Network Working Group                                         M. Baugher
Request for Comments: 4383                                         Cisco
Category: Standards Track                                     E. Carrara
                                          Royal Institute of Technology
                                                          February 2006


The Use of Timed Efficient Stream Loss-Tolerant Authentication (TESLA)
          in the Secure Real-time Transport Protocol (SRTP)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This memo describes the use of the Timed Efficient Stream Loss-
  tolerant Authentication (RFC 4082) transform within the Secure Real-
  time Transport Protocol (SRTP), to provide data origin authentication
  for multicast and broadcast data streams.























Baugher & Carrara           Standards Track                     [Page 1]

RFC 4383                       TESLA-SRTP                  February 2006


Table of Contents

  1. Introduction ....................................................2
     1.1. Notational Conventions .....................................3
  2. SRTP ............................................................3
  3. TESLA ...........................................................4
  4. Usage of TESLA within SRTP ......................................5
     4.1. The TESLA Extension ........................................5
     4.2. SRTP Packet Format .........................................6
     4.3. Extension of the SRTP Cryptographic Context ................7
     4.4. SRTP Processing ............................................8
          4.4.1. Sender Processing ...................................9
          4.4.2. Receiver Processing .................................9
     4.5. SRTCP Packet Format .......................................11
     4.6. TESLA MAC .................................................13
     4.7. PRFs ......................................................13
  5. TESLA Bootstrapping and Cleanup ................................14
  6. SRTP TESLA Default Parameters ..................................14
  7. Security Considerations ........................................15
  8. Acknowledgements ...............................................16
  9. References .....................................................17
     9.1. Normative References ......................................17
     9.2. Informative References ....................................17

1.  Introduction

  Multicast and broadcast communications introduce some new security
  challenges compared to unicast communication.  Many multicast and
  broadcast applications need "data origin authentication" (DOA), or
  "source authentication", in order to guarantee that a received
  message had originated from a given source, and was not manipulated
  during the transmission.  In unicast communication, a pairwise
  security association between one sender and one receiver can provide
  data origin authentication using symmetric-key cryptography (such as
  a message authentication code, MAC).  When the communication is
  strictly pairwise, the sender and receiver agree upon a key that is
  known only to them.

  In groups, however, a key is shared among more than two members, and
  this symmetric-key approach does not guarantee data origin
  authentication.  When there is a group security association [RFC4046]
  instead of a pairwise security association, any of the members can
  alter the packet and impersonate any other member.  The MAC in this
  case only guarantees that the packet was not manipulated by an
  attacker outside the group (and hence not in possession of the group
  key), and that the packet was sent by a source within the group.





Baugher & Carrara           Standards Track                     [Page 2]

RFC 4383                       TESLA-SRTP                  February 2006


  Some applications cannot tolerate source ambiguity and need to
  identify the true sender from any other group member.  A common way
  to solve the problem is by use of asymmetric cryptography, such as
  digital signatures.  This method, unfortunately, suffers from high
  overhead in terms of time (to sign and verify) and bandwidth (to
  convey the signature in the packet).

  Several schemes have been proposed to provide efficient data origin
  authentication in multicast and broadcast scenarios.  The Timed
  Efficient Stream Loss-tolerant Authentication (TESLA) is one such
  scheme.

  This memo specifies TESLA authentication for SRTP.  SRTP TESLA can
  provide data origin authentication to RTP applications that use group
  security associations (such as multicast RTP applications) so long as
  receivers abide by the TESLA security invariants [RFC4082].

1.1.  Notational Conventions

  The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  This specification assumes that the reader is familiar with both SRTP
  and TESLA.  Few of their details are explained in this document, and
  the reader can find them in their respective specifications,
  [RFC3711] and [RFC4082].  This specification uses the same
  definitions as TESLA for common terms and assumes that the reader is
  familiar with the TESLA algorithms and protocols [RFC4082].

2.  SRTP

  The Secure Real-time Transport Protocol (SRTP) [RFC3711] is a profile
  of RTP, which can provide confidentiality, message authentication,
  and replay protection to the RTP traffic and to the RTP control
  protocol, the Real-time Transport Control Protocol (RTCP).  Note that
  the term "SRTP" may often be used to indicate SRTCP as well.

  SRTP is a framework that allows new security functions and new
  transforms to be added.  SRTP currently does not define any mechanism
  to provide data origin authentication for group security
  associations.  Fortunately, it is straightforward to add TESLA to the
  SRTP cryptographic framework.

  The TESLA extension to SRTP is defined in this specification, which
  assumes that the reader is familiar with the SRTP specification
  [RFC3711], its packet structure, and its processing rules.  TESLA is




Baugher & Carrara           Standards Track                     [Page 3]

RFC 4383                       TESLA-SRTP                  February 2006


  an alternative message-authentication algorithm that authenticates
  messages from the source when a key is shared among two or more
  receivers.

3.  TESLA

  TESLA provides delayed per-packet data authentication and is
  specified in [RFC4082].

  In addition to its SRTP data-packet definition given here, TESLA
  needs an initial synchronization protocol and initial bootstrapping
  procedure.  The synchronization protocol allows the sender and the
  receiver to compare their clocks and determine an upper bound of the
  difference.  The synchronization protocol is outside the scope of
  this document.

  TESLA also requires an initial bootstrapping procedure to exchange
  needed parameters and the initial commitment to the key chain
  [RFC4082].  For SRTP, it is assumed that the bootstrapping is
  performed out-of-band, possibly using the key management protocol
  that is exchanging the security parameters for SRTP, e.g., [RFC3547,
  RFC3830].  Initial bootstrapping of TESLA is outside the scope of
  this document.




























Baugher & Carrara           Standards Track                     [Page 4]

RFC 4383                       TESLA-SRTP                  February 2006


4.  Usage of TESLA within SRTP

  The present specification is an extension to the SRTP specification
  [RFC3711] and describes the use of TESLA with only a single key chain
  and delayed-authentication [RFC4082].

4.1.  The TESLA Extension

  TESLA is an OPTIONAL authentication transform for SRTP.  When used,
  TESLA adds the fields shown in Figure 1 per-packet.  The fields added
  by TESLA are called "TESLA authentication extensions," whereas
  "authentication tag" or "integrity protection tag" indicate the
  normal SRTP integrity protection tag, when the SRTP master key is
  shared by more than two endpoints [RFC3711].

  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              i                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                         Disclosed Key                         ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                           TESLA MAC                           ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 1.  The "TESLA authentication extension".

  i: 32 bit, MANDATORY
     Identifier of the time interval i, corresponding to the key K_i,
     which is used to calculate the TESLA MAC of the current packet
     (and other packets sent in the current time interval i).

  Disclosed Key: variable length, MANDATORY
     The disclosed key (K_(i-d)), which can be used to authenticate
     previous packets from earlier time intervals [RFC4082].  A
     Section 4.3 parameter establishes the size of this field.

  TESLA MAC (Message Authentication Code): variable length, MANDATORY
     The MAC computed using the key K'_i (derived from K_i)
     [RFC4082], which is disclosed in a subsequent packet (in the
     Disclosed Key field).  The MAC coverage is defined in Section
     4.6.  A Section 4.3 parameter establishes the size of this
     field.









Baugher & Carrara           Standards Track                     [Page 5]

RFC 4383                       TESLA-SRTP                  February 2006


4.2.  SRTP Packet Format

  Figure 2 illustrates the format of the SRTP packet when TESLA is
  applied.  When applied to RTP, the TESLA authentication extension
  SHALL be inserted before the (optional) SRTP MKI and (recommended)
  authentication tag (SRTP MAC).

    0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<+<+
 |V=2|P|X|  CC   |M|     PT      |       sequence number         | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
 |                           timestamp                           | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
 |           synchronization source (SSRC) identifier            | | |
 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ | |
 |            contributing source (CSRC) identifiers             | | |
 |                               ....                            | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
 |                   RTP extension (OPTIONAL)                    | | |
+>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| |                          payload  ...                         | | |
| |                               +-------------------------------+ | |
| |                               | RTP padding   | RTP pad count | | |
+>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<+ |
| |                            i                                  | | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| ~                      Disclosed Key                            ~ | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| ~                          TESLA MAC                            ~ | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<|-+
| ~                            MKI                                ~ | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| ~                            MAC                                ~ | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|                                                                   | |
+- Encrypted Portion                 TESLA Authenticated Portion ---+ |
                                                                     |
                                            Authenticated Portion ---+

  Figure 2.  The format of the SRTP packet when TESLA is applied.

  As in SRTP, the "Encrypted Portion" of an SRTP packet consists of the
  encryption of the RTP payload (including RTP padding when present) of
  the equivalent RTP packet.






Baugher & Carrara           Standards Track                     [Page 6]

RFC 4383                       TESLA-SRTP                  February 2006


  The "Authenticated Portion" of an SRTP packet consists of the RTP
  header, the Encrypted Portion of the SRTP packet, and the TESLA
  authentication extension.  Note that the definition is extended from
  [RFC3711] by the inclusion of the TESLA authentication extension.

  The "TESLA Authenticated Portion" of an SRTP packet consists of the
  RTP header and the Encrypted Portion of the SRTP packet.  As shown in
  Figure 2, the SRTP MAC covers up to the MKI field but does not
  include the MKI.  It is necessary for packet integrity that the
  SRTP-TESLA MAC tag be covered by the SRTP integrity check.  SRTP does
  not cover the MKI field (because it does not need to be covered for
  SRTP packet integrity).  In order to make the two tags (SRTP-TESLA
  MAC and SRTP-MAC) contiguous, we would need to redefine the SRTP
  specification to include the MKI in SRTP-MAC coverage.  This change
  is impossible, so the MKI field separates the TESLA MAC from the SRTP
  MAC in the packet layout of Figure 2.  This change to the packet
  format presents no problem to an implementation that supports the new
  SRTP-TESLA authentication transform.

  The lengths of the Disclosed Key and TESLA MAC fields are Section 4.3
  parameters.  As in SRTP, fields that follow the packet payload are
  not necessarily aligned on 32-bit boundaries.

4.3.  Extension of the SRTP Cryptographic Context

  When TESLA is used, the definition of cryptographic context in
  Section 3.2 of SRTP SHALL include the following extensions.

  Transform-Dependent Parameters

    1.  an identifier for the PRF (TESLA PRF), implementing the one-way
        function F(x) in TESLA (to derive the keys in the chain), and
        the one-way function F'(x) in TESLA (to derive the keys for the
        TESLA MAC, from the keys in the chain), e.g., to indicate
        HMAC-SHA1.  See Section 6 for the default value.

    2.  a non-negative integer, n_p, determining the length of the F
        output; i.e., the length of the keys in the chain (that is also
        the key disclosed in an SRTP packet).  See Section 6 for the
        default value.

    3.  a non-negative integer, n_f, determining the length of the
        output of F', i.e., of the key for the TESLA MAC.  See Section
        6 for the default value.

    4.  an identifier for the TESLA MAC that accepts the output of
        F'(x) as its key, e.g., to indicate HMAC-SHA1.  See Section 6
        for the default value.



Baugher & Carrara           Standards Track                     [Page 7]

RFC 4383                       TESLA-SRTP                  February 2006


    5.  a non-negative integer, n_m, determining the length of the
        output of the TESLA MAC.  See Section 6 for the default value.

    6.  the beginning of the session T_0.

    7.  the interval duration T_int (in msec).

    8.  the key disclosure delay d (in number of intervals).

    9.  the upper bound D_t (in sec) on the lag of the receiver clock
        relative to the sender clock (this quantity has to be
        calculated by the peers out-of-band).

    10. a non-negative integer, n_c, determining the length of the key
        chain, K_0...K_n-1 of [RFC4082] (see also Section 6 of this
        document), which is determined based upon the expected duration
        of the stream.

    11. the initial key of the chain to which the sender has committed
        himself.

  F(x) is used to compute a keychain of keys in SRTP TESLA, as defined
  in Section 6.  Also according to TESLA, F'(x) computes a TESLA MAC
  key with inputs as defined in Section 6.

  Section 6 of this document defines the default values for the
  transform-specific TESLA parameters.

4.4.  SRTP Processing

  The SRTP packet processing is described in Section 3.3 of the SRTP
  specification [RFC3711].  The use of TESLA slightly changes the
  processing, as the SRTP MAC is checked upon packet arrival for DoS
  prevention, but the current packet is not TESLA-authenticated.  Each
  packet is buffered until a subsequent packet discloses its TESLA key.
  The TESLA verification itself consists of some steps, such as tests
  of TESLA security invariants, that are described in Sections 3.5-3.7
  of [RFC4082].  The words "TESLA computation" and "TESLA verification"
  hereby imply all those steps, which are not all spelled out in the
  following.  In particular, notice that the TESLA verification implies
  checking the safety condition (Section 3.5 of [RFC4082]).

  As pointed out in [RFC4082], if the packet is deemed "unsafe", then
  the receiver considers the packet unauthenticated.  It should discard
  unsafe packets, but, at its own risk, it may choose to use them
  unverified.  Hence, if the safe condition does not hold, it is
  RECOMMENDED to discard the packet and log the event.




Baugher & Carrara           Standards Track                     [Page 8]

RFC 4383                       TESLA-SRTP                  February 2006


4.4.1.  Sender Processing

  The sender processing is as described in Section 3.3 of [RFC3711], up
  to step 5, inclusive.  After that, the following process is followed:

  6. When TESLA is applied, identify the key in the TESLA chain to be
     used in the current time interval, and the TESLA MAC key derived
     from it.  Execute the TESLA computation to obtain the TESLA
     authentication extension for the current packet, by appending the
     current interval identifier (as i field), the disclosed key of the
     chain for the previous disclosure interval (i.e., the key for
     interval i is disclosed in interval i+d), and the TESLA MAC under
     the current key from the chain.  This step uses the related TESLA
     parameters from the crypto context as for Step 4.

  7. If the MKI indicator in the SRTP crypto context is set to one,
     append the MKI to the packet.

  8. When TESLA is applied, and if the SRTP authentication (external
     tag) is required (for DoS), compute the authentication tag as
     described in step 7 of Section 3.3 of the SRTP specification, but
     with coverage as defined in this specification (see Section 4.6).

  9. If necessary, update the rollover counter (step 8 in Section 3.3
     of [RFC3711]).

4.4.2.  Receiver Processing

  The receiver processing is as described in Section 3.3 of [RFC3711],
  up to step 4, inclusive.

  To authenticate and replay-protect the current packet, the processing
  is as follows:

     First, check if the packet has been replayed (as per Section 3.3
     of [RFC3711]).  Note, however, that the SRTP replay list contains
     SRTP indices of recently received packets that have been
     authenticated by TESLA (i.e., replay list updates MUST NOT be
     based on SRTP MAC).  If the packet is judged to be replayed, then
     the packet MUST be discarded, and the event SHOULD be logged.

     Next, perform verification of the SRTP integrity protection tag
     (not the TESLA MAC), if present, using the rollover counter from
     the current packet, the authentication algorithm indicated in the
     cryptographic context, and the session authentication key.  If the
     verification is unsuccessful, the packet MUST be discarded from
     further processing, and the event SHOULD be logged.




Baugher & Carrara           Standards Track                     [Page 9]

RFC 4383                       TESLA-SRTP                  February 2006


     If the verification is successful, remove and store the MKI (if
     present) and authentication tag fields from the packet.  The
     packet is buffered, awaiting disclosure of the TESLA key in a
     subsequent packet.

     TESLA authentication is performed on a packet when the key is
     disclosed in a subsequent packet.  Recall that a key for interval
     i is disclosed during interval i+d, i.e., the same key is
     disclosed in packets sent over d intervals of length t_int.  If
     the interval identifier i from the packet (Section 4.1) has
     advanced more than d intervals from the highest value of i that
     has been received, then packets have been lost, and one or more
     keys MUST be computed as described in Section 3.2, second
     paragraph, of the TESLA specification [RFC4082].  The computation
     is performed recursively for all disclosed keys that have been
     lost, from the newly-received interval to the last-received
     interval.

     When a newly-disclosed key is received or computed, perform the
     TESLA verification of the packet using the rollover counter from
     the packet, the TESLA security parameters from the cryptographic
     context, and the disclosed key.  If the verification is
     unsuccessful, the packet MUST be discarded from further
     processing, and the event SHOULD be logged.  If the TESLA
     verification is successful, remove the TESLA authentication
     extension from the packet.

  To decrypt the current packet, the processing is as follows:

     Decrypt the Encrypted Portion of the packet, using the decryption
     algorithm indicated in the cryptographic context, the session
     encryption key, and salt (if used) found in Step 4 with the index
     from Step 2.

  (Note that the order of decryption and TESLA verification is not
  mandated.  It is RECOMMENDED that the TESLA verification be performed
  before decryption.  TESLA application designers might choose to
  implement optimistic processing techniques such as notification of
  TESLA verification results after decryption or even after plaintext
  processing.  Optimistic verification is beyond the scope of this
  document.)

  Update the rollover counter and highest sequence number, s_l, in the
  cryptographic context, using the packet index estimated in Step 2.
  If replay protection is provided, also update the Replay List (i.e.,
  the Replay List is updated after the TESLA authentication is
  successfully verified).




Baugher & Carrara           Standards Track                    [Page 10]

RFC 4383                       TESLA-SRTP                  February 2006


4.5.  SRTCP Packet Format

  Figure 3 illustrates the format of the SRTCP packet when TESLA is
  applied.  The TESLA authentication extension SHALL be inserted before
  the MKI and authentication tag.  Recall from [RFC3711] that in SRTCP
  the MKI is OPTIONAL, while the E-bit, the SRTCP index, and the
  authentication tag are MANDATORY.  This means that the SRTP
  (external) MAC is MANDATORY also when TESLA is used.

  As in SRTP, the "Encrypted Portion" of an SRTCP packet consists of
  the encryption of the RTCP payload of the equivalent compound RTCP
  packet, from the first RTCP packet, i.e., from the ninth (9) byte to
  the end of the compound packet.

  The "Authenticated Portion" of an SRTCP packet consists of the entire
  equivalent (eventually compound) RTCP packet, the E flag, the SRTCP
  index (after any encryption has been applied to the payload), and the
  TESLA extension.  Note that the definition is extended from [RFC3711]
  by the inclusion of the TESLA authentication extension.

  We define the "TESLA Authenticated Portion" of an SRTCP packet as
  consisting of the RTCP header (first 8 bytes) and the Encrypted
  Portion of the SRTCP packet.

  Processing of an SRTCP packets is similar to the SRTP processing
  (Section 4.3), but there are SRTCP-specific changes described in
  Section 3.4 of the SRTP specification [RFC3711] and in Section 4.6 of
  this memo.























Baugher & Carrara           Standards Track                    [Page 11]

RFC 4383                       TESLA-SRTP                  February 2006


  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<+<+
 |V=2|P|    RC   |   PT=SR or RR   |             length          | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
 |                         SSRC of sender                        | | |
+>+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ | |
| ~                          sender info                          ~ | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| ~                         report block 1                        ~ | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| ~                         report block 2                        ~ | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| ~                              ...                              ~ | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| |V=2|P|    SC   |  PT=SDES=202  |             length            | | |
| +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ | |
| |                          SSRC/CSRC_1                          | | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| ~                           SDES items                          ~ | |
| +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ | |
| ~                              ...                              ~ | |
+>+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ | |
| |E|                         SRTCP index                         | | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<+ |
| |                              i                                | | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| ~                         Disclosed Key                         ~ | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| ~                           TESLA MAC                           ~ | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<|-+
| ~                           SRTCP MKI                           ~ | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| :                       authentication tag                      : | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|                                                                   | |
+-- Encrypted Portion              TESLA Authenticated Portion -----+ |
                                                                     |
                                        Authenticated Portion -------+

  Figure 3.  The format of the SRTCP packet when TESLA is applied.

  Note that when additional fields are added to a packet, it will
  increase the packet size and thus the RTCP average packet size.







Baugher & Carrara           Standards Track                    [Page 12]

RFC 4383                       TESLA-SRTP                  February 2006


4.6. TESLA MAC

  Let M' denote packet data to be TESLA-authenticated.  In the case of
  SRTP, M' SHALL consist of the SRTP TESLA Authenticated Portion (RTP
  header and SRTP Encrypted Portion; see Figure 2) of the packet
  concatenated with the rollover counter (ROC) of the same packet:

  M' = ROC || TESLA Authenticated Portion.

  In the case of SRTCP, M' SHALL consist of the SRTCP TESLA
  Authenticated Portion only (RTCP header and SRTCP Encrypted Portion).

  The normal authentication tag (OPTIONAL for SRTP, MANDATORY for
  SRTCP) SHALL be applied with the same coverage as specified in
  [RFC3711].  That is:

  - for SRTP: Authenticated Portion || ROC (with the extended
    definition of SRTP Authentication Portion as in Section 4.2).

  - for SRTCP: Authenticated Portion (with the extended definition of
    SRTCP Authentication Portion as in Section 4.2).

  The predefined authentication transform in SRTP, HMAC-SHA1 [RFC2104],
  is also used to generate the TESLA MAC.  For SRTP (and respectively
  for SRTCP), the HMAC SHALL be applied to the key in the TESLA chain
  corresponding to a particular time interval, and to M' as specified
  above.  The HMAC output SHALL then be truncated to the n_m left-most
  bits.  Default values are in Section 6.

  As with SRTP, the predefined HMAC-SHA1 authentication algorithm MAY
  be replaced with an alternative algorithm that is specified in a
  future Internet RFC.

4.7.  PRFs

  TESLA requires a pseudo-random function (PRF) to implement

  * one one-way function F(x) to derive the key chain, and
  * one one-way function F'(x) to derive (from each key of the chain)
    the key that is actually used to calculate the TESLA MAC.

  When TESLA is used within SRTP, the default choice of the PRF SHALL
  be HMAC-SHA1.  Default values are in Section 6.

  Other PRFs can be chosen, and their use SHALL follow the common
  guidelines in [RFC3711] when adding new security parameters.





Baugher & Carrara           Standards Track                    [Page 13]

RFC 4383                       TESLA-SRTP                  February 2006


5.  TESLA Bootstrapping and Cleanup

  The extensions to the SRTP cryptographic context include a set of
  TESLA parameters that are listed in Section 4.3 of this document.
  Furthermore, TESLA MUST be bootstrapped at session setup (for the
  parameter exchange and the initial key commitment) through a regular
  data authentication system (a digital signature algorithm is
  RECOMMENDED).  Key management procedures can take care of this
  bootstrapping prior to the commencement of an SRTP session where
  TESLA authentication is used.  The bootstrapping mechanism is out of
  scope for this document (it could, for example, be part of the key
  management protocol).

  A critical factor for the security of TESLA is that the sender and
  receiver need to be loosely synchronized.  TESLA requires a bound on
  clock drift to be known (D_t).  Use of TESLA in SRTP assumes that the
  time synchronization is guaranteed by out-of-band schemes (e.g., key
  management).  That is, it is not in the scope of SRTP.

  It also should be noted that TESLA has some reliability requirements
  in that a key is disclosed for a packet in a subsequent packet, which
  can get lost.  Since a key in a lost packet can be derived from a
  future packet, TESLA is robust to packet loss.  This key stream
  stops, however, when the key-bearing data stream packets stop at the
  conclusion of the RTP session.  To avoid this nasty boundary
  condition, send null packets with TESLA keys for one entire key-
  disclosure period following the interval in which the stream ceases:
  Null packets SHOULD be sent for d intervals of duration t_int (items
  8 and 9 of Section 4.3).  The rate of null packets SHOULD be the
  average rate of the session media stream.

6.  SRTP TESLA Default Parameters

  Key management procedures establish SRTP TESLA operating parameters,
  which are listed in Section 4.3 of this document.  The operating
  parameters appear in the SRTP cryptographic context and have the
  default values that are described in this section.  In the future, an
  Internet RFC MAY define alternative settings for SRTP TESLA that are
  different than those specified here.  In particular, note that the
  settings defined in this memo can have a large impact on bandwidth,
  as they add 38 bytes to each packet (when the field length values are
  the default ones).  For certain applications, this overhead may
  represent more than a 50% increase in packet size.  Alternative
  settings might seek to reduce the number and length of various TESLA
  fields and outputs.  No such optimizations are considered in this
  memo.





Baugher & Carrara           Standards Track                    [Page 14]

RFC 4383                       TESLA-SRTP                  February 2006


  It is RECOMMENDED that the SRTP MAC be truncated to 32 bits, since
  the SRTP MAC provides only group authentication and serves only as
  protection against external DoS.

  The default values for the security parameters are listed in the
  following table.

  Parameter                        Mandatory-to-support     Default
  ---------                        --------------------     -------
  TESLA PRF                              HMAC-SHA1         HMAC-SHA1
  BIT-OUTPUT LENGTH n_p                     160               160
  BIT-OUTPUT LENGTH n_f                     160               160

  TESLA MAC                              HMAC-SHA1         HMAC-SHA1
   (TRUNCATED) BIT-OUTPUT LENGTH n_m         80                80

  As shown above, TESLA implementations MUST support HMAC-SHA1
  [RFC2104] for the TESLA MAC and the TESLA PRF.  The TESLA keychain
  generator is recursively defined as follows [RFC4082].

                   K_i=HMAC_SHA1(K_{i+1},0), i=0..N-1

  where N-1=n_c from the cryptographic context.

  The TESLA MAC key generator is defined as follows [RFC4082].

                          K'_i=HMAC_SHA1(K_i,1)

  The TESLA MAC uses a truncated output of ten bytes [RFC2104] and is
  defined as follows.

                           HMAC_SHA1(K'_i, M')

  where M' is as specified in Section 4.6.

7.  Security Considerations

  Denial of Service (DoS) attacks on delayed authentication are
  discussed in [PCST].  TESLA requires receiver buffering before
  authentication; therefore, the receiver can suffer a denial of
  service attack due to a flood of bogus packets.  To address this
  problem, the external SRTP MAC, based on the group key, MAY be used
  in addition to the TESLA MAC.  The short size of the SRTP MAC
  (default 32 bits) is motivated because that MAC is purely for DoS
  prevention from attackers external to the group.  The shorter output
  tag means that an attacker has a better chance of getting a forged
  packet accepted, which is about 2^31 attempts on average.  As a first
  line of defense against a denial of service attack, a short tag is



Baugher & Carrara           Standards Track                    [Page 15]

RFC 4383                       TESLA-SRTP                  February 2006


  probably adequate; a victim will likely have ample evidence that it
  is under attack before accepting a forged packet, which will
  subsequently fail the TESLA check.  [RFC4082] describes other
  mechanisms that can be used to prevent DoS, in place of the external
  group-key MAC.  If used, they need to be added as processing steps
  (following the guidelines of [RFC4082]).

  The use of TESLA in SRTP defined in this specification is subject to
  the security considerations discussed in the SRTP specification
  [RFC3711] and in the TESLA specification [RFC4082].  In particular,
  the TESLA security is dependent on the computation of the "safety
  condition" as defined in Section 3.5 of [RFC4082].

  SRTP TESLA depends on the effective security of the systems that
  perform bootstrapping (time synchronization) and key management.
  These systems are external to SRTP and are not considered in this
  specification.

  The length of the TESLA MAC is by default 80 bits.  RFC 2104 requires
  the MAC length to be at least 80 bits and at least half the output
  size of the underlying hash function.  The SHA-1 output size is 160
  bits, so both of these requirements are met with the 80-bit MAC
  specified in this document.  Note that IPsec implementations tend to
  use 96 bits for their MAC values to align the header with a 64-bit
  boundary.  Both MAC sizes are well beyond the reach of current
  cryptanalytic techniques.

8.  Acknowledgements

  The authors would like to thank Ran Canetti, Karl Norrman, Mats
  Naslund, Fredrik Lindholm, David McGrew, and Bob Briscoe for their
  valuable help.



















Baugher & Carrara           Standards Track                    [Page 16]

RFC 4383                       TESLA-SRTP                  February 2006


9.  References

9.1.  Normative References

  [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
             Hashing for Message Authentication", RFC 2104, February
             1997.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3711]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
             Norrman, "The Secure Real-time Transport Protocol (SRTP)",
             RFC 3711, March 2004.

  [RFC4082]  Perrig, A., Song, D., Canetti, R., Tygar, J., and B.
             Briscoe, "Timed Efficient Stream Loss-Tolerant
             Authentication (TESLA): Multicast Source Authentication
             Transform Introduction", RFC 4082, June 2005.

9.2.  Informative References

  [PCST]     Perrig, A., Canetti, R., Song, D., Tygar, D., "Efficient
             and Secure Source Authentication for Multicast", in Proc.
             of Network and Distributed System Security Symposium NDSS
             2001, pp. 35-46, 2001.

  [RFC3547]  Baugher, M., Weis, B., Hardjono, T., and H. Harney, "The
             Group Domain of Interpretation", RFC 3547, July 2003.

  [RFC3830]  Arkko, J., Carrara, E., Lindholm, F., Naslund, M., and K.
             Norrman, "MIKEY: Multimedia Internet KEYing", RFC 3830,
             August 2004.

  [RFC4046]  Baugher, M., Canetti, R., Dondeti, L., and F. Lindholm,
             "Multicast Security (MSEC) Group Key Management
             Architecture", RFC 4046, April 2005.














Baugher & Carrara           Standards Track                    [Page 17]

RFC 4383                       TESLA-SRTP                  February 2006


Authors' Addresses

  Questions and comments should be directed to the authors and
  [email protected].

  Mark Baugher
  Cisco Systems, Inc.
  5510 SW Orchid Street
  Portland, OR 97219 USA

  Phone:  +1 408-853-4418
  EMail:  [email protected]


  Elisabetta Carrara
  Royal Institute of Technology
  Stockholm
  Sweden

  EMail:  [email protected]































Baugher & Carrara           Standards Track                    [Page 18]

RFC 4383                       TESLA-SRTP                  February 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Baugher & Carrara           Standards Track                    [Page 19]