blake-Wilson, et al.         Informational                      [Page 1]

RFC 4492               ECC Cipher Suites for TLS                May 2006


Table of Contents

  1. Introduction ....................................................3
  2. Key Exchange Algorithms .........................................4
     2.1. ECDH_ECDSA .................................................6
     2.2. ECDHE_ECDSA ................................................6
     2.3. ECDH_RSA ...................................................7
     2.4. ECDHE_RSA ..................................................7
     2.5. ECDH_anon ..................................................7
  3. Client Authentication ...........................................8
     3.1. ECDSA_sign .................................................8
     3.2. ECDSA_fixed_ECDH ...........................................9
     3.3. RSA_fixed_ECDH .............................................9
  4. TLS Extensions for ECC ..........................................9
  5. Data Structures and Computations ...............................10
     5.1. Client Hello Extensions ...................................10
          5.1.1. Supported Elliptic Curves Extension ................12
          5.1.2. Supported Point Formats Extension ..................13
     5.2. Server Hello Extension ....................................14
     5.3. Server Certificate ........................................15
     5.4. Server Key Exchange .......................................17
     5.5. Certificate Request .......................................21
     5.6. Client Certificate ........................................22
     5.7. Client Key Exchange .......................................23
     5.8. Certificate Verify ........................................25
     5.9. Elliptic Curve Certificates ...............................26
     5.10. ECDH, ECDSA, and RSA Computations ........................26
  6. Cipher Suites ..................................................27
  7. Security Considerations ........................................28
  8. IANA Considerations ............................................29
  9. Acknowledgements ...............................................29
  10. References ....................................................30
     10.1. Normative References .....................................30
     10.2. Informative References ...................................31
  Appendix A.  Equivalent Curves (Informative) ......................32
















Blake-Wilson, et al.         Informational                      [Page 2]

RFC 4492               ECC Cipher Suites for TLS                May 2006


1.  Introduction

  Elliptic Curve Cryptography (ECC) is emerging as an attractive
  public-key cryptosystem, in particular for mobile (i.e., wireless)
  environments.  Compared to currently prevalent cryptosystems such as
  RSA, ECC offers equivalent security with smaller key sizes.  This is
  illustrated in the following table, based on [18], which gives
  approximate comparable key sizes for symmetric- and asymmetric-key
  cryptosystems based on the best-known algorithms for attacking them.

                   Symmetric  |   ECC   |  DH/DSA/RSA
                  ------------+---------+-------------
                       80     |   163   |     1024
                      112     |   233   |     2048
                      128     |   283   |     3072
                      192     |   409   |     7680
                      256     |   571   |    15360

                 Table 1: Comparable Key Sizes (in bits)

  Smaller key sizes result in savings for power, memory, bandwidth, and
  computational cost that make ECC especially attractive for
  constrained environments.

  This document describes additions to TLS to support ECC, applicable
  both to TLS Version 1.0 [2] and to TLS Version 1.1 [3].  In
  particular, it defines

  o  the use of the Elliptic Curve Diffie-Hellman (ECDH) key agreement
     scheme with long-term or ephemeral keys to establish the TLS
     premaster secret, and

  o  the use of fixed-ECDH certificates and ECDSA for authentication of
     TLS peers.

  The remainder of this document is organized as follows.  Section 2
  provides an overview of ECC-based key exchange algorithms for TLS.
  Section 3 describes the use of ECC certificates for client
  authentication.  TLS extensions that allow a client to negotiate the
  use of specific curves and point formats are presented in Section 4.
  Section 5 specifies various data structures needed for an ECC-based
  handshake, their encoding in TLS messages, and the processing of
  those messages.  Section 6 defines new ECC-based cipher suites and
  identifies a small subset of these as recommended for all
  implementations of this specification.  Section 7 discusses security
  considerations.  Section 8 describes IANA considerations for the name
  spaces created by this document.  Section 9 gives acknowledgements.




Blake-Wilson, et al.         Informational                      [Page 3]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  This is followed by the lists of normative and informative references
  cited in this document, the authors' contact information, and
  statements on intellectual property rights and copyrights.

  Implementation of this specification requires familiarity with TLS
  [2][3], TLS extensions [4], and ECC [5][6][7][11][17].

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [1].

2.  Key Exchange Algorithms

  This document introduces five new ECC-based key exchange algorithms
  for TLS.  All of them use ECDH to compute the TLS premaster secret,
  and they differ only in the lifetime of ECDH keys (long-term or
  ephemeral) and the mechanism (if any) used to authenticate them.  The
  derivation of the TLS master secret from the premaster secret and the
  subsequent generation of bulk encryption/MAC keys and initialization
  vectors is independent of the key exchange algorithm and not impacted
  by the introduction of ECC.

  The table below summarizes the new key exchange algorithms, which
  mimic DH_DSS, DHE_DSS, DH_RSA, DHE_RSA, and DH_anon (see [2] and
  [3]), respectively.

         Key
         Exchange
         Algorithm           Description
         ---------           -----------

         ECDH_ECDSA          Fixed ECDH with ECDSA-signed certificates.

         ECDHE_ECDSA         Ephemeral ECDH with ECDSA signatures.

         ECDH_RSA            Fixed ECDH with RSA-signed certificates.

         ECDHE_RSA           Ephemeral ECDH with RSA signatures.

         ECDH_anon           Anonymous ECDH, no signatures.

                    Table 2: ECC Key Exchange Algorithms

  The ECDHE_ECDSA and ECDHE_RSA key exchange mechanisms provide forward
  secrecy.  With ECDHE_RSA, a server can reuse its existing RSA
  certificate and easily comply with a constrained client's elliptic
  curve preferences (see Section 4).  However, the computational cost




Blake-Wilson, et al.         Informational                      [Page 4]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  incurred by a server is higher for ECDHE_RSA than for the traditional
  RSA key exchange, which does not provide forward secrecy.

  The ECDH_RSA mechanism requires a server to acquire an ECC
  certificate, but the certificate issuer can still use an existing RSA
  key for signing.  This eliminates the need to update the keys of
  trusted certification authorities accepted by TLS clients.  The
  ECDH_ECDSA mechanism requires ECC keys for the server as well as the
  certification authority and is best suited for constrained devices
  unable to support RSA.

  The anonymous key exchange algorithm does not provide authentication
  of the server or the client.  Like other anonymous TLS key exchanges,
  it is subject to man-in-the-middle attacks.  Implementations of this
  algorithm SHOULD provide authentication by other means.

  Note that there is no structural difference between ECDH and ECDSA
  keys.  A certificate issuer may use X.509 v3 keyUsage and
  extendedKeyUsage extensions to restrict the use of an ECC public key
  to certain computations [15].  This document refers to an ECC key as
  ECDH-capable if its use in ECDH is permitted.  ECDSA-capable is
  defined similarly.

             Client                                        Server
             ------                                        ------

             ClientHello          -------->
                                                      ServerHello
                                                     Certificate*
                                               ServerKeyExchange*
                                             CertificateRequest*+
                                  <--------       ServerHelloDone
             Certificate*+
             ClientKeyExchange
             CertificateVerify*+
             [ChangeCipherSpec]
             Finished             -------->
                                               [ChangeCipherSpec]
                                  <--------              Finished

             Application Data     <------->      Application Data


                  * message is not sent under some conditions
                  + message is not sent unless client authentication
                    is desired

                Figure 1: Message flow in a full TLS handshake



Blake-Wilson, et al.         Informational                      [Page 5]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  Figure 1 shows all messages involved in the TLS key establishment
  protocol (aka full handshake).  The addition of ECC has direct impact
  only on the ClientHello, the ServerHello, the server's Certificate
  message, the ServerKeyExchange, the ClientKeyExchange, the
  CertificateRequest, the client's Certificate message, and the
  CertificateVerify.  Next, we describe each ECC key exchange algorithm
  in greater detail in terms of the content and processing of these
  messages.  For ease of exposition, we defer discussion of client
  authentication and associated messages (identified with a + in
  Figure 1) until Section 3 and of the optional ECC-specific extensions
  (which impact the Hello messages) until Section 4.

2.1.  ECDH_ECDSA

  In ECDH_ECDSA, the server's certificate MUST contain an ECDH-capable
  public key and be signed with ECDSA.

  A ServerKeyExchange MUST NOT be sent (the server's certificate
  contains all the necessary keying information required by the client
  to arrive at the premaster secret).

  The client generates an ECDH key pair on the same curve as the
  server's long-term public key and sends its public key in the
  ClientKeyExchange message (except when using client authentication
  algorithm ECDSA_fixed_ECDH or RSA_fixed_ECDH, in which case the
  modifications from Section 3.2 or Section 3.3 apply).

  Both client and server perform an ECDH operation and use the
  resultant shared secret as the premaster secret.  All ECDH
  calculations are performed as specified in Section 5.10.

2.2.  ECDHE_ECDSA

  In ECDHE_ECDSA, the server's certificate MUST contain an ECDSA-
  capable public key and be signed with ECDSA.

  The server sends its ephemeral ECDH public key and a specification of
  the corresponding curve in the ServerKeyExchange message.  These
  parameters MUST be signed with ECDSA using the private key
  corresponding to the public key in the server's Certificate.

  The client generates an ECDH key pair on the same curve as the
  server's ephemeral ECDH key and sends its public key in the
  ClientKeyExchange message.

  Both client and server perform an ECDH operation (Section 5.10) and
  use the resultant shared secret as the premaster secret.




Blake-Wilson, et al.         Informational                      [Page 6]

RFC 4492               ECC Cipher Suites for TLS                May 2006


2.3.  ECDH_RSA

  This key exchange algorithm is the same as ECDH_ECDSA except that the
  server's certificate MUST be signed with RSA rather than ECDSA.

2.4.  ECDHE_RSA

  This key exchange algorithm is the same as ECDHE_ECDSA except that
  the server's certificate MUST contain an RSA public key authorized
  for signing, and that the signature in the ServerKeyExchange message
  must be computed with the corresponding RSA private key.  The server
  certificate MUST be signed with RSA.

2.5.  ECDH_anon

  In ECDH_anon, the server's Certificate, the CertificateRequest, the
  client's Certificate, and the CertificateVerify messages MUST NOT be
  sent.

  The server MUST send an ephemeral ECDH public key and a specification
  of the corresponding curve in the ServerKeyExchange message.  These
  parameters MUST NOT be signed.

  The client generates an ECDH key pair on the same curve as the
  server's ephemeral ECDH key and sends its public key in the
  ClientKeyExchange message.

  Both client and server perform an ECDH operation and use the
  resultant shared secret as the premaster secret.  All ECDH
  calculations are performed as specified in Section 5.10.

  Note that while the ECDH_ECDSA, ECDHE_ECDSA, ECDH_RSA, and ECDHE_RSA
  key exchange algorithms require the server's certificate to be signed
  with a particular signature scheme, this specification (following the
  similar cases of DH_DSS, DHE_DSS, DH_RSA, and DHE_RSA in [2] and [3])
  does not impose restrictions on signature schemes used elsewhere in
  the certificate chain.  (Often such restrictions will be useful, and
  it is expected that this will be taken into account in certification
  authorities' signing practices.  However, such restrictions are not
  strictly required in general: Even if it is beyond the capabilities
  of a client to completely validate a given chain, the client may be
  able to validate the server's certificate by relying on a trusted
  certification authority whose certificate appears as one of the
  intermediate certificates in the chain.)







Blake-Wilson, et al.         Informational                      [Page 7]

RFC 4492               ECC Cipher Suites for TLS                May 2006


3.  Client Authentication

  This document defines three new client authentication mechanisms,
  each named after the type of client certificate involved: ECDSA_sign,
  ECDSA_fixed_ECDH, and RSA_fixed_ECDH.  The ECDSA_sign mechanism is
  usable with any of the non-anonymous ECC key exchange algorithms
  described in Section 2 as well as other non-anonymous (non-ECC) key
  exchange algorithms defined in TLS [2][3].  The ECDSA_fixed_ECDH and
  RSA_fixed_ECDH mechanisms are usable with ECDH_ECDSA and ECDH_RSA.
  Their use with ECDHE_ECDSA and ECDHE_RSA is prohibited because the
  use of a long-term ECDH client key would jeopardize the forward
  secrecy property of these algorithms.

  The server can request ECC-based client authentication by including
  one or more of these certificate types in its CertificateRequest
  message.  The server must not include any certificate types that are
  prohibited for the negotiated key exchange algorithm.  The client
  must check if it possesses a certificate appropriate for any of the
  methods suggested by the server and is willing to use it for
  authentication.

  If these conditions are not met, the client should send a client
  Certificate message containing no certificates.  In this case, the
  ClientKeyExchange should be sent as described in Section 2, and the
  CertificateVerify should not be sent.  If the server requires client
  authentication, it may respond with a fatal handshake failure alert.

  If the client has an appropriate certificate and is willing to use it
  for authentication, it must send that certificate in the client's
  Certificate message (as per Section 5.6) and prove possession of the
  private key corresponding to the certified key.  The process of
  determining an appropriate certificate and proving possession is
  different for each authentication mechanism and described below.

  NOTE: It is permissible for a server to request (and the client to
  send) a client certificate of a different type than the server
  certificate.

3.1.  ECDSA_sign

  To use this authentication mechanism, the client MUST possess a
  certificate containing an ECDSA-capable public key and signed with
  ECDSA.

  The client proves possession of the private key corresponding to the
  certified key by including a signature in the CertificateVerify
  message as described in Section 5.8.




Blake-Wilson, et al.         Informational                      [Page 8]

RFC 4492               ECC Cipher Suites for TLS                May 2006


3.2.  ECDSA_fixed_ECDH

  To use this authentication mechanism, the client MUST possess a
  certificate containing an ECDH-capable public key, and that
  certificate MUST be signed with ECDSA.  Furthermore, the client's
  ECDH key MUST be on the same elliptic curve as the server's long-term
  (certified) ECDH key.  This might limit use of this mechanism to
  closed environments.  In situations where the client has an ECC key
  on a different curve, it would have to authenticate using either
  ECDSA_sign or a non-ECC mechanism (e.g., RSA).  Using fixed ECDH for
  both servers and clients is computationally more efficient than
  mechanisms providing forward secrecy.

  When using this authentication mechanism, the client MUST send an
  empty ClientKeyExchange as described in Section 5.7 and MUST NOT send
  the CertificateVerify message.  The ClientKeyExchange is empty since
  the client's ECDH public key required by the server to compute the
  premaster secret is available inside the client's certificate.  The
  client's ability to arrive at the same premaster secret as the server
  (demonstrated by a successful exchange of Finished messages) proves
  possession of the private key corresponding to the certified public
  key, and the CertificateVerify message is unnecessary.

3.3.  RSA_fixed_ECDH

  This authentication mechanism is identical to ECDSA_fixed_ECDH except
  that the client's certificate MUST be signed with RSA.

  Note that while the ECDSA_sign, ECDSA_fixed_ECDH, and RSA_fixed_ECDH
  client authentication mechanisms require the client's certificate to
  be signed with a particular signature scheme, this specification does
  not impose restrictions on signature schemes used elsewhere in the
  certificate chain.  (Often such restrictions will be useful, and it
  is expected that this will be taken into account in certification
  authorities' signing practices.  However, such restrictions are not
  strictly required in general: Even if it is beyond the capabilities
  of a server to completely validate a given chain, the server may be
  able to validate the clients certificate by relying on a trust anchor
  that appears as one of the intermediate certificates in the chain.)

4.  TLS Extensions for ECC

  Two new TLS extensions are defined in this specification: (i) the
  Supported Elliptic Curves Extension, and (ii) the Supported Point
  Formats Extension.  These allow negotiating the use of specific
  curves and point formats (e.g., compressed vs. uncompressed,
  respectively) during a handshake starting a new session.  These
  extensions are especially relevant for constrained clients that may



Blake-Wilson, et al.         Informational                      [Page 9]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  only support a limited number of curves or point formats.  They
  follow the general approach outlined in [4]; message details are
  specified in Section 5.  The client enumerates the curves it supports
  and the point formats it can parse by including the appropriate
  extensions in its ClientHello message.  The server similarly
  enumerates the point formats it can parse by including an extension
  in its ServerHello message.

  A TLS client that proposes ECC cipher suites in its ClientHello
  message SHOULD include these extensions.  Servers implementing ECC
  cipher suites MUST support these extensions, and when a client uses
  these extensions, servers MUST NOT negotiate the use of an ECC cipher
  suite unless they can complete the handshake while respecting the
  choice of curves and compression techniques specified by the client.
  This eliminates the possibility that a negotiated ECC handshake will
  be subsequently aborted due to a client's inability to deal with the
  server's EC key.

  The client MUST NOT include these extensions in the ClientHello
  message if it does not propose any ECC cipher suites.  A client that
  proposes ECC cipher suites may choose not to include these
  extensions.  In this case, the server is free to choose any one of
  the elliptic curves or point formats listed in Section 5.  That
  section also describes the structure and processing of these
  extensions in greater detail.

  In the case of session resumption, the server simply ignores the
  Supported Elliptic Curves Extension and the Supported Point Formats
  Extension appearing in the current ClientHello message.  These
  extensions only play a role during handshakes negotiating a new
  session.

5.  Data Structures and Computations

  This section specifies the data structures and computations used by
  ECC-based key mechanisms specified in Sections 2, 3, and 4.  The
  presentation language used here is the same as that used in TLS
  [2][3].  Since this specification extends TLS, these descriptions
  should be merged with those in the TLS specification and any others
  that extend TLS.  This means that enum types may not specify all
  possible values, and structures with multiple formats chosen with a
  select() clause may not indicate all possible cases.

5.1.  Client Hello Extensions

  This section specifies two TLS extensions that can be included with
  the ClientHello message as described in [4], the Supported Elliptic
  Curves Extension and the Supported Point Formats Extension.



Blake-Wilson, et al.         Informational                     [Page 10]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  When these extensions are sent:

  The extensions SHOULD be sent along with any ClientHello message that
  proposes ECC cipher suites.

  Meaning of these extensions:

  These extensions allow a client to enumerate the elliptic curves it
  supports and/or the point formats it can parse.

  Structure of these extensions:

  The general structure of TLS extensions is described in [4], and this
  specification adds two new types to ExtensionType.

      enum { elliptic_curves(10), ec_point_formats(11) } ExtensionType;

  elliptic_curves (Supported Elliptic Curves Extension):   Indicates
     the set of elliptic curves supported by the client.  For this
     extension, the opaque extension_data field contains
     EllipticCurveList.  See Section 5.1.1 for details.

  ec_point_formats (Supported Point Formats Extension):   Indicates the
     set of point formats that the client can parse.  For this
     extension, the opaque extension_data field contains
     ECPointFormatList.  See Section 5.1.2 for details.

  Actions of the sender:

  A client that proposes ECC cipher suites in its ClientHello message
  appends these extensions (along with any others), enumerating the
  curves it supports and the point formats it can parse.  Clients
  SHOULD send both the Supported Elliptic Curves Extension and the
  Supported Point Formats Extension.  If the Supported Point Formats
  Extension is indeed sent, it MUST contain the value 0 (uncompressed)
  as one of the items in the list of point formats.

  Actions of the receiver:

  A server that receives a ClientHello containing one or both of these
  extensions MUST use the client's enumerated capabilities to guide its
  selection of an appropriate cipher suite.  One of the proposed ECC
  cipher suites must be negotiated only if the server can successfully
  complete the handshake while using the curves and point formats
  supported by the client (cf. Sections 5.3 and 5.4).






Blake-Wilson, et al.         Informational                     [Page 11]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  NOTE: A server participating in an ECDHE-ECDSA key exchange may use
  different curves for (i) the ECDSA key in its certificate, and (ii)
  the ephemeral ECDH key in the ServerKeyExchange message.  The server
  must consider the extensions in both cases.

  If a server does not understand the Supported Elliptic Curves
  Extension, does not understand the Supported Point Formats Extension,
  or is unable to complete the ECC handshake while restricting itself
  to the enumerated curves and point formats, it MUST NOT negotiate the
  use of an ECC cipher suite.  Depending on what other cipher suites
  are proposed by the client and supported by the server, this may
  result in a fatal handshake failure alert due to the lack of common
  cipher suites.

5.1.1.  Supported Elliptic Curves Extension

       enum {
           sect163k1 (1), sect163r1 (2), sect163r2 (3),
           sect193r1 (4), sect193r2 (5), sect233k1 (6),
           sect233r1 (7), sect239k1 (8), sect283k1 (9),
           sect283r1 (10), sect409k1 (11), sect409r1 (12),
           sect571k1 (13), sect571r1 (14), secp160k1 (15),
           secp160r1 (16), secp160r2 (17), secp192k1 (18),
           secp192r1 (19), secp224k1 (20), secp224r1 (21),
           secp256k1 (22), secp256r1 (23), secp384r1 (24),
           secp521r1 (25),
           reserved (0xFE00..0xFEFF),
           arbitrary_explicit_prime_curves(0xFF01),
           arbitrary_explicit_char2_curves(0xFF02),
           (0xFFFF)
       } NamedCurve;

  sect163k1, etc:   Indicates support of the corresponding named curve
     or class of explicitly defined curves.  The named curves defined
     here are those specified in SEC 2 [13].  Note that many of these
     curves are also recommended in ANSI X9.62 [7] and FIPS 186-2 [11].
     Values 0xFE00 through 0xFEFF are reserved for private use.  Values
     0xFF01 and 0xFF02 indicate that the client supports arbitrary
     prime and characteristic-2 curves, respectively (the curve
     parameters must be encoded explicitly in ECParameters).

  The NamedCurve name space is maintained by IANA.  See Section 8 for
  information on how new value assignments are added.

       struct {
           NamedCurve elliptic_curve_list<1..2^16-1>
       } EllipticCurveList;




Blake-Wilson, et al.         Informational                     [Page 12]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  Items in elliptic_curve_list are ordered according to the client's
  preferences (favorite choice first).

  As an example, a client that only supports secp192r1 (aka NIST P-192;
  value 19 = 0x0013) and secp224r1 (aka NIST P-224; value 21 = 0x0015)
  and prefers to use secp192r1 would include a TLS extension consisting
  of the following octets.  Note that the first two octets indicate the
  extension type (Supported Elliptic Curves Extension):

       00 0A 00 06 00 04 00 13 00 15

  A client that supports arbitrary explicit characteristic-2 curves
  (value 0xFF02) would include an extension consisting of the following
  octets:

       00 0A 00 04 00 02 FF 02

5.1.2.  Supported Point Formats Extension

       enum { uncompressed (0), ansiX962_compressed_prime (1),
              ansiX962_compressed_char2 (2), reserved (248..255)
       } ECPointFormat;

       struct {
           ECPointFormat ec_point_format_list<1..2^8-1>
       } ECPointFormatList;

  Three point formats are included in the definition of ECPointFormat
  above.  The uncompressed point format is the default format in that
  implementations of this document MUST support it for all of their
  supported curves.  Compressed point formats reduce bandwidth by
  including only the x-coordinate and a single bit of the y-coordinate
  of the point.  Implementations of this document MAY support the
  ansiX962_compressed_prime and ansiX962_compressed_char2 formats,
  where the former applies only to prime curves and the latter applies
  only to characteristic-2 curves.  (These formats are specified in
  [7].)  Values 248 through 255 are reserved for private use.

  The ECPointFormat name space is maintained by IANA.  See Section 8
  for information on how new value assignments are added.

  Items in ec_point_format_list are ordered according to the client's
  preferences (favorite choice first).








Blake-Wilson, et al.         Informational                     [Page 13]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  A client that can parse only the uncompressed point format (value 0)
  includes an extension consisting of the following octets; note that
  the first two octets indicate the extension type (Supported Point
  Formats Extension):

       00 0B 00 02 01 00

  A client that in the case of prime fields prefers the compressed
  format (ansiX962_compressed_prime, value 1) over the uncompressed
  format (value 0), but in the case of characteristic-2 fields prefers
  the uncompressed format (value 0) over the compressed format
  (ansiX962_compressed_char2, value 2), may indicate these preferences
  by including an extension consisting of the following octets:

       00 0B 00 04 03 01 00 02

5.2.  Server Hello Extension

  This section specifies a TLS extension that can be included with the
  ServerHello message as described in [4], the Supported Point Formats
  Extension.

  When this extension is sent:

  The Supported Point Formats Extension is included in a ServerHello
  message in response to a ClientHello message containing the Supported
  Point Formats Extension when negotiating an ECC cipher suite.

  Meaning of this extension:

  This extension allows a server to enumerate the point formats it can
  parse (for the curve that will appear in its ServerKeyExchange
  message when using the ECDHE_ECDSA, ECDHE_RSA, or ECDH_anon key
  exchange algorithm, or for the curve that is used in the server's
  public key that will appear in its Certificate message when using the
  ECDH_ECDSA or ECDH_RSA key exchange algorithm).

  Structure of this extension:

  The server's Supported Point Formats Extension has the same structure
  as the client's Supported Point Formats Extension (see
  Section 5.1.2).  Items in elliptic_curve_list here are ordered
  according to the server's preference (favorite choice first).  Note
  that the server may include items that were not found in the client's
  list (e.g., the server may prefer to receive points in compressed
  format even when a client cannot parse this format: the same client
  may nevertheless be capable of outputting points in compressed
  format).



Blake-Wilson, et al.         Informational                     [Page 14]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  Actions of the sender:

  A server that selects an ECC cipher suite in response to a
  ClientHello message including a Supported Point Formats Extension
  appends this extension (along with others) to its ServerHello
  message, enumerating the point formats it can parse.  The Supported
  Point Formats Extension, when used, MUST contain the value 0
  (uncompressed) as one of the items in the list of point formats.

  Actions of the receiver:

  A client that receives a ServerHello message containing a Supported
  Point Formats Extension MUST respect the server's choice of point
  formats during the handshake (cf. Sections 5.6 and 5.7).  If no
  Supported Point Formats Extension is received with the ServerHello,
  this is equivalent to an extension allowing only the uncompressed
  point format.

5.3.  Server Certificate

  When this message is sent:

  This message is sent in all non-anonymous ECC-based key exchange
  algorithms.

  Meaning of this message:

  This message is used to authentically convey the server's static
  public key to the client.  The following table shows the server
  certificate type appropriate for each key exchange algorithm.  ECC
  public keys MUST be encoded in certificates as described in
  Section 5.9.

  NOTE: The server's Certificate message is capable of carrying a chain
  of certificates.  The restrictions mentioned in Table 3 apply only to
  the server's certificate (first in the chain).















Blake-Wilson, et al.         Informational                     [Page 15]

RFC 4492               ECC Cipher Suites for TLS                May 2006


         Key Exchange Algorithm  Server Certificate Type
         ----------------------  -----------------------

         ECDH_ECDSA              Certificate MUST contain an
                                 ECDH-capable public key.  It
                                 MUST be signed with ECDSA.

         ECDHE_ECDSA             Certificate MUST contain an
                                 ECDSA-capable public key.  It
                                 MUST be signed with ECDSA.

         ECDH_RSA                Certificate MUST contain an
                                 ECDH-capable public key.  It
                                 MUST be signed with RSA.

         ECDHE_RSA               Certificate MUST contain an
                                 RSA public key authorized for
                                 use in digital signatures.  It
                                 MUST be signed with RSA.

                   Table 3: Server Certificate Types

  Structure of this message:

  Identical to the TLS Certificate format.

  Actions of the sender:

  The server constructs an appropriate certificate chain and conveys it
  to the client in the Certificate message.  If the client has used a
  Supported Elliptic Curves Extension, the public key in the server's
  certificate MUST respect the client's choice of elliptic curves; in
  particular, the public key MUST employ a named curve (not the same
  curve as an explicit curve) unless the client has indicated support
  for explicit curves of the appropriate type.  If the client has used
  a Supported Point Formats Extension, both the server's public key
  point and (in the case of an explicit curve) the curve's base point
  MUST respect the client's choice of point formats.  (A server that
  cannot satisfy these requirements MUST NOT choose an ECC cipher suite
  in its ServerHello message.)











Blake-Wilson, et al.         Informational                     [Page 16]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  Actions of the receiver:

  The client validates the certificate chain, extracts the server's
  public key, and checks that the key type is appropriate for the
  negotiated key exchange algorithm.  (A possible reason for a fatal
  handshake failure is that the client's capabilities for handling
  elliptic curves and point formats are exceeded; cf. Section 5.1.)

5.4.  Server Key Exchange

  When this message is sent:

  This message is sent when using the ECDHE_ECDSA, ECDHE_RSA, and
  ECDH_anon key exchange algorithms.

  Meaning of this message:

  This message is used to convey the server's ephemeral ECDH public key
  (and the corresponding elliptic curve domain parameters) to the
  client.

  Structure of this message:

       enum { explicit_prime (1), explicit_char2 (2),
              named_curve (3), reserved(248..255) } ECCurveType;

  explicit_prime:   Indicates the elliptic curve domain parameters are
     conveyed verbosely, and the underlying finite field is a prime
     field.

  explicit_char2:   Indicates the elliptic curve domain parameters are
     conveyed verbosely, and the underlying finite field is a
     characteristic-2 field.

  named_curve:   Indicates that a named curve is used.  This option
     SHOULD be used when applicable.

  Values 248 through 255 are reserved for private use.

  The ECCurveType name space is maintained by IANA.  See Section 8 for
  information on how new value assignments are added.

       struct {
           opaque a <1..2^8-1>;
           opaque b <1..2^8-1>;
       } ECCurve;





Blake-Wilson, et al.         Informational                     [Page 17]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  a, b:   These parameters specify the coefficients of the elliptic
     curve.  Each value contains the byte string representation of a
     field element following the conversion routine in Section 4.3.3 of
     ANSI X9.62 [7].

       struct {
           opaque point <1..2^8-1>;
       } ECPoint;

  point:   This is the byte string representation of an elliptic curve
     point following the conversion routine in Section 4.3.6 of ANSI
     X9.62 [7].  This byte string may represent an elliptic curve point
     in uncompressed or compressed format; it MUST conform to what the
     client has requested through a Supported Point Formats Extension
     if this extension was used.

       enum { ec_basis_trinomial, ec_basis_pentanomial } ECBasisType;

  ec_basis_trinomial:   Indicates representation of a characteristic-2
     field using a trinomial basis.

  ec_basis_pentanomial:   Indicates representation of a
     characteristic-2 field using a pentanomial basis.

       struct {
           ECCurveType    curve_type;
           select (curve_type) {
               case explicit_prime:
                   opaque      prime_p <1..2^8-1>;
                   ECCurve     curve;
                   ECPoint     base;
                   opaque      order <1..2^8-1>;
                   opaque      cofactor <1..2^8-1>;
               case explicit_char2:
                   uint16      m;
                   ECBasisType basis;
                   select (basis) {
                       case ec_trinomial:
                           opaque  k <1..2^8-1>;
                       case ec_pentanomial:
                           opaque  k1 <1..2^8-1>;
                           opaque  k2 <1..2^8-1>;
                           opaque  k3 <1..2^8-1>;
                   };
                   ECCurve     curve;
                   ECPoint     base;
                   opaque      order <1..2^8-1>;
                   opaque      cofactor <1..2^8-1>;



Blake-Wilson, et al.         Informational                     [Page 18]

RFC 4492               ECC Cipher Suites for TLS                May 2006


               case named_curve:
                   NamedCurve namedcurve;
           };
       } ECParameters;

  curve_type:   This identifies the type of the elliptic curve domain
     parameters.

  prime_p:   This is the odd prime defining the field Fp.

  curve:   Specifies the coefficients a and b of the elliptic curve E.

  base:   Specifies the base point G on the elliptic curve.

  order:   Specifies the order n of the base point.

  cofactor:   Specifies the cofactor h = #E(Fq)/n, where #E(Fq)
     represents the number of points on the elliptic curve E defined
     over the field Fq (either Fp or F2^m).

  m:   This is the degree of the characteristic-2 field F2^m.

  k:   The exponent k for the trinomial basis representation x^m + x^k
     +1.

  k1, k2, k3:   The exponents for the pentanomial representation x^m +
     x^k3 + x^k2 + x^k1 + 1 (such that k3 > k2 > k1).

  namedcurve:   Specifies a recommended set of elliptic curve domain
     parameters.  All those values of NamedCurve are allowed that refer
     to a specific curve.  Values of NamedCurve that indicate support
     for a class of explicitly defined curves are not allowed here
     (they are only permissible in the ClientHello extension); this
     applies to arbitrary_explicit_prime_curves(0xFF01) and
     arbitrary_explicit_char2_curves(0xFF02).


       struct {
           ECParameters    curve_params;
           ECPoint         public;
       } ServerECDHParams;

  curve_params:   Specifies the elliptic curve domain parameters
     associated with the ECDH public key.

  public:   The ephemeral ECDH public key.





Blake-Wilson, et al.         Informational                     [Page 19]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  The ServerKeyExchange message is extended as follows.

       enum { ec_diffie_hellman } KeyExchangeAlgorithm;

  ec_diffie_hellman:   Indicates the ServerKeyExchange message contains
     an ECDH public key.

       select (KeyExchangeAlgorithm) {
           case ec_diffie_hellman:
               ServerECDHParams    params;
               Signature           signed_params;
       } ServerKeyExchange;

  params:   Specifies the ECDH public key and associated domain
     parameters.

  signed_params:   A hash of the params, with the signature appropriate
     to that hash applied.  The private key corresponding to the
     certified public key in the server's Certificate message is used
     for signing.

         enum { ecdsa } SignatureAlgorithm;

         select (SignatureAlgorithm) {
             case ecdsa:
                 digitally-signed struct {
                     opaque sha_hash[sha_size];
                 };
         } Signature;


       ServerKeyExchange.signed_params.sha_hash
           SHA(ClientHello.random + ServerHello.random +
                                             ServerKeyExchange.params);

  NOTE: SignatureAlgorithm is "rsa" for the ECDHE_RSA key exchange
  algorithm and "anonymous" for ECDH_anon.  These cases are defined in
  TLS [2][3].  SignatureAlgorithm is "ecdsa" for ECDHE_ECDSA.  ECDSA
  signatures are generated and verified as described in Section 5.10,
  and SHA in the above template for sha_hash accordingly may denote a
  hash algorithm other than SHA-1.  As per ANSI X9.62, an ECDSA
  signature consists of a pair of integers, r and s.  The digitally-
  signed element is encoded as an opaque vector <0..2^16-1>, the
  contents of which are the DER encoding [9] corresponding to the
  following ASN.1 notation [8].






Blake-Wilson, et al.         Informational                     [Page 20]

RFC 4492               ECC Cipher Suites for TLS                May 2006


          Ecdsa-Sig-Value ::= SEQUENCE {
              r       INTEGER,
              s       INTEGER
          }

  Actions of the sender:

  The server selects elliptic curve domain parameters and an ephemeral
  ECDH public key corresponding to these parameters according to the
  ECKAS-DH1 scheme from IEEE 1363 [6].  It conveys this information to
  the client in the ServerKeyExchange message using the format defined
  above.

  Actions of the receiver:

  The client verifies the signature (when present) and retrieves the
  server's elliptic curve domain parameters and ephemeral ECDH public
  key from the ServerKeyExchange message.  (A possible reason for a
  fatal handshake failure is that the client's capabilities for
  handling elliptic curves and point formats are exceeded;
  cf. Section 5.1.)

5.5.  Certificate Request

  When this message is sent:

  This message is sent when requesting client authentication.

  Meaning of this message:

  The server uses this message to suggest acceptable client
  authentication methods.

  Structure of this message:

  The TLS CertificateRequest message is extended as follows.

       enum {
           ecdsa_sign(64), rsa_fixed_ecdh(65),
           ecdsa_fixed_ecdh(66), (255)
       } ClientCertificateType;

  ecdsa_sign, etc.  Indicates that the server would like to use the
     corresponding client authentication method specified in Section 3.







Blake-Wilson, et al.         Informational                     [Page 21]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  Actions of the sender:

  The server decides which client authentication methods it would like
  to use, and conveys this information to the client using the format
  defined above.

  Actions of the receiver:

  The client determines whether it has a suitable certificate for use
  with any of the requested methods and whether to proceed with client
  authentication.

5.6.  Client Certificate

  When this message is sent:

  This message is sent in response to a CertificateRequest when a
  client has a suitable certificate and has decided to proceed with
  client authentication.  (Note that if the server has used a Supported
  Point Formats Extension, a certificate can only be considered
  suitable for use with the ECDSA_sign, RSA_fixed_ECDH, and
  ECDSA_fixed_ECDH authentication methods if the public key point
  specified in it respects the server's choice of point formats.  If no
  Supported Point Formats Extension has been used, a certificate can
  only be considered suitable for use with these authentication methods
  if the point is represented in uncompressed point format.)

  Meaning of this message:

  This message is used to authentically convey the client's static
  public key to the server.  The following table summarizes what client
  certificate types are appropriate for the ECC-based client
  authentication mechanisms described in Section 3.  ECC public keys
  must be encoded in certificates as described in Section 5.9.

  NOTE: The client's Certificate message is capable of carrying a chain
  of certificates.  The restrictions mentioned in Table 4 apply only to
  the client's certificate (first in the chain).













Blake-Wilson, et al.         Informational                     [Page 22]

RFC 4492               ECC Cipher Suites for TLS                May 2006


         Client
         Authentication Method   Client Certificate Type
         ---------------------   -----------------------

         ECDSA_sign              Certificate MUST contain an
                                 ECDSA-capable public key and
                                 be signed with ECDSA.

         ECDSA_fixed_ECDH        Certificate MUST contain an
                                 ECDH-capable public key on the
                                 same elliptic curve as the server's
                                 long-term ECDH key.  This certificate
                                 MUST be signed with ECDSA.

         RSA_fixed_ECDH          Certificate MUST contain an
                                 ECDH-capable public key on the
                                 same elliptic curve as the server's
                                 long-term ECDH key.  This certificate
                                 MUST be signed with RSA.

                    Table 4: Client Certificate Types

  Structure of this message:

  Identical to the TLS client Certificate format.

  Actions of the sender:

  The client constructs an appropriate certificate chain, and conveys
  it to the server in the Certificate message.

  Actions of the receiver:

  The TLS server validates the certificate chain, extracts the client's
  public key, and checks that the key type is appropriate for the
  client authentication method.

5.7.  Client Key Exchange

  When this message is sent:

  This message is sent in all key exchange algorithms.  If client
  authentication with ECDSA_fixed_ECDH or RSA_fixed_ECDH is used, this
  message is empty.  Otherwise, it contains the client's ephemeral ECDH
  public key.






Blake-Wilson, et al.         Informational                     [Page 23]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  Meaning of the message:

  This message is used to convey ephemeral data relating to the key
  exchange belonging to the client (such as its ephemeral ECDH public
  key).

  Structure of this message:

  The TLS ClientKeyExchange message is extended as follows.

       enum { implicit, explicit } PublicValueEncoding;

  implicit, explicit:   For ECC cipher suites, this indicates whether
     the client's ECDH public key is in the client's certificate
     ("implicit") or is provided, as an ephemeral ECDH public key, in
     the ClientKeyExchange message ("explicit").  (This is "explicit"
     in ECC cipher suites except when the client uses the
     ECDSA_fixed_ECDH or RSA_fixed_ECDH client authentication
     mechanism.)

       struct {
           select (PublicValueEncoding) {
               case implicit: struct { };
               case explicit: ECPoint ecdh_Yc;
           } ecdh_public;
       } ClientECDiffieHellmanPublic;

  ecdh_Yc:   Contains the client's ephemeral ECDH public key as a byte
     string ECPoint.point, which may represent an elliptic curve point
     in uncompressed or compressed format.  Here, the format MUST
     conform to what the server has requested through a Supported Point
     Formats Extension if this extension was used, and MUST be
     uncompressed if this extension was not used.

       struct {
           select (KeyExchangeAlgorithm) {
               case ec_diffie_hellman: ClientECDiffieHellmanPublic;
           } exchange_keys;
       } ClientKeyExchange;

  Actions of the sender:

  The client selects an ephemeral ECDH public key corresponding to the
  parameters it received from the server according to the ECKAS-DH1
  scheme from IEEE 1363 [6].  It conveys this information to the client
  in the ClientKeyExchange message using the format defined above.





Blake-Wilson, et al.         Informational                     [Page 24]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  Actions of the receiver:

  The server retrieves the client's ephemeral ECDH public key from the
  ClientKeyExchange message and checks that it is on the same elliptic
  curve as the server's ECDH key.

5.8.  Certificate Verify

  When this message is sent:

  This message is sent when the client sends a client certificate
  containing a public key usable for digital signatures, e.g., when the
  client is authenticated using the ECDSA_sign mechanism.

  Meaning of the message:

  This message contains a signature that proves possession of the
  private key corresponding to the public key in the client's
  Certificate message.

  Structure of this message:

  The TLS CertificateVerify message and the underlying Signature type
  are defined in [2] and [3], and the latter is extended here in
  Section 5.4.  For the ecdsa case, the signature field in the
  CertificateVerify message contains an ECDSA signature computed over
  handshake messages exchanged so far, exactly similar to
  CertificateVerify with other signing algorithms in [2] and [3]:

       CertificateVerify.signature.sha_hash
           SHA(handshake_messages);

  ECDSA signatures are computed as described in Section 5.10, and SHA
  in the above template for sha_hash accordingly may denote a hash
  algorithm other than SHA-1.  As per ANSI X9.62, an ECDSA signature
  consists of a pair of integers, r and s.  The digitally-signed
  element is encoded as an opaque vector <0..2^16-1>, the contents of
  which are the DER encoding [9] corresponding to the following ASN.1
  notation [8].

       Ecdsa-Sig-Value ::= SEQUENCE {
           r       INTEGER,
           s       INTEGER
       }







Blake-Wilson, et al.         Informational                     [Page 25]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  Actions of the sender:

  The client computes its signature over all handshake messages sent or
  received starting at client hello and up to but not including this
  message.  It uses the private key corresponding to its certified
  public key to compute the signature, which is conveyed in the format
  defined above.

  Actions of the receiver:

  The server extracts the client's signature from the CertificateVerify
  message, and verifies the signature using the public key it received
  in the client's Certificate message.

5.9.  Elliptic Curve Certificates

  X.509 certificates containing ECC public keys or signed using ECDSA
  MUST comply with [14] or another RFC that replaces or extends it.
  Clients SHOULD use the elliptic curve domain parameters recommended
  in ANSI X9.62 [7], FIPS 186-2 [11], and SEC 2 [13].

5.10.  ECDH, ECDSA, and RSA Computations

  All ECDH calculations (including parameter and key generation as well
  as the shared secret calculation) are performed according to [6]
  using the ECKAS-DH1 scheme with the identity map as key derivation
  function (KDF), so that the premaster secret is the x-coordinate of
  the ECDH shared secret elliptic curve point represented as an octet
  string.  Note that this octet string (Z in IEEE 1363 terminology) as
  output by FE2OSP, the Field Element to Octet String Conversion
  Primitive, has constant length for any given field; leading zeros
  found in this octet string MUST NOT be truncated.

  (Note that this use of the identity KDF is a technicality.  The
  complete picture is that ECDH is employed with a non-trivial KDF
  because TLS does not directly use the premaster secret for anything
  other than for computing the master secret.  As of TLS 1.0 [2] and
  1.1 [3], this means that the MD5- and SHA-1-based TLS PRF serves as a
  KDF; it is conceivable that future TLS versions or new TLS extensions
  introduced in the future may vary this computation.)

  All ECDSA computations MUST be performed according to ANSI X9.62 [7]
  or its successors.  Data to be signed/verified is hashed, and the
  result run directly through the ECDSA algorithm with no additional
  hashing.  The default hash function is SHA-1 [10], and sha_size (see
  Sections 5.4 and 5.8) is 20.  However, an alternative hash function,
  such as one of the new SHA hash functions specified in FIPS 180-2
  [10], may be used instead if the certificate containing the EC public



Blake-Wilson, et al.         Informational                     [Page 26]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  key explicitly requires use of another hash function.  (The mechanism
  for specifying the required hash function has not been standardized,
  but this provision anticipates such standardization and obviates the
  need to update this document in response.  Future PKIX RFCs may
  choose, for example, to specify the hash function to be used with a
  public key in the parameters field of subjectPublicKeyInfo.)

  All RSA signatures must be generated and verified according to PKCS#1
  [12] block type 1.

6.  Cipher Suites

  The table below defines new ECC cipher suites that use the key
  exchange algorithms specified in Section 2.

    CipherSuite TLS_ECDH_ECDSA_WITH_NULL_SHA           = { 0xC0, 0x01 }
    CipherSuite TLS_ECDH_ECDSA_WITH_RC4_128_SHA        = { 0xC0, 0x02 }
    CipherSuite TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA   = { 0xC0, 0x03 }
    CipherSuite TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA    = { 0xC0, 0x04 }
    CipherSuite TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA    = { 0xC0, 0x05 }

    CipherSuite TLS_ECDHE_ECDSA_WITH_NULL_SHA          = { 0xC0, 0x06 }
    CipherSuite TLS_ECDHE_ECDSA_WITH_RC4_128_SHA       = { 0xC0, 0x07 }
    CipherSuite TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA  = { 0xC0, 0x08 }
    CipherSuite TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA   = { 0xC0, 0x09 }
    CipherSuite TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA   = { 0xC0, 0x0A }

    CipherSuite TLS_ECDH_RSA_WITH_NULL_SHA             = { 0xC0, 0x0B }
    CipherSuite TLS_ECDH_RSA_WITH_RC4_128_SHA          = { 0xC0, 0x0C }
    CipherSuite TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA     = { 0xC0, 0x0D }
    CipherSuite TLS_ECDH_RSA_WITH_AES_128_CBC_SHA      = { 0xC0, 0x0E }
    CipherSuite TLS_ECDH_RSA_WITH_AES_256_CBC_SHA      = { 0xC0, 0x0F }

    CipherSuite TLS_ECDHE_RSA_WITH_NULL_SHA            = { 0xC0, 0x10 }
    CipherSuite TLS_ECDHE_RSA_WITH_RC4_128_SHA         = { 0xC0, 0x11 }
    CipherSuite TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA    = { 0xC0, 0x12 }
    CipherSuite TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA     = { 0xC0, 0x13 }
    CipherSuite TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA     = { 0xC0, 0x14 }

    CipherSuite TLS_ECDH_anon_WITH_NULL_SHA            = { 0xC0, 0x15 }
    CipherSuite TLS_ECDH_anon_WITH_RC4_128_SHA         = { 0xC0, 0x16 }
    CipherSuite TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA    = { 0xC0, 0x17 }
    CipherSuite TLS_ECDH_anon_WITH_AES_128_CBC_SHA     = { 0xC0, 0x18 }
    CipherSuite TLS_ECDH_anon_WITH_AES_256_CBC_SHA     = { 0xC0, 0x19 }

                       Table 5: TLS ECC cipher suites





Blake-Wilson, et al.         Informational                     [Page 27]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  The key exchange method, cipher, and hash algorithm for each of these
  cipher suites are easily determined by examining the name.  Ciphers
  (other than AES ciphers) and hash algorithms are defined in [2] and
  [3].  AES ciphers are defined in [19].

  Server implementations SHOULD support all of the following cipher
  suites, and client implementations SHOULD support at least one of
  them: TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
  TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
  TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, and
  TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA.

7.  Security Considerations

  Security issues are discussed throughout this memo.

  For TLS handshakes using ECC cipher suites, the security
  considerations in appendices D.2 and D.3 of [2] and [3] apply
  accordingly.

  Security discussions specific to ECC can be found in [6] and [7].
  One important issue that implementers and users must consider is
  elliptic curve selection.  Guidance on selecting an appropriate
  elliptic curve size is given in Table 1.

  Beyond elliptic curve size, the main issue is elliptic curve
  structure.  As a general principle, it is more conservative to use
  elliptic curves with as little algebraic structure as possible.
  Thus, random curves are more conservative than special curves such as
  Koblitz curves, and curves over F_p with p random are more
  conservative than curves over F_p with p of a special form (and
  curves over F_p with p random might be considered more conservative
  than curves over F_2^m as there is no choice between multiple fields
  of similar size for characteristic 2).  Note, however, that algebraic
  structure can also lead to implementation efficiencies, and
  implementers and users may, therefore, need to balance conservatism
  against a need for efficiency.  Concrete attacks are known against
  only very few special classes of curves, such as supersingular
  curves, and these classes are excluded from the ECC standards that
  this document references [6], [7].

  Another issue is the potential for catastrophic failures when a
  single elliptic curve is widely used.  In this case, an attack on the
  elliptic curve might result in the compromise of a large number of
  keys.  Again, this concern may need to be balanced against efficiency
  and interoperability improvements associated with widely-used curves.
  Substantial additional information on elliptic curve choice can be
  found in [5], [6], [7], and [11].



Blake-Wilson, et al.         Informational                     [Page 28]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  Implementers and users must also consider whether they need forward
  secrecy.  Forward secrecy refers to the property that session keys
  are not compromised if the static, certified keys belonging to the
  server and client are compromised.  The ECDHE_ECDSA and ECDHE_RSA key
  exchange algorithms provide forward secrecy protection in the event
  of server key compromise, while ECDH_ECDSA and ECDH_RSA do not.
  Similarly, if the client is providing a static, certified key,
  ECDSA_sign client authentication provides forward secrecy protection
  in the event of client key compromise, while ECDSA_fixed_ECDH and
  RSA_fixed_ECDH do not.  Thus, to obtain complete forward secrecy
  protection, ECDHE_ECDSA or ECDHE_RSA must be used for key exchange,
  with ECDSA_sign used for client authentication if necessary.  Here
  again the security benefits of forward secrecy may need to be
  balanced against the improved efficiency offered by other options.

8.  IANA Considerations

  This document describes three new name spaces for use with the TLS
  protocol:

  o  NamedCurve (Section 5.1)

  o  ECPointFormat (Section 5.1)

  o  ECCurveType (Section 5.4)

  For each name space, this document defines the initial value
  assignments and defines a range of 256 values (NamedCurve) or eight
  values (ECPointFormat and ECCurveType) reserved for Private Use.  Any
  additional assignments require IETF Consensus action [16].

9.  Acknowledgements

  The authors wish to thank Bill Anderson and Tim Dierks.

















Blake-Wilson, et al.         Informational                     [Page 29]

RFC 4492               ECC Cipher Suites for TLS                May 2006


10.  References

10.1.  Normative References

  [1]   Bradner, S., "Key Words for Use in RFCs to Indicate Requirement
        Levels", RFC 2119, March 1997.

  [2]   Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
        RFC 2246, January 1999.

  [3]   Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
        Protocol Version 1.1", RFC 4346, April 2006.

  [4]   Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and
        T. Wright, "Transport Layer Security (TLS) Extensions", RFC
        4366, April 2006.

  [5]   SECG, "Elliptic Curve Cryptography", SEC 1, 2000,
        <http://www.secg.org/>.

  [6]   IEEE, "Standard Specifications for Public Key Cryptography",
        IEEE 1363, 2000.

  [7]   ANSI, "Public Key Cryptography For The Financial Services
        Industry: The Elliptic Curve Digital Signature Algorithm
        (ECDSA)", ANSI X9.62, 1998.

  [8]   International Telecommunication Union, "Information technology
        - Abstract Syntax Notation One (ASN.1): Specification of basic
        notation", ITU-T Recommendation X.680, 2002.

  [9]   International Telecommunication Union, "Information technology
        - ASN.1 encoding rules: Specification of Basic Encoding Rules
        (BER), Canonical Encoding Rules (CER) and Distinguished
        Encoding Rules (DER)", ITU-T Recommendation X.690, 2002.

  [10]  NIST, "Secure Hash Standard", FIPS 180-2, 2002.

  [11]  NIST, "Digital Signature Standard", FIPS 186-2, 2000.

  [12]  RSA Laboratories, "PKCS#1: RSA Encryption Standard version
        1.5", PKCS 1, November 1993.

  [13]  SECG, "Recommended Elliptic Curve Domain Parameters", SEC 2,
        2000, <http://www.secg.org/>.






Blake-Wilson, et al.         Informational                     [Page 30]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  [14]  Polk, T., Housley, R., and L. Bassham, "Algorithms and
        Identifiers for the Internet X.509 Public Key Infrastructure
        Certificate and Certificate Revocation List (CRL) Profile",
        RFC 3279, April 2002.

  [15]  Housley, R., Polk, T., Ford, W., and D. Solo, "Internet X.509
        Public Key Infrastructure Certificate and Certificate
        Revocation List (CRL) Profile", RFC 3280, April 2002.

  [16]  Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
        Considerations Section in RFCs", RFC 2434, October 1998.

10.2.  Informative References

  [17]  Harper, G., Menezes, A., and S. Vanstone, "Public-Key
        Cryptosystems with Very Small Key Lengths", Advances in
        Cryptology -- EUROCRYPT '92, LNCS 658, 1993.

  [18]  Lenstra, A. and E. Verheul, "Selecting Cryptographic Key
        Sizes", Journal of Cryptology 14 (2001) 255-293,
        <http://www.cryptosavvy.com/>.

  [19]  Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for
        Transport Layer Security (TLS)", RFC 3268, June 2002.



























Blake-Wilson, et al.         Informational                     [Page 31]

RFC 4492               ECC Cipher Suites for TLS                May 2006


Appendix A.  Equivalent Curves (Informative)

  All of the NIST curves [11] and several of the ANSI curves [7] are
  equivalent to curves listed in Section 5.1.1.  In the following
  table, multiple names in one row represent aliases for the same
  curve.

            ------------------------------------------
                      Curve names chosen by
                 different standards organizations
            ------------+---------------+-------------
            SECG        |  ANSI X9.62   |  NIST
            ------------+---------------+-------------
            sect163k1   |               |   NIST K-163
            sect163r1   |               |
            sect163r2   |               |   NIST B-163
            sect193r1   |               |
            sect193r2   |               |
            sect233k1   |               |   NIST K-233
            sect233r1   |               |   NIST B-233
            sect239k1   |               |
            sect283k1   |               |   NIST K-283
            sect283r1   |               |   NIST B-283
            sect409k1   |               |   NIST K-409
            sect409r1   |               |   NIST B-409
            sect571k1   |               |   NIST K-571
            sect571r1   |               |   NIST B-571
            secp160k1   |               |
            secp160r1   |               |
            secp160r2   |               |
            secp192k1   |               |
            secp192r1   |  prime192v1   |   NIST P-192
            secp224k1   |               |
            secp224r1   |               |   NIST P-224
            secp256k1   |               |
            secp256r1   |  prime256v1   |   NIST P-256
            secp384r1   |               |   NIST P-384
            secp521r1   |               |   NIST P-521
            ------------+---------------+-------------

     Table 6: Equivalent curves defined by SECG, ANSI, and NIST










Blake-Wilson, et al.         Informational                     [Page 32]

RFC 4492               ECC Cipher Suites for TLS                May 2006


Authors' Addresses

  Simon Blake-Wilson
  SafeNet Technologies BV
  Amstelveenseweg 88-90
  1075 XJ, Amsterdam
  NL

  Phone: +31 653 899 836
  EMail: [email protected]


  Nelson Bolyard
  Sun Microsystems Inc.
  4170 Network Circle
  MS SCA17-201
  Santa Clara, CA  95054
  US

  Phone: +1 408 930 1443
  EMail: [email protected]


  Vipul Gupta
  Sun Microsystems Laboratories
  16 Network Circle
  MS UMPK16-160
  Menlo Park, CA  94025
  US

  Phone: +1 650 786 7551
  EMail: [email protected]


  Chris Hawk
  Corriente Networks LLC
  1563 Solano Ave., #484
  Berkeley, CA  94707
  US

  Phone: +1 510 527 0601
  EMail: [email protected]









Blake-Wilson, et al.         Informational                     [Page 33]

RFC 4492               ECC Cipher Suites for TLS                May 2006


  Bodo Moeller
  Ruhr-Uni Bochum
  Horst-Goertz-Institut, Lehrstuhl fuer Kommunikationssicherheit
  IC 4/139
  44780 Bochum
  DE

  Phone: +49 234 32 26795
  EMail: [email protected]










































Blake-Wilson, et al.         Informational                     [Page 34]

RFC 4492               ECC Cipher Suites for TLS                May 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Blake-Wilson, et al.         Informational                     [Page 35]